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Ihr naht euch wieder, schwankende Gestalten,
Die früh sich einst dem trüben Blick gezeigt.
Versuch ich wohl, euch diesmal festzuhalten?
Fühl ich mein Herz noch jenem Wahn geneigt?

Johann Wolfgang von Goethe 1

1J.W. von Goethe, Faust.
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2 , (Liu An, Huainanzi, Qisuxu). These sentences mean: Entire time is named
“Zhou”. Whole space is named “Yu”. Inside the Universe (“Yuzhou”) lie the laws of the Nature. But
agnostic. In Chinese language, “space-time” and “Universe” are the same word. This ancient coincidence
from thousands of years ago must be appreciated by modern cosmologists.



Abstract

Despite the glorious successes of modern cosmology, our understanding of the
cosmic substitution is still limited to a tiny fraction (a few per cents only). Acceler-
ated expansion of the Universe, caused by the mysterious dark energy is currently
the most severe crisis in cosmology, even in physics. In this dissertation, we argue
that light may be shed on this crisis by means of the cosmological backreaction
mechanism in the averaging problem in inhomogeneous and anisotropic space-time.

Due to the non-commutation of temporal evolution and spatial averaging, the
averaged Einstein tensor as the function of the perturbed metric is not trivially equal
to the Einstein tensor of the averaged metric. Consequently, inhomogeneities and
anisotropies (cosmic structures) influence the evolution of the background Universe.

In order to obtain the quantitative information of this mechanism, we combine
Buchert’s non-perturbative framework with cosmological perturbation theory, cal-
culate the relevant averaged physical observables up to third order in the comoving
synchronous gauge (both temporal and spatial dependence) and discuss their gauge
dependence. With the help of an integrability condition, the leading higher order
contributions follow from the lower order calculations. We demonstrate that the
leading contributions to all the averaged physical observables under consideration
are specified completely on the boundary of the averaged domain. For any finite
domain, these surface terms are nonzero in general, and thus backreaction is for
real.

We map the backreaction effect on an effectively homogeneous and isotropic
(fluid) model and prove that a cosmological constant can be obtained at third order.
We further identify the backreaction effects to be observable up to scales of 200 Mpc.
The cosmic variance of the local Hubble expansion rate is 10% for spherical regions
of radius 45 Mpc and 5% for 60 Mpc. We compare our results to the data from the
Hubble Space Telescope Key Project and the simulations in Newtonian cosmology
and find excellent agreement.
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1 Preface

No idea in physics has ever astonished me more than the evolution of our very Universe,
which eliminated all static, obstinate and fatuous viewpoints of the habitat that we are
living in. Just as the scientific theory of biological evolution overthrew the religious
doctrines on the development of our society, the scientific theory of the Universe – modern
cosmology established the framework, in which every era during the evolution can be
understood consistently and correctly, based on firm physical laws. We, human being,
for the first time grasped the behavior of our Universe as a whole, in which we are
just a tiny dust. Five decades ago, even theoretical physicists were not able to explain
the abundance of chemical elements in galaxies and how matter are woven into cosmic
structures. Whereas, nowadays, ten-year-old children are accustomed to the so-called
“Big Bang” and discuss the origin of the Universe on their way home. Modern cosmology
not only simply reformed the knowledge within the physics community, but has also
thoroughly altered the world view of our mankind. People of our generation are lucky
to live in this special epoch to be possible to witness all these exciting processes with
our own eyes, experience all these fruitful progresses with our own feelings and maybe
even contribute to this grand and magnificent palace of science with our own hands, if we
devote our life to it.

The significance and importance of cosmology lie in the following reason: the Uni-
verse is the vastest laboratory that we can imagine and almost uniquely presents the
fields, where all the four fundamental interactions exhibit their effects. Strong interaction
operates at the epoch of the phase transition from quark-gluon plasma to hadron matter.
In the primordial nucleosysthesis, the decay rate of neutron, which significantly influences
the abundances of light nucleons, is governed by weak force. In the process of recombina-
tion of protons and electrons to form neutral hydrogen atom, electromagnetic interaction
plays the main role. And last, the study of cosmology is one of the most suitable places
to test the different theories of gravity.

Nevertheless, cosmology should not only be regarded as a subject, in which we merely
apply our known physical laws, it also feeds back to our basic theories. One early example
is the fact that cosmologists could constrain efficiently the upper bound of the number of
the generation of leptons from the research on nucleosysthesis long before the experimen-
tal particle physicists were capable to directly detect them from the Z decay. Modern
examples that cosmology brings forward fundamental questions to particle physics are
even too numerous to be mentioned one by one. Everyday, we hear inflation, baryogene-
sis, dark matter and dark energy in seminars, conferences, workshops and coffee rooms. If
we claimed that half of the current research on particle physics is stimulated by the study
of cosmology, this would not be too excessive. Especially at present, when there is little
contact between particle experiments and new theoretical ideas, cosmology is offering the
passion that particle physicists once experienced in the 1960s to 70s of their golden days.

However, in spite of its splendid glories, cosmology is also suffering some intricate
mysteries, amongst which the accelerated expansion of the Universe (or the dark energy
problem) may be the most severe one. Observations from the supernovae of Type Ia
and cosmic microwave background indicate that the majority of the constituents in the

1



1 Preface 2

Universe comprises some nonluminous matter that only show their effects gravitationally
(called dark matter) and some strange composition with negative pressure inducing the
acceleration (named dark energy). To explain this dark energy mystery, various attempts
have been delivered, and this dissertation is also on the attempt to demystify it. We inves-
tigate the inhomogeneities and anisotropies in the Universe, exploring their effects on the
expansion of the averaged Universe and trying to link the large scale acceleration to small
scale structure via the so-called backreaction mechanism. Our quantitative calculations
show that this backreaction mechanism is not sufficient to solve the global acceleration of
our Universe. Thus, we turn to study the effects of this mechanism on the local Hubble
expansion rate. To say the least, although cosmological perturbations are deficient to
account for the dark energy problem at large scales, it is responsible for fluctuations of
the expansion rate of the Universe at small scales.

This dissertation is organized as follows. In Sec. 2, we briefly give an introduction
to the standard model of cosmology. Afterward, we discuss the three problems in cos-
mology: dark energy, coincidence and averaging problems, which are all related to the
inhomogeneities and anisotropies in the Universe, and then explain the meaning of the
cosmological backreaction mechanism. We formulate the averaging problem in the comov-
ing synchronous gauge and arrive at the averaged Einstein equations for an irrotational
dust universe in Sec. 3. An integrability condition and an effective morphon field approach
to the backreaction problem are also investigated there. Next, we proceed to cosmolog-
ical perturbation theory in Sec. 4, both at linear and higher orders. We establish the
gauge transformations for metric perturbations and solve these metric perturbations up
to second order. In the following three sections, we calculate the temporal and spatial
dependence of the averaged physical observables: kinematical backreaction term 〈Q〉D,
averaged spatial curvature 〈R〉D, averaged volume expansion rate 〈θ〉D, averaged energy
density 〈ρ〉D, effective equation of state weff and square of the speed of sound c2

eff to first,
second and third orders, respectively. In Sec. 8, we consider the ensemble averages and
variances of these averaged quantities and compare them with the experimental data from
the Hubble Space Telescope Key Project and simulations in Newtonian gravity. Summary
and Outlook are given in the last two sections.



2 Standard model of cosmology and its problems

Modern cosmology traces back to Einstein’s application of his renowned theory of
General Relativity (GR) [1] to the whole Universe [2]. Due to the severe insufficiency
of experimental observations of cosmic structures at that time, two simplest working
hypotheses were adopted by him: the Universe is homogeneous and isotropic in space and
static in time.

Although short of experimental supports and theoretical explanations, these two as-
sumptions seem quite natural, even at present. Since there is no preexistent reason that
our Earth, Solar System or Galaxy are in a specially favored position, and humans are
privileged observers in the Universe (Copernican principle), why not just follow Kopernik
and Bruno to admit the mediocrity of ourselves? This admission directly brings on the
spatial homogeneity and isotropy of the Universe. As for the temporal steadiness, this is
also not surprising that people agreed so ninety years ago. Actually, before the discovery of
Cepheids in the Andromeda Galaxy and the calibration of the Cepheid period-luminosity
relation, astronomers were not even capable of distinguishing vicinal nebulae and remote
galaxies, say nothing of the expansion of space-time itself.

One century has passed, and when we retrospect these two hypotheses, we find that
the first one, bearing the name the cosmological principle, has stood various astronomi-
cal and cosmological tests, and turned to be experimental fact, at least at large spatial
scales, say, above a few hundred Mpc 3; while the second one, although abandoned pretty
well immediately by Einstein himself after the epoch-making discovery of the recession
of distant galaxies by Hubble [3], opened Pandora’s box via the introduction of the cos-
mological constant, and has been bothering particle physicists and cosmologists since the
establishment of quantum theory.

This dissertation is concerned with these two aspects. We will examine the validity
of the spatial homogeneity and isotropy of the Universe at small scales and discuss their
influences on the accelerated expansion of the Universe and the local Hubble expansion
rate. But before doing so, we pause a moment and first review the standard model of
cosmology. Then, three related problems, namely those of dark energy, coincidence and
averaging, are discussed in order. We show that these three aspects can be linked by
the cosmological backreaction mechanism, i.e., the inhomogeneities and anisotropies of
cosmic structures influence the evolution of the background Universe.

2.1 Dynamics of the expanding Universe

In this subsection, we first derive the basic dynamical equations for the expanding
Universe and then briefly discuss the Hubble law.

2.1.1 Friedmann-Lemâıtre-Robertson-Walker model

The standard model of cosmology is the inflationary ΛCDM (Λ cold dark matter)
model. To understand it, we need first go through the basic knowledge of GR.

3Megaparsec (Mpc) is a distance unit in astronomy. 1 Mpc=3.086× 1022 m=3.262× 106 ly.
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2.1 Dynamics of the expanding Universe 4

The governing relativistic covariant theory of the gravitational field is encoded in the
Einstein equations,

Gµν ≡ Rµν − 1

2
gµνR = 8πGTµν − Λgµν , (1)

where gµν is the metric of space-time, Rµν is the Ricci tensor, R is the Ricci scalar, Gµν

is the Einstein tensor, Tµν is the energy-momentum tensor of the cosmic medium, G is
Newton’s gravitational constant, and finally Λ is the famous cosmological constant, which
is the intrinsic freedom in the Lagrangian of the gravitational field. 4

In contrast to the special relativity, the metric gµν is a dynamical variable in GR
and is determined the motion of matter, i.e., the energy-momentum tensor. For the
simplest case, as Einstein suggested, spatial homogeneity and isotropy uniquely fix the
metric (up to a coordinate transformation): the Friedmann-Lemâıtre-Robertson-Walker
(FLRW) metric [5, 6, 7, 8] 5,

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdϕ2

)]
, (2)

where ds is the line element, t is the cosmic time, r, θ, φ are radial and angular coor-
dinates, a(t) is the scale factor, characterizing the dynamical evolution of the Universe,
and k = −1, 0, +1 is the curvature parameter for hyperbolic, Euclidean and spherical
spaces, corresponding to open, flat and closed universes. Spatial isotropy is directly
shown in the angular line element. To indicate spatial homogeneity manifestly, we may
rescale the radial coordinate as r ≡ r̄/(1 + kr̄2/4), and the metric is thus transformed
to ds2 = −dt2 + a2(t)(dx̄2 + dȳ2 + dz̄2)/[1 + k(x̄2 + ȳ2 + z̄2)/4]2, with x̄ ≡ r̄ sin θ cos ϕ,
ȳ ≡ r̄ sin θ sin ϕ and z̄ ≡ r̄ cos θ.

At the right hand side of the Einstein equations, for a perfect fluid, 6 the energy-
momentum tensor reads

T µ
ν = (ρ + p)uµuν + pgµ

ν , (3)

where ρ and p are the energy density and pressure of the perfect fluid. In the FLRW
context, we attain the nontrivial components of the energy-momentum tensor, T 0

0 = −ρ
and T i

j = pδi
j.

Substituting the FLRW metric and the energy-momentum tensor into the Einstein
equations, we yield the prestigious Friedmann equations [5],

H2 ≡
(

ȧ

a

)2

=
8πG

3
ρ +

Λ

3
− k

a2
, (4)

ä

a
= −4πG

3
(ρ + 3p) +

Λ

3
, (5)

where H ≡ ȧ/a is the Hubble expansion rate.

4For the introduction to GR, we refer to the standard textbooks in [4], and for the definitions of these
geometrical quantities, see App. A.

5The speed of light c is taken to be 1 throughout this dissertation.
6For imperfect fluid, a brief discussion will be presented in Sec. 10.1.



2.1 Dynamics of the expanding Universe 5

The dynamics of the evolution of the Universe is stored in these equations, but to
solve them, we require further knowledge on the energy-momentum tensor. The budget
of the energy density of cosmic medium consists of

1. Radiation: Any constituent particle with its rest mass much smaller than its kinetic
energy can be regarded as radiation if thermolized, and the equation of state for
radiation is pr = ρr/3. For example, in the early Universe, at the era of the quantum
chromodynamics (QCD) phase transition when the temperature of the Universe is
about 200 MeV, electron, with rest mass of 0.511 MeV, can surely be viewed as
radiation; but when the temperature of the Universe cools down to the order of eV
at the epoch of recombination, we cannot consider electrons as radiation any longer.
In the present Universe, the unique remainder of radiation are photons, forming the
cosmic microwave background (CMB).

2. Matter: Contrary to radiation, matter refers to the constituent particle with its
rest mass much larger than its kinetic energy, i.e., ρm À pm = 0. Matter can
be further classified into ordinary baryonic matter, which comprise heavy elements
(building our colorful Earth, luminous stars in galaxies and free Hydrogen and
Helium as interstellar medium) and dark matter, which can only be detected via its
gravitational effects, e.g., the gravitational lensing, the shape of the rotation curves
of galaxies and the positions and heights of the peaks of the baryonic acoustic
oscillations (BAO) in the CMB spectra. In most modern cosmological models, dark
matter is thought to be cold (CDM), as hot dark matter usually prevents large scale
structure from forming effectively.

3. Neutrinos: Neutrinos are the ghosts in our Universe. The mysteries are their tiny,
but not inappreciable, masses. Therefore, in the early radiation-dominated (RD)
Universe, e.g., at the eras of QCD phase transition and Big Bang nucleosynthesis
(BBN), they behave as radiation and affect the dynamical evolution of the Universe.
Whereas, at late times, when radiation, e.g., photons, contribute a negligible fraction
to the energy density of cosmic medium, they, due to their small masses, convert
themselves into a form of matter and continue to influence the behavior of the
Universe. Hence, neutrinos are active actors, playing an important role throughout
the whole process of the evolution of our Universe. The current upper bound on the
sum of neutrino masses is 0.61 eV (95% confidence level) [10].

4. Dark energy: The repulsive force, with negative pressure, which leads to the current
accelerated expansion of the Universe, is believed to be caused by dark energy.
It might be a simple geometrical parameter: the cosmological constant, or some
dynamical field. If only so, it is not very troublesome, the most astonishing is that
this uncanny dark energy is now the dominating ingredient in our very Universe!
All these aspects will be carefully discussed in Sec. 2.2.

5. Other cosmological components: There may be other possible forms of cosmic
medium, e.g., topological defects: monopoles, cosmic strings and domain walls,
but to summarize these components far oversteps the aim of this dissertation, and
a good review can be found in [11].



2.1 Dynamics of the expanding Universe 6

Having surveyed the cosmological composition, we normalize Eq. (4) by the parametriza-
tion as 7

Ωr + Ωb + ΩCDM + Ων + Ωk + ΩΛ = 1, (6)

by introducing the critical energy density ρc

ρc ≡ 3H2

8πG
,

and defining the following energy density parameters for the various components of the
Universe, 8

Ωr ≡ ρr

ρc

, Ωm ≡ ρm

ρc

, ΩCDM ≡ ρCDM

ρc

, Ων ≡ ρν

ρc

, Ωk ≡ − k

a2H2
, ΩΛ ≡ Λ

3H2
.

In the following, we do not distinguish baryonic matter and CDM but simply call them
matter, 9 and the contributions from radiation and neutrinos are also neglected here, if
we concentrate our attention to the evolution of the Universe in the matter-dominated
(MD) era or later. Thus, Eq. (6) is reduced to the cosmic triangle [12],

Ωm + Ωk + ΩΛ = 1.

In Sec. 3.2.4, we will see that when taking into account the inhomogeneities and anisotropies
in the Universe, this cosmic triangle is extended to a cosmic quartet.

Now, let us turn to the expansion behavior of the Universe. The two Friedmann
equations: Eqs. (4) and (5) are certainly not closed, as there are three unknown variables:
a, ρ and p. The equation of state of the cosmic medium provides the third necessity. For
a perfect fluid and in the FLRW model, we have

ρ̇ + 3H(ρ + p) = 0. (7)

If we introduce the equation of state as p ≡ wρ, Eq. (7) reduces to ρ̇+3(1+w)Hρ = 0, and
we directly get ρa3(1+w) = const. At different eras in the Universe, the equation of motion
for the cosmic medium takes different forms, resulting in different modes of expansion,
summarized in the following Tab. (1).

2.1.2 Hubble law

Once we have obtained the dynamics of the expanding Universe, the propagation of
light in space-time is just a mathematical exercise. Following the idea of Hubble, we try
to find the relation between the distance of the remote galaxy and its redshift. First, we
introduce the redshift as 1 + z ≡ λo/λe, with λo and λe being the wavelengths of the light

7The subscripts stand for radiation, baryon, CDM, neutrinos, curvature parameter and dark energy
(now in the form of cosmological constant), respectively.

8The current values of these parameters can be found in App. D.
9This is allowed on scales above 10 Mpc, where baryonic pressure is unimportant. See Sec. 3.1.1 for

further discussion.
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eras w a(t) ∝ H(t) a(η) ∝ H(η)

RD 1/3 t1/2 1/(2t) η 1/η
MD 0 t2/3 2/(3t) η2 2/η
k-dominated −1/3 t 1/t eη const.

Λ-dominated −1 exp
(√

Λ
3
t
) √

Λ
3

−1/η −1/η

Table 1: Expansion behaviors of the Universe in different eras.

The equation of state, scale factor and Hubble expansion rate for different eras of
the Universe are listed with w decreasing. For the k-dominated era, the right hand
side of Eq. (5) vanishes, formally resulting ρk + 3pk = 0, i.e., wk = −1/3. Similarly,
combining Eqs. (4) and (5) induces ρΛ = −pΛ, i.e., wΛ = −1. We also list the results
expressed in terms of the conformal time η, which is explained in Sec. 4.

observed by us and emitted by the light source. In terms of the scale factor a(t), the
redshift is given by 10

1 + z =
a0

a(t)
.

Without specified initial conditions, the Friedmann equations cannot indicate the in-
creasing or decreasing of the scale factor a(t). This information must come directly from
observations. Thanks to the great discovery, made by Hubble [3], that light from distant
galaxies are redshifted, we know the Universe is expanding. At small redshifts, for small
recession velocities v and distances d, we arrive at the Hubble law,

H0d = v ≈ z ¿ 1,

where H0 is the Hubble expansion rate at present, i.e., the Hubble constant. Its value
is the most crucial number in cosmology. After five years of operation, the Wilkinson
Microwave Anisotropy Probe (WMAP5) experiment measures [10]

H0 = 100h km/s/Mpc, with h = 0.701± 0.013.

Furthermore, the inverse of H0 defines the Hubble radius, or equivalently, the Hubble time,

RH ≡ 1

H0

= 2.998h−1 × 103 Mpc, tH ≡ 1

H0

= 9.778h−1 Gyr.

At large cosmological distances, we define the luminosity distance of the light source as

dL ≡
√

L/(4πF ), with L being the luminosity of the light source, and F the observed flux

(energy passed per unit area per time). The luminosity distance dL and redshift z satisfy
the relation

H0dL = z + (1− q0)
z2

2
+O(z3), (8)

10We use the script 0 to denote the present values of physical quantities, e.g., a0 and q0. Of course,
this “present” time can be chosen freely.
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where q ≡ −ä/(aH2) is defined as the deceleration parameter. Here, we only expand this
relation to second order in the series of z at small redshifts z ¿ 1. 11 In the FLRW
model, the coefficients at each order, e.g., q0, are the functions of the energy density
parameters. Thus, measuring the Hubble law to large redshifts enables us to determine
these cosmological parameters.

2.1.3 Standard model of cosmology

Three centuries ago, if some scholar claimed that he was doing something called cos-
mology, people must equate him with an astrologist. Three decades ago, if some physicist
claimed that he was doing something called cosmology, scientists might think that he was
working in a branch of astronomy. But now, cosmology is already a precise science on its
own, and this precision is increasing faster and faster. Five years ago, when I first started
my study of cosmology, people were always excited that the cosmological observations had
got across the threshold of 1% accuracy, whereas currently up to three or four significant
numbers can frequently be found in the literature, e.g., see the WMAP5 experiment [10].
Cosmology will and is becoming the second particle physics with its standard model the
so-called inflationary ΛCDM model.

According to the cosmological inflation theory [14], our Universe undergoes an era
of accelerated expansion at the very early times. The idea of inflation gives rise to an
excellent causal theory, which solves the horizon problem and is responsible for the homo-
geneity and isotropy of the present Universe at large scales. In this dissertation, we stick
to the inflation theory and set the curvature parameter k to be zero throughout. On top of
that, cosmological inflation also predicts the existence of tiny primordial fluctuations [15],
which are observed at a level of 10−5 in the CMB [10].

Experimental observations and numerical simulations show that the majority of matter
in the Universe is nonluminous and cold, i.e., the cold dark matter, as it would be too
late for large scale structures to form, if this dark matter were hot. The currently best
candidates for CDM are the weakly interacting massive particles (WIMPs) [16]. Besides,
the supernova (SN) and CMB experiments allow us to infer that most of the energy
budget of the cosmological composition is dark energy, with negative pressure and thus
constituting a repulsive force. Among the models of this dark energy, the simplest one,
the cosmological constant, is still the best candidate. This aspect will be discussed in
detail in the next subsection.

Good theories are always aiming to encapsulate different phenomena and physical
laws in a unified set of equations and to depend on a minimal set of physical parameters
as few as possible. If so, cosmology is already one of those. We can summarize our
present knowledge with only seven free parameters [10]: Ω0

b = 0.0462 ± 0.0015, Ω0
CDM =

0.233 ± 0.013, h = 0.701 ± 0.013, the current CMB temperature T0 = 2.725 ± 0.001 K,
the power spectrum index ns = 0.960+0.014

−0.013, the optical depth τ = 0.084 ± 0.016 and
the fluctuation amplitude (defined at the scale of 8 Mpc) σ8 = 0.817 ± 0.026. 12 With

11The expansion of dL in z up to fourth order can be found in [13].
12This number seven interestingly reminds us of another number six in the popular book Just six

numbers by M. Rees [17]. Of course, six numbers are still too many for a final theory, as it is said that,
with five parameters, we can even mimic an elephant.
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these parameters, the standard inflationary ΛCDM model of modern cosmology is firmly
established, and it has been precisely tested in various astronomical and cosmological
observations.

Although the standard model of cosmology has gained great glorious successes, it has
been encountering a great trouble: the dark energy problem, since the cosmology revolu-
tion ten years ago. In the next three subsections, we will review this dark energy problem
and show how it can be linked to the averaging problem in the perturbed Universe.

2.2 Dark energy problem

“Physics thrives on crisis”, 13 and every elimination of a crisis thoroughly revolution-
izes the fundamental understanding of our Universe. If there are some unpleasant clouds
over our heads, dark energy is definitely one of those. To cover every relevant aspect
of this crisis, we have to write volumes of books, as thick and heavy as bricks, instead
of one single dissertation. Actually, people really did so: hundreds of review articles
and thousands of papers have already been devoted to this problem, in which we can
amazedly experience the “creativity” of our lovely physicists. But before going through
these fantastic proposals, let us first look at the experimental evidences for the strange
dark energy.

2.2.1 Experimental evidences for dark energy

Modern cosmology should owe their rapid development to the improvements of exper-
imental devices and equipments in recent decades. Ground based, balloon borne (e.g.,
BOOMERanG and MAXIMA) and satellite (e.g., COBE, WMAP and Planck) instru-
ments make it possible to precisely measure cosmological parameters to 1%, or even 0.1%
accuracy 14. Actually, in the WMAP5 experiment, some physical quantities, e.g., Ω0

de

has been measured to three significant digits, and Ω0
bh

2 and Ω0
CDMh2 even to four. These

continuously improved experimental technologies pushed us in a position to achieve a
global picture of our Universe, and eventually lead to the revolutionary discoveries at the
beginning of the new millennium that our Universe is in an accelerated expansion phase,
calling for the necessity of a repulsive force, induced by the so-called dark energy.

We are not able to list all the previous and ongoing cosmological experiments. They are
so many that we can even build a high-dimensional Cosmological Parameters Model/Data
Set Matrix to combine the different results [18]. Here, we address only two kinds of
experiments: the SN and CMB experiments.

1. Ten years ago, the science community, was astounded by the conclusions drown
from the observations of Supernovae of Type Ia (SN Ia) by two groups indepen-
dently [19, 20]. 15 In 1988, the Supernova Cosmology Project [20] was set up.

13S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
14In fact, in the CMB experiments, the temperature fluctuation is about 10−5, so 1% accuracy means

10−7 precision!
15An SN Ia is a cataclysmic variable star that results from the violent explosion of a white dwarf

star. The suggestion of SNe as standard candles for cosmological measurements dated back to Baade [21]
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Ten years of efforts enabled them to discover 75 SNe Ia at redshifts z = 0.18 −
0.86 spectroscopically, using the Cerro Tololo Inter-American Observatory 4 m tele-
scope. Based on 42 SNe Ia and jointly fitted with a set of SNe from the Calán/Tololo
Supernova Survey at redshifts below 0.1 [22], they yielded Ω0

m = 0.28+0.09
−0.08 (1σ statis-

tical) +0.05
−0.04 (identified systematics), under the assumption that the Universe is flat.

These data indicated that the cosmological constant is nonzero and positive, with
a confidence of 99%, including the identified systematic uncertainties (see Fig. (1)
for detailed explanations).

Calan/Tololo
(Hamuy et al, 
A.J. 1996)

Supernova
Cosmology
Project
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Figure 1: First evidence for dark energy from the Supernova Cosmology Project.

Hubble diagram for 42 high redshift SNe Ia [20] and 18 low redshift SNe Ia [22].
The solid curves are the theoretical brightness meff

B (z) for a range of cosmological
models with Λ = 0: (Ω0

m,ΩΛ) = (0, 0), (1, 0) and (2,0) from top to bottom. The
dashed curves are for a range of cosmological models with k = 0: (Ω0

m,ΩΛ) = (0, 1),
(0.5, 0.5), (1, 0) and (1.5,−0.5) from top to bottom. We see that the up-bending
fitting curve clearly favors ΩΛ > 0, and from Eq. (8), we find q0 < 0, indicating the
accelerated expansion of the Universe.

2. The evidence for dark energy can also be obtained from the temperature fluctuations
and polarizations in the CMB experiment. In Fig. (2), we show the temperature-
temperature correlation power spectrum from the WMAP5 experiment [23]. In
the ΛCDM model, the positions and heights of the peaks in the power spectrum
are functions of the cosmological parameters, e.g., Ω0

b, Ω0
CDM, ΩΛ and Ω0

k. Briefly
speaking, for example, the height of the first peak is enhanced if Ω0

b is larger, but

seventy years ago. They can be used to measure the Hubble constant at small distances and determine
cosmological parameters, e.g., the deceleration parameter, at higher redshifts.
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the height of the second peak is suppressed if so; the positions of these peaks move
to smaller l if ΩΛ increases. 16 Therefore, from the positions and heights of these
peaks can we derive the cosmological parameters, and many useful quantities are
listed in Tab. (3) in App. D. We again obtain a nonzero and positive cosmological
constant, with ΩΛ = 0.721 ± 0.015. But of course, we should mention here that
these results rely on the assumption of the ΛCDM model. If we would try other
possibilities, things may change.

Figure 2: Evidence for dark energy from the WMAP5 experiment.

Temperature-temperature correlation power spectrum from the WMAP5 experi-
ment [23]. The dependence of the shape of the power spectrum on the cosmological
parameters, e.g., Ω0

b and ΩΛ, are shown in the figure. The shadow shows the cosmic
variance.

Besides the methods above, we may also seek the evidence for dark energy in another
way, i.e., we ask at what level of confidence we can reject the null hypothesis that the
Universe never accelerated [27]. In a spatially flat model, based on two different SN Ia
data sets, two different fitting methods and two different calibration methods, this null
hypothesis is rejected at > 5σ [27].

2.2.2 Theoretical candidates for dark erergy

Although the accelerated expansion of the Universe has been confirmed, its reason
is still in the dark. Perhaps that is why we call it dark energy. In fact, this is just a
substitute to the seemingly existing repulsive force. We pass the buck to the magical dark

16These dependence can be found in [24, 25], and an excellent intuitive movie can be downloaded
from [26].
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energy, whereas it is nothing but a name. However, naming is not explaining. We are
still hungry for brilliant theoretical ideas to retrieve us from this catastrophe [29].

Dark energy can be further categorized into two types: geometrical and dynamical
dark energies, whose energy density is constant in time or varies as the Universe evolves.
We discuss them below, respectively.

1. For the geometrical constant dark energy, the cosmological constant is absolutely
the best candidate. Unfortunately, this cosmological constant is indistinguishable
from the vacuum energy (zero-point energy) of quantum fields. Let us simply pick
a scalar field with mass m for example. Its vacuum energy reads

ρvac =
∑

k

1

2
ωk =

∫ Λ

0

dk

4π2
k2
√

k2 + m2 ∼ Λ4

16π2
.

To regularize this integral, we have introduced a cutoff Λ. 17 Definitely, in quantum
field theories, where gravitation is always neglected, we can safely put aside this
vacuum energy, as only energy difference is observable in experiments, so adding a
constant, even infinity does not harm our practical calculations. 18 But be aware,
energy is not like potential, in which we can arbitrarily add or subtract some value.
This non-arbitrariness turns to be more distinct when gravitation is involved, be-
cause from the theory of relativity, energy is equivalent to mass, mass induces grav-
ity, and this gravitational effect is observable in experiments! 19 So if there were
vacuum energy, any conscientious physicist should ponder it seriously.

Now let us compare the dark energy contributed by the vacuum energies of quantum
fields and that from cosmological observations. If we believe that our quantum field
theory works well up to the Planck scale ΛP = 1.221 × 1019 GeV, ρvac ∼ 1.407 ×
1074 GeV4. However, the WMAP5 experiment measures ρ0

de = 2.869× 10−47 GeV4,
120 orders of magnitude smaller than that from then vacuum energy of quantum
field theory! Even though we are more honest and decrease Λ from the Planck scale
to the scales of the electroweak symmetry breaking ∼ 100 GeV, or nothing more
than the nuclear physics level ∼ 1 MeV, this huge gap is still about 70 and 30 order
of magnitude, i.e., a catastrophe can only be turned into a disaster, unfortunately.
Remember, here we only try a scalar field, if more quantum fields are taken into
account, who knows what will happen. Actually, ρ0

de is about a few protons/m3,
while ρvac is approximately 1090 kg/m3, denser than any form of matter that we can
even dream! Does this vast number remind you of the abandoned aether, which is
very rigid but allows our Earth to pass through without any difficulty? It is quite
unnatural to image that so dense matter would flee from any known experiment.
To help us from this dilemma, it is suggested that the cosmological constant in
the Einstein equations would cancel very well (to 120 significant digits!) with the
vacuum energy of quantum field theory, and the remainder is what we are observing
in cosmological experiments. But any rational mind will discard this cancelation,

17Not be confused with the cosmological constant.
18Frankly speaking, I was deeply disappointed by these arguments from physicists or in textbooks.
19This is the well-known Casimir effect [28].
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as the vacuum energy and the cosmological constant intrinsically has nothing to do
with each other within our present understanding.

