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Abstract

We investigate the rotational and thermal properties of star-forming molecular clouds us-
ing hydrodynamic simulations. Stars form from molecular cloud cores by gravoturbulent
fragmentation. Understanding the angular momentum and the thermal evolution of cloud
cores thus plays a fundamental role in completing the theoretical picture of star formation.
This is true not only for current star formation as observed in regions like the Orion nebula
or the ρ-Ophiuchi molecular cloud but also for the formation of stars of the first or second
generation in the universe.

In this thesis we show how the angular momentum of prestellar and protostellar cores
evolves and compare our results with observed quantities. The specific angular momentum
of prestellar cores in our models agree remarkably well with observations of cloud cores.
Some prestellar cores go into collapse to build up stars and stellar systems. The resulting
protostellar objects have specific angular momenta that fall into the range of observed
binaries. We find that collapse induced by gravoturbulent fragmentation is accompanied
by a substantial loss of specific angular momentum. This eases the “angular momentum
problem” in star formation even in the absence of magnetic fields.

The distribution of stellar masses at birth (the initial mass function, IMF) is another
aspect that any theory of star formation must explain. We focus on the influence of the
thermodynamic properties of star-forming gas and address this issue by studying the effects
of a piecewise polytropic equation of state on the formation of stellar clusters. We increase
the polytropic exponent γ from a value below unity to a value above unity at a certain
critical density. The change of the thermodynamic state at the critical density selects
a characteristic mass scale for fragmentation, which we relate to the peak of the IMF
observed in the solar neighborhood. Our investigation generally supports the idea that the
distribution of stellar masses depends mainly on the thermodynamic state of the gas.

A common assumption is that the chemical evolution of the star-forming gas can be de-
coupled from its dynamical evolution, with the former never affecting the latter. Although
justified in some circumstances, this assumption is not true in every case. In particular, in
low-metallicity gas the timescales for reaching the chemical equilibrium are comparable or
larger than the dynamical timescales.



Abstract xii

In this thesis we take a first approach to combine a chemical network with a hydro-
dynamical code in order to study the influence of low levels of metal enrichment on the
cooling and collapse of ionized gas in small protogalactic halos. Our initial conditions rep-
resent protogalaxies forming within a fossil H ii region – a previously ionized H ii region
which has not yet had time to cool and recombine. We show that in these regions, H2

is the dominant and most effective coolant, and that it is the amount of H2 formed that
controls whether or not the gas can collapse and form stars. For metallicities Z ≤ 10−3 Z⊙,
metal line cooling alters the density and temperature evolution of the gas by less than 1%
compared to the metal-free case at densities below 1 cm−3 and temperatures above 2000 K.
We also find that an external ultraviolet background delays or suppresses the cooling and
collapse of the gas regardless of whether it is metal-enriched or not. Finally, we study the
dependence of this process on redshift and mass of the dark matter halo.



Chapter 1

Introduction

Stars are a fundamental part of the cosmic circuit of matter. They are also a primary
source of astronomical information and hence are essential for our understanding of the
universe and the physical processes that govern its evolution. Stars emit radiation that
provides us with information about their outer layers