2. The problem above is obviously beyond the scope of what we can hope to understand
currently. Most of the time, we admit that the vacuum energy vanishes due to some
still unknown mechanism without further ado and leave this mechanism for future
research. What we can hope to understand is that why the dark energy is so small
but not zero. For this purpose, dynamical approaches seem to be appreciated.

The basic principle lying behind the suggestions of dynamical dark energy is to add
extra source terms into the energy-momentum tensor, so that these extra terms play
the role of dark energy, as the cosmological constant does. The discussions below
follow an excellent review article by Copeland et al. [30].

Let us first list the 23 different kinds of dynamical dark energy summarized in [30]
and elsewhere, not for study, but just for fun: (1) quintessence, (2) quintessential
inflation, (3) pseudo-Nambu-Goldstone boson, (4) Chameleon fields, (5) k-essence,
(6) tachyon field, (7) f(R) theory, (8) repulsive gravity at scales of Gpc, (9) Chap-
lygin gas, (10) feedback from nonlinearities, (11) dark energy from trans-Planckian
regime, (12) de Sitter vacua in string theory (KKLT scenario), (13) DGP model,
(14) braneworld modified gravity, (15) very light Kaluza-Klein graviton, (16) string
landscapes, (17) anthropic principle, (18) phantom dark energy, (19) dilatonic ghost
condensation, (20) a network of frustrated topological defects, (21) cyclic universe,
(22) tired graviton, (23) causal sets in quantum gravity. Below we only spend several
sentences for some of them.

(a) Quintessence fields: Quintessence is a scalar field φ minimally coupled to grav-
ity, but with some particular potential V (φ) [31]. The energy density and
potential of this scalar field is ρφ = φ̇2/2 + V (φ) and pφ = φ̇2/2 − V (φ). So
if V (φ) À φ̇2, we approximately mimic a cosmological constant, which leads
to the late time acceleration. However, the problems with quintessence field is
that first the mass of the corresponding particle of this scalar field is extremely
small, about 10−33 eV, which is quite tiny compared with any known particle;
second we have never observed any scalar field till now. Thus, quintessence
is sometimes ironized as “quit tes sense”. But the quintessential inflation [32]
seems interesting, at least from my view of point.

(b) f(R) theory: This approach is to modify the traditional Einstein-Hilbert action
for the gravitational field from the simple Ricci scalar R to some function of
it, f(R), e.g., in [33], it is proposed R → R − µ4/R. Actually, a cosmolog-
ical constant Λ can also be regarded as an f(R) theory, with R → R − 2Λ.
Whereas, the trouble is that these f(R) theories not only modify gravity at
large scales, but also small ones, e.g., they are hard to evade the tests with the
Solar System [34]. 20

20In fact, any f(R) theory can be transformed into a scalar field theory, with φ ∝ ln ∂f/∂R and
V (φ) ∝ (f −R∂f/∂R)/(∂f/∂R)2.
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(c) Chaplygin gas: The basic idea of this model is to introduce an exotic equation of
state, which has never be applied to any form of matter, i.e., ρp = a negative
constant. The advantage of this model is that first, although pressure now
is negative, the speed of sound ∂p/∂ρ is still positive; second, this strange
equation of state can lead to dark matter at early times and to a cosmological
constant at late times, so mimic these two dark sectors simultaneously; third,
this model, albeit adopted from aerodynamics, has some wonderful relation
with the Nambu-Goto action in string theory! But the disadvantage is also
obvious, i.e., how to realize this equation of state from field theory? I once
asked one of its authors how they excogitate this interesting model, the answer
is as usual, “no reason”.

(d) Degravitation: Motivated by the deelectrification in a uniformly distributed
field of electric charges, people extend this idea to the gravitational field, and
argue that the cosmological constant, as a uniform source, is degravitated no
matter how large it is [36]. While, if this advice succeeded, we could somehow
get rid of the cosmological constant totally, but I cannot see how a small
amount of dark energy would remain to support the accelerated expansion.

Let us stop here: other theoretical approaches are largely identical with only minor
differences. The general impression to us is that these suggestions can be helpful to some
aspect of the dark energy problem, but at the same time, helpless to the rest. Moreover,
these suggestions themselves are usually full of troubles, i.e., the price we must pay for
these suggestions are generally too high: we have to suffer from the new scalar field with
tiny mass, extra long range forces, modification of GR, modification of gravity at both
small and large scales, Lorentz violation, extra dimensions or anthropic principle these
faith-based reasonings.

Science research is like the jigsaw puzzle, if we are on the right way, everything should
fit automatically, not just as a makeshift. So if we merely want to present a new suggestion,
it does not deserve to accomplish a long dissertation, as it is nothing but a multiplication
of the ideas listed above. To the author himself, he solves a problem, but to people else,
he only arouses new confusions.

Case now is a little bit analogous to that of the aether crisis. Instead of constructing
various fantastic models for this imaginary medium, Einstein simply abandoned all the
artificial substitutes and swept all the unnecessary substances off the clean vacuum. Situ-
ation nowadays is somewhat alike: we insert too much manmade particles and fields into
vacuum, and frankly speaking, these particles and fields are always wedged into equa-
tions by hand; even if based on some fundamental field theories, these theories are always
some hand-waving ones. These unpleasant circumstances cannot satisfy many of us, and
we think that this status should not continue forever. So before playing with the above
brave ideas, creative or deceptive, why not consider a conservative alternative within the
framework of Einstein’s gravity, i.e., dark energy from structure formation?

To comprehend the basic principle of this alternative, we need to pause for a moment
to discuss another aspect of dark energy crisis, i.e., the coincidence problems.
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2.3 Coincidence problems

The coincidence problems, however, are pure cosmological questions, and there are
two ways to formulate them.

The first formulation is direct and easy to understand, so it widely appears in the
literature. In one word, the question is why the energy densities of matter and dark
energy happen to be the same order of magnitude at present? We show the temporal
dependence of the energy density ρi and energy density parameter Ωi of different cosmo-
logical compositions in Fig. (3), in which we clearly see Ω0

de ∼ Ω0
m. This coincidence is

indeed surprising, as one energy density parameter Ωm evolves with time and decays as
1/a3, while the other one Ωde (in terms of Λ) is a pure constant! For example, suppose we
would have lived when the Universe had half or twice of its present linear size (at z = 1 or
−1/2), the ratio Ωde/Ωm would be 8 times smaller or larger than its current value, almost
an order of magnitude! It is therefore quite strange that we are living at a very special
epoch, observing Ω0

de/Ω
0
m = 2.584 [10].
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Figure 3: Coincidence problem.

Temporal dependence of the energy density ρi and energy density parameter Ωi

of different cosmological components, from the time when the neutrino temperature
Tν = 1 MeV (soon after neutrino decoupling) until now [37]. Here, the index i stands
for CDM, baryon, radiation, cosmological constant and three types of neutrinos.
Data are obtained from the flat ΛCDM model with the inputs h = 0.7 and current
energy density parameters Ω0

CDM = 0.25, Ω0
b = 0.05, Ω0

ν = 0.0013 and ΩΛ = 0.70.
The three neutrino masses are distributed according to the normal hierarchy scheme
with m1 = 0 eV, m2 = 0.009 eV and m3 = 0.05 eV. The coincidence of the energy
densities of matter and dark energy is clearly shown at the right sides of both plots.

If people complain that there is some anthropic taste from this argument, we may
reformulate the above situation via replacing our mankind by large scale structures on
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the typical scale for structure formation 21 and ask why the z ∼ 1 is the same epoch when
dark energy, i.e., accelerated expansion emerges and the hierarchical structure formation
starts to evolve nonlinear on the matter-radiation equality scale, i.e., it decouples from
the overall cosmological expansion and becomes self-gravitational system? This second
coincidence problem may be even more fundamental, as the two aspects here: dark energy
and structure formation, have entirely different physical essences. One might be related
to the zero-point energy in quantum field theories and the other is a pure gravitational
problem. So a natural question is: what does this coincidence imply? As we know there
are many special epochs during the evolution of the Universe, why does not the onset
of dark energy coincide with the epochs of the BBN or matter-radiation equality, but
only with structure formation? A straightforward answer could be that dark energy is
triggered by structure formation, i.e., the gravitational amplification of inhomogeneities
and anisotropies in the evolution of the Universe.

The next step certainly is how to realize this possibility. We will show that the
backreaction mechanism arising from the averaging problem in perturbed space-time is
an interesting candidate.

2.4 Averaging problem

The averaging problem in cosmology is another long-term question. In perturbed
space-time, i.e., for a curved manifold, averaging is quite different from that in flat space-
time, but much more complicated. In this subsection, we first indicate the reason calling
for averaged quantities in cosmology, then briefly look back at the different approaches in
this problem and finally end with a discussion of the backreaction mechanism.

2.4.1 Why averaging?

Similar with the case in thermodynamics and statistical mechanics, tracing the motion
of one peculiar atom is of no practical use for our understanding of the behavior of a
physical system, focusing on one peculiar event in space-time does not make sense in
cosmology, either. Indeed, many of our observables in cosmology are averaged quantities.
Two important examples are the power spectrum P(k), which is a Fourier transform and
thus a volume average weighted by a factor eik·x, and the most important cosmological
parameter, the Hubble constant H0.

Let us pick H0 to discuss this issue in some detail. The idealized measurement of the
Hubble constant proceeds as follows [38]. Take a set of N standard candles (in reality
the SNe Ia) that sample a local physical volume V homogeneously (e.g., the Milky Way’s
neighborhood out to ∼ 100 Mpc), and measure their distances di (via magnitudes) and
recession velocities vi = zi and take the average

H0 ≡ 1

N

N∑

i=1

vi

di

.

21This typical scale is set by the matter-radiation equality: roughly speaking, 100 Mpc for the flat
ΛCDM model and 30 Mpc for the Einstein-de Sitter (EdS) model.
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In the limit of a very big sample (N →∞), this turns into a volume average

H0 =
1

V

∫ v

d
dV.

In the second step, we neglect the effect of the light cone, as for z ¿ 1, the spatial
average is a good approximation for the average over the past light cone, because the
expansion rate of the Universe is not changing significantly at time scales much shorter
than the Hubble time. 22

On the other hand, we have a theoretical object that we call the expansion rate,
defined as Hth

0 ≡ ȧ/a. The issue in the averaging problem now is to establish the con-
nection between H0 and Hth

0 . In linear theory, they agree by construction if the volume
V becomes large enough. However, due to the nonlinearity of the Einstein equations,
cosmological perturbations affect the evolution of the averaged (which we often identify
with the “background”) Universe. This is the so-called backreaction mechanism to be
discussed in Sec. 2.4.3.

2.4.2 A short history of the averaging problem

Before we go into the details of the backreaction mechanism, we first briefly retrospect
the history of the averaging problem in cosmology, which will be helpful for the next
subsection.

The study of the averaging problem was initiated by Shirokov and Fisher [39] and
further emphasized in great detail by Ellis [40]. They realized that in the traditional ap-
proach in cosmology, the metric that we use (the FLRW metric) in the left hand side of the
Einstein equations is the averaged one, but what we insert in the right hand side is the
averaged energy-momentum tensor, corresponding to a continuous matter distribution,
i.e., we usually equate two things Gµν(〈gµν〉) = 8πG〈Tµν〉. However, the nonlinear nature
of the Einstein equations forbids us to simply write Gµν(〈gµν〉) = 〈Gµν(gµν〉). Thus, the
Friedmann equations should be only regarded as an oversimplified description of the real
Universe, once the fluctuations become negligible, and the correct dynamical equations
for the perturbed Universe should now be modified to Gµν(〈gµν〉) = 8πG〈Tµν〉+ 8πGT g

µν ,
where T g

µν is some effective energy-momentum tensor, with purely geometrical origin.
In [39], the authors called them “polarization terms”, from which they tried to get repul-
sive forces to prevent the Big Bang singularity. Their idea was carried forward by Noonan
in [41] to define the average of a physical quantity O as 23

〈O〉 =

∫
O(x)

√
−g(x)dx

∫ √
−g(x)dx

.

But the definition of the average in inhomogeneous space-time is not so easy as in the
equation above, especially for tensors. As we know, tensors cannot be compared directly

22As we know, all information that we obtain of our Universe is encoded on the past light cone, so a
general treatment of the averaging problem in cosmology should be performed on the past light cone,
i.e., the study of the propagation of light in perturbed space-time is strongly needed, which is already a
big subject of itself, and we will not cover it in this dissertation.

23Here x is the 4-coordinate.
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at different points. To define the covariant derivative, we have to introduce the parallel
transport to keep its tensor character. Contrary to the case of the covariant derivative, in
which we subtract tensors at different points, in the averaging problem, we should sum up
them, but the trouble remains the same, i.e., how to define this sum at different points?

This problem was pioneered by Issacson [42], and carefully addressed by Zalaletdi-
nov [43] recently. The basic ideas of their works are to utilize a bivector V ν′

µ (x, x′), which
is a vector at both x and x′, to link tensors at different points. Supposing Aν′ is a given vec-
tor defined at x′, then the bivector V ν′

µ (x, x′) defines a unique vector Aµ = V ν′
µ (x, x′)Aν′

at x by parallel transporting Aν′ from x′ to x along geodesic. For example, in [42], the
average of a tensor is defined as

〈Tµν(x)〉 =
∫

V λ′
µ (x, x′)V ρ′

ν (x, x′)Tλ′ρ′(x, x′)f(x, x′)dx′,

where f(x, x′) is a weighting function, satisfying the normalization condition
∫

f(x, x′)dx′ =
1. In [43], Zalaletdinov proposed a covariant, non-perturbative, geometrical approach for
macroscopic gravity, according to which, the average of a tensor T µ...

ν...(x) in a domain
D is defined as

〈T µ...
ν...(x)〉D =

1

VD

∫

D
(V−1)µ

λ′(x, x′)V ρ′
ν (x, x′)T λ′...

ρ′...(x, x′)dx′,

with VD the volume of the averaged domain. Here the bivector V ν′
µ Lie drags the averaging

region from x′ to x along the integral lines, making the comparison of tensors at different
points possible. For these reasons, the bivector V ν′

µ is required to be

lim
x′→x

V ν′
µ (x, x′) = δ ν′

µ ,

V ν′
µ (x, x′) = δ ν′

µ for the Minkowski metric,

V ν′
µ ;ν′(x, x′) = 0,

V λ′
µ ,ν(x, x′) + V λ′

µ ,ρ′(x, x′)V ρ′
ν (x, x′) = V λ′

ν, µ(x, x′) + V λ′
ν ,ρ′(x, x′)V ρ′

µ (x, x′).

In this dissertation, we will not consult this averaging procedure in detail, and some
relevant references for this approach can be found in [44].

In this dissertation, we make use of the averaging procedure by Buchert, i.e., we focus
our attention on the average of scalars only. As the comparison of scalars is well-defined,
no confusion will arise, and we further limit our approach to scales much smaller the
horizon, i.e., at redshifts z ¿ 1. Thus, we are allowed to foliate the space-time manifold
into constant time hypersurfaces and set the time axes orthogonal to these hypersurfaces,
as we assume the Universe is irrotational. The details of this averaging process will be
formulated in Sec. 3, and now we move on to the backreaction mechanism and see how the
inhomogeneities and anisotropies react back on the evolution of the background Universe.

2.4.3 Backreaction mechanism

In one word, the essence of the backreaction mechanism is the non-commutation of
temporal evolution and spatial averaging in inhomogeneous space-time. Much better
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than exhibiting tens of equations, this non-commutation can be clearly illustrated in the
following Fig. (4). 24

Figure 4: Noncommutation of temporal evolution of spatial averaging.

We start from a domain D at the bottom, with perturbed metric (indicated with
the red lines), at the time ti. On the left, we first smooth out the fluctuations in the
metric at ti, and thus arrive at the simple FLRW model. Then, this averaged model
evolves to the time t (nothing but an expansion). On the right, we exchange the
order of these two operations: we first follow the evolution of the perturbed space-
time from ti to t and then average in the resulting domain at t. We clearly find the
difference between the two models from the two upper panels. This indicates the
non-commutation [∂t, 〈 〉D] 6= 0.

On the left part of Fig. (4), we first average the perturbed metric in a domain D at
time ti, i.e., we smooth out the fluctuations and obtain an unperturbed averaged metric
(the FLRW context). Next, we follow the trivial evolution of this averaged domain, which
is nothing but the simplest FLRW solution. However, if we exchange the order of these two
operations, i.e., we first trace the evolution of the perturbed Universe on the right part of
Fig. (4) and then take the average at time t, we immediately reach a totally different result
in the inhomogeneous models: during the evolution, the initial fluctuations are amplified,
and finally we cannot smooth them entirely at t. Altogether, this non-commutation means

24This figure is taken from the talk given by J. Larena in the second Kosmologietag in Bielefeld, April
26 - 27.
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that inhomogeneities and anisotropies in perturbed space-time show their influence during
the expansion of the Universe. This is the so-called backreaction mechanism. Therefore,
an effective energy-momentum tensor is introduced into the dynamical equations, and it
might thus play the role of dark energy. 25 The exploration of this possibility forms the
main body of the following sections.

Now, let us reformulate this backreaction mechanism more mathematically. From the
non-commutation, we have

[∂t, 〈 〉D] 6= 0.

This means that the averaged Einstein tensor of the perturbed metric does not coincide
with the Einstein tensor calculated from the averaged metric (the FLRW one),

〈Gµν(gµν)〉D 6= Gµν(〈gµν〉D).

Furthermore, this non-commutation means that generally speaking, in an inhomogeneous
and anisotropic universe, we cannot deduce the global Friedmann equations for the aver-
aged background Universe from the local Einstein equations, 26





1
2

(
R+ θ2 − θi

jθ
j
i

)
= 8πGρ + Λ,

θ̇ = −1
3
θ2 − 2σ2 − 4πGρ + Λ,

ρ̇ + θρ = 0,

cannot ⇒




H2 = 8πG
3

ρ + Λ
3
,

ä
a

= −4πG
3

ρ + Λ
3
,

ρ̇ + 3Hρ = 0.

Till now, from the last three subsections, we have shown in sequence the dark energy
problem, coincidence problems and how the backreaction mechanism is related to these
problems. In summary, all these three aspects are entangled with the issues of inhomo-
geneities and anisotropies in the local Universe. The beginning of the domination of dark
energy coincides with the onset of structure formation. Consequently, light may be shed
on the dark energy crisis, i.e., the accelerated expansion of the Universe, by studying
the averaging problem in perturbed space-time. We will explore this alternative in the
coming subsection.

2.5 An alternative from inhomogeneities and anisotropies

In this subsection, we review the study of the possibility that dark energy is triggered
by structure formation. But before so, let us first perform a survey over the inhomo-
geneities and anisotropies in our Universe to get some sensible knowledge of this problem.

2.5.1 Inhomogeneities and anisotropies in the Universe

Instead of the a priori assumption of homogeneity and isotropy of our Universe in
the cosmological principle, the inhomogeneities and anisotropies in our Universe, i.e.,
large scale structures, are indeed observed. Of course, if the cosmic medium were really

25This happens no matter the Einstein equations are linear of nonlinear, i.e., also in Newtonian gravity.
26The meanings of the equations (for irrotational dust) in the left column will be explained in the next

section.
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a homogeneous and isotropic soup, there would be no the very person who is writing
this dissertation. It is the inhomogeneities and anisotropies that make our colorful world
possible. Compared with the current ρ0

c, the contrast of the energy density δρ/ρ0
c ≡

(ρ− ρ0
c)/ρ

0
c of a typical star, e.g., the Sun, is 1030! For our Galaxy, which is of the scale

10 kpc, this ratio is 105, and for the Local Group with the scale of 1 Mpc, the ratio
decreases to 10. Only till scales of 100 Mpc, e.g., the Virgo Supercluster, the energy
density of the cosmic medium approaches its average value.

We cannot exhaust all kinds of cosmic structures in this dissertation, but only briefly
list some important and interesting ones: the main purpose here is just to demonstrate
that homogeneity and isotropy of the Universe should not be optionally assumed as a
matter of course.

1. Great Walls: It is a filament of galaxies, e.g., the 100 Mpc long CfA2 Great Wall,
observed by the CfA Redshift Survey in 1989 [47]. The more exciting discovery,
maybe also the largest structure in the Universe known presently, is the famous Sloan
Great Wall, based on the Sloan Digital Sky Survey [48], which extends 400 Mpc in
length and is located 300 Mpc from the Earth.

2. Voids: Besides the clustered matter in those great walls, in our Universe, we also
discover some nearly empty places, which are devoid of galaxies. For instance,
the Boötes supervoid, almost 100 Mpc in diameter, is an approximately spherically
shaped, tremendously large void [45]. It is amongst the largest voids in the Universe,
and until recently only two dozen galaxies have been found in it. Recall that the
Virgo Supercluster contains 100 groups and clusters of galaxies! Therefore, this void
is so void that it is said in [46] that “If the Milky Way had been in the center of the
Boötes void, we wouldn’t have known there were other galaxies until the 1960s.”

3. Anisotropies of the CMB: Needless to say, this is the most central topic of the ongo-
ing research on cosmology, e.g., the upcoming Planck satellite experiment. Different
from the great walls and voids, these anisotropies are of primordial origin, i.e., they
are generated at the very early era (epoch of recombination) and reflect the large
scale shapes of our Universe. Thanks to the heroic efforts in the Cosmic Background
Explorer (COBE) [49] and WMAP [50] experiments, we have now been able to ob-
tain a global image of the whole observable Universe. On top of the background
temperature of the CMB, 10−5 fluctuations are found. Studying the anisotropies of
the CMB provides us the cleanest way to understand the gravitational fluctuations,
which are imprinted on the CMB in the early Universe.

4. Anisotropies of the SN Ia Hubble diagram: The homogeneity and isotropy of the
Universe can also be tested with the help of SNe Ia. A simple test can be done
by fitting the Hubble diagram (dL as the function of z) for SNe from just one
hemisphere and comparing the result of the fit to the opposite half of the sky. In [51],
four different SN data sets were analyzed, and a statistically significant deviation
from the isotropy of the Hubble diagram was reported. However, it seems that
these anisotropies are aligned with the equatorial coordinate system (the Earth’s
axis of rotation) and are thus likely to reflect systematic problems in the SN Ia
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observations or analyses. Another different analysis revealed anisotropies in the
Hubble diagram obtained by the Hubble Space Telescope (HST) Key Project [52].
If these anisotropies would be confirmed by future SN surveys, and a systematic
effect could be excluded, this would pose a serious challenge to the interpretation of
the Hubble diagram in the FLRW context. A systematic review of the measurement
of the Hubble constant can be found in [54].

In summary, the homogeneity and isotropy of the Universe, introduced one century
ago as a simple working hypothesis, although stood various inspections, is still far from
being a cornerstone of cosmology. What we can safely say today is only that beyond scales
of 100 Mpc, this homogeneity and isotropy is a good approximation. 27 Although good, it
is after all a rough approximation. Actually, we will see later that the 100 Mpc scales are
exactly the very scales, where strong backreaction effects show up. Thus, inside 100 Mpc,
we can no longer trust them confidently, and different kinds of inhomogeneous models,
which are closer to reality than the oversimplified FLRW one, are strongly needed.

2.5.2 A status review of the backreaction mechanism

The theoretical aspect of the study of inhomogeneities and anisotropies is also a large
branch. Hundreds of papers, even books [56] have been published in this hot area. Pas-
sionate agreements and tough criticisms can easily be found in the literature for this
ardent debate. It is fairly interesting to read these papers, but to totally review them is
certainly impossible here. Several excellent review articles are available in the literature,
in which the best one is of course the long status report by Buchert himself [57], with
references therein.

Backreaction was maybe first used to study the quantum behavior of black holes. For
instance, we obtain the Schwarzschild solution of a point mass source by setting Tµν = 0 in
vacuum. There is no trouble with this solution in pure GR. However, once the quantum
effects are evolved, things become more complicated. A black hole evaporates via the
Hawking radiation, i.e., when one of the two virtual particles generated by quantum
fluctuation near the horizon of a black hole is absorbed into the black hole, the other
one may escape and thus leads to a real particle outside the black hole’s horizon. If this
process could happen, the black hole is not so black and the vacuum is also not so vacuum.
Therefore, an effective energy-momentum tensor arises in vacuum, and it must backreact
to the classical Schwarzschild solution.

The first application of the idea of backreaction to cosmology, to my knowledge, are
the works by Mukhanov, Abramo and Brandenberger. In [58], they considered the back-
reaction effects in the inflation era. The first investigation of the backreaction mechanism
in the late Universe was carried out by Russ et al. [59], though scarcely known by the
physics community, in which the basic equations, currently mainly referred as the Buchert
equations were largely obtained, albeit not as fundamental and manifest as the elegant
works by Buchert.

Then came the wonderful works by Buchert [60, 61, 62, 63], on which this dissertation
is based. Before getting these relativistic results, he has worked on backreaction issues in

27Further recent experiments about this problem can be found in, e.g., [55].
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Newtonian gravity for many years (see [64]). The details of his works and the equations
now named after him will be carefully investigated in Sec. 3.

The diverse research topics in this area are already summarized in [57]. Generally
speaking, recent research on the backreaction mechanism explored two directions:

1. The first one is to study the properties of the averaged physical quantities in the
perturbed Universe. In Buchert’s approach, the averaged Einstein equations were
derived in the synchronous coordinates with two fluctuation terms. The behavior of
the perturbed Universe thus depends on the properties of these averaged quantities.
Räsänen [65] extended his idea to the Lemâıtre-Tolman-Bondi (LTB) model, i.e., a
model only demanding the spherical isotropy of the metric (with the FLRW model
as a special case), and Biswas and Notari further considered a more realistic model,
the swiss-cheese model, i.e., a universe dominated by many voids. However, from
my point of view, these model dependent works can only save us from the over-
simplified FLRW model to some very-simplified ones, as our Universe is much more
complex than those described in these toy models. So although sometimes these
works provide us some exact solutions, we are still far from the final results.

2. The second direction is to utilize cosmological perturbation theory to study the
evolution of the perturbed Universe. For example, in the papers by Kolb et al. [67,
68], the Hubble expansion rate was calculated to second order in a MD Universe.
However, in [67], they defined a very strange Hubble expansion rate, which cannot
be compared with the experimental data. In [68], they finally turned to the Buchert
equations, but their perturbative approach then was not easy to understand, at least
for me.

In this dissertation, we synthesize these two lines of research, and try to fill the gap
between [67, 68]. Because doing perturbative calculations without averaging, we can-
not obtain the global property of the Universe; whereas, averaging without perturbative
calculations, we cannot get the quantitative information of the Universe. Therefore, we
calculate the averaged physical quantities in cosmological perturbation theory up to third
order. Following the previous studies, we also calculate the ensemble means and variances
of spatial averages. Our interest is to quantify the backreaction effects in the Milky Way’s
neighborhood, i.e., the domain used to measure H0. As we will show in this work, the
knowledge of the peculiar gravitational potential on the boundary of a physically comov-
ing domain at some initial time allows us to predict the temporal evolution of the spatially
averaged quantities, as long as these effects are small.

This dissertation includes the results of our previous three papers [69, 70, 71].



3 Dynamics of the averaged Universe

Having understood the entanglement of dark energy, structure formation and averaging
problems, we turn our steps to the dynamics of the averaged Universe and cosmological
perturbation theory. For these two aspects, we should never attach importance to one but
neglect the other. Because doing perturbative calculations without averaging, we cannot
obtain the global property of the Universe. Whereas, averaging without perturbative
calculations, we cannot get quantitative information about our results. Therefore, any
ignorance of one side raises insufficiency of our analyses, and we thus tightly incorporate
them in this and the next sections. These two sections are the preconditions for the
perturbative calculations of the averaged physical observables in Secs. 5 - 7.

3.1 Decomposition of the Einstein equations in the comoving
synchronous gauge

The standard FLRW model is based on the a priori assumption of spatial homogeneity
and isotropy in the Universe. However, these assumptions are not valid, even approxi-
mately, at the scales on which structure formation happens, i.e., the scales much smaller
with respect to the Hubble radius and adequately long after the matter-radiation equality.
So necessarily one must consider not only the expansion, but also the shear and rotation
of the Universe in order to understand its kinematics thoroughly. Thus, before discussing
the averaging problem in the perturbed Universe, in this subsection, we first list some
basic geometrical definitions and preparations and decompose the Einstein equations by
means of these geometrical quantities.

3.1.1 Expansion, shear and rotation

To describe the kinematics of the Universe, we need to calculate the gradient field of
the 4-velocity uµ ≡ dxµ/dτ of observers, where τ is their proper time. Assuming only a
dust universe (possibly with a cosmological constant), we may set these observers to be
comoving 28 with the cosmic medium and thus have uµuν

;µ = 0 (the geodesic flow of the
comoving observers, locally only). We further introduce the projection operator onto the
spatial hypersurface defined by the comoving observers hµ

ν ≡ gµ
ν + uµuν . Therefore, the

component of the gradient field of the 4-velocity is equal to the expansion tensor 29

uµ
;ν ≡ θµ

ν = hµ
αhβ

νu
α
;β = ωµ

ν + σµ
ν +

1

3
hµ

νθ, (9)

where

ωµ
ν ≡ 1

2
hµ

αhβ
ν(u

α
;β − u ;α

β ), (10)

28For an irrotational dust universe it is possible to use the comoving coordinates, i.e., the observer
is at rest with respect to the cosmic medium. The comoving coordinate system is well adapted to the
situation of a real observer, if we are allowed to neglect the difference between baryons and dark matter.
On scales ≥ 10 Mpc, the baryonic pressure is insignificant, and a real observer comoves with matter, uses
her own clock and regards space to be time-orthogonal.

29The expansion tensor is equivalent to the extrinsic curvature tensor Kµ
ν ≡ −hµ

αhβ
νuα

;β = −θµ
ν , i.e.,

the second fundamental form of the hypersurface of constant time t.

24
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σµ
ν ≡ hµ

αhβ
ν

[
1

2
(uα

;β + u ;α
β )− 1

3
hα

βuλ
;λ

]
, (11)

θ ≡ uλ
;λ, (12)

are the rotation tensor, shear tensor and expansion scalar, respectively. It is easy to see
that σµ

ν is symmetric and ωµ
ν anti-symmetric.

In the following, we restrict our attention to an irrotational universe, i.e., ωµ
ν = 0.

Neglecting rotations seems to be a reasonable assumption in the context of inflationary
cosmology, as there existed no seeds for vector perturbations and the conservation of
angular momentum also implies that only nonlinear effects could lead to a generation of
rotation.

Neglecting the rotation, we are allowed to utilize the synchronous coordinate system,
in which we foliate the space-time to constant time hypersurfaces and set the time axis
orthogonal to them. Then the metric of the inhomogeneous and anisotropic Universe may
be expressed in terms of synchronous coordinates, 30

ds2 = −dt2 + gij(t,x)dxidxj. (13)

The corresponding nontrivial Christoffel symbols are

Γ0
ij =

1

2
gij,0, Γi

0j =
1

2
gikgkj,0, Γi

jk =
1

2
gil(gjl,k + glk,j − gjk,l).

Moreover, the 4-velocity uµ becomes 31

uµ = (1,0), uµ = (−1,0).

Therefore, hi
j = δi

j, and the nontrivial components in Eq. (9) are

θi
j = σi

j +
1

3
θδi

j, (14)

and we straightforwardly get

θi
j = ui

;j = Γi
0j =

1

2
gikġkj, θ = ui

;i = Γi
0i =

1

2
gij ġij. (15)

It is direct to see from Eq. (14) that σi
i = 0, so we introduce the shear scalar in the

following way,

σ2 ≡ 1

2
σµ

νσ
ν
µ =

1

2
σi

jσ
j
i =

1

2

(
θi

jθ
j
i −

1

3
θ2

)
. (16)

Equations. (15) and (16) present all the necessary kinematical quantities that we need in
the averaging problem below.

30We stress that there is no predetermined symmetry in gij(t,x), and it can thus represent the metric
perturbed in any way.

31dτ = dt in the synchronous coordinate system due to Eq. (13).
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Before proceeding to the averaging procedure, we prove a helpful relation. We define
the measure of the integral in the averaging problem in the next subsection as the square
root of the determinant of the 3-dimensional spatial metric,

J(t,x) ≡
√

det(gij(t,x)). (17)

Then, we have

J̇

J
=

1

2

(detgij)
.

detgij

=
1

2
gij ġij = θ and J̇ = θJ. (18)

where
.

is the derivative with respect to the cosmic time. Equation (18) will be useful for
defining the effective Hubble expansion rate.

3.1.2 Arnowitt-Deser-Misner decomposition

Having obtained all the geometrical quantities describing the kinematics of the per-
turbed Universe, we proceed to its dynamics. For the ideal fluid in the dust Universe,
in the comoving synchronous coordinate system, the unique nontrivial component of the
energy-momentum tensor T µ

ν = (ρ + p)uµuν + pgµ
ν is T 0

0 = −ρ, i.e., the energy density
of dust.

According to Arnowitt, Deser and Misner [72], the Einstein equations Gµν + Λgµν =
8πGTµν in the present situation can be decomposed into:

1. energy constraint

For the 0
0-component of the the Einstein equations, R0

0 − 1
2
R + Λ = 8πGT 0

0 =
−8πGρ, we have

1

2

(
−R0

0 + Ri
i

)
= 8πGρ + Λ, (19)

where we have used R = R0
0 + Ri

i, and

R0
0 = −R00 = −Γi

0i,0 − Γj
0iΓ

i
0j, (20)

Ri
i = gijRij

= gij
(
Γk

ji,k − Γk
ik,j + Γk

ijΓ
l
kl − Γl

ikΓ
k
jl

)
+ gij

(
Γ0

ij,0 + Γ0
ijΓ

k
0k − Γk

0iΓ
0
jk − Γ0

ikΓ
k
0j

)

≡ R+ gij
(
Γ0

ij,0 + Γ0
ijΓ

k
0k − Γk

0iΓ
0
jk − Γ0

ikΓ
k
0j

)
, (21)

with

Ri
j ≡ gik

(
Γl

kj,l − Γl
kl,j + Γl

kjΓ
m
lm − Γm

klΓ
l
jm

)
(22)

being the 3-dimensional spatial Ricci tensor, and R ≡ Ri
i the spatial curvature.

Substituting Eqs. (20) and (21) into Eq. (19) and using the facts θi
j = Γi

0j and
θ = Γi

0i from Eq. (15), we obtain the energy constraint, 32

1

2

(
R+ θ2 − θi

jθ
j
i

)
= 8πGρ + Λ. (23)

32To prove Eq. (23), we need a small trick ġij ġij + gikgjlġilġjk = 0, which can be obtained from
(gikgkj)

.
= 0.
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2. momentum constraint

For the 0
i-component of the Einstein equations, R0

i = 8πGT 0
i = 0, we have

R0
i =

(
Γj

0j,i − Γj
0i,j + Γk

0jΓ
j
ik − Γj

0iΓ
k
jk

)
= 0.

Again using Eq. (15), we directly attain the momentum constraint,

θ,i = θj
i;j. (24)

3. evolution equation

For the i
j-component of the the Einstein equations, Ri

j− 1
2
Rδi

j+Λδi
j = 8πGT i

j = 0,
we have

Ri
j = Ri

j + gik
(
Γ0

kj,0 + Γ0
kjΓ

l
0l − Γl

0kΓ
0
jl − Γ0

klΓ
l
0j

)
.

Using Eqs. (20), (21) and the energy constraint Eq. (23), we get

θi
j,0 = −θθi

j −Ri
j +

1

2

(
θ̇ + gklΓ0

kl,0 − 8πGρ
)
δi

j.

Taking the trace of the above equation and combing it with the energy constraint
Eq. (23), we finally arrive at the evolution equation, 33

θ̇i
j = −θθi

j −Ri
j + (4πGρ + Λ)δi

j. (25)

Combining the trace of the evolution equation Eq. (25) with Eqs. (23) and (16) leads
to the Raychaudhuri equation [73], which links the expansion and shear scalars together,

θ̇ = −1

3
θ2 − 2σ2 − 4πGρ + Λ. (26)

So far, we have not made any approximations apart from neglecting rotation and
restricting matter to dust. These equations are satisfied at any point in space-time.
However, our observations do not allow us to measure all the data that would be necessary
to put a well posed Cauchy problem, as realistic observations deliver averaged quantities.
In the next subsection, we discuss the averaged properties of these equations and in Sec. 5
- 7, we use cosmological perturbation theory to evaluate the averaged physical observables
to first, second and third orders, respectively. 34

33To prove Eq. (25), we need another small trick θ̇ = gijΓ0
ij,0 − 2θi

jθ
j
i, which can be proven straight-

forwardly by using Eq. (15) and the previous trick ġij ġij + gikgjlġilġjk = 0 again.
34Strictly speaking, in the derivations above, the covariant and partial derivatives with respect to only

spatial coordinates should be denoted differently from those to space-time coordinates: e.g., using ‖ and
|, instead of ; and ,, as frequently adopted in the literature. However, in the synchronous gauge, spatial
and temporal coordinates are fortunately separated, and ‖ and | coincide with ; and ,, so we do not
distinguish them and no confusion will be caused by doing so.
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3.2 Dynamics of finite domains

Based on the previous preparations, the dynamics of the perturbed Universe emerges
naturally. Here, we first define the averaging procedure for scalar quantities, then yield
the effective Friedmann equations (Buchert equations) for the perturbed dust Universe
and finally obtain an integrability condition for backreaction terms, which is crucially
important for our perturbative calculations at higher orders.

3.2.1 Averaging procedure

The spatial average of a scalar physical observable O(t,x) in a comoving domain D
at a fixed time t is defined 35 as [60]

〈O〉D ≡ 1

VD(t)

∫

D
O(t,x)J(t,x)dx, (27)

with VD(t) ≡ ∫
D J(t,x)dx denoting the volume of the domain. Following this definition

of VD, we introduce an effective scale factor aD [60]

aD

aD0

≡
(

VD

VD0

)1/3

, (28)

where aD0 and VD0 are the values of aD and VD at the present time.
As an example of the above averaging procedure, we calculate the averaged volume

expansion rate 〈θ〉D. With the help of Eqs. (18) and (28) we find

〈θ〉D =
1

VD

∫

D
θJdx =

1

VD

∫

D
J̇dx =

V̇D

VD

= 3
ȧD

aD

. (29)

The effective Hubble expansion rate is thus defined as

HD ≡ ȧD

aD

=
1

3
〈θ〉D. (30)

The effective scale factor aD and the Hubble expansion rate HD reduce to a and ȧ/a in
the homogeneous and isotropic case doubtlessly.

An important consequence of the definition in Eq. (27) is that the spatial average and
the temporal derivative do not commute with each other. It is straightforward to prove a
corresponding Lemma (commutation rule) [60] 36

〈O〉.D − 〈Ȯ〉D = 〈Oθ〉D − 〈O〉D〈θ〉D. (31)

This Lemma indicates the intrinsic non-commutation of the averaging problem in the
perturbed space-time. Irrespectively of the explicit forms the fundamental dynamics
(linear or nonlinear), spacial average and temporal evolution cannot be exchanged, and
the backreaction effects must show up!

35This operation is the so-called Riemannian volume integration.
36This Lemma will be used to calculate the second order term of the averaged expansion rate 〈θ〉D in

Sec. 6.1.3.
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3.2.2 Buchert equations

With the spatial averaging procedure Eq. (27) and the Lemma Eq. (31), we yield
the effective Friedmann equations (Buchert equations) [60] 37 by averaging the energy
constraint Eq. (23) and the Raychaudhuri equation Eq. (26), 38

H2
D =

8πG

3
〈ρ〉D − 〈Q〉D + 〈R〉D

6
+

Λ

3
,

äD

aD

= −4πG

3
〈ρ〉D +

〈Q〉D
3

+
Λ

3
.

We may further recast these equations to an isotropic fluid, with effective energy density
ρeff and pressure peff , 39

H2
D =

8πG

3
ρeff +

Λ

3
, (32)

äD

aD

= −4πG

3
(ρeff + 3peff) +

Λ

3
, (33)

where

ρeff ≡ 〈ρ〉D − 〈Q〉D + 〈R〉D
16πG

, (34)

peff ≡ − 1

16πG

(
〈Q〉D − 1

3
〈R〉D

)
. (35)

The expression 〈Q〉D is the kinematical backreaction term, 40

〈Q〉D ≡ 2

3
〈(θ − 〈θ〉D)2〉D − 2〈σ2〉D =

2

3
(〈θ2〉D − 〈θ〉2D)− 2〈σ2〉D, (36)

which consists of the variance of the averaged expansion rate and shear scalar, meaning
that the more matter distribution is structured, with collapsed regions and voids, the
more this term may contribute to dynamics. Furthermore, the averaged spatial curvature
〈R〉D no longer behaves like a constant term in the FLRW model.

Equations (32) and (33) express a highly nontrivial result! They closely resemble
the traditional Friedmann equations, successfully preserve their main features, and at
the same time explicitly formulate the deviation from the standard FLRW model, but
all these issues have been obtained without the a priori assumption of homogeneity and
isotropy. What has been shown is that any irrotational dust universe, spatially averaged
over comoving domains appears to the observers to be a FLRW-like Universe.

37See also [61, 62, 63] for detailed discussions on various cases of these equations, and [64] for their
Newtonian counterparts.

38These equations had been derived by Russ et al. in [59], although not in the present forms.
39These effective energy density and pressure can also be linked by the effective continuity equation

ρ̇eff + 3HD(ρeff + peff) = 0.
40This term 〈Q〉D is sometimes just written as QD in the literature to show that it as a whole is the

kinematical backreaction, but not the average of some physical quantity Q. While, we see from Eq. (36)
that it is indeed the average of a term 2

3 (θ − 〈θ〉D)2 − 2σ2, though this term is of no interest in practice.
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From the Buchert equations, we see that the evolution of the inhomogeneous and
anisotropic Universe depends not only on the energy density 〈ρ〉D, but also on the kine-
matical backreaction term 〈Q〉D and the averaged spatial curvature 〈R〉D. So it is quite
significant to know quantitatively the values of 〈Q〉D and 〈R〉D. For instance, we find
from Eq. (33) that if ρeff +3peff < 0, i.e., 〈Q〉D > 4πG〈ρ〉D, the averaged expansion of the
perturbed Universe accelerates. In other words, the averaged Universe can expand in an
accelerating way in the dust era, even if the local expansion is decelerating everywhere.
Accelerated expansion of the averaged expansion rate does not violate the strong energy
condition.

Furthermore, we define the effective equation of state as

weff ≡ peff

ρeff

=
〈R〉D − 3〈Q〉D

2〈θ〉2D
, (37)

and the square of an effective speed of sound as

c2
eff ≡

ṗeff

ρ̇eff

. (38)

This effective speed of sound is the characteristic speed at which a small perturbation
propagates through the effective fluid. An example would be a deformation of the bound-
ary of the domain, or a perturbation caused by the introduction of some extra mass into
the domain. Our effective speed of sound is different from the isentropic speed of sound.

Calculations of these averaged physical observables: 〈Q〉D, 〈R〉D, 〈θ〉D, HD, 〈ρ〉D, weff

and c2
eff form the main part of this dissertation in Secs. 5 - 7.

3.2.3 Integrability condition

The Buchert equations contain two averaged quantities, 〈Q〉D and 〈R〉D, which influ-
ence the evolution of the inhomogeneous and anisotropic Universe. However, these two
terms are not independent, but can be related by an integrability condition.

In the irrotational dust universe, from the covariant conservation of the time-like piece
of the energy-momentum tensor, we find the continuity equation

ρ̇ = −θρ. (39)

Taking the spatial average of Eq. (39) and applying the Lemma Eq. (31), we have

〈ρ〉.D + 〈θ〉D〈ρ〉D = 0. (40)

This result expresses the conservation of mass in the comoving synchronous gauge setting.
From Eqs. (32), (33) and (40), we obtain the integrability condition for 〈Q〉D and 〈R〉D [60]

(a6
D〈Q〉D)

.
+ a4

D(a2
D〈R〉D)

.
= 0. (41)

We should point out here that in contrast to the Buchert equations (32) and (33), this
integrability condition has no analogue in Newtonian cosmology.

The integrability condition is an essential equation for the following calculations. Its
advantage is that it can be applied to any order in perturbative calculations, as it is an
exact result. This advantage will be shown in Sec. 6, where we make use of the integrability
condition to derive the second order terms of 〈R〉D, 〈θ〉D and 〈ρ〉D, but without using the
metric perturbations of second order!
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3.2.4 Cosmic quartet

Since the cosmological backreaction terms 〈Q〉D and 〈R〉D enter the right hand side of
the effective Friedmann equations, they can thereby be thought as effective constituents
of the energy-momentum tensor. Thus, together with the energy density 〈ρ〉D and cosmo-
logical constant, four ingredients play a role in the dynamics of the perturbed Universe,
extending the cosmic triangle to a cosmic quartet.

We introduce the corresponding density parameters for the averaged Universe as

ΩD
m ≡

8πG〈ρ〉D
3H2

D

, ΩD
Λ ≡

Λ

3H2
D

, ΩD
R ≡ −〈R〉D

6H2
D

, ΩD
Q ≡ −〈Q〉D

6H2
D

. (42)

and therefore the normalization condition reads

ΩD
m + ΩD

Λ + ΩD
R + ΩD

Q = 1. (43)

We may reinterpret the cosmic quartet in another form, including the curvature term.
To do so, we rewrite the integrability condition as 4aDȧD〈Q〉D+(a2

D〈Q〉D)
.
+(a2

D〈R〉D)
.

=
0, and its first integral is

〈Q〉D + 〈R〉D
6

=
a2

D0
(〈Q〉D0 + 〈R〉D0)

6a2
D

− 1

3a2
D

∫ t

t0
dt1〈Q〉D d

dt1
a2

D

=
a2

D0
(〈Q〉D0 + 〈R〉D0)

6a2
D

− 2

3a2
D

∫ aD

aD0

daD1〈Q〉DaD1

≡ kD0

a2
D

− 2

3a2
D

∫ aD

aD0

daD1〈Q〉DaD1. (44)

From Eq. (44), we can have a constant curvature term kD0/a
2
D in the perturbed Universe,

making the Buchert equations more similar to the most general Friedmann equations,

H2
D =

8πG

3
〈ρ〉D − kD0

a2
D

+
Λ

3
+

2

3a2
D

∫ aD

aD0

daD1〈Q〉DaD1,

where the last term indicates the effect from cosmological backreaction in the whole
history of the Universe since the beginning of the MD phase.

We introduce again two new density parameters,

ΩD
k ≡ − kD0

a2
DH2

D

, ΩD
N ≡

2

3a2
DH2

D

∫ aD

aD0

daD1〈Q〉DaD1.

Therefore, the normalization condition varies from Eq. (43) to

ΩD
m + ΩD

Λ + ΩD
k + ΩD

N = 1. (45)

Equation (45) is formally equivalent to its Newtonian counterpart in [64].

3.3 Mapping the effective fluid on models with dark energy or
morphon field

From this subsection on, we set the cosmological constant to be 0 and ask whether the
backreaction terms can mimic a cosmological constant; even if not, to what degree these
backreaction terms influence the evolution of the background Universe.
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3.3.1 Mimicking dark energy by cosmological backreaction terms

We may map this effective fluid on a model with dust and dark energy. Let n be
the number density of dust particles, and m be their mass. For any comoving domain
〈n〉D = 〈n〉D0(aD0/aD)3. In the dust Universe, ρ(t,x) = mn(t,x), and we thus identify
ρm ≡ 〈ρ〉D = m〈n〉D. From Eq. (34), the energy density of “dark energy” is consequently

ρde = −〈Q〉D + 〈R〉D
16πG

,

with the relevant equation of state reading

wde ≡ pde

ρde

=
peff

ρde

= −1

3
+

4〈Q〉D
3(〈Q〉D + 〈R〉D)

. (46)

We discover that iff

〈Q〉D = −1

3
〈R〉D, (47)

wde = −1, corresponding to a cosmological constant Λ = 〈Q〉D [74]! 41 This would be
an exciting result, if 〈Q〉D and 〈R〉D really satisfied Eq. (47). While, in Secs. 6 and 7,
we will see that this could only happen at third order of the perturbative series, which
means cosmological backreaction could induce a cosmological constant, but lead to some
extra terms at lower orders simultaneously. But we should emphasize that the conclusion
above is only valid for the perturbative approach. If we consider the non-perturbative
regime of cosmological backreaction, 〈Q〉D and 〈R〉D would be strongly coupled. This is
the power-law solutions for the backreaction terms in the morphon field.

3.3.2 Mapping cosmological backreaction on a minimally coupled scalar field

Morphon field An excellent reinterpretation of the cosmological backreaction in a
mean field description, which can play the role of the quintessence field, of the mor-
phology of the structures in the Universe, was presented in [74], and the relevant scalar
field is named as a morphon field.

The basic idea of the morphon field is to reformulate the quintessence scenario not by
routing the origin of the scalar field to additional sources arising from fundamental field
theory, but to physical inhomogeneities and anisotropies in the perturbed Universe. We
introduce a homogeneous scalar field φD evolving in an effective potential UD ≡ U(φD),

ρeff ≡ 〈ρ〉D + ρφD
, peff ≡ pφD

,

where ρφD
and pφD

are the energy density and pressure of this morphon field. They are
both scale dependent and parameterized as

ρφD
=

ε

2
φ̇2

D + U(φD), pφD
=

ε

2
φ̇2

D − U(φD),

41The value of weff will be carefully discussed in Sec. 6.2.
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where ε = ±1 corresponds to either the standard or phantom scalar field. 42 Comparing
with Eqs. (34) and (35), the cosmological backreaction terms are now reexpressed in terms
of the kinetic and potential energy densities of the morphon field,

〈Q〉D = −8πG
(
εφ̇2

D − U(φD)
)
, 〈R〉D = −24πGU(φD). (48)

We find that the potential of the morphon field now acquires a clear physical source:
it is nothing but the averaged spatial curvature of the perturbed Universe. This means
that the extra scalar field that we always inserting in the energy-momentum tensor can
be identified as the perturbations in the Universe naturally, not plugged in optionally by
hand! 43

Substituting Eq. (48) into Eq. (41), the integrability condition then reads (for φ̇D 6= 0)

φ̈D + 3HDφ̇D + ε
∂

∂φD

U(φD) = 0.

The morphon field exactly obeys the Klein-Gordon equation in the expanding Universe!
This perfect obeying justifies that the cosmological backreaction is formally equivalent to
a regionally homogeneous and minimally coupled scalar field.

Scaling solutions Having mapped the effective fluid on models with dark energy or
morphon field, the immediate question is to understand quantitatively how these cosmo-
logical backreaction terms affect the evolution of the background Universe. Are they large
enough to give rise to the accelerated expansion of the averaged Universe or nothing more
than subdominant modifications?

To answer these questions, we must solve the Buchert equations. However, these
equations are not closed, as there are four unknown variables: aD, 〈ρ〉D, 〈Q〉D and 〈R〉D,
but with only three independent constraints: two from the Buchert equations and one
from the integrability condition. In order to close them, it is then necessary to introduce
another relation, which either relies on some mathematical Ansatz, or origins form some
physical statement. For the first, we give the power-law scaling solutions below, and for
the second, we consult cosmological perturbation theory, forming the main body of this
dissertation in Secs. 5 - 7.

The scaling solutions for the scale dependence of 〈Q〉D and 〈R〉D are assumed for on
particular reason to obey

〈Q〉D = Qan
D, 〈R〉D = Rap

D, (49)

where Q and R are constants. Substituting them into the integrability condition, we have

42A phantom scalar field has a negative kinetic energy term and its equation of state w is smaller than
−1.

43The Buchert equations are therefore rewritten as

H2
D =

8πG

3

[
〈ρ〉D +

ε

2
φ̇2

D + U(φD)
]
,

äD

aD
= −4πG

3

[
〈ρ〉D + 2εφ̇2

D − 2U(φD)
]
.
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1. for n 6= p, the only solutions are 〈Q〉D = Qa−6
D and 〈R〉D = Ra−2

D . These are the
near-Friedmannian solutions, as 〈R〉D reduces to a constant curvature. It corre-
sponds to the case where the backreacion and mean curvature evolve independently.

2. for n = p, we have 〈Q〉D = rD〈R〉D = rDRan
D, (rD is constant in time, but of course

a function of scale). From the integrability condition, the power index n is fixed to
be

n = −2
1 + 3rD

1 + rD

.

This result indicates the strong coupling between the kinematical backreaction and
averaged spatial curvature. 44

In the Secs. 5 - 7, we will close the Buchert equations by means of cosmological
perturbation theory, and the scale dependence of the backreaction terms will go beyond
the simple power-law solutions. We will show that they can be expanded as Laurent series
of aD. In order to do so, we concisely review cosmological perturbation theory in the next
section, and provide the solutions for metric perturbations up to second order.

44Further meanings on these scaling solutions will be briefly discussed in Sec. 9, and we also refer to [74]
for deeper investigations.



4 Cosmological perturbation theory

Cosmological perturbation theory is one the most successful branches in modern cos-
mology, which is widely applied to study the aspects of: e.g., the anisotropies of the
CMB [25] and structure formation [75]. Strong observational evidences indicate that the
Universe was highly homogeneous and isotropic at early times, and the primordial fluctu-
ations were amplified by gravitational instabilities. When the scales of these fluctuations
exceeded the Hubble scale during the phase of inflation, they lost causal correlations and
got “frozen”. Later on, in the RD and MD eras, these fluctuations reentered the Hubble
radius, seeding the large scale structures that we are observing today.

Albeit mathematically the problems in cosmological perturbation theory are in princi-
ple just solving the perturbed Einstein equations around an expanding background, issues
are highly nontrivial and essentially different from those in the Newtonian gravity, where
perturbations can usually be separated transparently from the background by physical
reasons. Due to the gauge freedom in GR, i.e., no reference system is preferred and the
intrinsic freedom to choose the coordinate system, what we could call perturbation obvi-
ously depends on which coordinate system we work with, and these ambiguities cannot
be eliminated completely. As a consequence, there are two methods to handle cosmo-
logical perturbation theory in GR: one is that we arbitrarily pick a coordinate system
and carefully keep track of the physical and nonphysical perturbation modes; the other is
that we firstly distinguish between the physical perturbation modes, which indeed cause
observable signatures, and fictitious perturbation modes, which can be gauged away ar-
tificially, and secondly seek the rules how these perturbation modes behave under gauge
transformations and identify gauge invariant variables. These situations are analogous
with classical electrodynamics, where we may either use the gauge dependent scalar and
vector potentials φ and A or the gauge invariant electric and magnetic fields E and B.

The first exposition on cosmological perturbation theory was pioneered by Lifshitz [76]
in the synchronous gauge sixty years ago (also subsequent work together with Khalat-
nikov [77]). Although with the name “On the gravitational stability of the expanding
Universe” and the conclusion that cosmological perturbations “cannot serve as centers
of formation of separate nebulae and stars”, this paper is still considered as the initial
step to understand gravitational instabilities and structure formations in the context of
GR. However, at the early times of the research on cosmological perturbations, different
people favored different gauges, causing their results inconvincible. The turning point for
this long term obstacle was the elegant work by Bardeen [78], in which gauge invariant
cosmological perturbation theory was firmly founded. From then on, people have been
able to tell confidently which are the real physical perturbation modes that we should be
concerned with, and fruitful accomplishments on cosmological perturbation theory have
been achieved since. 45

Cosmological perturbations consist of two parts: metric perturbations and matter field
perturbations. In this section, for a start we discuss the rules for transformations of metric
perturbations between different gauges at different orders and then show the correspond-
ing gauge invariant variables. Furthermore, we involve the matter field perturbations
(ideal fluid perturbations), solve the perturbed Einstein equations in the synchronous

45For some excellent review articles on cosmological perturbation theory, we refer to [79].

35
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gauge and give the solutions for metric perturbations up to second order. With these
mathematical preparations, we can calculate the averaged physical observables to third
order in the next three sections.

From this section on, we utilize the conformal time η, which commonly appears in the
literature when dealing with perturbative calculations, 46

dη ≡ dt

a(t)
, i .e., η − η0 =

∫ t

t0

dt

a(t)
. (50)

So η − η0 is the maximal comoving distance that a particle could have traveled since t0
to t, which is referred as the comoving particle horizon, with the physical particle horizon
multiplied by the scale factor a. We use ′ to denote the derivative with respect to η, i.e.,
′ ≡ ∂

∂η
= a(t) ∂

∂t
. The cosmic time t will reappear for comparisons with experimental data

and simulations in the Newtonian gravity.

4.1 Linear (first order) cosmological perturbation theory

In this subsection, we decompose linear metric perturbations to scalar, vector and
tensor types, establish the rules for their transformations and show the gauge invariant
variables. We restrict the presentation to spatially flat FLRW space-time. A survey on
different gauges is presented finally.

4.1.1 Decomposition of linear metric perturbations

At linear order, the perturbed metric is written as ds2 = (g(0)
µν + g(1)

µν )dxµdxν , with

g(1)
µν the linear metric perturbations about the background g(0)

µν dxµdxν = a2(η)(−dη2 +
δijdxidxj). 47

The metric perturbations can be categorized into three distinct types: scalar, vector
and tensor perturbations, and different components of g(1)

µν are thus decomposed into

1. g
(1)
00 = −2a2φ(1), with φ(1) a 3-scalar.

2. g
(1)
0i = −a2

(
B

(1)
,i + S

(1)
i

)
, with B(1) a 3-scalar, and S

(1)
i a transverse 3-vector, i.e.,

S
(1)i

,i = 0.

3. g
(1)
ij = −a2

(
2ψ(1)δij + 2E

(1)
,ij + F

(1)
i,j + F

(1)
j,i + h

(1)
ij

)
, with ψ(1) and E(1) two 3-scalars,

F
(1)
i a transverse 3-vector, i.e., F

(1)i
,i = 0, and h

(1)
ij a symmetric, transverse and

traceless 3-tensor, i.e., h
(1)
ij = hji, h

(1)i
j,i = 0 and h

(1)i
i = 0.

46The advantage of the introduction of η is that it makes the temporal and spatial components in
the metric more symmetric. So although it does not simplify analyses and derivations significantly for
our purpose, we stick to it in order that our results can easily be compared with those in references.
Furthermore, we should stress that any equation that can be analytically solved with the conformal time
η can also be solved with the cosmic time t. For cosmological perturbation theory with the cosmic time,
we refer to the textbook by Weinberg, Cosmology (Oxford University Press, Oxford, 2008).

47The scale factor a in terms of η is certainly not the same as that in t, but we do not distinguish them
here, as this causes no confusion in the context.
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Altogether, we have four 3-scalars: φ(1), B(1), ψ(1) and E(1), with four degrees of freedom;
two 3-vectors: S

(1)
i and F

(1)
i , with one constraint each, resulting in four degrees of freedom;

one 3-tensor: h
(1)
ij , with seven constraints, leaving two degrees of freedom. In total, we

have ten degrees of freedom in the linear metric perturbations, which coincides with the
number of the independent components in g(1)

µν . The spatial indices are raised and lowered
by the 3-δi

j.
In linear cosmological perturbation theory, different types of metric perturbations

evolve independently and therefore can be analyzed separately, as any coupling of two
linear metric perturbations causes barely a second order term. The four scalar modes:
φ(1), B(1), ψ(1) and E(1) are induced by energy density perturbations, so they are relevant
for structure formation. The four vector modes in S

(1)
i and F

(1)
i are related to the rotation

of cosmic medium, decaying quickly (just as 1/a) as in the Newtonian gravity, and thus do

not contribute to matter concentrations. The two tensor modes in h
(1)
ij have no analogue

in Newtonian gravity; they are the degrees of freedom of the gravitational field itself and
do not lead to any perturbation in the perfect fluid, but only gravitational waves.

4.1.2 Linear gauge transformations

After decomposing metric perturbations into these different types, we now further dis-
cuss the transformations of these perturbation modes under the changes of the coordinate
systems, i.e., different gauges.

Gauge transformations can be explored from two equivalent viewpoints: the active
one (diffeomorphisms) and the passive one (coordinate transformations). In the modern
point of view of diffeomorphisms, the changing of coordinates of one point is identified as
a mapping from this point to another in the same manifold. This viewpoint is a little bit
mathematical, and to explain it exactly, we need to introduce a series of new concepts and
notations, which deviates from the main route of this dissertation. 48 So here, we only
investigate the traditional point of view of coordinate transformations, i.e., the passive
one. Thus, by “gauge” we mean a coordinate system and refer to gauge transformations
and coordinate transformations exchangeably.

Let us consider the linear infinitesimal coordinate transformation

x̃µ = xµ + ξ(1)µ(x).

The Jacobian of the inverse coordinate transformation is

∂xα

∂x̃µ
= δα

µ − ξ(1)α
,µ.

Hence, we get the metric transformation at linear order as

g̃µν(x̃) =
∂xα

∂x̃µ

∂xβ

∂x̃ν
gαβ(x) =

(
δα

µ − ξ(1)α
,µ

) (
δβ

ν − ξ(1)β
,ν

)
gαβ(x). (51)

48For details of diffeomorphisms, we refer to [85, 86] and to the textbook by S.M. Carroll, Space-time
and geometry: an introduction to general relativity (Addison-Wesley, San Francisco, 2004).
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We expand the metric to linear order on both sides, 49

g̃µν(x̃) = g(0)
µν (x̃) + g̃(1)

µν (x̃), gµν(x) = g(0)
µν (x) + g(1)

µν (x). (52)

To get the rules for gauge transformations, we must rewrite the different orders of g̃µν(x̃)
as a function of x, 50

g̃µν(x̃) = g(0)
µν (x̃) + g̃(1)

µν (x̃)

= g(0)
µν (x) + g

(0)
µν,λ(x)

(
x̃λ − xλ

)
+ g̃(1)

µν (x)

= g(0)
µν (x) + g

(0)
µν,λ(x)ξ(1)λ(x) + g̃(1)

µν (x). (53)

Substituting Eqs. (52) and (53) into Eq. (51), we get the rules for gauge transformations
at linear order,

g̃(1)
µν = g(1)

µν − g(0)
µν,αξ(1)α − g(0)

µαξ(1)α
,ν − g(0)

αν ξ(1)α
,µ = g(1)

µν − Lξ(1)g(0)
µν , (54)

where Lξ(1) is the Lie derivative generated by ξ(1)µ. We should point out that generally
speaking, the result in Eq. (54) is valid for not only the transformations of the metric
perturbations, but for any tensor (scalar and vector included) at linear order. The general
conclusion can thus be written as 51

T̃ (1) = T (1) − Lξ(1)T (0). (55)

Using Eq. (54), we are able to attain the rules for transformations of metric per-
turbations directly. But before doing so, we first reexpress the infinitesimal coordinate
transformation as ξ(1)µ ≡ (ξ(1)0, ξ(1)i), with ξ(1)0 a 3-scalar and ξ(1)i a 3-vector, which
is further decomposed into the derivative of a 3-scalar and a transverse 3-vector, i.e.,
ξ(1)i = ζ(1),i + ξ

(1)i
⊥ , with ξ

(1)i
⊥ ,i = 0. Thus, we have the transformations of components of

the perturbed metric in Eq. (54),

g̃
(1)
00 = g

(1)
00 + 2a

(
aξ(1)0

)′
,

49We point out that g̃
(0)
µν is the same as g

(0)
µν , as the background metric is a2(η)(−dη2 + δijdxidxj). It

is the same in any coordinate system.
50We can change g̃

(1)
µν (x̃) to g̃

(1)
µν (x) without any harm at linear order, as g̃

(1)
µν is already a first order

term. This changing can no longer hold for second order gauge transformations, which will be discussed
in Sec. 4.2.1.

51The explicit results for any scalar A, covariant vector Aµ, contravariant vector Aµ, covariant tensor
Aµν , mixing tensor Aµ

ν and contravariant tensor Aµν at linear order are

Ã(1) = A(1) −A(0)
,α ξ(1)α,

Ã(1)
µ = A(1)

µ −A(0)
µ,αξ(1)α −A(0)

α ξ(1)α
,µ,

Ã(1)µ = A(1)µ −A(0)µ
,αξ(1)α + A(0)αξ(1)µ

,α,

Ã(1)
µν = A(1)

µν −A(0)
µν,αξ(1)α −A(0)

µαξ(1)α
,ν −A(0)

αν ξ(1)α
,µ,

Ã(1)µ
ν = A(1)µ

ν −A(0)µ
ν,αξ(1)α −A(0)µ

αξ(1)α
,ν + A(0)α

νξ(1)µ
,α,

Ã(1)µν = A(1)µν −A(0)µν
,αξ(1)α + A(0)µαξ(1)ν

,α + A(0)ανξ(1)µ
,α.
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g̃
(1)
0i = g

(1)
0i + a2

[(
ξ(1)0 − ζ(1)′)

,i
− ξ

(1)
⊥i

′]
,

g̃
(1)
ij = g

(1)
ij − a2

(
2
a′

a
ξ(1)0δij + 2ζ

(1)
,ij + ξ

(1)
⊥i,j + ξ

(1)
⊥j,i

)
. (56)

Substituting the metric perturbations φ(1), B(1), ψ(1), E(1), S
(1)
i , F

(1)
i and h

(1)
ij into Eq. (56),

we finally obtain the transformation rules for linear metric perturbations,

φ̃(1) = φ(1) − 1

a

(
aξ(1)0

)′
, (57)

B̃(1) = B(1) + ζ(1)′ − ξ(1)0, (58)

ψ̃(1) = ψ(1) +
a′

a
ξ(1)0, (59)

Ẽ(1) = E(1) + ζ(1), (60)

S̃
(1)
i = S

(1)
i + ξ

(1)
⊥i

′
, (61)

F̃
(1)
i = F

(1)
i + ξ

(1)
⊥i , (62)

h̃
(1)
ij = h

(1)
ij . (63)

4.1.3 Gauge invariant variables

Equations (57) - (63) show the transformation rules for linear metric perturbations.

We find that except the tensor piece h
(1)
ij , all metric perturbations depend on the gauge

transformations. Therefore, the main goal in cosmological perturbation theory is to dig
out the perturbation modes like h

(1)
ij , which are not influenced by gauge transformations,

namely gauge invariant variables.
We see that there are ten constraints from Eqs. (57) - (63), but with only four co-

ordinate transformations: ξ(1)0, ζ(1) and ξ
(1)
⊥i , so there remain altogether six gauge in-

variant variables. From Eqs. (58) and (60), we have ζ(1) = Ẽ(1) − E(1) and ξ(1)0 =
(B(1)− B̃(1))− (E(1)− Ẽ(1))′. Substituting these relations into Eqs. (57) and (59), we get
two gauge invariant variables,

Φ(1)inv ≡ φ(1) − 1

a

[
a(B(1) − E(1)′)

]′
, Ψ(1)inv ≡ ψ(1) +

a′

a
(B(1) − E(1)′). (64)

Similarly, there are two gauge invariant variables for the vector metric perturbations,

V
(1)inv
i ≡ S

(1)
i − F (1)′

i, (65)

and two gauge invariant variables from the tensor metric perturbations (they themselves),

h
(1)inv
ij . (66)

Till now, we have gathered all the six gauge invariant variables: Φ(1)inv, Ψ(1)inv, V
(1)inv
i

and h
(1)inv
ij . But of course, this does not mean they are the only gauge invariant vari-

ables that we have exhausted. Any combination of these six gauge invariant variables is
automatically gauge invariant.
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4.1.4 Survey on different gauges

Having generally investigated linear gauge transformations, we now briefly explore two
most frequently used gauges, i.e., the longitudinal (or Newton, Poisson 52) gauge, which
has gauge invariant variables in itself and synchronous gauge, which we will use for our
perturbative calculations of averaged physical observables, and show how we transform
from one gauge to the other. 53 In the linear perturbed metric, we can safely neglect
the vector and tensor perturbations in the metric, which are so tiny that they can only
exhibit their effects at higher orders (at least the second order). Thus, we concentrate on
the scalar perturbation modes here.

For the four scalar metric perturbations: φ(1), B(1), ψ(1) and E(1), their gauge trans-
formations are characterized by the two coordinate transformations ξ(1)0 and ζ(1), which
can be chosen freely, i.e., the freedom of choosing coordinate systems. Different choosing
methods correspond to different gauges.

Longitudinal gauge If we set B(1) = E(1) ≡ 0, we arrive at the longitudinal gauge
and we have ξ(1)0 = ζ(1) = 0. So there is no residual coordinate freedom, and the linear
perturbed metric is fixed as

ds2 = a2
[
−

(
1 + 2φ

(1)
l

)
dη2 +

(
1− 2ψ

(1)
l

)
δijdxidxj

]
. (67)

We enumerate some remarks for the longitudinal gauge,

1. Because ξ(1)0 = ζ(1) = 0, we cannot find any new longitudinal system.

2. In the longitudinal gauge, Φ(1)inv = φl and Ψ(1)inv = ψl as B(1) = E(1) = 0, so the
gauge invariant variables now have clear physical interpretations, they are just the
metric perturbations. Thus, working in the longitudinal gauge is equivalent to using
Bardeen’s variables directly.

3. φ
(1)
l is the generalization of the Newtonian potential, and that is the reason why it

bears the name “Newton gauge”.

4. If the spatial part of the perturbative energy-momentum tensor is diagonal, φ
(1)
l =

ψ
(1)
l . This simplifies the perturbative calculations for isotropic fluids.

Synchronous gauge Similarly, if we set φ(1) = B(1) ≡ 0, we get the synchronous gauge,
and the linear perturbed metric reads

ds2 = a2
{
−dη2 +

[(
1− 2ψ(1)

s

)
δij + E

(1)
s,ij

]
dxidxj

}
. (68)

We again enumerate some remarks for the synchronous gauge,

52For the Poisson gauge, we further pose a condition on the vector modes.
53For general discussions of various useful gauges, we refer to [80].
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1. There are residual degrees of freedom for choosing coordinates, i.e., in one coordinate
system φ(1)

s = B(1)
s = 0, then under the coordinate transformation

ξ(1)0 =
α(x)

a
, ζ(1) =

∫ η α(x)

a
dη1 + β(x),

with α(x) and β(x) being arbitrary functions of spatial coordinates only, the new
coordinate system is also a synchronous system, so we can find a class of synchronous
systems, i.e., the synchronous gauge cannot eliminate all the gauge degrees of free-
dom, and it complicates the interpretation of results obtained from it, especially on
superhorizon scales. So every quantity expressed in the synchronous gauge should
be carefully examined on its gauge dependence, unless the residual degree of freedom
is fixed by an extra condition.

2. In the synchronous gauge, the gauge invariable variables are

Φ(1)inv =
1

a

(
aE(1)

s

′)′
, Ψ(1)inv = ψ(1)

s − a′

a
E(1)

s

′
. (69)

Clearly, they unfortunately have no explicit physical meaning.

Due to these two basic shortcomings, the synchronous gauge is criticized by some cos-
mologists. However, it does have its own advantages. Especially because the coefficient
of time interval is set to be −a2 by definition, its temporal coordinate is directly linked
to the conformal time, whereas in the longitudinal gauge, the meaning of the temporal
coordinate is not very clear. Also the synchronous gauge is very beneficial for the pertur-
bative calculations in the averaging problem. At least, this might be one of the reasons
why it has been applied to cosmological perturbation theory ever since the initial work by
Lifshitz. Therefore, in the following part of this dissertation, we stick to the synchronous
gauge. Of course, the gauge dependence of the quantities calculated in this gauge must
be paid careful attention to.

In the following, we do not directly use the synchronous gauge in Eq. (68), but one of
its variations,

ds2 = a2
{
−dη2 +

[(
1− 2Ψ(1)

)
δij −Dijχ

(1)
]
dxidxj

}
, (70)

where Ψ(1) and χ(1) are the scalar metric perturbations at first order, Dij ≡ ∂i∂j − 1
3
δij∆

is the traceless derivative and ∆ denotes the Laplace operator in a three-dimensional
Euclidean space.

Transformations between different gauges Facing these various gauges, people nat-
urally ask what are the relations between different metric perturbation modes. To know
that, we do not need to solve the perturbed Einstein equations for each gauge. What we
need is just to express the gauge invariant variables Φ(1)inv and Ψ(1)inv in different gauges,
and solving these equations enables us to link the different metric perturbation modes in
different gauges.
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For example, the transformations between those two kinds of synchronous gauges
(Eqs. (68) and (70)) are straightforward,

E(1)
s = χ(1), ψ(1)

s = Ψ(1) +
1

6
∆χ(1).

Similarly, from Eq. (69), we have the relation between the metric perturbations in the
synchronous gauge in Eq. (68) and the longitudinal one,

E(1)
s =

∫ η 1

a

(∫ η1

aΦ(1)invdη2

)
dη1, ψ(1)

s = Ψ(1)inv +
a′

a2

∫ η

aΦ(1)invdη1.

Finally, the transformations of metric perturbations between the gauge in Eq. (70) and
the longitudinal one is

χ(1) =
∫ η 1

a

(∫ η1

aΦ(1)invdη2

)
dη1,

Ψ(1) = Ψ(1)inv +
a′

a2

∫ η

aΦ(1)invdη1 −
∫ η 1

6a

(∫ η1

a∆Φ(1)invdη2

)
dη1.

4.2 Higher order cosmological perturbation theory

The motivations calling for higher order cosmological perturbation theory are that
the Einstein equations are intrinsically nonlinear, so concerning only about the linearized
equations of motion loses the essences of GR. Furthermore, there exist some physical
observables, which cannot be self-consistently characterized within the framework of linear
perturbation theory. One prominent example of the non-Gaussianity [81, 82], which has
aroused great enthusiasm in physical community recently and is being accurately detected
and constrained in the WMAP [83] and the forthcoming Planck experiments. If the
primordial perturbations were gaussian, we obviously only need the two-point correlation
function and its Fourier transform, i.e., the power spectrum, of the scalar perturbations;
but if not, to describe the deviations from Gaussianity, a three-point correlation function
and also its Fourier transform, i.e., the bispectrum are definitely required. For all these
reasons, in this subsection, we generalize cosmological perturbation theory beyond linear
order and briefly discuss the gauge invariance problem at higher orders.

Higher order cosmological perturbation theory can be formulated in two ways. First,
one just work with the linear longitudinal or synchronous gauge, and any quantity made up
of more than one metric perturbations is considered as higher order terms [84]. However,
in this way, we can neither have the perturbed Christoffel connection of order higher
than two, nor the perturbed Einstein tensor of order higher than four. This intrinsic
disadvantage limits its application to higher order perturbation theory, at least from pure
theoretical perspective. The other way out is to decompose the metric perturbations
to different order, gµν = g(0)

µν +
∑

n=1 g(n)
µν /n!, and any quantity comprising the metric

perturbations with the sum of their order being k is regarded as a k-th order one, e.g.,
the product of a first and a second order quantities build up a term of third order. This
method has unambiguous interpretation and allows us to go to any high order as we wish.
Hence, in the following discussions, we only apply this approach.
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4.2.1 Second order gauge transformations

As in Sec. 4.1.2, we consider the infinitesimal coordinate transformation to second
order,

x̃µ = xµ + ξ(1)µ +
1

2

(
ξ(1)µ

,νξ
(1)ν + ξ(2)µ

)
,

where ξ(1)µ is again the first order infinitesimal coordinate transformation. Because we
have new degrees of freedom at new orders, we must introduce another infinitesimal co-
ordinate transformation ξ(2)µ, which itself is a second order quantity, i.e., ξ(2)µ ∼ (ξ(1)µ)2.
Then, the Jacobian of the inverse coordinate transformation is 54

∂xα

∂x̃µ
=

∂

∂x̃µ

[
x̃α − ξ(1)α − 1

2

(
ξ

(1)α
,λξ

(1)λ + ξ(2)α
)]

= δα
µ −

∂xλ

∂x̃µ
ξ

(1)α
,λ −

1

2

(
ξ

(1)α
,λξ

(1)λ + ξ(2)α
)

,µ

= δα
µ −

(
δλ

µ − ξ(1)λ
,µ

)
ξ

(1)α
,λ −

1

2

(
ξ

(1)α
,λξ

(1)λ + ξ(2)α
)

,µ

= δα
µ − ξ(1)α

,µ +
1

2

(
ξ

(1)α
,λξ

(1)λ
,µ − ξ

(1)α
,µ,λξ

(1)λ
)
− 1

2
ξ(2)α

,µ.

So the metric transformation is

g̃µν(x̃) =
∂xα

∂x̃µ

∂xβ

∂x̃ν
gαβ(x)

=
[
δα

µ − ξ(1)α
,µ +

1

2

(
ξ

(1)α
,λξ

(1)λ
,µ − ξ

(1)α
,µ,λξ

(1)λ
)
− 1

2
ξ(2)α

,µ

]
×

[
δβ

ν − ξ(1)β
,ν +

1

2

(
ξ

(1)β
,λξ

(1)λ
,ν − ξ

(1)β
,ν,λξ

(1)λ
)
− 1

2
ξ(2)β

,ν

]
gαβ(x). (71)

We now must expand the metric as a perturbative series to second order on both sides,

g̃µν(x̃) = g(0)
µν (x̃) + g̃(1)

µν (x̃) +
1

2
g̃(2)

µν (x̃), gµν(x) = g(0)
µν (x) + g(1)

µν (x) +
1

2
g(2)

µν (x). (72)

Then, we again rewrite the different orders of g̃µν(x̃) as the function of x,

g̃µν(x̃) = g(0)
µν (x̃) + g̃(1)

µν (x̃) +
1

2
g̃(2)

µν (x̃)

= g(0)
µν + g

(0)
µν,λ

(
x̃λ − xλ

)
+

1

2
g

(0)
µν,λ,ρξ

(1)λξ(1)ρ + g̃(1)
µν + g̃

(1)
µν,λξ

(1)λ +
1

2
g̃(2)

µν

= g(0)
µν + g

(0)
µν,λ

[
ξ(1)λ +

1

2

(
ξ(1)λ

,ρξ
(1)ρ + ξ(1)λ

)]
+

1

2
g

(0)
µν,λ,ρξ

(1)λξ(1)ρ

+g̃(1)
µν +

(
g(1)

µν − g(0)
µν,ρξ

(1)ρ − g(0)
µρ ξ(1)ρ

,ν − g(0)
ρν ξ(1)ρ

,µ

)
,λ

ξ(1)λ +
1

2
g̃(2)

µν . (73)

54In the derivation, we should notice that the derivative of ξ(1)µ also contributes to second order terms.
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Substituting Eqs. (72) and (73) into Eq. (71), we obtain the rules for gauge transformations
up to second order, 55

g̃(1)
µν = g(1)

µν − Lξ(1)g(0)
µν ,

g̃(2)
µν = g(2)

µν − 2Lξ(1)g(1)
µν −

(
Lξ(2) − L2

ξ(1)

)
g(0)

µν . (74)

It is straightforward to generate these results to even higher orders, and the third
order gauge transformation was shown in [85] as

g̃(3)
µν = g(3)

µν − 3Lξ(1)g(2)
µν − 3

(
Lξ(2) − L2

ξ(1)

)
g(1)

µν −
(
Lξ(3) − 3Lξ(1)Lξ(2) + L3

ξ(1)

)
g(0)

µν .

4.2.2 Gauge invariance at higher orders

Similar with Eq. (55), we summarize the general rules for transformations of tensor
up to third order as

T̃ (0) = T (0),

T̃ (1) = T (1) − Lξ(1)T (0),

T̃ (2) = T (2) − 2Lξ(1)T (1) −
(
Lξ(2) − L2

ξ(1)

)
T (0),

T̃ (3) = T (3) − 3Lξ(1)T (2) − 3
(
Lξ(2) − L2

ξ(1)

)
T (1) −

(
Lξ(3) − 3Lξ(1)Lξ(2) + L3

ξ(1)

)
T (0).

We see that a tensor T is gauge invariant to order n if and only if T̃ (k) = T (k) for
every k ≤ n. For instance, a tensor T is gauge invariant to second order if and only if
T̃ (2) = T (2) and T̃ (1) = T (1), which implies Lξ(1)T (0) = Lξ(2)T (0) = Lξ(1)T (1) = 0, because

ξ(1) and ξ(2) are arbitrary generators at first and second orders. Consequently, a tensor
T is gauge invariant to second order strongly demands both T (0) and T (1) vanish in any
gauge, except the trivial cases: it is a constant scalar field, or a linear combination of
products of Kronecker deltas with constant coefficients on the background [86, 87]. Here,
we omit the detailed forms of the transformations of metric perturbations in different
gauges, as they are of little interest for this dissertation, and these results can easily be
found in [86].

4.3 Solutions for linear order metric perturbations

Following the general explorations of cosmological perturbation theory, in this subsec-
tion, we solve the linearized Einstein equations in the spatially flat dust Universe without
a cosmological constant and give the solutions of scalar metric perturbations Ψ(1) and
χ(1) in terms of the conformal time η and peculiar gravitational potential ϕ(x). These
two solutions are extremely important for our perturbative calculations of the averaged
physical observables in the next sections.

55These rules have already been shown in [85, 86], but in the active way. Frankly speaking, their
treatments are rather mathematical and difficult to understand, so we now change to passive way and
hope our treatments more pedagogical. We point out that the calculation of L2

ξ(1)g
(0)
µν is complicated, but

trivial.
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4.3.1 Perturbed Einstein equations to linear order

At linear order, the perturbed metric in the synchronous gauge reads

ds2 = a2(η)
{
−dη2 +

[(
1− 2Ψ(1)

)
δij + Dijχ

(1)
]
dxidxj

}
, (75)

where Ψ(1) and χ(1) are the scalar metric perturbations at linear order. The scale factor
a in Eq. (75) is certainly not the same as the effective scale factor aD defined in Eq. (28),
and their relation will be shown in Eq. (137) in Sec. 5.3.

From the line element in Eq. (75), we straightforwardly obtain the nontrivial compo-
nents of the perturbed Christoffel connection and Einstein tensor to first order, 56

Γ0
00 =

a′

a
, (76)

Γ0
ij =

a′

a
δij − 2

a′

a
Ψ(1)δij −Ψ(1)′δij +

a′

a
Dijχ

(1) +
1

2
Dijχ

(1)′, (77)

Γi
0j =

a′

a
δi

j −Ψ(1)′δi
j +

1

2
Di

jχ
(1)′, (78)

Γi
jk = −∂jΨ

(1)δi
k − ∂kΨ

(1)δi
j + ∂iΨ(1)δjk

+
1

2
∂jD

i
kχ

(1) +
1

2
∂kD

i
jχ

(1) − 1

2
∂iDjkχ

(1), (79)

and

G0
0 = − 3

a2

(
a′

a

)2

+
1

a2

(
6
a′

a
Ψ(1)′ − 2∆Ψ(1) − 1

2
∂k∂

iDk
iχ

(1)

)
, (80)

G0
i =

1

a2

(
−2∂iΨ

(1)′ − 1

2
∂kD

k
iχ

(1)′
)

, (81)

Gi
j =

1

a2

{[ (
a′

a

)2

− 2
a′′

a

]
δi

j +

(
4
a′

a
Ψ(1)′ + 2Ψ(1)′′ −∆Ψ(1) − 1

2
∂k∂

mDk
mχ(1)

)
δi

j

+∂i∂jΨ
(1) +

a′

a
Di

jχ
(1)′ +

1

2
Di

jχ
(1)′′

+
1

2
∂k∂

iDk
jχ

(1) +
1

2
∂k∂jD

ikχ(1) − 1

2
∆Di

jχ
(1)

}
. (82)

The unique nontrivial component of the energy-momentum tensor for the dust Uni-
verse is 57

T 0
0 = −ρ = −ρ(0) − ρ(1), (83)

with ρ(0) and ρ(1) the energy density at the background and first order. With ρ(1), we
may further define the peculiar gravitational potential ϕ(x) from the cosmological Poisson
equation as

∆ϕ(x) ≡ 4πGρ(1)a2. (84)

56These components can also be found in the App. C.2 (Eqs. (217) - (220)) and C.5 (Eqs. (235) -
(239)).

57Since we use the comoving gauge throughout this dissertation, T 0
i and T i

j vanish automatically.
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We are now ready to obtain the linearized equations of motion in the ADM decompo-
sition. The different components at different orders are

1. the energy constraint at zeroth order
(

a′

a

)2

=
8πG

3
ρ(0)a2, (85)

2. the energy constraint at first order

∆
(
Ψ(1) +

1

6
∆χ(1)

)
− 3

a′

a
Ψ(1)′ = ∆ϕ, (86)

3. the momentum constraint

∂i

(
Ψ(1) +

1

6
∆χ(1)

)′
= 0, (87)

4. the evolution equation at zeroth order
(

a′

a

)2

− 2
a′′

a
= 0, (88)

5. the diagonal (i = j) piece of the evolution equation at first order

∆
(
Ψ(1) +

1

6
∆χ(1)

)
− 6

a′

a
Ψ(1)′ − 3Ψ(1)′′ = 0. (89)

6. the off-diagonal (i 6= j) piece of the evolution equation at first order

∂i∂j

(
Ψ(1) +

1

6
∆χ(1) +

a′

a
χ(1)′ +

1

2
χ(1)′′

)
= 0. (90)

From the covariant energy-momentum conservation T µ
ν;µ = 0, we find

1. at zeroth order

ρ(0)′ + 3
a′

a
ρ(0) = 0, (91)

2. at first order

ρ(1)′ + 3
a′

a
ρ(1) − 3Ψ(1)′ρ(0) = 0. (92)

Equation (92) has a first integral,

ζ̄(x) ≡ ρ(1)

3ρ(0)
−Ψ(1), (93)

which resembles the famous hypersurface invariant variable, or Bardeen parameter (here
for dust, expressed in the synchronous gauge)

ζ(η,x) ≡ ζ̄(x)− 1

6
∆χ(1)(η,x), (94)

commonly used to characterize the primordial power spectrum [88]. At large (e.g., super-
horizon) scales, ∆χ(1) is negligible, so ζ̄ ≈ ζ.
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4.3.2 Solution for the scale factor a

Now solving Eqs. (85) - (92), we can get the solutions for first order metric perturba-

tions. Firstly, from Eq. (91), we have ρ(0)a3 = ρ
(0)
0 a3

0, where ρ
(0)
0 and a0 denote the values

of ρ(0) and a at the present time. By means of Eq. (85), we have

a

a0

=

(
η

η0

)2

. (95)

We find that a(η) grows as η2, which is the same result as that for a spatially flat FLRW
dust cosmology. But this does not mean that the perturbed Universe expands in the
same way as the unperturbed one, because in the perturbed Universe the meaningful
scale factor is the effective scale factor aD defined in Eq. (28), which, however, is not
simply equal to a, and their relation will be shown in Eq. (137). So we could not know
the evolution of the perturbed Universe merely from the behavior of the scale factor a.
In the following discussions, we set a0 = 1.

4.3.3 Solutions for linear order metric perturbations

Let us move on to the solutions for linear order metric perturbations.

Solution for Ψ(1) We first eliminate ρ(1) with the help of the first integral ζ̄ from
Eq. (93),

ρ(1) =
3ρ

(0)
0 a3

0

a3

(
Ψ(1) + ζ̄(x)

)
. (96)

This allows us to obtain an equation for Ψ(1). Namely, from Eqs. (86), (89) and (96), we
have

Ψ(1)′′ +
a′

a
Ψ(1)′ =

4πGρ
(0)
0 a3

0

a

(
Ψ(1) + ζ̄(x)

)
,

and using Eq. (95), we obtain

Ψ(1)′′ +
2

η
Ψ(1)′ − 6

η2
Ψ(1) =

6

η2
ζ̄ .

So we get the solution for Ψ(1)

Ψ(1)(η,x) = A1(x)η2 +
A2(x)

η3
− ζ̄(x), (97)

where A1(x) and A2(x) are constants of integration, i.e., functions of the spatial coordi-
nates only, which are free parameters to be fixed by the initial conditions. We see from
Eq. (97) that Ψ(1) consists of one growing mode A1(x)η2, one decaying mode A2(x)/η3

and one constant mode −ζ̄(x). In the next sections, we will see that only the time deriva-

tives Ψ(1)′ and Ψ(1)′′ show up in the averaged physical observables that are of interest to
us; besides, we are only concerned with the evolutions of perturbations at late times. So
we can neglect the decaying and constant modes safely: only the growing mode A1(x)η2

is of importance for the following calculations.
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Solution for χ(1) From G
i(1)
j = 0, we have

[
2Ψ(1)′′ + 4

a′

a
Ψ(1)′ − 2

3
∆

(
Ψ(1) +

1

6
∆χ(1)

)]
δi

j + Di
j

(
1

2
χ(1)′′ +

a′

a
χ(1)′ + Ψ(1) +

1

6
∆χ(1)

)
= 0.

Taking the time derivative and inserting Eq. (87), we have

(
2Ψ(1)′′ + 4

a′

a
Ψ(1)′

)′
+ Di

j

(
1

2
χ(1)′′ +

a′

a
χ(1)′

)′
= 0.

From Eqs. (95) and (97), the first part in the above equation vanishes, and we yield

Di
jχ

(1)′′′ +
4

η
Di

jχ
(1)′′ − 4

η2
Di

jχ
(1)′ = 0,

and thus

Di
jχ

(1) = Ci
1j(x)η2 +

Ci
2j(x)

η3
+ f(x),

where Ci
1j(x) and Ci

2j(x) are functions of spatial coordinates, too. So we write χ(1) as

χ(1) = C1(x)η2 +
C2(x)

η3
+ g(x), (98)

with Di
jC1(x) = Ci

1j(x), Di
jC2(x) = Ci

2j(x) and Di
jf(x) = g(x). In the following

calculations, we neglect the decaying mode Ci
2j(x)η3. Furthermore, the constant mode

g(x) does not carry physical information, as it can be fixed by the residual spatial gauge
transformation in the comoving synchronous gauge, and therefore we utilize this freedom
to set g(x) = 0.

Final results for Ψ(1) and χ(1) In this paragraph, we give the relations between A1(x),
C1(x), ζ̄(x) and ϕ(x), and reexpress Ψ(1) and χ(1) in terms of η and ϕ(x).

First, from Eqs. (86) and (89), we have

Ψ(1)′′ +
a′

a
Ψ(1)′ =

1

3
∆ϕ(x),

and using Eq. (97), we get the relation between A1(x) and ϕ(x) as

A1(x) =
1

18
∆ϕ(x). (99)

Second, the solutions for Ψ(1) and χ(1) are not independent due to Eq. (87). From
Eqs. (87), (97) and (98), we have ∂i(A1(x) + ∆C1(x)/6) = 0. Because both A1(x) and
C1(x) are functions of the spatial coordinates, we have

A1(x) +
1

6
∆C1(x) = K, (100)
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where K is a constant. In the spatially flat universe K = 0, which will be shown in
Sec. 5.2.2, and we find the relation between A1(x) and C1(x),

A1(x) = −1

6
∆C1(x). (101)

Third, with the help of Eqs. (89) and (90), we have ∆(ζ̄(x) − 5C1(x)) = ∂i∂j(ζ̄(x) −
5C1(x)) = 0, (i 6= j). Since both ζ̄(x) and C1(x) are functions of spatial coordinates, it is
straightforwardly to get

ζ̄(x) = 5C1(x). (102)

Let us note that at superhorizon scales ζ̄ ≈ ζ. As the amplitude of ζ at superhorizon
scales is measured by the CMB experiments, the magnitudes of the time independent
functions ζ̄, A1 and C1 are thus determeined.

Combining the relations in Eqs. (99), (101) and (102), we obtain the expressions of
A1(x), C1(x) and ζ̄(x) as the functions of the peculiar gravitational potential ϕ(x),

A1(x) =
1

18
∆ϕ(x), C1(x) = −1

3
ϕ(x), ζ̄(x) = −5

3
ϕ(x). (103)

Therefore, the final results for Ψ(1) and χ(1) are

Ψ(1) =
η2

18
∆ϕ(x) +

5

3
ϕ(x), (104)

χ(1) = −η2

3
ϕ(x), (105)

and their time derivatives are

Ψ(1)′ =
η

9
∆ϕ(x), Ψ(1)′′ =

1

9
∆ϕ(x), (106)

χ(1)′ = −2η

3
ϕ(x), χ(1)′′ = −2

3
ϕ(x). (107)

In summary, we see from Eqs. (104) and (105) that both Ψ(1) and χ(1) grow as η2

at late times. Because a(η) ∝ η2, Ψ(1) and χ(1) grow linearly as the scale factor a(η) in
the perturbed dust Universe. We know that in a non-expanding background, linearized
gravity would always lead to exponential instabilities as there is no counteraction against
the attractive gravitational force. However, in the MD era, gravitational attraction is
partially diluted by the expansion of the Universe, and the growth of the first order scalar
metric perturbations is reduced to the power-law η2, rather than an exponential one in
Newtonian gravity. So, if cosmological perturbation theory is valid, i.e., the perturbative
terms Ψ(1) and χ(1) are small, the scale factor should not be too large. In other words, a
perturbative analysis (at any order) is restricted to the “linear” regime.
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4.4 Solutions for second order metric perturbations

Following the work above, we can extend the solutions for metric perturbations to
second order. This sounds a trivial task, but in fact extraordinarily tedious. As we are
not so concerned with the detailed derivations here, we only list their solutions directly. 58

The perturbative metric for spatially flat space-time up to second order in the syn-
chronous gauge reads

ds2 = a2(η)
[
−dη2 +

(
δij + γ

(1)
ij + γ

(2)
ij

)
dxidxj

]
, (108)

with

γ
(1)
ij = −2Ψ(1)δij + Dijχ

(1),

γ
(2)
ij = −Ψ(2)δij +

1

2

(
Dijχ

(2) + ∂iχ
(2)
j + ∂jχ

(2)
i + χ

(2)
ij

)
.

where Ψ(1) and χ(1) are first order scalar metric perturbations as before; Ψ(2) and χ(2)

are scalar metric perturbations at second order; χ
(2)
i is the second order transverse vector

perturbation, i.e., χ
(2)i

,i = 0; χ
(2)
ij is the second order transverse and traceless tensor

perturbation, i.e., χ
(2)i

j,i = χ
(2)i

i = 0. Similarly, the energy density ρ is also expanded

to second order as ρ = ρ(0) + ρ(1) + ρ(2)/2.
Now, again with the same procedure as for the linear calculations, we first calculate

the perturbed Einstein tensor to second order 59 and then equal them to the second
order perturbed energy-momentum tensor. Solving these perturbed equations, we get the
solutions for second order metric perturbations as

1. For the second order scalar perturbation Ψ(2),

Ψ(2) =
η4

252

[
(∆ϕ)2 − 10

3
∂i∂jϕ∂j∂iϕ

]
+

5η2

18

(
4

3
ϕ∆ϕ + ∂iϕ∂iϕ

)
. (109)

2. For the part of χ(2), χ
(2)
i and χ

(2)
ij , they can be solved as a whole, and in the following

calculations, we will find that they only show up at third order and always appear
together.

Dijχ
(2) + ∂iχ

(2)
j + ∂jχ

(2)
i + χ

(2)
ij

=
η4

126

{[
4(∆ϕ)2 − 19

3
∂k∂mϕ∂m∂kϕ

]
δij + 19∂k∂iϕ∂k∂jϕ− 12∂i∂jϕ∆ϕ

}

+
5η2

9

[(
4

3
ϕ∆ϕ + 2∂kϕ∂kϕ

)
δij − 6∂iϕ∂jϕ− 4ϕ∂i∂jϕ

]
+ πij, (110)

58For all these derivations, we follow [86], and for final results, we refer to [89] and the pioneering
works [90].

59Components of the perturbed Einstein tensor are shown in App. C.5 (Eqs. (240) - (244)), and there
we see that the quadratic terms of first order metric perturbations significantly contribute to second order
perturbed Einstein tensor. This means that even there were no original second order metric perturbations,
first order ones would also lead to vector and tensor perturbation modes at second order, i.e., they would
cause the rotation of cosmic medium and gravitational waves. Moreover, the products of two linear metric
perturbations make the equations of motion no longer decoupled at second order.
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where the transverse and traceless contribution πij, representing the second order
tensor mode generated by scalar initial perturbations, is determined by the inho-
mogeneous wave equation,

π′′ij +
4

η
π′ij −∆πij = −η4

21
∆Sij(x),

with Sij = ∆Ψ0δij + ∂i∂jΨ0 + 2(∂i∂jϕ∆ϕ− ∂i∂kϕ∂k∂jϕ), and

∆Ψ0 =
1

2

[
∂i∂jϕ∂j∂iϕ− (∆ϕ)2

]
. (111)

This Poisson equation can be solved by the Green function method, 60 and

πij(η,x) =
η4

21
Sij(x) +

4η2

3
Tij(x) + π̃ij(η,x),

where ∆Tij = Sij and the remaining piece π̃ij, containing one constant and one
oscillating term with damping amplitude, can be written as

π̃ij(η,x) =
∫ dk

(2π)3

40

k4

(
1

3
− j1(kη)

kη

)
Sij(k)eik·x, (112)

with Sij(k) =
∫

dxSij(x)e−ik·x and j1(x) = (sin x− x cos x)/x2 the spherical Bessel
function.

In Sec. 6, we will show that only the leading terms in the metric perturbations, i.e.,
the terms with highest power of the conformal time η are of interest to us; other terms
all decay so fast that they are irrelevant for the evolution of the perturbed Universe at
late times. So, when we use Eqs. (109) and (110), it is sufficient to take into account the
leading pieces only,

Ψ(2) =
η4

252

[
(∆ϕ)2 − 10

3
∂i∂jϕ∂j∂iϕ

]
, (113)

Dijχ
(2) + ∂iχ

(2)
j + ∂jχ

(2)
i + χ

(2)
ij =

η4

126

[(
(∆ϕ)2 − 10

3
∂k∂mϕ∂m∂kϕ

)
δij

+ 7∂i∂kϕ∂k∂jϕ + 6∂i∂jΨ0

]
. (114)

We will see in Sec. 7 that these solutions show up in the calculation of the third order
term Q0 of the kinematical backreaction term 〈Q〉D.

Till now, we have collected all the solutions for a, Ψ(1) and χ(1), Ψ(2) and Dijχ
(2) +

∂iχ
(2)
j +∂jχ

(2)
i +χ

(2)
ij , which we will use in the next three sections to calculate the averaged

physical observables from first to third order, respectively.

60In Sec. 7.1, this equation will be “solved”, and here we just keep Ψ0 everywhere.



5 First order perturbative calculations of the aver-

aged physical observables

From now on, we proceed to the perturbative calculations of the averaged physical
observables. The purpose of this section is to gather all the necessary equations, get
familiar with the perturbative calculations and make preparations for the next two sec-
tions. For the perturbative calculations, we make use of the conformal time η defined in
Eq. (50). We calculate the averaged volume expansion rate 〈θ〉D, spatial curvature 〈R〉D
and energy density 〈ρ〉D to first order. The averaged kinematical backreaction term 〈Q〉D
will be proven to start from second order in Sec. 6.1.1, so we do no discuss it here. To
make the perturbative calculations more compact, we also postpone the investigations of
the effective equation of state weff and square of the effective speed of sound c2

eff to the
next section, as they are related to 〈Q〉D, although they do have first order terms.

For the start, we summarize all the mathematical preparations for the coming per-
turbative calculations, i.e., rewrite the necessary equations in terms of the conformal
time η. To get these equations, we only need to change ∂

∂t
to 1

a(η)
∂
∂η

. The corresponding
ADM decompositions, commutation rule, Buchert equations and integrability condition
consequently read

1

2

(
R+ θ2 − θi

jθ
j
i

)
= 8πGρ, (115)

θ,i − θj
i;j = 0, (116)

1

a
θi′

j + θθi
j +Ri

j = 4πGρδi
j, (117)

and

〈O〉′D − 〈O′〉D = a(〈Oθ〉D − 〈O〉D〈θ〉D), (118)

and

H2
D =

8πG

3
ρeffa2, (119)

H′
D +H2

D −HHD = −4πG

3
(ρeff + 3peff)a2, (120)

with H ≡ a′/a and HD ≡ a′D/aD, and

(a6
D〈Q〉D)′ + a4

D(a2
D〈R〉D)′ = 0. (121)

Eqs. (115) - (121) establish the bases for the forthcoming calculations.

5.1 Evolution of the background Universe

We firstly list the results for the evolution of the background Universe: the simple case
of the FLRW model, in which space-time is homogeneous and isotropic, and thus there
exists no backreaction effects at all, i.e., both 〈Q〉D and 〈R〉D vanish, and the effective

52
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scale factor aD defined in Eq. (28) reduces to the scale factor a trivially. The unperturbed
dynamical equations for the background dust Universe read

H2 =
8πG

3
ρ(0)a2, H′ = −4πG

3
ρ(0)a2.

Solving these equations, we directly obtain the behaviors of the background dust Universe,

a =

(
η

η0

)2

, H =
2

η
, ρ(0) =

3

2πG

(
η0

η

)4
1

η2
. (122)

Returning to the cosmic time t, we have

a =
(

t

t0

)2/3

, H =
2

3t
, ρ(0) =

1

6πGt2
. (123)

So we see easily that for the dust Universe,

t =
η3

3η2
0

and t0 =
η0

3
. (124)

The spatial dependence of physical quantities on the background makes no sense, since
everything is homogeneous and isotropic, leaving its spatial dependence trivial.

5.2 Temporal dependence of the averaged physical observables
to first order

Let us continue to the first order perturbative calculations of the averaged physical
observables. In this subsection, we calculate the temporal dependence of 〈θ〉D, 〈R〉D and
〈ρ〉D in the perturbed dust Universe, both with the conformal and cosmic times. These
results are the first step to the derivation of the second and third order contributions. We
do not calculate 〈Q〉D, as it is a pure second order term, shown in Sec. 6.1.1.

For the first order perturbative calculations of the averaged quantities, the integration
measure J must be expanded to first order as well, 61

J = a3
(
1− 3Ψ(1)

)
= a3

(
1− η2

6
∆ϕ

)
,

In the following, let us denote

〈O〉 ≡
∫
D Odx∫
D dx

, (125)

which is defined to be the average on the background, i.e., J = a3. Watch out that the
average is still over a physically comoving domain, which might have a distorted geometry,
even on the background. Thus, for the first order perturbative calculations, the averages
of the zeroth and first order quantities are

〈O(0)〉D =

∫
D O(0)Jdx∫

D Jdx
= O(0),

〈O(1)〉D =

∫
D O(1)Jdx∫

D Jdx
=

∫
D O(1)dx∫

D dx
= 〈O(1)〉. (126)

61At late times, the constant and decaying modes of Ψ(1) are negligible.
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Therefore, the perturbation in J does not affect the first order calculations.

5.2.1 Averaged volume expansion rate 〈θ〉D
From the perturbative connections in Eq. (78), we have 62

θi
j = ui

;j =
1

a
Γi

0j =
1

a

[
a′

a
δi

j −Ψ(1)′δi
j +

1

2
Di

jχ
(1)′

]
, (127)

and taking its trace, we find the perturbative volume expansion rate to first order, 63

θ =
3

a

(
a′

a
−Ψ(1)′

)
. (128)

Using Eqs. (95) and (106), we obtain the averaged expansion rate 〈θ〉D as a function of η
and ϕ,

〈θ〉D =
3

a

(
a′

a
− 〈Ψ(1)′〉D

)
=

(
η0

η

)2 (
6

η
− η

3
〈∆ϕ〉

)
, (129)

and directly

HD =

(
η0

η

)2 (
2

η
− η

9
〈∆ϕ〉

)
, (130)

From Eq. (129), the first order perturbation decays as ∝ 1/η, slower than that of the
zeroth order term, which is ∝ 1/η3. Therefore, the perturbation becomes more and
more important as the Universe evolves. However, this does not mean that cosmological
perturbation dominates at late times, as in a perturbative approach, we must restrict our
analysis to |〈Ψ(1)〉D| ¿ 1, and if it is already of O(1), the perturbative approach naturally
breaks down.

5.2.2 Averaged spatial curvature 〈R〉D
From Eq. (115) and the trace of Eq. (117), we have

R = 16πGρ− θ2 + θi
jθ

j
i, R = 12πGρ− 1

a
θ′ − θ2, (131)

so

R = −θ2 − 4

a
θ′ − 3θi

jθ
j
i. (132)

By means of Eqs. (127), (128), (95) and (106), we find to first order

〈R〉D =
120〈A1〉

a2
= 120

(
η0

η

)4

〈A1〉.

Closer inspection of Eq. (133) shows that

62Attention, this result is slightly different from that in Eq. (15), where we use the cosmic time t, and
u0 = 1. However, in our perturbative calculations, we make use of the conformal time η, and u0 = 1/a.

63in which we have used the property that Di
j is trace free.
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1. 〈R〉D has only a first order term, with the zeroth order one vanishing, as the back-
ground metric is spatially flat.

2. 〈R〉D decays as 1/η4. From Eq. (95), a ∝ η2, so to linear order 〈R〉D ∝ 1/a2 [91],
also ∝ 1/a2

D, see later in Eq. (139).

3. We may, with the help of Eq. (100), rewrite 〈R〉D as 〈R〉D =
(

η0

η

)4 (
20
3
〈∆ϕ〉+ 120K

)
.

So we see that the constant K in Eq. (100) contributes to the averaged spatial curva-
ture a term 120K(η0/η)4 ∝ 1/a2. We know that in the unperturbed k 6= 0 universe
(see the metric in Eq. (2)), the Ricci scalar is 6k/a2. Thus, 120K(η0/η)4 is noth-
ing but the background spatial curvature. As we focus on the perturbations in the
spatially flat Universe, it vanishes automatically. This is the reason that we set
A1 = −∆C1/6 in Eq. (101).

Let us give the final first order perturbative result for the averaged spatial curvature
here,

〈R〉D =
20

3

(
η0

η

)4

〈∆ϕ〉. (133)

5.2.3 Averaged energy density 〈ρ〉D
Similarly, from Eqs. (131), (127) and (128), we have

〈ρ〉D = −
1
a
〈θ′〉D + 〈θi

jθ
j
i〉D

4πG
=

3

2πG

(
η0

η

)4 (
1

η2
+
〈∆ϕ〉

6

)
. (134)

We find for a domain overdense in average that 〈∆ϕ〉 is positive. Simultaneously, from
Eq. (133), we have a positive averaged spatial curvature, and from Eq. (129), the averaged
expansion rate is surpressed. This is consistent with our intuitional understanding of the
gravitational collapse, which decreases the expansion rate of the Universe.

Some cautious people may doubt that from the Friedmann equations, overdense regions
would expand faster than the underdense ones. This doubt seems reasonable if we would
just take into account the perturbation in the averaged energy density 〈ρ〉D. However, we
see from Eq. (119) that the effective expansion rate is not only influenced by the averaged
energy density 〈ρ〉D, but also the averaged spatial curvature 〈R〉D. Combing the first
order perturbations of 〈ρ〉D and 〈R〉D in Eqs. (133) and (134), we find that the first order

perturbation in ρeff is − 1
6πG

(
η0

η

)4 〈∆ϕ〉 < 0 for the overdense regions. Thus, the averaged
expansion rate is indeed reduced.

We find in the first order perturbative calculations that only Ψ(1) enters the expressions
of 〈θ〉D, 〈R〉D and 〈ρ〉D, and the metric perturbation χ(1) does not show up. We will show

in the next section that σ2 = 1
8a2 D

i
jχ

(1)′Dj
iχ

(1)′, so χ(1) is linked to the shear of the
perturbed Universe. This means that only the expansion influences the evolution of the
perturbed Universe at linear order.
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5.2.4 Temporal dependence of the first order averaged physical observables
on the cosmic time

Now we convert the temporal dependence of the first order averaged physical observ-
ables from the conformal time η to cosmic time t, which can directly be used to compare
with cosmological observations. From Eq. (124), it is straightforward to perform this task,
and we list the corresponding results as

〈R〉D =
20

3

(
t0
t

)4/3

〈∆ϕ〉,

〈ρ〉D =
1

6πGt2

(
1− 3

2
t2/3t

4/3
0 〈∆ϕ〉

)
,

HD =
2

3t

(
1− 1

2
t2/3t

4/3
0 〈∆ϕ〉

)
. (135)

5.3 Spatial dependence of the averaged physical observables to
first order

For the spatial dependence of the first order perturbative results, we do not expand
the averaged physical observables as the series of the conformal time η, but the effective
scale factor aD. This means that we firstly need to expand η as a Taylor series of aD.
From Eqs. (29) and (128), to linear order we have

a′D
aD

=
a

3
〈θ〉D =

a′

a
− 〈Ψ(1)′〉 =

2

η
− η

9
〈∆ϕ〉, (136)

so at late times,

aD

aD0

=

(
η

η0

)2 (
1− η2

18
〈∆ϕ〉

)
= a

(
1− η2

18
〈∆ϕ〉

)
. (137)

Thus, if 〈∆ϕ〉 is negative, the effective scale factor aD grows faster than the ordinary
result η2 in the unperturbed dust model. This is consistent with the analysis in Sec. 5.2.3
that the underdense regions expand faster than the overdense ones.

Solving this equation perturbatively to first order, we have
(

η

η0

)2

=
aD

aD0

+
η2

0

18
〈∆ϕ〉

(
aD

aD0

)2

=
aD

aD0

+
t20
2
〈∆ϕ〉

(
aD

aD0

)2

. (138)

Substituting Eq. (138) into Eq. (135), we obtain the spatial dependence of the averaged
physical observables to first order, 64

〈R〉D =
20

3

a2
D0

a2
D

〈∆ϕ〉, (139)

〈ρ〉D =
1

6πGt20

a3
D0

a3
D

, (140)

HD =
2

3t0

a
3/2
D0

a
3/2
D

(
1− 5

4

aD

aD0

t20〈∆ϕ〉
)

. (141)

64To directly compare these results directly with the experimental data and simulations, we only list
the results with the cosmic time t, as those with the conformal time η is not so relevant.
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We see from Eqs. (139) and (141) that their first order terms are not proportional to their
temporal dependence in Eqs. (130) and (134). This is not strange, because the first order
terms pick up modifications from zeroth order when converting from temporal to spatial
dependence (see Eq. (137) for details). We also discover from Eq. (140) that 〈ρ〉D ∝ 1/a3

D,
without any fluctuation. The reason is that we use the comoving coordinate system, and
thus Eq. (140) must be a natural consequence. This provides also an independent check
for the validity of our results.

Let us finally note that the first order contributions to 〈θ〉D, 〈R〉D and 〈ρ〉D are all
surface terms, as we may write them as integral of total derivatives

〈∆ϕ〉 =

∫
D ∂i(∂iϕ)dx∫

D dx
.

This means all the information about the first order averaged physical observables is
encoded on the boundaries of the perturbed domains that we are interested in.

More surface terms show up below, when we turn to the second order perturbative
calculations.



6 Second order perturbative calculations of the av-

eraged physical observables

We move on to the second order perturbative calculations of averaged physical observ-
ables. Second order cosmological perturbation theory has been discussed widely in the
literature. However, in these previous papers, the metric perturbations of second order
are always needed for calculations, and these calculations are always rather complicated
and tedious. In this paper, we show how to obtain the leading terms of second order
contributions to 〈Q〉D, 〈R〉D, 〈θ〉D and 〈ρ〉D from the metric perturbations of first order
only.

We first prove that the kinematical backreaction term 〈Q〉D is a second order term,
and then using the integrability condition, which is a crucial new input, find the second
order terms of 〈R〉D, 〈θ〉D and 〈ρ〉D. In these calculations, the shear scalar σ2 and thus

χ(1)′ enter in the final results. The effective equation of state weff and square of speed of
sound c2

eff are also given to second order.
Different from the first order cases, at second order we have to consider the perturba-

tion of the measure of integral J . Therefore, the averaged physical observables of different
orders now become

〈O(0)〉D = O(0),

〈O(1)〉D = 〈O(1)〉+ 3〈O(1)〉〈Ψ(1)〉 − 3〈O(1)Ψ(1)〉,
〈O(2)〉D = 〈O(2)〉. (142)

We see that at second order, the average of a first order quantity 〈O(1)〉D picks up two
second order modifications 3〈O(1)〉〈Ψ(1)〉−3〈O(1)Ψ(1)〉. In the following, we will show that
these modifications show up in the second order calculations, especially for that of 〈θ〉D.

6.1 Temporal dependence of the averaged physical observables
to second order

In this subsection, we extend the temporal dependence of the averaged physical ob-
servables to second order. We calculate 〈Q〉D, 〈R〉D, 〈θ〉D and 〈ρ〉D in order. Although
dealing with the second order perturbation theory, we demand nothing more than linear
perturbative metric. All these simplifications rely on the fact that the integrability con-
dition is an exact relation valid to any order, and 〈Q〉D has no linear contribution, which
is proven immediately.

6.1.1 Averaged kinematical backreaction term 〈Q〉D
Let us recall the kinematical backreaction term 〈Q〉D defined in Eq. (36),

〈Q〉D ≡ 2

3

(
〈θ2〉D − 〈θ〉2D

)
− 2〈σ2〉D.

Now we prove that 〈Q〉D is a pure second order term, by showing that both the first part
〈θ2〉D − 〈θ〉2D and second one 〈σ2〉D are of second order.

58
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To calculate the variance 〈θ2〉D − 〈θ〉2D to second order, we expand θ as

θ = θ(0) + θ(1) + θ(2), (143)

where θ(0), θ(1) and θ(2) are the zeroth, first and second order contributions to θ, respec-
tively. θ(0) and θ(1) have been calculated in Eq. (128). Using Eq. (142), to second order,
we have

〈θ2〉D − 〈θ〉2D = 〈(θ(0) + θ(1) + θ(2))2〉D − (〈θ(0) + θ(1) + θ(2)〉D)2

= 〈(θ(1))2〉D − 〈θ(1)〉2D = 〈(θ(1))2〉 − 〈θ(1)〉2. (144)

This means that the first piece of 〈Q〉D is a second order term. However, to calculate it,
the detailed form of θ(2) is unnecessary. All we need is θ up to first order. Using Eq. (128),
we directly have

〈θ2〉D − 〈θ〉2D =
9

a2

[
〈(Ψ(1)′)2〉 − 〈Ψ(1)′〉2

]
=

η2
0

9

(
η0

η

)2 [
〈(∆ϕ)2〉 − 〈∆ϕ〉2

]
. (145)

Similarly, we calculate the average of the shear scalar 〈σ2〉D. From Eqs. (14) and
(127), we find to first order that

σi
j = θi

j −
1

3
θδi

j = θ
(0)i

j + θ
(1)i

j −
1

3
(θ(0) + θ(1))δi

j =
1

2a
Di

jχ
(1)′, (146)

so σi
j has no zeroth order contribution. Hence, using Eq. (107), we have

σ2 =
1

2
σi

jσ
j
i =

1

8a2
Di

jχ
(1)′Dj

iχ
(1)′ =

η2
0

18

(
η0

η

)2 [
∂i∂jϕ∂j∂iϕ− 1

3
(∆ϕ)2

]
. (147)

Thus, 〈σ2〉D, the second piece of 〈Q〉D, is also of second order, but can again be calculated
by using the expression of χ(1) at first order only.

So far, we have proved that both parts of 〈Q〉D are of second order, and consequently
〈Q〉D is a second order term, but nevertheless can be calculated from the first order
contributions to Ψ(1) and χ(1). Using Eqs. (145) and (147), we get 〈Q〉D to second order

〈Q〉D =
η2

0

9

(
η0

η

)2 [
〈(∆ϕ)2〉 − 〈∂i∂jϕ∂j∂iϕ〉 − 2

3
〈∆ϕ〉2

]
≡ η2

0

9

(
η0

η

)2

B(ϕ), (148)

where

B(ϕ) ≡ 〈(∆ϕ)2〉 − 〈∂i∂jϕ∂j∂iϕ〉 − 2

3
〈∆ϕ〉2 = 〈∂i(∂iϕ∆ϕ)〉 − 〈∂i(∂jϕ∂j∂iϕ)〉 − 2

3
〈∆ϕ〉2.

B(ϕ) has only second order terms and is a function of spatial coordinates only.
Some remarks on this result for 〈Q〉D are in order. From Eq. (148) we find that

1. 〈Q〉D, written in the abbreviated form B(ϕ), contains two second order terms, which
are total derivatives and become surface terms when averaging. Meanwhile, the third
term 〈∆ϕ〉2 is the square of a first order surface term, and thus its second order
modifications in Eq. (142) do not show up in B(ϕ). Therefore, 〈Q〉D is a function
of the total derivatives of ϕ on the boundaries of the averaged domains only.
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2. Because ∆ϕ is a fluctuating term, and can be stochastically positive in some regions
and negative in others, its average is expected to be negligible, if the averaged
domains become large enough (but are still on subhorizon scales). However, (∆ϕ)2

and ∂i∂jϕ∂j∂iϕ are positive definite, and therefore give nontrivial surface terms
when averaging. Thus, 〈Q〉D consists of these two surface terms on large scales. If
they cancel, we say that there is no kinematical backreaction at second order. In
the Newtonian limit, this cancelation was discussed in [64] for periodic boundary
conditions, and in [92] for spherically symmetric spaces. In relativistic cosmological
perturbation theory, this problem was treated in [93]. However, in general case,
there is no reason for this cancelation. A good review of this cancelation problem
can be found in [91].

3. We see from Eq. (148) that 〈Q〉D decreases as 1/η2, indicating that 〈Q〉D ∝ 1/a.
And we have already known that 〈R〉D ∝ 1/a2 and 〈ρ(0)〉D ∝ 1/a3 in Sec. 5.2.2 and
5.2.3. So 〈Q〉D decays slower than 〈R〉D and 〈ρ〉D. Therefore, in the course of the
evolution of the perturbed Universe, the kinematical backreaction becomes more
and more important in the effective energy density ρeff and pressure peff . Of course,
we should note that 〈Q〉D is a pure second order term, but 〈R〉D has got a first order
term, and 〈ρ〉D even contains a zeroth order one, so we cannot indiscreetly conclude
that 〈Q〉D dominates the late time behavior of the averaged Universe. The effect of
〈Q〉D is determined not only on its temporal dependence on η (or equivalently the
scale factor a) in its denominator, but also by the value of the surface terms in its
numerator.

6.1.2 Averaged spatial curvature 〈R〉D
In Sec. 5.2.2, we have calculated the averaged spatial curvature 〈R〉D to first order

in Eq. (133), and here, we use the integrability condition Eq. (121) to obtain its second
order part. Since the integrability condition is an exact relation to any order, and we
have already got 〈Q〉D to second order in Eq. (148), solving this differential equation
(a6

D〈Q〉D)′ + a4
D(a2

D〈R〉D)′ = 0, it is possible to obtain 〈R〉D to second order. Needless to
say, the effective scale factor aD should also be expanded to second order in terms of the
perturbation ϕ. However, in the following, we show that we do not need that, but the
first order result attained in Eq. (137) is sufficient for our purpose.

We rewrite the integrability condition as

6
a′D
aD

〈Q〉D + 〈Q〉′D + 2
a′D
aD

〈R〉D + 〈R〉′D = 0. (149)

Because 〈Q〉D is already of second order, in the first term of Eq. (149), we only need
the zeroth order term of a′D/aD. In the third one, since 〈R〉D has no zeroth order term,
we need the zeroth and first order terms of a′D/aD. Altogether, its second order piece
is irrelevant. The relation between aD and η to first order has already been shown in
Eq. (137). Substituting Eqs. (137) and (148) into Eq. (149), to second order we have

〈R〉′D +

(
4

η
− 2η

9
〈∆ϕ〉

)
〈R〉D +

10η4
0

9η3
B(ϕ) = 0.
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Solving this differential equation exactly, we find

〈R〉D = D

(
η0

η

)4

exp

(〈∆ϕ〉
9

(η2 − η2
0)

)
+

5B(ϕ)

〈∆ϕ〉

(
η0

η

)4 [
1− exp

(〈∆ϕ〉
9

(η2 − η2
0)

)]
,

where D is the constant of integration, which is a function of spatial coordinates. For
consistency, we must expand this solution up to second order

〈R〉D =

(
η0

η

)4 (
D − Dη2

0

9
〈∆ϕ〉+

5η2
0

9
B(ϕ)

)
+ η2

0

(
η0

η

)2 (
D

9
〈∆ϕ〉 − 5

9
B(ϕ)

)
.

There is only one undetermined constant of integration D in the above expression. From
Eq. (133), we know that 〈R〉D has no zeroth order term, so D must only have the first and
second order terms; otherwise, the terms in the first bracket would give rise to a zeroth
order contribution. We expand D = D(1) + D(2), with D(1) and D(2) being the first and
second order terms of D. Because 〈∆ϕ〉 is a first order term and B(ϕ) is a second order
one, 〈R〉D thus becomes

〈R〉D =

(
η0

η

)4 (
D(1) + D(2) − D(1)η2

0

9
〈∆ϕ〉+

5η2
0

9
B(ϕ)

)

+η2
0

(
η0

η

)2 (
D(1)

9
〈∆ϕ〉 − 5

9
B(ϕ)

)
, (150)

where the first term D(1)(η0/η)4 represents the first order result of 〈R〉D. It is matched
with Eq. (133) to fix

D(1) =
20

3
〈∆ϕ〉. (151)

Substituting Eq. (151) into Eq. (150) and using Eq. (101), we find 〈R〉D to second order,

〈R〉D =
20

3

(
η0

η

)4

〈∆ϕ〉+ E(2)

(
η0

η

)4

− 5η2
0

9

(
η0

η

)2 (
B(ϕ)− 4

3
〈∆ϕ〉2

)
, (152)

where E(2) ≡ D(2) − D(1)η2
0〈∆ϕ〉/9 + 5η2

0B(ϕ)/9. Neither D(2) nor E(2) can be fixed
by matching to some known coefficients. However, the term E(2)(η0/η)4 is unimpor-
tant at any time. Early on, 20

3
〈∆ϕ〉 is a first order term, while E(2) is a second order

one, so it is negligible compared to the first term in Eq. (152). Similarly, at late times,

E(2)(η0/η)4 decays faster than −5η2
0

9

(
η0

η

)2 (
B(ϕ)− 4

3
〈∆ϕ〉2

)
, because both numerators are

of second order, but the exponent of the denominator in E(2)(η0/η)4 is a larger one. Thus,
20
3

(
η0

η

)4 〈∆ϕ〉 is the first order term of 〈R〉D, which is the same as the result in Eq. (133),

and −5η2
0

9

(
η0

η

)2 (
B(ϕ)− 4

3
〈∆ϕ〉2

)
is the leading second order part at late times. Therefore,

in the following calculations, we write 〈R〉D as

〈R〉D =
20

3

(
η0

η

)4

〈∆ϕ〉 − 5η2
0

9

(
η0

η

)2 (
B(ϕ)− 4

3
〈∆ϕ〉2

)
. (153)
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Thus, at second order, 〈R〉D is again a function of surface terms. So with Eq. (133), we
find that 〈R〉D is a function of surface terms at both first and second orders.

Here, we extend the calculation of the averaged spatial curvature 〈R〉D up to second
order by using the integrability condition. Its advantage is that we can do the second
order calculation, but without knowing the metric perturbations of second order. All
these are reflected in the fact that the integrability condition is an exact result valid to
any order, and we have got 〈Q〉D to second order with only the first order cosmological
perturbation theory.

6.1.3 Averaged volume expansion rate 〈θ〉D
Below, the second order perturbation of the volume expansion rate 〈θ〉D is calculated,

but again using the metric perturbations of first order only. For doing so, some small
tricks playing with the commutation rule Eq. (118) will be helpful. Then, we show finally
that our simple calculation is consistent with the result using metric perturbations of
second order directly.

From Eqs. (132) and (15), we have

R = −2θ2 − 4

a
θ′ − 6σ2. (154)

Since 〈R〉D has already been calculated to second order in Eq. (153), 〈σ2〉D is a pure
second order term (see Eq. (147)), and we know the zeroth and first order terms of 〈θ〉D
from Eq. (129), we can obtain the second order perturbation of 〈θ〉D from Eq. (154).

Using Eq. (128), we expand θ as

θ = θ(0) + θ(1) + θ(2) = 3

(
η0

η

)2 (
2

η
− η

9
∆ϕ

)
+ θ(2). (155)

so to second order

θ2 = 9

(
η0

η

)4 (
4

η2
− 4

9
∆ϕ +

η2

81
(∆ϕ)2

)
+

12

aη
θ(2),

θ′ =

(
η0

η

)2 (
−18

η2
+

1

3
∆ϕ

)
+ θ(2)′. (156)

Substituting Eq. (156) into Eq. (154), and using Eq. (147), we find

R =
20

3

(
η0

η

)4

∆ϕ− η2
0

9

(
η0

η

)2 [
3∂i∂jϕ∂j∂iϕ + (∆ϕ)2

]
−

(
η0

η

)2 (
24

η
θ(2) + 4θ(2)′

)
.(157)

We see from Eq. (153) that R has both first and second order terms, so at second order,

the first order term 20
3

(
η0

η

)4
∆ϕ gives two additional second order modifications when

averaging, as shown in Eq. (142). Therefore, the average of R to second order is

〈R〉D =
20

3

(
η0

η

)4

〈∆ϕ〉 −
(

η0

η

)2 (
24

η
〈θ(2)〉+ 4〈θ(2)′〉

)
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+
η2

0

9

(
η0

η

)2 [
10〈∆ϕ〉2 − 11〈(∆ϕ)2〉 − 3〈∂i∂jϕ∂j∂iϕ〉

]

=
20

3

(
η0

η

)4

〈∆ϕ〉 −
(

η0

η

)2 (
24

η
〈θ(2)〉+ 4〈θ(2)〉′

)

+
η2

0

9

(
η0

η

)2 [
10〈∆ϕ〉2 − 11〈(∆ϕ)2〉 − 3〈∂i∂jϕ∂j∂iϕ〉

]
. (158)

Above, the Lemma Eq. (31) allows us to write 〈θ(2)′〉 = 〈θ(2)〉′ at second order. Matching
Eq. (158) with Eq. (153) yields

〈θ(2)〉′ + 6

η
〈θ(2)〉+

η2
0

18

[
3〈(∆ϕ)2〉+ 4〈∂i∂jϕ∂j∂iϕ〉

]
= 0.

Solving this differential equation provides us with the second order contribution to 〈θ〉D
from θ(2),

〈θ(2)〉 = −η2
0η

126

[
3〈(∆ϕ)2〉+ 4〈∂i∂jϕ∂j∂iϕ〉

]
+

F (2)

η6
,

where F (2) is the constant of integration of second order, and at late times the term
F (2)/η6 is negligible without doubt. Therefore, we finally find the averaged expansion
rate 〈θ〉D to second order,

〈θ〉D = 〈θ(0)〉D + 〈θ(1)〉D + 〈θ(2)〉D
=

(
η0

η

)2 [
6

η
− η

3
〈∆ϕ〉+

2η3

63

(
B(ϕ)− 13

12
〈∆ϕ〉2

)]
, (159)

where the first order term θ(1) again contributes via averaging to the second order result
(see Eq. (142)), i.e., the second order part of 〈θ〉D is subtly not the mere 〈θ(2)〉 or 〈θ(2)〉D.
Straightforwardly, the effective Hubble expansion rate HD is

HD =

(
η0

η

)2 [
2

η
− η

9
〈∆ϕ〉+

2η3

189

(
B(ϕ)− 13

12
〈∆ϕ〉2

)]
. (160)

We find that 〈θ〉D is also a function of surface terms at both first and second orders.

Before going on to the perturbative calculations of other averaged physical observables
to second order, we pause for a moment to show that the result in Eq. (159) can also be
obtained by using the second order cosmological perturbation theory, which was discussed
heavily in Sec. 4.4. 65

65We briefly list the perturbed metric to second order and solutions for metric perturbations here,
which can also be found in Eqs. (108), (104), (105) and (109),

ds2 = a2(η)
[
−dη2 +

(
δij + γ

(1)
ij + γ

(2)
ij

)
dxidxj

]
,
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From the perturbed metric to second order Eq. (108), we have the volume expansion
rate θ as

θ =
1

a
Γi

0i =
1

a

(
3
a′

a
− 3Ψ(1)′ − 3

2
Ψ(2)′ − 6Ψ(1)Ψ(1)′ − 1

2
Di

jχ
(1)Dj

iχ
(1)′

)
. (161)

We see from Eq. (161) that only the scalar metric perturbations at first and second
orders matter in the derivation of 〈θ〉D up to second order, with the second order vector
and tensor perturbations uninfluential. Therefore, we obtain the average of the volume
expansion rate θ,

〈θ〉D =

(
η0

η

)2 [
6

η
− η

3
〈∆ϕ〉+

2η3

63

(
B(ϕ)− 13

12
〈∆ϕ〉2

)

− 5η

18

(
2〈ϕ∆ϕ〉+ 3〈∂iϕ∂iϕ〉+ 6〈ϕ〉〈∆ϕ〉

)]
. (162)

Thus, we find that the leading second order term in Eq. (162), which we get by using
the explicit metric perturbations of second order in Eqs. (104), (105) and (109), is the
same as that in Eq. (159). One can see as already argued for the case of 〈R〉D that the
subleading second order contributions show the same temporal dependence as the first
order term. Thus, it is justified to neglect the subleading terms as they can never (in the
perturbative regime) overcome the first order ones.

6.1.4 Averaged energy density 〈ρ〉D
Similarly, from Eqs. (29) and (32), we have

(
1

3
〈θ〉D

)2

=
8πG

3

(
〈ρ〉D − 〈Q〉D + 〈R〉D

16πG

)
. (163)

Using Eqs. (148), (153) and (159), we get the averaged energy density 〈ρ〉D up to second
order,

〈ρ〉D =
3η4

0

2πGη6

[
1 +

η2

6
〈∆ϕ〉 − η4

126

(
B(ϕ)− 17

6
〈∆ϕ〉2

)]
, (164)

and 〈ρ〉D is a function of surface terms at both first and second orders too.

where

γ
(1)
ij = −2Ψ(1)δij + Dijχ

(1), γ
(2)
ij = −Ψ(2)δij +

1
2

(
Dijχ

(2) + ∂iχ
(2)
j + ∂jχ

(2)
i + χ

(2)
ij

)
,

and

Ψ(1) =
η2

18
∆ϕ +

5
3
ϕ, χ(1) = −η2

3
ϕ,

Ψ(2) =
η4

252

[
(∆ϕ)2 − 10

3
∂i∂jϕ∂j∂iϕ

]
+

5η2

18

(
4
3
ϕ∆ϕ + ∂iϕ∂iϕ

)
.
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Up to this point, we have obtained all the averaged physical observables: 〈Q〉D, 〈R〉D,
〈θ〉D and 〈ρ〉D up to second order, and we only have to consult the first order metric
perturbations Ψ(1) and χ(1) (without the necessity of knowing them to second order).
These simplifications are essentially based on the integrability condition and the fact
that 〈Q〉D is a pure second order term. As a concequence, we are able to extend this
method to higher orders. For example, if we go to third order, we only require the metric
perturbations to second order, perform the same procedure for 〈Q〉D and then follow the
previous processes, every averaged physical observable will be obtained without too much
difficulty.

6.1.5 Effective equation of state weff

Now we turn to the last two physical quantities: the effective equation of state weff

and the square of the speed of sound, which are functions of 〈Q〉D, 〈R〉D, 〈θ〉D and 〈ρ〉D.
From Eq. (37), using Eqs. (148), (152) and (164), we obtain the effective equation of

state to second order,

weff =
5η2

54
〈∆ϕ〉 − η4

81

(
B(ϕ)− 5

3
〈∆ϕ〉2

)
. (165)

Therefore, weff vanishes at zeroth order. This is different from the cosmological constant,
with wΛ = −1. Consequently, in a perturbative framework, the backreaction mechanism
cannot induce accelerated expansion of the Universe, as that would imply weff < −1/3.
Nevertheless, the cosmological perturbations allow us to investigate a possible change of
the expansion rate of the averaged Universe that might during the later nonlinear stage,
lead to an accelerated expansion of the Universe. We discuss this on both small and large
scales.

1. First, on small scales and at early times, ∆ϕ may significantly deviate from 0, so
the first order term dominates the value of weff . Using Eq. (84), we rewrite weff as

weff =
10πGη6

27η4
0

〈ρ(1)〉. (166)

We see from Eq. (166) that if 〈ρ(1)〉 < 0, which means that the energy density is
underdense locally, weff is negative, and since weff ∝ η6, this effect will be more and
more influential as time goes on, and might represent the onset of the accelerated
expansion of the averaged Universe. Of course, with the above expression, we can
trace the evolution only for small perturbations. Once they are in the nonlinear
regime, our approach fails.

2. Second, for large averaged domains (still on subhorizon scales) and at late times, the
average of ∆ϕ is expected to become negligible, since it is a fluctuating term, and
the two surface terms give nontrivial contributions (see also the similar discussion
on B(ϕ)). Therefore the value of weff is dominated by these two second order terms
on large scales,

weff =
η4

81

(
〈∂i(∂jϕ∂j∂iϕ)〉 − 〈∂i(∂iϕ∆ϕ)〉

)
. (167)
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We see from Eq. (167) that the sign of weff depends on the difference between the
two surface terms. It vanishes for certain boundary conditions, see [64, 91, 92, 93].
However, we think that these boundary conditions are not very natural, and that the
generic case for a finite domain in the Universe is that the effective equation of state
is given by a finite surface term, which might be positive or negative, depending on
the details of the fluctuations on the boundaries.

6.1.6 Square of the effective speed of sound c2
eff

Similarly, for the square of the effective speed of sound, we have

c2
eff =

5η2

81
〈∆ϕ〉 − η4

243

(
B(ϕ)− 35

18
〈∆ϕ〉2

)
. (168)

1. On small scales,

c2
eff =

20πGη6

81η4
0

〈ρ(1)〉.

So if the cosmic medium is overdense locally, c2
eff > 0. But we also see that c2

eff

can be negative in underdense regions. Usually this suggests that some damping is
going on, which is related to dissipative phenomena and the increase of entropy.

2. On large scales, the second order terms dominate, and we find

c2
eff =

η4

243

(
〈∂i(∂jϕ∂j∂iϕ)〉 − 〈∂i(∂iϕ∆ϕ)〉

)
.

Again, the sign of the square of the effective speed of sound depends on the contrast
of the two surface terms.

To summarize this subsection, we find that all the studied physical quantities: 〈Q〉D,
〈R〉D, 〈θ〉D, HD, 〈ρ〉D, weff and c2

eff , can be expressed as functions of surface terms at both
first and second orders. Thus, to know the values of these averaged physical observables,
we do not need to know anything about the interior of the averaged domains. Only
the physical information, i.e., the peculiar gravitational potential ϕ, and its derivatives,
encoded on the boundaries of the domains matter.

6.1.7 Temporal dependence of the averaged physical observables to second
order on the cosmic time

As in Eq. (135), the temporal dependence of the averaged physical observables to
second order on cosmic time can be obtained by simply converting η to t with Eq. (124).
The results are

〈Q〉D =
t
8/3
0

t2/3
B(ϕ),

〈R〉D =
20

3

(
t0
t

)4/3

〈∆ϕ〉 − 5
t
8/3
0

t2/3

(
B(ϕ)− 4

3
〈∆ϕ〉

)
,
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HD =
2

3t

[
1− 1

2
t2/3t

4/3
0 〈∆ϕ〉+

3

7
t4/3t

8/3
0

(
B(ϕ)− 13

12
〈∆ϕ〉2

)]
,

〈ρ〉D =
1

6πGt2

[
1 +

3

2
t2/3t

4/3
0 〈∆ϕ〉 − 9

14
t4/3t

8/3
0

(
B(ϕ)− 17

6
〈∆ϕ〉2

)]
,

weff =
5

6
t2/3t

4/3
0 〈∆ϕ〉 − t4/3t

8/3
0

(
B(ϕ)− 5

3
〈∆ϕ〉2

)
,

c2
eff =

5

9
t2/3t

4/3
0 〈∆ϕ〉 − 1

3
t4/3t

8/3
0

(
B(ϕ)− 35

18
〈∆ϕ〉2

)
. (169)

6.2 Spatial dependence of the averaged physical observables to
second order

An important lesson that we have learned is that the averaged physical observables
are not only time dependent, but also scale dependent.

6.2.1 Spatial dependence

To obtain their spatial dependence up to second order, we now need to know the
perturbative relation between η and aD to second order. Following Eq. (136) and using
Eq. (159), to second order, we have

a′D
aD

=
2

η
− η

9
〈∆ϕ〉+

2η3

189

(
B(ϕ)− 13

12
〈∆ϕ〉2

)
,

so at late times,

aD

aD0

=

(
η

η0

)2 [
1− η2

18
〈∆ϕ〉+

η4

378

(
B(ϕ)− 1

2
〈∆ϕ〉2

)]
.

Solving this equation perturbatively to second order, we find

(
η

η0

)2

=
aD

aD0

+
η2

0

18
〈∆ϕ〉

(
aD

aD0

)2

− η4
0

378

(
B(ϕ)− 17

6
〈∆ϕ〉2

) (
aD

aD0

)3

(
t

t0

)2/3

=
aD

aD0

+
t20
2
〈∆ϕ〉

(
aD

aD0

)2

− 3t40
14

(
B(ϕ)− 17

6
〈∆ϕ〉2

) (
aD

aD0

)3

. (170)

Substituting Eq. (170) into Eq. (169), we obtain the spatial dependence of the averaged
physical observables to second order,

〈Q〉D =
aD0

aD

t20B(ϕ), (171)

〈R〉D =
20

3

(
aD0

aD

)2

〈∆ϕ〉 − 5
aD0

aD

t20B(ϕ), (172)

HD =
2

3t0

(
aD0

aD

)3/2

1− 5

4

aD

aD0

t20〈∆ϕ〉+
3

4

(
aD

aD0

)2

t40

(
B(ϕ)− 25

24
〈∆ϕ〉2

)
 ,(173)

〈ρ〉D =
1

6πGt20

(
aD0

aD

)3

, (174)
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weff =
5

6

aD

aD0

t20〈∆ϕ〉 −
(

aD

aD0

)2

t40

(
B(ϕ)− 25

12
〈∆ϕ〉2

)
, (175)

c2
eff =

5

9

aD

aD0

t20〈∆ϕ〉 − 1

3

(
aD

aD0

)2

t40

(
B(ϕ)− 25

9
〈∆ϕ〉2

)
. (176)

We see that again 〈ρ〉D ∝ 1/a3
D due to the comoving gauge that we are working with.

6.2.2 Laurent series for the cosmological backreaction terms

Our perturbative results suggest us to go beyond the power-law scaling solutions of
the spatial dependence of the averaged physical observalbes in Eq. (49) and write them
in the series of the effective scale factor aD. We see from Eq. (174) that the zeroth order
term is proportional to 1/a3

D, so these series must be Laurent series, not just Taylor series.
Here, we focus on the two backreaction terms 〈Q〉D and 〈R〉D. We see from Eqs. (171)
and (172) that they start from different powers: 1/aD and 1/a2

D, so

〈Q〉D =
∑

n=−1

Qn

(
aD

aD0

)n

, 〈R〉D =
∑

n=−2

Rn

(
aD

aD0

)n

. (177)

The integrability condition then connects the coefficients:

Qn =
n + 2

n + 6
Rn. (178)

Thus, we find Q0 = −R0/3 at third order (n = 0) in perturbation theory, which pretty well
fits the condition for leading to a cosmological constant via the backreaction mechanism in
Eq. (47). Therefore, cosmological backreaction can really mimic a cosmological constant
Λ = Q0, and this is the motivation why we continue our work to third order. But
unfortunately, cosmological backreaction is also expected to cause extra terms at lower
orders as well.

Furthermore, from Eqs. (148) and (153), we find that the temporal dependence of the
second order entries of 〈Q〉D and 〈R〉D is not proportional to each other, but the spatial
dependence are exactly Q−1 = −R−1/5, which is a direct consequence from Eq. (178), as
the first order terms contribute to second order terms when converting the dependence
from η to aD.

6.2.3 Value of wde from cosmological backreaction

At the end of this section, we briefly reconsider the equation of state of the “dark
energy” mimicked by cosmological backreaction in Eq. (46),

wde =
3〈Q〉D − 〈R〉D

3(〈Q〉D + 〈R〉D)
. (179)

Since both 〈Q〉D and 〈R〉D are perturbative quantities, it is impossible to make a
Taylor expansion here any more. But we can use Eq. (178) to discuss the possible values of
wde, which strongly depend on whether there is a cutoff in the Laurent series in Eq. (177).
Let us investigate the value of wde at both early and late times.
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1. At early times, both the backreaction terms 〈Q〉D and 〈R〉D are tiny, so Eq. (179)
becomes 0/0 type and can be calculated by means of the l’Hôpital’s rule. We find
that wde → −1/3 when aD → 0. Thus, the effect of cosmological backreaction in
the early Universe is undistinguishable from the effect of a homogeneous curvature
k in the FLRW model. 66

2. It is harder to predict wde for the future, as it is not clear whether the Laurent series
converge at late times (aD À aD0). Assume there existed an nmax = 0, wde → −1,
then we would arrive at a cosmological constant, and the Universe would approach
a de Sitter phase. If nmax > 0, wde → −1− nmax/3, meaning that the effective fluid
would evolve like phantom dark energy. However, we do not see any reason for the
existence of an nmax. Then wde can take any value in the far future. 67

66This result seems inconsistent with our intuition of a vanishing cosmological backreaction in the early
Universe, suggesting that wde should also vanish. However, if there is cosmological backreaction in the
early Universe, we have new degrees of freedom in the dynamics of the perturbed Universe, and we know
that the limitation of the theory with more degrees of freedom does not always trivially reduce to the
theory with fewer degrees of freedom. One example is the difference between the massive and massless
gravity theories, namely the so-called vDVZ-discontinuity [94].

67To really excavate out whether there is an nmax or not, we must advance to even higher cosmological
perturbation theory. But from the experiences to third order perturbative calculations, we modestly
doubt that there should be no nmax. Even if it did exist, before Qnmax and Rnmax would play the main
role, our perturbative approach had already been invalidated due to structure formation in the cosmic
medium.



7 Third order perturbative calculations of averaged

physical observables

Now we proceed to third order perturbative calculations. Its motivation is that we
discover a cosmological constant Q0 at third order in Sec. 6.2.2. So it is worthy to find
its expression.

To third order, the averages of physical quantities at different orders are

〈O(0)〉D = O(0),

〈O(1)〉D = 〈O(1)〉+ 3〈O(1)〉〈Ψ(1)〉 − 3〈O(1)Ψ(1)〉+ third order modifications,

〈O(2)〉D = 〈O(2)〉+ 3〈O(2)〉〈Ψ(1)〉 − 3〈O(2)Ψ(1)〉,
〈O(3)〉D = 〈O(3)〉. (180)

We see that again the zeroth and third order terms are not affected by the perturba-
tions in the measure of integral; a second order quantity picks two modification terms
3〈O(2)〉〈Ψ(1)〉 − 3〈O(2)Ψ(1)〉 at third order, the same as a first order quantity does at
second order; a first order quantity now has not only the second order modifications
3〈O(1)〉〈Ψ(1)〉− 3〈O(1)Ψ(1)〉 as before, but also third order ones when averaging. However,
these third order terms are irrelevant for our following calculations, so we do not show
their explicit forms.

In this section, we only give the detailed calculation of 〈Q〉D to third order, i.e., Q0,
because R0 = −3Q0 directly from Eq. (178), 〈ρ〉D has no perturbative contributions due
to the comoving coordinate system that we use, and the third order terms of HD, weff

and c2
eff follow the expressions of Q0 and R0 trivially, as they are all functions of 〈Q〉D

and 〈R〉D, and their specific forms are of little interest to us.

7.1 Averaged kinematical backreaction 〈Q〉D
To calculate the averaged kinematical backreaction 〈Q〉D = 2

3
(〈θ2〉D − 〈θ〉2D)− 2〈σ2〉D

to third order, we once more expand the volume expansion rate θ to third order as
θ = θ(0) + θ(1) + θ(2) + θ(3), so for the first piece of 〈Q〉D, we get

〈θ2〉D − 〈θ〉2D = 〈(θ(0) + θ(1) + θ(2) + θ(3))2〉D − 〈θ(0) + θ(1) + θ(2) + θ(3)〉2D
= 〈(θ(1))2〉D − 〈θ(1)〉2D + 2(〈θ(1)θ(2)〉D − 〈θ(1)〉D〈θ(2)〉D)

= 〈(θ(1))2〉 − 〈θ(1)〉2 + 3(〈(θ(1))2〉〈Ψ(1)〉 − 〈(θ(1))2Ψ(1)〉)
−6(〈θ(1)〉2〈Ψ(1)〉 − 〈θ(1)〉〈θ(1)Ψ(1)〉)
+2(〈θ(1)θ(2)〉 − 〈θ(1)〉〈θ(2)〉). (181)

We have already obtained the volume expansion rate θ to second order in Eq. (161),

θ =
1

a

(
3
a′

a
− 3Ψ(1)′ − 3

2
Ψ(2)′ − 6Ψ(1)Ψ(1)′ − 1

2
Di

jχ
(1)Dj

iχ
(1)′

)
.

Thus, the first part of 〈Q〉D becomes

2

3

(
〈θ2〉D − 〈θ〉2D

)
=

1

a2

[
6

(
〈(Ψ(1)′)2〉 − 〈Ψ(1)′〉2

)
+ 6

(
〈Ψ(1)′Ψ(2)′〉 − 〈Ψ(1)′〉〈Ψ(2)′〉

)

70
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+ 2
(
〈Ψ(1)′Di

jχ
(1)Dj

iχ
(1)′〉 − 〈Ψ(1)′〉〈Di

jχ
(1)Dj

iχ
(1)′〉

)

+ 18〈(Ψ(1)′)2〉〈Ψ(1)〉+ 12〈Ψ(1)′〉〈Ψ(1)Ψ(1)′〉
− 36〈Ψ(1)〉2〈Ψ(1)〉+ 6〈Ψ(1)(Ψ(1)′)2〉

]
. (182)

Similarly, for the second piece of 〈Q〉D, i.e., 〈σ2〉D ≡ 1
2
σi

jσ
j
i, as we have known from

Eq. (146) that σi
j has no zeroth order term, so for third order calculation of 〈σ2〉D, we

only need the perturbative expression of σi
j up to second order. Following the procedure

in Sec. 6.1.1, we have

σi
j = θi

j −
1

3
θδi

j =
1

a

[
1

2
Di

jχ
(1)′ +

1

4

(
Di

jχ
(2) + ∂iχ

(2)
j + ∂jχ

(2)i + χ
(2)i

j

)′
+ Ψ(1)Di

jχ
(1)′

+ Ψ(1)′Di
jχ

(1) − 1

2
Di

kχ
(1)Dk

jχ
(1)′ − 1

6
Dk

lχ
(1)Dl

kχ
(1)′δi

j

]
.

Thus,

−2〈σ2〉D = − 1

a2

[
1

4
〈Di

jχ
(1)′Dj

iχ
(1)′〉+

3

4

(
〈Di

jχ
(1)′Dj

iχ
(1)′〉〈Ψ(1)〉 − 〈Di

jχ
(1)′Dj

iχ
(1)′Ψ(1)〉

)

+
1

4
〈Di

jχ
(1)′ (Dj

iχ
(2) + ∂jχ

(2)
i + ∂iχ

(2)j + χ
(2)j

i

)′〉

+ 〈Di
jχ

(1)′ (Ψ(1)Dj
iχ

(1)′ + Ψ(1)′Dj
iχ

(1)
)′〉

− 1

2
〈Di

jχ
(1)′Dj

kχ
(1)Dk

iχ
(1)′〉

]
. (183)

Combining Eqs. (182) and (183), we have 〈Q〉D to third order in terms of the metric
perturbations,

〈Q〉D =
1

a2

[
6

(
〈(Ψ(1)′)2〉 − 〈Ψ(1)′〉2

)
− 1

4
〈Di

jχ
(1)′Dj

iχ
(1)′〉

+ 6
(
〈Ψ(1)′Ψ(2)′〉 − 〈Ψ(1)′〉〈Ψ(2)′〉

)

+ 2
(
〈Ψ(1)′Di

jχ
(1)Dj

iχ
(1)′〉 − 〈Ψ(1)′〉〈Di

jχ
(1)Dj

iχ
(1)′〉

)

+ 18〈(Ψ(1)′)2〉〈Ψ(1)〉+ 12〈Ψ(1)′〉〈Ψ(1)Ψ(1)′〉 − 36〈Ψ(1)〉2〈Ψ(1)〉+ 6〈Ψ(1)(Ψ(1)′)2〉
− 3

4

(
〈Di

jχ
(1)′Dj

iχ
(1)′〉〈Ψ(1)〉 − 〈Di

jχ
(1)′Dj

iχ
(1)′Ψ(1)〉

)

− 1

4
〈Di

jχ
(1)′ (Dj

iχ
(2) + ∂jχ

(2)
i + ∂iχ

(2)j + χ
(2)j

i

)′〉

− 〈Di
jχ

(1)′ (Ψ(1)Dj
iχ

(1)′ + Ψ(1)′Dj
iχ

(1)
)′〉 − 1

2
〈Di

jχ
(1)′Dj

kχ
(1)Dk

iχ
(1)′〉

]
.(184)

The first line of Eq. (184) is the second order result we got in Sec. 6.1.1 and the following
six lines are the third order contributions to 〈Q〉D due to cosmological perturbations. We

see that 〈Q〉D is the function of Ψ(1), χ(1), Ψ(2) and Di
jχ

(2) + ∂iχ
(2)
j + ∂jχ

(2)i + χ
(2)i

j as
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a whole. The solutions for these metric perturbations have been solved in Secs. 4.3 and
4.4. Here we list their leading terms again, since the non-leading terms only induce slowly
growing modes and thus are negligible at late times,

Ψ(1) =
η2

18
∆ϕ, χ(1) = −η2

3
∆ϕ, Ψ(2) =

η4

252

[
(∆ϕ)2 − 10

3
∂i∂jϕ∂j∂iϕ

]
,

Dijχ
(2) + ∂iχ

(2)
j + ∂jχ

(2)
i + χ

(2)
ij =

η4

126

[(
(∆ϕ)2 − 10

3
∂k∂mϕ∂m∂kϕ

)
δi

j

+7∂i∂kϕ∂k∂jϕ + 6∂i∂jΨ0

]
. (185)

Before substituting Eq. (185) into Eq. (184), we should be aware that Eq. (184) shows
only the temporal dependence of 〈Q〉D. So if we hope to obtain Q0, i.e., the third order
spatial dependence of 〈Q〉D, we must take into account the modifications from converting
second order temporal dependence to spatial dependence, i.e., the first row of Eq. (184)
also leads to third order terms for the calculation of Q0. From the second order result of
〈Q〉D in Eq. (169) and (138), we have the spatial dependence of 〈Q〉D up to third order, 68

〈Q〉D =
aD0

aD

η2
0

9
B(ϕ)− η4

0

162
〈∆ϕ〉B(ϕ) + the last six rows in Eq. (184). (186)

Now we can substitute Eq. (185) into Eq. (186), and use the relation t0 = η0/3 to finally
express 〈Q〉D as

〈Q〉D =
aD0

aD

t20B(ϕ) + Q0,

where

Q0 = t40

[
−3〈∂i∂jϕ∂j∂kϕ∂k∂iϕ〉+

45

14
〈∂i∂jϕ∂j∂iϕ∆ϕ〉 − 3

14
〈(∆ϕ)3〉

+
18

7
〈∂i∂jϕ∂j∂iΨ0〉 − 15

7
〈∂i∂jϕ∂j∂iϕ〉〈∆ϕ〉

+
15

7
〈∆ϕ〉〈(∆ϕ)2〉 − 5

3
〈∆ϕ〉3

]
. (187)

We see from Eq. (187) that it contains all the third order possibilities that we can con-
struct. The unique undetermined quantity is Ψ0, which is the solution of the Poisson
equation in Eq. (111),

∆Ψ0 =
1

2

[
∂i∂jϕ∂j∂iϕ− (∆ϕ)2

]
. (188)

Equation (188) can certainly be solved by the standard Green function method. Whereas,
because of the complexity of the source term at the right hand side, the solution of Ψ0

68For the third order terms, there is no danger to change from the temporal dependence to spatial
dependence, as they are already the highest order entries we are considering here.
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will not be quite simple. Moreover, from Eq. (187), we find that what we really need is
only ∂j∂iΨ0, not the explicit form of Ψ0, so here we make an educated Ansatz to guess
∂j∂iΨ0.

Since Ψ0 is a second order term, and there are four derivatives in ∂j∂iΨ0, we may
rewrite ∂j∂iΨ0 as

∂j∂iΨ0 = aϕ∂j∂i∆ϕ + b∂jϕ∂i∆ϕ + c∂j∂iϕ∆ϕ + d∂j∂kϕ∂k∂iϕ

+(eϕ∆∆ϕ + f∆ϕ∆ϕ + g∂k∂lϕ∂l∂kϕ + h∂kϕ∂k∆ϕ)δj
i. (189)

Equation (189) exhausts all the possible ways to construct ∂j∂iΨ0. From the constraint
in Eq. (188), it is easy to fix a = b = e = h = 0, c + 3f = −1/2 and d + 3g = 1/2. So

∂j∂iΨ0 = −
(

1

2
+ 3f

)
∂j∂iϕ∆ϕ +

(
1

2
− 3g

)
∂j∂kϕ∂k∂iϕ

+(f∆ϕ∆ϕ + g∂k∂lϕ∂l∂kϕ)δj
i, (190)

and

Q0 = t40

[
−

(
12

7
+

54

7
g
)
〈∂i∂jϕ∂j∂kϕ∂k∂iϕ〉+

(
27

14
− 54

7
f +

18

7
g
)
〈∂i∂jϕ∂j∂iϕ∆ϕ〉

− 15

7
〈∂i∂jϕ∂j∂iϕ〉〈∆ϕ〉+

(
18

7
f − 3

14

)
〈(∆ϕ)3〉

+
15

7
〈∆ϕ〉〈(∆ϕ)2〉 − 5

3
〈∆ϕ〉3

]
. (191)

We guess that the coefficients in Eqs. (190) and (191) must be very symmetric and
have special ratio, i.e., they must be the same or at most have opposite signs. This
guess is not totally irrational, since the coefficients in Eq. (188) are ±1/2. The unique
possibility for this “non-standard” guess is f = −g = 7/24, and final result for ∂j∂iΨ0

and Q0 is thus “determined” as

∂j∂iΨ0 = −11

8
(∂j∂iϕ∆ϕ− ∂j∂kϕ∂k∂iϕ) +

7

24
(∆ϕ∆ϕ− ∂k∂lϕ∂l∂kϕ)δj

i, (192)

and

Q0 = t40

[
28

15
(〈∂i∂jϕ∂j∂kϕ∂k∂iϕ〉 − 2〈∂i∂jϕ∂j∂iϕ∆ϕ〉+ 〈(∆ϕ)3〉)

+
15

7

(
〈(∆ϕ)2〉 − 〈∂i∂jϕ∂j∂iϕ〉

)
〈∆ϕ〉 − 5

3
〈∆ϕ〉3

]
. (193)

We want to stress here that although this result is guessed, we think there would be
no other solution, as they all make the coefficients in Eqs. (190) and (191) ugly. So from
the belief that the true solution must be simple and beautiful, we regard Eq. (193) as our
final expression of Q0.

69

69Unfortunately, this Q0 can no longer be written as surface terms, as the ratio of the coefficients in
the first bracket is 1 : −2 : 1. But it can be proved only with the ratio 1 : −3/2 : 1, can we rewrite them
as surface terms by construction.
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The temporal dependence of 〈Q〉D and the temporal and spatial dependence of other
averaged physical observables: 〈R〉D, 〈ρ〉D, HD, weff and c2

eff will not be shown any more,
since they are irrelevant for our following discussions. Listing them here makes no sense
other than lengthening the text.

7.2 Gauge dependence of the averaged physical observables

Before the end of our perturbative calculations at different order, let us finally give a
thorough discussion on the gauge dependence problem of the averaged physical observ-
ables. In Sec. 4.2.2, the gauge invariance of physical observables at different orders are
discussed in detail: a tensor T is gauge invariant to the order n if and only if T̃ (k) = T (k)

for every k ≤ n, and this condition infers that in perturbative approaches, a quantity is
gauge dependent except its leading term, apart from the trivial cases that it is a constant
scalar field, or a linear combination of products of Kronecker deltas with constant coef-
ficients on the background. Thus, we know that 〈Q〉D is a gauge invariant quantity to
second order, since it has no zeroth and first order terms; second, the first order terms of
〈R〉D, weff and c2

eff are gauge invariant; 〈θ〉D, HD and ρeff , which have the zeroth order
terms, depend on the gauge choice at any order of perturbation theory. In summary, we
conclude that all leading terms of the averaged physical observables are gauge invariant,
while the higher order ones are not.



8 Signatures of cosmological backreactions

In this section, we compare our theoretical results with experimental data and simula-
tions in Newtonian gravity. For doing so, we first estimate 10% effects from cosmological
backreaction. Then, we go beyond these order of magnitude estimations and calculate
the variances of the backreaction terms. Lastly, we focus on the variance of the local
Hubble expansion rate and identify our calculations, i.e., the signatures of cosmological
backreaction with the HST Key Project experimental data and demonstrate that these
variances can be reinterpreted as a curvature effect.

8.1 Estimation of 10% effects from cosmological backreaction

We now estimate the order of magnitude of cosmological backreaction as a function of
the averaging scale R ∼ V

1/3
D0

. We show that cosmological averaging produces important
modifications to local physical observables and determine the averaging scale at which
corrections show up at the 10% level.

8.1.1 10% effect from the kinematical backreaction 〈Q〉D
From Eq. (33), we know that the effective acceleration of the averaged Universe occurs

if ρeff + 3peff < 0, i.e., 〈Q〉D > 4πG〈ρ〉D. Thus, from Eqs. (171) and (174), we estimate

∣∣∣∣∣
〈Q〉D

4πG〈ρ〉D

∣∣∣∣∣ =
3

2

(
aD

aD0

)2

B(ϕ)t40 =
8

27

R4
H

(1 + z)2
B(ϕ) ∼ 8

75

1

(1 + z)2

(
RH

R

)4

Pζ , (194)

where RH = 2.998× 103h−1 Mpc is the present Hubble distance, and Pζ = 2.457× 10−9 is
the dimensionless power spectrum [10]. To the leading (second) order, we may safely use
the solutions for the background Universe: a = 1/(1 + z) and t0 = 2RH/3, since B(ϕ) is
already of second order. Each derivative in B(ϕ) is estimated as a factor of 1/R in front of
the power spectrum, when we go to the Fourier space of ϕ. As ϕ is constant in time, and
ζ ≈ −5ϕ/3 on superhorizon scales, we identify today’s Pϕ with 9Pζ/25 at superhorizon
scales. The kinematical backreaction induces 10% modifications if |〈Q〉D/4πG〈ρ〉D| ≥ 0.1.
This happens on scales 70

rQ ≤ 21h−1

√
1 + z

Mpc. (195)

For observations at z ¿ 1, rQ ≤ 30 Mpc (h = 0.7).

8.1.2 10% effect from the averaged spatial curvature 〈R〉D
The averaged spatial curvature 〈R〉D is the most important correction to the energy

density. Similarly, from Eqs. (172) and (174), the criterion for the scale at which its effect

70We use r to denote the critical scale for 10% effect from 〈Q〉D, i.e., rQ, instead of RQ. So are rR,
rH and rQ0 for 〈R〉D, HD and Q0. Otherwise, RR looks not good, and RH may be confused with the
Hubble distance RH.

75
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emerges is determined by
∣∣∣∣∣

ρeff

〈ρ〉D − 1

∣∣∣∣∣ ≈
∣∣∣∣∣

〈R〉D
16πG〈ρ〉D

∣∣∣∣∣ ∼
2

3

1

1 + z

(
RH

R

)2 √
Pζ . (196)

We evaluate a 10% effect within

rR ≤ 54h−1

√
1 + z

Mpc. (197)

At small redshifts, rR ≤ 77 Mpc. Furthermore, a 1% effect is expected up to scales out
to 240 Mpc. Note that the curvature of the Universe has been measured at the few per
cent accuracy in the CMB [10], we will be able to detect this small curvature in the future
experiments. 71

8.1.3 10% effect from the normalized Hubble expansion rate δH

Furthermore, we discuss the normalized fluctuation on the local measurement of the
Hubble expansion rate. From Eq. (173), we have

|δH | ≡
∣∣∣∣
HD −H0

H0

∣∣∣∣ ∼
1

3

1

1 + z

(
RH

R

)2 √
Pζ . (198)

An effect larger than 10% shows up for

rH ≤ 38h−1

√
1 + z

Mpc, (199)

which reads rH ≤ 54 Mpc at small redshifts.

8.1.4 10% effect from the third order kinematical backreaction Q0

In Sec. 8.1.1, we first investigate the possibility of the effective acceleration of the
averaged Universe. There, we only use the result of 〈Q〉D in Eq. (171), i.e., the leading
(second) order result, in order to grasp the main ingredient of this problem. In Secs. 8.1.2
and 8.1.3, we also only take the leading order contributions from 〈R〉D and HD. Now we
generalize our analysis to third order and really have a look at the higher order influences,
i.e., the influence from Q0, the “cosmological constant”.

Following the derivation in Eq. (194), and from Eqs. (193) and (174), we get
∣∣∣∣∣

Q0

4πG〈ρ〉D

∣∣∣∣∣ ∼
32

1125

1

(1 + z)3

(
RH

R

)6

P3/2
ζ . (200)

If there is a 10% effect from this third order term, the critical scale is

rQ0 ≤
17h−1

√
1 + z

Mpc. (201)

For small redshifts, rQ0 ≤ 24 Mpc.

71It was shown in [95] that even small curvatures might affect the analysis of high redshift SNe signif-
icantly.
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8.1.5 Hierarchy of cosmological backreactions

From Eqs. (195) – (201), we directly find a hierarchy of effects that influence the
evolution of the averaged Universe. 10% effects are found up to 80 Mpc for the averaged
spatial curvature 〈R〉D. Below 50 Mpc, the fluctuation of the Hubble expansion rate is
larger than 10% due to cosmic structure. Up to 30 Mpc and 25 Mpc, the kinematical
backreaction 〈Q〉D, i.e., the second and third order perturbations, caused by the very
local inhomogeneities and anisotropies, enter the game. This might put some of the steps
on the cosmological distance ladder in question, as they are deeply within the domain of
large cosmological backreaction. We summarize our results in Tab. (2).

Scale Observable Physical meaning Order
≤ 80 Mpc 〈R〉D spatial curvature first
≤ 55 Mpc HD Hubble expansion rate first
≤ 30 Mpc 〈Q〉D kinematical backreaction second
≤ 25 Mpc Q0 “cosmological constant” third

Table 2: Hierarchy of cosmological backreactions.

At scales from 25 to 80 Mpc, different orders of cosmological backreactions show
10% effects, respectively.

The scale dependence of cosmological backreactions is shown in Fig. (5). We see from
Eqs. (194) – (200), backreaction effects ∝ 1/R2 for first order quantities, and ∝ 1/R4

and 1/R6 for second and third order terms. Therefore, although third order effects grow
faster than first and second ones, when we go to small scales, its numerator prevents it
from becoming dominating. It seems that 20 Mpc is an interesting scale, where different
orders of cosmological backreaction effects almost have the same order of magnitude. But
of course, if so, our perturbative approach has broken down already.

8.2 Ensemble averages and variances of physical observables

Now we go beyond the rough estimations and calculate the variances of cosmological
backreaction terms, as these variances (especially the variance of the local Hubble expan-
sion rate) can be compared directly with experimental data. So although we have only
one Universe and only one particular volume in the Universe to observe, these calculations
are still worthy, at least for theoretical interest.

We first define the ensemble variance of an averaged physical observable as

Var(· · ·) ≡ [(· · ·)− (· · ·)]2 = (· · ·)2 − (· · ·)2
, (202)

where (· · ·) denotes the ensemble average, i.e., the average over different parallel uni-
verses. In the following, we will calculate [Var(δH)]1/2, [Var(〈R〉D)]1/2, [Var(weff)]1/2 and
[Var(〈Q〉D)]1/2, respectively.

In this subsection, we only consider the effects from the leading orders of cosmological
backreactions, because at large scales, where perturbation theory can be applied, the third
order results obtained in the previous section are too small to be seen in observations.
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Figure 5: Scale dependence of cosmological backreaction at different orders.

Scale dependence of cosmological backreaction at first, second and third orders,
which is proportional to 1/R2, 1/R4 and 1/R6, respectively. We illustrate this
dependence by setting the these effects to be 0.1 at 65, 30 and 25 Mpc in order.

8.2.1 Variances of δH, 〈R〉D and weff

For physical quantities like [Var(〈δH〉D)]1/2, [Var(〈R〉D)]1/2 and [Var(weff)]1/2, which
start from first order, we expand them as O = O(1) + O(2) + O(3) + · · ·. Thus, from
Eq. (202), to third order, we have

[Var(O)]1/2 =
√

(O(1))2

(
1 +

(O(2))2 − (O(2))2 + 2O(1)O(3)

2(O(1))2

)
. (203)

We find from Eq. (203) that for these terms, there are no second order variances, i.e., the
next order contributions are already at third order, so we can doubtlessly neglect them. 72

From Eq. (203), the variance of the normalized effective Hubble expansion rate δH is

[Var (δH)]1/2 =
5

4

aD

aD0

t20
[
〈∆ϕ〉2

]1/2
=

5

9

1

1 + z
R2

H

[
〈∆ϕ〉2

]1/2
,

where 73

〈∆ϕ〉2 =
1

V 2

∫
dx1dx2

dk1dk2

(2π)6
k2

1k
2
2ϕk1ϕk2e

i(k1·x1+k2·x2)

72Note that this conclusion no longer holds true, when we rewrite aD/aD0 = 1/(1 + z), as this is the
zeroth order result only. So strictly speaking, small second order variances also exist in Eq. (203), but
since we constrain our attention to the leading order effects, these second order terms are negligible. We
could define 1 + zD ≡ aD0

aD
, and then our results are exact to second order formally.

73Here we transform ϕ to the Fourier space as ϕ(x) =
∫

dk
(2π)3 ϕkeik·x.
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=
1

V 2

∫
dx1dx2

dk

32π4
kPϕ(k)eik·(x1+x2). (204)

In Eq. (204), we introduce the two-point correlation function, or equivalently, the dimen-
sionless power spectrum (k ≡ |k|) as 74

ϕk1ϕk2 ≡ 2π2δ(k1 + k2)
Pϕ(k1)

k3
1

. (205)

For the Harrison-Zel’dovich spectrum [96], which is a scale free spectrum for the matter
perturbations, i.e., perturbations of all sizes behave in the same way, Pϕ(k1) is a constant,
but thus the integral in Eq. (204) diverges. To regularize it, we must insert different
window functions in Eq. (204).

1. The top-hat window WT
R (r) = θ(R− r), with

V =
∫

dxWT
R (r) =

4π

3
R3,

1

V

∫
dxWT

R (r)eik·x =
3

(kR)3
[sin(kR)− kR cos(kR)].

This window function is sometimes used in Newtonian simulations, and since we will
compare our theoretical results with these simulations, we first utilize this window
function to calculate the integral in Eq. (205). So

〈∆ϕ〉2 =
1

V 2

∫
dx1dx2

dk

32π4
kPϕ(k)

[
WT

R (r)
]2

eik·(x1+x2)

=
9

8π3R3

∫ ∞

0
dk
Pϕ(k)

(kR)3
[sin(kR)− kR cos(kR)]2

=
9

16π2R4

∫ ∞

0
d(kR)Pϕ(k)J2

3/2(kR), (206)

where J3/2(x) =
√

2
πx3 (sin x− x cos x) is the Bessel function of first kind. With the

help of the top-hat window, we may regularize the spatial part of the integral in
Eq. (204). However, the momentum integral is still divergent, if the dimensionless
power spectrum Pϕ(k) is scale invariant. To cure this problem, we again need
different ways to cutoff the power spectrum. This is the disadvantage of the top-
hat window. We will see immediately that with the Gaussian window, we have no
trouble with the momentum integral, which means that the top-hat is useful, but
still not very effective. We try two cutoffs here,

(a) The ultraviolet cutoff Pϕ(k) = Pϕe−k/kc , with kc a critical momentum, which is
always taken to be 1/pc as a physical cutoff or 1/kpc in Newtonian simulations.
Thus, we have

〈∆ϕ〉2 =
9Pϕ

16π2R4

∫ ∞

0
dxJ2

3/2(x)e−x/kcR

=
9Pϕ

16π2R4

1

π
Q1

(
1 +

1

2(kcR)2

)

≈ 9Pϕ

16π2R4

1

π
[ln(2kcR)− 1], (if kcR À 1),

74We introduce the power spectrum in this way, i.e., by setting k3
1 in the denominator, in order to

make Pϕ(k1) dimensionless.
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where Q1(x) = x
2
ln 1+x

1−x
− 1 is the Legendre function of second kind. We have

made an approximation from the second to the third line. Since R is about
50 to 100 Mpc and kc is about 1/kpc to 1/pc, kcR ∼ 105 to 108 À 1, this
approximation is very accurate. Therefore, we obtain

Var (δH) =
5

12π

1

1 + z

(
RH

R

)2 √
Pϕ

[
1

π
ln(2kcR)− 1

]1/2

. (207)

(b) No cutoff is required for a red-tilted spectrum Pϕ(k) = Pϕ(k/k0)
ns−1, with the

spectrum index ns < 1. Similarly, we have

〈∆ϕ〉2 =
9Pϕ

16π2R4

1
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0
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))2 ,

where Γ(x) =
∫∞
0 e−ttx−1dt is the Gamma function. Thus, we finally have
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1/2

.(208)

2. Another frequently used window function is the Gaussian window WG
R (r) = e−r2/2R2

,
with

V =
∫

dxWG
R (r) = (2π)3/2R3,

1

V

∫
dxWG

R (r)eik·x = e−k2R2/2.

The advantage of this window is its powerful ability to regularize integrals, i.e., we
usually do not need a cutoff for the power spectrum any more. For Eq. (205), now
we have

〈∆ϕ〉2 =
1

V 2

∫
dx1dx2

dk

32π4
kPϕ(k)

[
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]2
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dkk3Pϕ(k)e−k2R2

. (209)

This integral is always convergent for the scale invariant dimensionless power spec-
trum Pϕ(k) = Pϕ. So we have

〈∆ϕ〉2 =
1

2

Pϕ

(2π)3

1

R4
,

and

Var (δH) =
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36π3/2

1

1 + z

(
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R

)2 √
Pϕ. (210)
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Similarly, for other quantities starting from first order terms, e.g., the averaged spatial
curvature 〈R〉D, its ensemble average and variance read

〈R〉D =
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√
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.

For the effective equation of state, we have
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.

8.2.2 Variances of 〈Q〉D
We further calculate [Var(〈Q〉D)]1/2, which starts from second order term. We should

firstly state that this calculation is rather complicated, and unfortunate, the final result
is divergent, even if some window function is used.

First, the ensemble average of 〈Q〉D (to second order) is

〈Q〉D = −2

3

aD

aD0

t20〈∆ϕ〉2 = − 1

54π3

Pϕ

1 + z

R2
H

R4
.

We find that it is negative definite. Also, for the ensemble average of Q0 (a third order
term), if the fluctuation ϕ is gaussian, the third-point correlation function vanishes, its
ensemble average Q0 is zero. This means that in a typical universe, to both second and
third orders, i.e., the leading order and the constant value of the kinematical backreac-
tion, we cannot mimic a positive cosmological constant, leading to the acceleration. This
naturally sounds a bad news for our purpose to achieve dark energy from structure for-
mation. But we should be aware that this is just the ensemble average, and we actually
have only one real Universe, so if the variance of one physical quantity is large enough,
the possibility of accelerated expansion still cannot be ruled out.

Second, let us perform the variance of the kinematical backreaction 〈Q〉D,

[Var(〈Q〉D)]1/2 =
aD0

aD

t20[Var(B(ϕ))]1/2,

where
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3
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4
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Pϕ(k2)

k2

ei[k1·(x1+x2)+k2·(x1+x3)]

+
4

3

(2π2)2

V 4

∫
dx1dx2dx3dx4

dk1dk2

(2π)12
k1k2Pϕ(k1)Pϕ(k2)e

i[k1·(x1+x2)+k2·(x3+x4)]

−4

9

(2π2)2

V 4

[∫
dx1dx2

dk

(2π)6
kPϕ(k)eik·(x1+x2)

]2

.

Above, we have introduced the four-point correlation function, 75

ϕk1ϕk2ϕk3ϕk4 = (2π2)2

[
δ(k1 + k2)δ(k3 + k4)

Pϕ(k1)

k3
1

Pϕ(k3)

k3
3

+ δ(k1 + k3)δ(k2 + k4)
Pϕ(k1)

k3
1

Pϕ(k2)

k3
2

+ δ(k1 + k4)δ(k2 + k3)
Pϕ(k1)

k3
1

Pϕ(k2)

k3
2

]
. (211)

Again some window functions are needed. We no longer consult the top-hat window,
as this window function makes the integral nearly incalculable. Here, we only use the
Gaussian window. Therefore,

Var(B(ϕ)) = 2(2π2)2
∫ dk1dk2

(2π)12

[
k2

1k
2
2 − (k1 · k2)

2
]2 Pϕ(k1)

k3
1

Pϕ(k2)

k3
2

e−|k1+k2|2R2

−8

3
(2π2)2

∫ dk1dk2

(2π)12

[
k2

1k
2
2 − (k1 · k2)

2
] Pϕ(k1)

k1

Pϕ(k2)

k2

e−(|k1+k2|2+k2
1+k2

2)R2/2

+
4

3
(2π2)2

∫ dk1dk2

(2π)12
k1k2Pϕ(k1)Pϕ(k2)e

−(k2
1+k2

2)R2

−4

9
(2π2)2

[∫ dk

(2π)6
kPϕ(k)e−k2R2

]2

=
P2

ϕ

(2π)6

∫ ∞

0
dk1dk2k

3
1k

3
2

[
J

(0)
R (k1, k2)− 2J

(2)
R (k1, k2) + J

(4)
R (k1, k2)

]

75We point out that although there are three terms in B(ϕ), we had better always put the first two
together, or the calculation will be much more tedious, even not performable.
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−64
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P2
ϕ

(2π)6

∫ ∞

0
dk1dk2k

3
1k

3
2e
−(k2

1+k2
2)R2

[
J

(0)
R (k1, k2)− J

(2)
R (k1, k2)

]

+
1

3

P2
ϕ

(2π)6

1

R8
− 1
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P2
ϕ

(2π)6

1

R8
. (212)

In Eq. (212), we have made use of the filter function,

J
(l)
R (k1, k2) ≡

∫ 1

−1
dµµle−|k1+k2|2R2

=
∫ 1

−1
dµµle−(k2

1+k2
2+2k1k2µ)R2

,

with µ ≡ cos θ(k1,k2). But this time, for the scale invariant dimensionless power spectrum
Pϕ(k) = Pϕ, the integral in Eq. (212) is still divergent.

We do not furthermore insert different cutoffs here any more, as they destroy the exact
analyzability of Eq. (212) and thus lose the beauty of the calculations, although they are
really able to regularize this integral. For instance, a ultraviolet cutoff would be physically
well motivated, as there is no structure formation at small scales due to damping. We
simply remark where this divergence comes. This divergence origins from the first integral
in Eq. (212), where we meet an integral of

∫∞
0 dk1dk2 exp(−(k1 − k2)

2R2) from the terms

J
(0)
R and J

(2)
R , where the singularities along the line k1 = k2 cause the divergence of this

integral. 76 The integral involving J
(4)
R does not contain this divergence. 77 Similar results

about this divergence can also be found in [67].

We now briefly summarize our results.

1. For quantities starting from first order terms, e.g., δH , 〈R〉D and weff ,

(· · ·) ∝ 1

R4
, [Var(· · ·)]1/2 ∝ 1

R2
.

2. For quantities starting from second order terms, e.g., 〈Q〉D,

(· · ·) ∼ [Var(· · ·)]1/2 ∝ 1

R4
.

So in the averaging problem in the perturbed Universe, variances of physical observ-
ables are always larger or at least as large as their ensemble averages. This means that
to predict the sign of an averaged quantity in perturbed space-time is unfortunately im-
possible.

76This divergence appears similar with the co-linear divergence in quantum field theory.
77Some useful integrals,

∫ 1

−1

dµe−aµ =
1
a
ea − 1

a
e−a,

∫ 1

−1

dµµ2e−aµ =
(

1
a
− 2

a2
+

2 · 1
a3

)
ea −

(
1
a

+
2
a2

+
2 · 1
a3

)
e−a,

∫ 1

−1

dµµ4e−aµ =
(

1
a
− 4

a2
+

4 · 3
a3

− 4 · 3 · 2
a4

+
4 · 3 · 2 · 1

a5

)
ea

−
(

1
a

+
4
a2

+
4 · 3
a3

+
4 · 3 · 2

a4
+

4 · 3 · 2 · 1
a5

)
e−a.
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8.3 Comparisons with experimental data and simulations

Based on the calculations above, our theoretical results can be compared with exper-
imental data and simulations. Here, we concentrate on the normalized fluctuation of the
local Hubble expansion rate δH and show the signatures of cosmological backreactions
from it.

8.3.1 Comparison with the HST Key Project experimental data

We compare Eq. (208) with observations from the HST Key Project [53]. We use 64
individual measurements of H0 in the CMB rest frame (corrected for the local flow) from
SN Ia and the Tully-Fisher and fundamental plane relations in Tabs. (4), (5) and (6) in
App. D (adopted from Tabs. (6), (7) and (9) in [53]). We restrict our analysis to objects
between 31.3 to 467.0 Mpc, as Eq. (208) can be trusted only above 30 Mpc, i.e., the
critical scale of second order backreaction effects. Be ri, Hi and σi the distance, Hubble
expansion rate and 1σ error for the i′th datum, with distances increasing. We calculate
the mean distance for the nearest k objects and the averaged Hubble expansion rate H̄k,
i.e., HD for different subsets by

r̄k =

∑k
i=1 giri∑k
i=1 gi

, H̄k =

∑k
i=1 giHi∑k

i=1 gi

. (213)

with weight gi = 1/σ2
i . The empirical variance of each subset is

σ̄2
k =

∑k
i=1 gi(Hi − H̄k)

2

H2
0 (k − 1)

∑k
i=1 gi

. (214)

Let us stress that Eq. (208) is insensitive to global calibration issues.
The comparison of our result Eq. (208) with the HST Key Project experimental data

is shown in Fig. (6). We normalize to the WMAP5 best-fit power-law spectrum, with the
pivot k0 = 0.002/Mpc and spectral index ns = 0.960 [10]. We see that the theoretical
curve matches the experimental data well, without any fit parameter in the panel. Before
we can claim that we observe the expected 1/R2 behavior in Eq. (208) and thus the
evidence for cosmological backreaction, we have to make sure that the statistical noise
cannot account for it. In the case of a perfectly homogenous coverage of the averaged
domain with standard candles, we would expect a 1/R3/2 behavior. In Fig. (6), we show
the statistical noise for the actual data set, which turns out to be well below our result
in Eq. (208) and the data points. From Fig. (6), we find that at 45 (60) Mpc, the value
of HD differs from its global value 72 km/s/Mpc by about 10% (5%), consistent with our
estimations in Eq. (199), whereas the expected variance for a perfectly homogeneous and
isotropic Universe is only 5% (2%).

8.3.2 Comparison with the simulations in Newtonian gravity

At the end of this section, we compare our theoretical result in Eq. (207) to the N -body
numerical simulations in Newtonian gravity.
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Figure 6: Comparison with the HST Key Project experimental data.

Cosmic variance of the normalized Hubble expansion rate (thick black line) from
cosmological backreaction and sampling compared to the empirical variance of the
HST Key Project experimental data [53]. The thin blue line indicates the effect of
the inhomogeneities (∝ 1/R2), and the dashed line shows the effect from sampling.
The global Hubble constant is taken to be 72 km/s/Mpc [53].

The scale dependence of the cosmic variance of δH has previously been studied in
the context of Newtonian cosmology [97, 98], largely based on the CDM simulations. In
this setting, the variance of δH is due to peculiar motions (besides sampling variance
and observational errors). While, in our relativistic and comoving approach, peculiar
velocities vanish identically, and the cosmic variance of the Hubble expansion rate turns
into a curvature effect; as Eqs. (172) and (173) give Var(δH) ∝ 〈R〉2D. In Fig. (7), we
compare the relativistic result Eq. (207) to Newtonian “standard CDM” case in [98]. We
find that our results for scale invariant power spectra (kc =1/kpc corresponds to the
physical cutoff in the primordial CDM spectrum and 1/pc to a typical cutoff in the CDM
simulations) agree with Newtonian simulations. This agreement is not unexpected, as
metric perturbations and peculiar velocities are small at the 100 Mpc scales.
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Figure 7: Comparison with the simulation in Newtonian gravity.

Scale dependence of the cosmic variance of the Hubble expansion rate. Data are
from Newtonian CDM model in [98], with h = 0.5, Ωm = 1 and the COBE-
normalized power spectrum. Thick and thin lines correspond to the relativistic result
in Eq. (207) for a scale invariant power spectra with cutoffs at kc=1/pc (physical)
and 1/kpc (simulation), respectively.



9 Summary

This dissertation is motivated by the current debate on cosmological backreaction,
i.e., whether it is possible to achieve the effective acceleration of the averaged Universe in
the MD era, without the necessity of dark energy. We point out that the evolution of the
averaged Universe is intrinsically different from the oversimplified FLRW model, i.e., even
if the Universe decelerates locally everywhere, there is still the possibility that the global
(averaged) Universe accelerates. This apparent contradiction is due to the inhomogeneities
and anisotropies, i.e., cosmic structures, in the Universe. Let us formulate it in detail.

First, for any irrotaional dust universe, using the Raychaudhuri equation Eq. (26), the
deceleration parameter q can be expressed as

q = −3θ̇ + θ2

θ2
=

6(σ2 + 2πGρ)

θ2
> 0.

So we find that q is positive definite, and for the EdS model (Ωm = 1) [99], we have
q = Ωm/2 = 1/2. Thus, it excludes the possibility of the accelerated expansion in the MD
era. However, if we define an effective deceleration factor qD, and from Eqs. (32), (33)
and (42), we have

qD ≡ − äD

aDH2
D

=
1

2
ΩD

m + 2ΩD
Q .

Therefore, besides the ordinary result q = Ωm/2, an extra term 2ΩD
Q , caused by cosmo-

logical backreaction now enters the effective deceleration parameter. In [74], it was shown
that the EdS model (Ωm, q) = (1, 1/2) appears as a saddle point for dynamics. So even a
small amount of initial backreaction or averaged spatial curvature pushes the system far
from it and might lead to a late time accelerated phase (see Fig. (8) for details. 78)

To understand this behavior quantitatively, we combine the exact Buchert equations
and cosmological perturbation theory to study the evolution of the perturbed dust Uni-
verse in the comoving synchronous gauge. Some conclusions are listed in order.

We calculate the averaged kinematical backreaction term 〈Q〉D and the averaged spa-
tial curvature 〈R〉D and find that 〈Q〉D starts from second order and 〈R〉D from first.
As we use a perturbative approach, these terms can only affect the evolution of the Uni-
verse perturbatively, and thus we may only hope to find an onset of the cosmological
backreaction mechanism in this work.

We conclude that cosmological backreaction is for real and it can both increase or
decrease the expansion of the averaged Universe, depending on the averaged domain
under consideration. Thus, we argue that the effective equation of state weff is both time
and scale dependent. So are other averaged physical observables.

We find in our perturbative approach, that all physical quantities are surface terms
or functions of them. This suggests the conjecture that a nonlinear treatment would also
find only functions of surface terms.

78The meanings of these five cases in Fig. (8) can be found in [74], and r in this diagram is just our
rD in this dissertation.
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Figure 8: “Cosmic phase diagram”.

In this “cosmic phase diagram” [74], all the scaling solutions in Eq. (49) are rep-
resented by straight lines passing through the EdS model in the center ((Ωm, q) =
(1, 1/2)). However, this central point is not stable (saddle point), and we can clearly
see the behavior of different models (Cases A – E) around this saddle point (see the
arrows). So any perturbation causes the system to move away from the EdS model,
and effective acceleration may emerge even in the MD era.

Our pure relativistic treatment of the cosmological backreaction problem, e.g., the
variance of the normalized Hubble expansion rate, is consistent with experimental data
and Newtonian simulations. This variance can be reinterpreted in our framework as a
curvature effect, and the consistency with Newtonian simulations lies in the fact that
the perturbative approach cannot be applied to both too small or too large scales, where
non-perturbative effects dominate, or the light cone effects become crucial, but only in a
window from about 50 to 200 Mpc, which just coincides with the scales, where Newtonian
simulations work.

Cosmological backreaction may put some of the steps on the cosmological distance
ladder in question, as they are deeply within the domain of large backreaction. Our
findings call for revisiting local observations, like galaxy redshift surveys, in terms of
possible backreaction signatures. The large scale physics of primordial CMB anisotropies
is not affected. However, this statement cannot be made for secondary effects, like the
late time integrated Sachs-Wolfe effect.

Another point of this dissertation is that we show in Sec. 6 how to calculate the leading
growing modes of the averaged quantities to higher orders, but use only the perturbed
metric to lower orders. This is a consequence of the integrability condition, which is valid
to any order, and it greatly simplifies the perturbative calculations.



10 Outlook

At the end of this dissertation, we discuss several interesting aspects of the averaging
and dark energy problems and talk about some relevant prospects in generalities.

10.1 Essence of the non-commutation of the temporal evolution
and spatial averaging, entropy in the perturbed Universe

To begin with, we return to the non-commutation of the temporal evolution and spatial
averaging in the inhomogeneous and anisotropic Universe and exploit its relation with the
entropy in perturbed space-time. We have instigated this non-commutation in Sec. 2.4.3,
which is the basis of the backreaction mechanism. A further question is naturally what
its essence is. With the help of information theory, this non-commutation can be linked
to the relative information entropy in the perturbed Universe.

10.1.1 Non-commutation and relative information entropy

In information theory, supposing the probability distribution is {qi}, we would like to
examine how close this distribution is to the actual one {pi} [100]. This distinguishability
is characterized by the relative information entropy [101]

S{p||q} ≡ ∑

i

pi ln
pi

qi

.

This definition of the relative entropy can be proven to be positive definite for qi 6= pi and
to vanish if qi agrees with pi, so it is a proper measure of entropy. Similarly, in cosmology
we ask how matter distribution deviates from its spatial average and thus extend the
relevant entropy to

S{ρ||〈ρ〉D}
VD

≡
〈

ρ ln
ρ

〈ρ〉D

〉

D

.

If we merely generalize the relative information entropy from a discrete system to a
continuum of cosmic medium, it is not surprising at all. The most wonderful is that this
entropy can be proven (not conjectured axiomatically) to have a marvelous relation with
the above non-commutation [100]. From the Lemma in Eq. (31), we find

Ṡ{ρ||〈ρ〉D}
VD

= 〈ρ̇〉D − 〈ρ〉.D. (215)

Therefore, the non-commutation is described by the changing rate of the relative informa-
tion entropy in the inhomogeneous and anisotropic Universe! Next, we demonstrate that
this entropy increases in the process of structure formation. Again using the Lemma, we
may rewrite Eq. (215) as

Ṡ{ρ||〈ρ〉D}
VD

= −〈(θ − 〈θ〉D)(ρ− 〈ρ〉D)〉D.

89



10.1 Essence of the non-commutation, entropy in the perturbed Universe 90

So the changing rate of the information entropy is intrinsically a second order quantity
as the product of two first order perturbative terms. Thus, we can calculate it with only
the linear perturbative results in Eqs. (129) and (134). To second order, we have

Ṡ{ρ||〈ρ〉D}
VD

∝ η

(
η0

η

)6

(∆ϕ)2 > 0.

Moreover, since VD/VD0 = (aD/aD0)
3 = (η/η0)

6, we have Ṡ ∝ η, so S ∝ η2 ∝ aD, which
means that the relative information entropy in the perturbed Universe increases mono-
tonically and linearly with the effective scale factor, the same as the metric perturbations.

Actually, this conclusion can also be understood directly from the results in Sec. 5.
In structure formation, for the process of cluster formation, i.e., accumulation of matter,
ρ > 〈ρ〉D and the expansion rate is decelerated θ < 〈θ〉D, so Ṡ > 0; similarly, for the
process of void formation, i.e., dilution of matter, ρ < 〈ρ〉D and θ > 〈θ〉D, so again Ṡ > 0.

This formulation of the non-commutation provides the link to arguments in favor of
cosmological backreaction. In [102], it was argued that on the largest scales, we can view
the Universe in the FLRW model with a single isotropic, but imperfect fluid, i.e., we can
understand structure formation as an dissipative process that creates entropy.

The further work of this aspect is in progress.

10.1.2 Entropy and Weyl tensor

Now we proceed to another exploration of the entropy in the Universe. Till now, the
entropy of the gravitational field has not been well defined, whereas using the Weyl ten-
sor 79 might shed light on this difficulty heuristically. The Weyl curvature vanishes in the
early homogeneous and isotropic Universe owing to its conformal invariance and increases
monotonically in the perturbed Universe at late times. Penrose [103] conjectured an
analogue to the entropy increasing in thermodynamics. For a Schwarzschild black hole,
CµνλρC

µνλρ = 48G2M2/r6 ∝ its entropy S. In the process of structure formation, the
cosmic medium little by little departs from the global expansion of the Universe and be-
comes self-gravitational systems. Generally speaking, these self-gravitational systems will
finally end their evolution as black holes. Thus, both black holes and their corresponding
Weyl tensors will emerge here and there in the perturbed Universe, and the average of
the square of the Weyl tensor will increase monotonically. Stimulated by this, we are
trying to formulate a general relation between the Weyl tensor and the entropy in the
inhomogeneous and anisotropic Universe. As the Weyl tensor is zero for the background
FLRW metric, we are again able to calculate the square of the Weyl tensor to second
order, with only the first order perturbed metric.

79The Weyl curvature is the part of the curvature tensor with all contractions vanishing. It is introduced
to compensate the indetermination of algebraically independent components in the Riemann tensor,
defined in n-dimensional space-time as

Cµνλρ ≡ Rµνλρ +
2

n− 2
(gµρRνλ + gνλRµρ − gµλRνρ − gνρRµλ) +

2
(n− 1)(n− 2)

(gµλRνρ − gµρRνλ).
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We work with the metric in Eq. (75). A straightforward but time-consuming calcula-
tion in the MD Universe shows

CµνλρC
µνλρ = −8

(
η0

η

)8 [
∂i(∂iϕ∆ϕ)− ∂i(∂jϕ∂j∂iϕ)− 2

3
(∆ϕ)2

]
.

Interestingly, CµνλρC
µνλρ looks very like the kinematical backreaction 〈Q〉D in Eq. (148),

but without averaging. Moreover, CµνλρC
µνλρ can be proven to be proportional to the

shear scalar σ2. But we have not seen the reason. 80

Are there other possibilities to build more invariants like the square of the Weyl tensor?
Yes, we may also make use of the dual sector of the Weyl tensor C∗

µνλρ, and then there are
three more choices: C∗

µνλρC
µνλρ, CµνλρC

λρστC µν
στ and C∗

µνλρC
λρστC µν

στ . Since we have
the perturbative results to third order, we are investigating all these possibilities.

10.2 Fates of dark energy, cosmological constant and our Uni-
verse

Finally, let me freely talk about my perspectives on the fates of dark energy, cosmo-
logical constant and our Universe to terminate this dissertation.

10.2.1 Is dark energy really necessary?

After spending one hundred pages on the dark energy problem, we now return to the
beginning and ask: is dark energy really necessary? Equivalently, to what degree can
we really believe that we have observed dark energy, or have we got direct evidences for
dark energy? Unfortunately, the answer is not so trivial. Did we really see it from the
Supernova and CMB experiments? What we indeed observe in the SN experiment is
that the distant SNe are dimmer than we have expected, and what we indeed see in the
CMB experiment is that there is something else besides the ordinary matter. So, these
evidences are indirect, and the existence of dark energy is inferred from them. 81

Practically, it is quite unconvincing to conclude dark energy from one single exper-
iment. In Fig. (9) [10], we show the joint two-dimensional constraint on the curvature
parameter Ωk and the constant equation of state for dark energy wde. If only consulting
the data from the WMAP5 experiment, we find that the allowed region for the correlation
of these two parameters is quite large, almost presenting nothing precise for us. This is
what we mean by “indirect evidence”. The improvement of this constraint must be from
the combinations with other independent experiments, e.g., the BAO, HST and SN obser-
vations. These joint constraints significantly reduce the uncertainty in the WMAP5-only
experiment, and may help for finally establishing the existence of dark energy.

This indirectness puts forward another question: what is the realistic background
of our Universe? In Einstein’s static model, the geometry of space-time and also the
cosmological constant are totally fixed by the cosmic medium in the Universe, and no

80This proportionality has also been pointed out in [91].
81I once heard from Prof. S. Sarkar that except the late time integrated Sachs-Wolfe effect, dark energy

is unnecessary for the explanations of all other experimental data.
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Figure 9: Constraint on the curvature parameter and the equation of state for dark energy.

Joint two-dimensional constraint on the constant equation of state for dark energy
wde and the curvature parameter Ωk [10]. The contours show the 68% and 95%
CL. In the left panel, the WMAP5 constraint (light blue, 95% CL) is compared
with the joint one from WMAP+BAO+SN (purple, 68% and 95% CL). This figure
shows the power of extra information from BAO and SN for constraining Ωk and
wde simultaneously. The right panel is a blow-up of the left one, showing the con-
straints from WMAP+HST (gray), WMAP+BAO (red), WMAP+SN (dark blue)
and WMAP+BAO+SN (purple). This figure shows that we need both BAO and SN
to constrain Ωk and wde simultaneously: WMAP+BAO fixes Ωk, and WMAP+SN
fixes wde.

room is left for free parameters. In the FLRW model, we have one free scale factor a. In
the LTB model, the degrees of freedom for free parameters are even larger, i.e., we have
two parameters to play with. But strictly speaking, these improved models are still far
from perfect. If we abandon all these toy models but only establish a model of the Universe
entirely according to the experimental observations, we will find that our Universe is a
void-dominating one, i.e., most area in the inhomogeneous space is more underdense than
the average level. This means the usual FLRW model as a background is actually not a
suitable choice, and what we must perform should be to study the propagation of light in
these voids. 82

10.2.2 History and future of the cosmological constant

Lastly, let us not only limit ourselves to the present dark energy crisis, but widen our
visual field to the history of the dark energy story, as a retrospection of history is the best
guidance for future. Here we concentrate on the cosmological constant problem, and it is
quite interesting to illustrate its history below. 83

82A recent discussion on this problem can be found in [104].
83I do not know the origin of this figure and thank Prof. J. Martin for presenting it to me.
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The cosmological constant was led into physics at the same time with Einstein’s initial
static model of cosmology in 1917. Influenced by the works of Friedmann and Hubble,
Einstein gave up his cosmological constant ten years later and declaimed it as “the greatest
blunder of my life”. The second round of this game was caused by the puzzle why the
Earth or a typical star are older than the Universe, and the cosmological constant was
restored in order to resolve this trouble. However, it was gone again by the reestimation of
the Hubble constant in the 1950s: it should be about 100 km/s/Mpc, not 500 km/s/Mpc
as first “measured” by Hubble. But the story did not stop here. With one of the four
great discoveries in the 1960s by radio telescope: the extremely luminous and distant
quasars, the cosmological constant was called back once more as a savior to help with
the controversy why we only observe quasars in a small redshift interval at high z. This
quasar excess was interpreted as a result of the dilution of the Universe at low redshifts
due to the cosmological constant. However, the apparent controversy was resolved again
about ten years later by the observation that the interval is not so small. Then, the forum
of the cosmological constant was quiet for more than twenty years until the cosmology
revolution from the SN experiments at the beginning of the new millennium. This time,
it seems that the existence of the cosmological constant is much more stable than before
and the cosmological constant would live there for ever. 84

Now it is exactly the tenth year after this epochal event, and there still appears no
smoking-gun to get rid of the cosmological constant once more. But at least for me, if
dark energy were really confirmed by future experiments, it would actually not be a good
news. To make my statement clear, let us reexperience the history of thermodynamics.

One and a half century ago, physicists were suffering the trouble due to the second
law of thermodynamics, as according to which the entropy of the Universe would increase
monotonically and everything would end in a mess. Thus, the fate of our Universe would
be nothing but a hot soup, and the life of an individual would perish together with the
cosmic medium in this hot soup. It sounds really horrible, but never comes true. Now we
have understood that the Universe cannot be simply considered as an isolated system, and
it is a negative heat capacity system once gravitation is taken into account. Therefore,
we are happily retrieved from this tragedy.

Presently, the direction of the tragedy has a potential to turn around. If the Universe
were to be dominated by dark energy, it would not be hotter and hotter as in thermo-
dynamics, but colder and colder, since dark energy drives everything farther and farther,
and the Universe would be cooling down eternally. So on the contrary to the heat death,
we are now facing a cold death, unfortunately.

If science pointed nothing to the fates of the Universe and human being but two
wretched finales, it would be very ironic that so many people are interested in it and take
it as a labor of love. Hence, the analogy with the history of thermodynamics makes me
intuitionally suspect of the dominance of dark energy and the cosmological constant.

84Of course, this simple graph cannot exhaust every round in the history of the cosmological constant.
Small ripples will show up on top of this wave, if we go into the fine structure of the history. For instance,
just two or three years before the SN experiments, people once measured the Hubble constant to be
H0 ≈ 80 km/s/Mpc but the ages of oldest stars to be about 15 Gyr. Thus, the cosmological constant
replayed its role in the 1950s, but the Hipparcos experiment again removed this contradiction by more
precise measurements.
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Figure 10: History of the cosmological constant.

We show the four rounds of the restorations and eliminations of the cosmological
constant in the last ninety years. The cosmological constant was introduced into the
Einstein equations in order to stabilize the Universe, lengthen the age of Universe,
dilute the Universe at low redshifts or accelerate the Universe at late times. However,
it was also weeded out correspondingly again and again when new and more accurate
experimental data came. We are currently at the position of the question mark, and
it seems that we would not be able to know where we will arrive in the recent years.

Doubtless to say, the only way out to understand them depends again on future ex-
periments. But before waiting for these critical experiments, some preliminary theoretical
attempts are still worthy, and this is the motivation that I accomplish this dissertation,
since the backreaction mechanism is completely based on firm physical laws, so even if it
turns out to be unimportant, we are anyhow far away from the danger to waste time on
“wrong” directions, knowing that backreaction is not so unimportant in any case.

Our understanding of the Nature is like a spiral. It wanders, convolutes but ascends
eventually. The knowledge of dark energy and the cosmological constant is exactly the
same. Dark energy is not a mirage, and the cosmological backreaction is not a panacea.
Today, an open mind is much better than an inflexible belief. What will happen? We
shall see.



Appendices

A Basic notations

Latin indices run over 3-dimensional spatial coordinate labels from 1 to 3; while the
Greek ones over space-time coordinate labels from 0 to 3, with x0 the time coordinate (t
for the cosmic time and η for the conformal time).

Time derivative is denoted by a dot over a physical quantity with respect to the cosmic
time t and a superscript prime with respect to the conformal time η.

Spatial 3-vectors are indicated by letters in boldface, and their absolute values in italic.
The Minkowski metric ηµν for flat space-time has the signature (−, +, +, +).
Repeated indices are generally summed, understood as the Einstein convention.
Angle brackets 〈· · ·〉D with subscript D, define the average of physical observables on

constant time hypersurfaces with the integral measure J ; while only angle brackets 〈· · ·〉
define the average without it.

Bars over any physical quantity denotes its ensemble average.
Superscripts (0), (1), (2) and (3) refer to perturbed physical quantities at different order,

respectively.
Speed of light is taken to be 1 throughout this dissertation.
The Christoffel connection is

Γλ
µν =

1

2
gλρ (gµρ,ν + gρν,µ − gµν,ρ) .

The Riemann tensor is defined as

Rλ
µνρ ≡ Γλ

µρ,ν − Γλ
µν,ρ + Γλ

ανΓ
α
µρ − Γλ

αρΓ
α
µν .

The Ricci tensor is defined as one contraction of the Riemann tensor

Rµν ≡ Rλ
µλν = Γλ

µν,λ − Γλ
µλ,ν + Γλ

µνΓ
ρ
λρ − Γλ

µρΓ
ρ
λν .

The Ricci scalar is given by contracting the Ricci tensor

R = Rµ
µ.

The Einstein tensor is defined as

Gµν ≡ Rµν − 1

2
gµνR.

The Einstein equations are

Gµν = 8πGTµν − Λgµν .

Conventions for the Fourier and inverse Fourier transforms are

f(k) ≡
∫

dxf(x)e−ik·x and f(x) ≡
∫ dk

(2π)3
f(k)eik·x.
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B Notations of physical quantities

Below we list the some frequently used physical quantities and their definitions.

Symbol Definition
Γλ

µν Christoffel connection
∆ Laplace operator
δH normalized fluctuation of the Hubble expansion rate
ζ hypersurface invariant variable
ζ̄ first integral of Eq. (92)
η conformal time
θ volume expansion rate
θµν expansion tensor
Λ cosmological constant
ξ(k)µ generator of the Lie derivative at k’th order
ρ energy density
ρc critical energy density
ρeff energy density of the effective fluid
ρφD

energy density of the morphon field
σ2 shear scalar
σµν shear tensor
φ(1) first order scalar perturbation
Φ(1)inv first order scalar gauge invariant variable
φD morphon field
φ

(1)
l first order scalar perturbation in the longitudinal gauge

ϕ peculiar gravitational potential
χ(1) first order scalar perturbation in the synchronous gauge
χ(2) second order scalar perturbation in the synchronous gauge
χ

(2)
i second order vector perturbation in the synchronous gauge

χ
(2)
ij second order tensor perturbation in the synchronous gauge

ψ(1) first order scalar perturbation
Ψ(1) first order scalar perturbation in the synchronous gauge
Ψ(1)inv first order scalar gauge invariant variable
Ψ(2) second order scalar perturbation in the synchronous gauge
ψ

(1)
l first order scalar perturbation in the longitudinal gauge

ψ
(1)
s first order scalar perturbation in the synchronous gauge

Ω energy density parameter
Ωb energy density parameter for baryonic matter
ΩCDM energy density parameter for cold dark matter
Ωde energy density parameter for dark energy
Ωk energy density parameter for curvature
Ωm energy density parameter for matter
Ωr energy density parameter for radiation
ΩΛ energy density parameter for cosmological constant
Ων energy density parameter for neutrino
ωµν rotation tensor
a scale factor
aD effective scale factor
B(1) first order scalar perturbation
ceff effective speed of sound
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Symbol Definition
D domain of averaging
Dij traceless derivative
dL luminosity distance
E(1) first order scalar perturbation
E

(1)
s first order scalar perturbation in the synchronous gauge

F
(1)
i first order vector perturbation

G Newton’s gravitational constant
gµν metric of space-time
gij 3-dimensional spatial metric
Gµν Einstein tensor
h dimensionless Hubble parameter
H Hubble expansion rate in terms of the cosmic time t
H Hubble expansion rate in terms of the conformal time η
HD effective Hubble expansion rate
h

(1)
ij first order tensor perturbation

h
(1)inv
ij first order tensor gauge invariant variable

hµν projection operator
J measure of integral
k curvature parameter
k0 scale to measure the dimensionless power spectrum Pϕ

kc cutoff in the exponential power spectrum
Lξ(k) Lie derivative generated by ξ(k)

ns index of the power spectrum
p pressure
peff pressure of the effective fluid
pφD

pressure of the morphon field
Pζ dimensionless power spectrum of ζ
Pϕ dimensionless power spectrum of ϕ
q deceleration factor
qD effective deceleration factor
〈Q〉D kinematical backreaction term
R Ricci scalar
R scale of observations
R 3-dimensional spatial Ricci scalar
RH Hubble radius
Rµν Ricci tensor
Rij 3-dimensional spatial Ricci tensor
S

(1)
i first order vector perturbation

t cosmic time
T (k) tensor at k’th order
tH Hubble time
Tµν energy-momentum tensor
uµ 4-velocity
V volume
VD volume of the domain D for averaging
V

(1)inv
i first order vector gauge invariant variable

wde effective equation of state of dark energy
weff equation of state of the effective fluid
WG

R Gaussian window function
WT

R top-hat window function
z redshift



C Abbreviations

Here we list the abbreviations appearing in the context and their meanings.

Abbreviation Physical meaning
ADM Arnowitt-Deser-Misner
BAO baryonic acoustic oscillation
BBN Big Bang nucleosynthesis
BOOMERanG Balloon Observations Of Millimetric Extragalactic

Radiation and Geophysics
CDM cold dark matter
CfA Center for Astrophysics
CMB cosmic microwave background
COBE Cosmic Background Explorer
CL confidence level
DGP Dvali-Gabadadze-Porrati
EdS Einstein-de Sitter
FLRW Friedmann-Lemâıtre-Robertson-Walker
GR general relativity
Hipparcos High Precision Parallax Collecting Satellite
HST Hubble Space Telescope
KKLT Kachru-Kallosh-Linde-Trivedi
LTB Lemâıtre-Tolman-Bondi
MAXIMA Millimeter Anisotropy eXperiment IMaging Array
MD matter-dominated
QCD chromodynamics
RD radiation-dominated
SN supernova
SN Ia Supernova of Type Ia
vDVZ van Dam-Veltman-Zakharov
WIMP weakly interacting massive particle
WMAP Wilkinson Microwave Anisotropy Probe
WMAP5 WMAP 5-year experiment
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D Useful quantities

Below we enumerate the quantities useful for this dissertation. We first summarize
some basic cosmological parameters, most of which are from the WMAP5 experiment [10].
Then, we list the Hubble constant from SN experiments, Tully-Fisher and fundamental
plane relations, which are adopted from [53].

Parameter Value
ρ0

c 1.879× 10−26h2 kg/m3

8.098× 10−47h2 Gev4

k0 0.002 Mpc−1

Mpc 3.086× 1022 m
RH 9.778h−1 Gyr
tH 2.998h−1 × 103 Mpc

σ8 0.817± 0.026
τ 0.084± 0.016
Ω0

bh
2 0.02265± 0.00059

Ω0
CDMh2 0.1143± 0.0034

Ω0
de 0.721± 0.015

Ω0
k (−0.0175, 0.0085)

Ω0
mh2 0.1369± 0.0037

f equil
NL (−151, 253)

f local
NL (−9, 111)

h 0.701± 0.013∑
mν < 0.61 eV

ns 0.960+0.014
−0.013

Pζ (2.457+0.092
−0.093)× 10−9 at k0

t0 13.73± 0.12 Gyr
1 + w0

de (−0.11, 0.14)

Table 3: Basic cosmological parameters.

We list some basic cosmological parameters in two sectors here. The upper sector is
for the fundamental derived parameters, and the lower sector is for the parameters
observed from the WMAP5 experiment [10].
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Supernova r H0 σ
SN 1990O 134.7 67.3 2.3
SN 1990T 158.9 75.6 3.1
SN 1990af 198.6 75.8 2.8
SN 1991S 238.9 69.8 2.8
SN 1991U 117.1 83.7 3.4
SN 1991ag 56.0 73.7 2.9
SN 1992J 183.9 74.5 3.1
SN 1992P 121.5 64.8 2.2
SN 1992ae 274.6 81.6 3.4
SN 1992ag 102.1 76.1 2.7
SN 1992al 58.0 72.8 2.4
SN 1992aq 467.0 64.7 2.4
SN 1992au 262.2 69.4 2.9
SN 1992bc 88.6 67.0 2.1
SN 1992bg 151.4 70.6 2.4
SN 1992bh 202.5 66.7 2.3
SN 1992bk 235.9 73.6 2.6
SN 1992bl 176.8 72.7 2.6
SN 1992bo 77.9 69.7 2.4
SN 1992bp 309.5 76.3 2.6
SN 1992br 391.5 67.2 3.1
SN 1992bs 280.1 67.8 2.8
SN 1993B 303.4 69.8 2.4
SN 1993O 236.1 65.9 2.1
SN 1993ag 215.4 69.6 2.4
SN 1993ah 119.7 71.9 2.9
SN 1993ac 202.3 72.9 2.7
SN 1993ae 71.8 75.6 3.1
SN 1994M 96.7 74.9 2.6
SN 1994Q 127.8 68.0 2.7
SN 1994S 66.8 72.5 2.5
SN 1994T 149.9 71.5 2.6
SN 1995ac 185.6 78.8 2.7
SN 1995ak 82.4 80.9 2.8
SN 1996C 136.0 66.3 2.5
SN 1996bl 132.7 78.7 2.7

Table 4: Hubble constant from SN data.

Cluster/Group r H0 σ
Abell 1367 89.2 75.2 12.5
Abell 0262 66.7 70.9 11.8
Abell 2634 114.9 77.7 12.4
Abell 3574 62.2 76.2 12.2
Abell 0400 88.4 79.3 12.6
Antlia 45.1 68.8 11.3
Cancer 74.3 67.1 11.0
Cen 30 43.2 75.8 12.8
Cen 45 68.2 70.7 11.9
Coma 85.6 83.5 13.4
ESO 50 39.5 79.8 13.0
Hydra 58.3 69.6 11.1
MDL 59 31.3 73.6 11.8
NGC 3557 38.7 85.0 14.4
NGC 0383 66.6 73.9 11.9
NGC 0507 57.3 84.9 13.5
Pavo 2 50.9 86.3 14.2
Pegasus 53.3 66.4 10.7

Table 5: Hubble constant from the I-band
Tully-Fisher relation.

Cluster/Group r H0 σ
GRM 15 47.4 95.6 10.0
Hydra I 49.1 82.8 8.4
Abell S753 49.7 87.5 7.9
Abell 3574 51.6 92.0 10.0
Abell 194 55.9 91.3 7.5
Abell S639 59.6 109.7 9.9
Coma 85.8 83.2 6.0
Abell 539 102.0 86.2 6.5
DC 2345-28 102.1 83.2 6.4
Abell 3381 129.8 88.9 8.3

Table 6: Hubble constant from the funda-
mental plane relation.
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E Second order perturbed gravity

The perturbative metric for spatially flat space-time up to second order in the syn-
chronous gauge reads

ds2 = a2(η)
[
−dη2 +

(
δij + γ

(1)
ij + γ

(2)
ij

)
dxidxj

]
, (216)

where

γ
(1)
ij = −2Ψ(1)δij + Dijχ

(1),

γ
(2)
ij = −Ψ(2)δij +

1

2

(
Dijχ

(2) + ∂iχ
(2)
j + ∂jχ

(2)
i + χ

(2)
ij

)
.

In the following, we enumerate all the non-vanishing perturbative quantities up to
second order. We order these perturbative terms as: (1) we firstly assemble all the
terms explicitly proportional to δij; (2) the intrinsic second order terms precede those
sourced from the quadratic combinations of first order perturbations; (3) the perturbative

quantities are listed in the order as Ψ(1), χ(1), Ψ(2), χ(2), χ
(2)
i and χ

(2)
ij , respectively.85

E.1 Perturbed metric

The perturbed metric to second order,

g00 = −a2,

gij = a2
[(

1− 2Ψ(1) −Ψ(2)
)
δij + Dij

(
χ(1) +

1

2
χ(2)

)
+

1

2

(
∂iχ

(2)
j + ∂jχ

(2)
i + χ

(2)
ij

)]
.

The inverse perturbed metric to second order,

g00 = − 1

a2
,

gij =
1

a2

[(
1 + 2Ψ(1) + Ψ(2) + 4

(
Ψ(1)

)2
)

δij −Dij
(
χ(1) +

1

2
χ(2)

)

−1

2

(
∂iχ(2)j + ∂jχ(2)i + χ(2)ij

)
− 4Ψ(1)Dijχ(1) + Di

kχ
(1)Dkjχ(1)

]
.

85These results were also given in, e.g., [81] and [82]. However, there are several shortcomings in
their works. First, though declaring that their results are suitable for any gauge, they used physical
constraints to set ω

(1)
i , χ

(1)
i and χ

(1)
ij to be zero. Albeit this handling is meaningful and reasonable,

their perturbations in the metric Eq. (216), strictly speaking, are still not thoroughly complete as they
claimed. Second, retaining the vector perturbations ω(1), ω(2) and ω

(2)
i is not useful, as in the frequently

used gauges, e.g., both longitudinal and synchronous gauges, these terms are 0 by definition. Furthermore,
keeping these vector perturbations greatly lengthens the expressions in final results and thus increases
unnecessary complexities. Third, keeping both φ(1) and χ(1) in the metric Eq. (216) induces terms like
∂i∂jφ

(1)Dj
iχ

(1). However, these two terms cannot be non-vanishing simultaneously in both longitudinal
and synchronous gauges. So in practice, one never meets terms like that. All these inconveniences almost
reduce their complicated results to a rather tedious mathematical exercise. Last, but not least, typos and
missing terms can be found except the trivial zeroth order expressions, even in their long review article
in Physics Report. For all the above reasons, it is a little bit unpractical and dangerous to directly follow
their results, and therefore we do not give so “general” expressions as theirs, but fix our perturbed metric
in the synchronous gauge in Eq. (216) and try to stop their errors from penetrating any more.
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E.2 Christoffel connection

At zeroth order,

Γ
0(0)
00 =

a′

a
, Γ

0(0)
ij =

a′

a
δij, Γ

i(0)
0j =

a′

a
δi

j. (217)

At first order,

Γ
0(1)
ij = −2

a′

a
Ψ(1)δij −Ψ(1)′δij +

a′

a
Dijχ

(1) +
1

2
Dijχ

(1)′, (218)

Γ
i(1)
0j = −Ψ(1)′δi

j +
1

2
Di

jχ
(1)′, (219)

Γ
i(1)
jk = −∂jΨ

(1)δi
k − ∂kΨ

(1)δi
j + ∂iΨ(1)δjk

+
1

2
∂jD

i
kχ

(1) +
1

2
∂kD

i
jχ

(1) − 1

2
∂iDjkχ

(1). (220)

At second order,

Γ
0(2)
ij = −

(
a′

a
Ψ(2) +

1

2
Ψ(2)′

)
δij +

1

2

a′

a

(
Dijχ

(2) + ∂iχ
(2)
j + ∂jχ

(2)
i + χ

(2)
ij

)

+
1

4

(
Dijχ

(2)′ + ∂iχ
(2)
j

′
+ ∂jχ

(2)
i

′
+ χ

(2)
ij

′)
, (221)

Γ
i(2)
0j = −1

2
Ψ(2)′δi

j +
1

4

(
Di

jχ
(2)′ + ∂iχ

(2)
j

′
+ ∂jχ

(2)i′ + χ
(2)i

j

′)

−2Ψ(1)Ψ(1)′δi
j + Ψ(1)Di

jχ
(1)′ + Ψ(1)′Di

jχ
(1) − 1

2
Dikχ(1)Dkjχ

(1)′, (222)

Γ
i(2)
jk = −1

2

(
∂jΨ

(2)δi
k + ∂kΨ

(2)δi
j − ∂iΨ(2)δjk

)

+
1

4

(
∂jD

i
kχ

(2) + ∂kD
i
jχ

(2) − ∂iDjkχ
(2)

)

+
1

2
∂j∂kχ

(2)i +
1

4

(
∂jχ

(2)i
k + ∂kχ

(2)i
j − ∂iχ

(2)
jk

)

−2Ψ(1)
(
∂jΨ

(1)δi
k + ∂kΨ

(1)δi
j − ∂iΨ(1)δjk

)

+Ψ(1)
(
∂jD

i
kχ

(1) + ∂kD
i
jχ

(1) − ∂iDjkχ
(1)

)

+∂jΨ
(1)Di

kχ
(1) + ∂kΨ

(1)Di
jχ

(1) − ∂mΨ(1)Dimχ(1)δjk

−1

2
Dimχ(1)∂jDmkχ

(1) − 1

2
Dimχ(1)∂kDmjχ

(1) +
1

2
Dimχ(1)∂mDjkχ

(1). (223)

E.3 Ricci tensor

At zeroth order,

R
(0)
00 = 3




(
a′

a

)2

− a′′

a


 , R

(0)
ij =




(
a′

a

)2

+
a′′

a


 δij. (224)



E.3 Ricci tensor 103

At first order,

R
(1)
00 = 3

a′

a
Ψ(1)′ + 3Ψ(1)′′, (225)

R
(1)
0i = 2∂iΨ

(1)′ +
1

2
∂jD

j
iχ

(1)′, (226)

R
(1)
ij =


−2

(
a′

a

)2

Ψ(1) − 2
a′′

a
Ψ(1) − 5

a′

a
Ψ(1)′ −Ψ(1)′′ + ∆Ψ(1)


 δij + ∂i∂jΨ

(1)

+

(
a′

a

)2

Dijχ
(1) +

a′′

a
Dijχ

(1) +
a′

a
Dijχ

(1)′ +
1

2
Dijχ

(1)′′

+
1

2
∂k∂iD

k
jχ

(1) +
1

2
∂k∂jD

k
iχ

(1) − 1

2
∆Dijχ

(1). (227)

At second order,

R
(2)
00 =

3

2

a′

a
Ψ(2)′ +

3

2
Ψ(2)′′ + 6

a′

a
Ψ(1)Ψ(1)′ + 6Ψ(1)Ψ(1)′′ + 3

(
Ψ(1)′)2

+
1

2

a′

a
Dijχ(1)Djiχ

(1)′ +
1

4
Dijχ(1)′Djiχ

(1)′ +
1

2
Dijχ(1)Djiχ

(1)′′, (228)

R
(2)
0i = ∂iΨ

(2)′ +
1

4
∂jD

j
iχ

(2)′ +
1

4
∆χ

(2)
i

′
+ 4Ψ(1)′∂iΨ

(1) + 4Ψ(1)∂iΨ
(1)′

+Ψ(1)∂jD
j
iχ

(1)′ + Ψ(1)′∂jD
j
iχ

(1) − 1

2
∂jΨ

(1)Dj
iχ

(1)′ + ∂jΨ
(1)′Dj

iχ
(1)

−1

2
∂kD

kmχ(1)Dmiχ
(1)′ − 1

2
Dkmχ(1)∂kDmiχ

(1)′

+
1

4
Dkmχ(1)′∂iDmkχ

(1) +
1

2
Dkmχ(1)∂iDmkχ

(1)′. (229)

For simplicity, we split R
(2)
ij into two parts: the diagonal part R

(2)d
ij , which is propor-

tional to δij explicitly, and the non-diagonal part R
(2)nd
ij .86

R
(2)d
ij =

[
−

(
a′

a

)2

Ψ(2) − a′′

a
Ψ(2) − 5

2

a′

a
Ψ(2)′ − 1

2
Ψ(2)′′ +

1

2
∆Ψ(2)

+
(
Ψ(1)′)2

+ ∂kΨ
(1)∂kΨ(1) + 2Ψ(1)∆Ψ(1)

−∂mΨ(1)∂kD
kmχ(1) − ∂k∂mΨ(1)Dkmχ(1) − 1

2

a′

a
Dmkχ(1)Dkmχ(1)′

]
δij, (230)

R
(2)nd
ij =

1

2
∂i∂jΨ

(2) +
1

2




(
a′

a

)2

+
a′′

a




(
Dijχ

(2) + ∂iχ
(2)
j + ∂jχ

(2)
i + χ

(2)
ij

)

+
1

4
∂j∂kD

k
iχ

(2) +
1

4
∂i∂kD

k
jχ

(2) − 1

4
∆Dijχ

(2) − 1

4
∆χ

(2)
ij

+
1

2

a′

a

(
Dijχ

(2)′ + ∂iχ
(2)
j

′
+ ∂jχ

(2)
i

′
+ χ

(2)
ij

′)

86Strictly speaking, in R
(2)nd
ij , there are also terms proportional to δij , once we express Dij as ∂i∂j −

1
3δij∆, e.g., in term 1

2∂k∂mDijχ
(1)Dkmχ(1). This is what we mean by “explicitly”.
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+
1

4

(
Dijχ

(2)′′ + ∂iχ
(2)
j

′′
+ ∂jχ

(2)
i

′′
+ χ

(2)
ij

′′)
+ 3∂iΨ

(1)∂jΨ
(1) + 2Ψ(1)∂i∂jΨ

(1)

−3
a′

a
Ψ(1)′Dijχ

(1) +
1

2
Ψ(1)′Dijχ

(1)′ +
1

2
∂kΨ

(1)∂iD
k
jχ

(1) +
1

2
∂kΨ

(1)∂jD
k
iχ

(1)

−3

2
∂kΨ

(1)∂kDijχ
(1) + Ψ(1)∂k∂iD

k
jχ

(1) + Ψ(1)∂k∂jD
k
iχ

(1) −Ψ(1)∆Dijχ
(1)

+∂iΨ
(1)∂kD

k
jχ

(1) + ∂jΨ
(1)∂kD

k
iχ

(1) + ∂k∂iΨ
(1)Dk

jχ
(1) + ∂k∂jΨ

(1)Dk
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E.4 Ricci scalar

At zeroth order

R(0) =
6

a2

a′′

a
. (232)

At first order

R(1) =
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(
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. (233)

At second order,
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E.5 Einstein tensor

At zeroth order,

G
0(0)
0 = − 3

a2

(
a′

a

)2

, G
i(0)
j =

1

a2




(
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a

)2

− 2
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a


 δi

j. (235)
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At first order,
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At second order,
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As before, we also split G
(2)
ij into the diagonal and non-diagonal parts: G

(2)d
ij and G

(2)nd
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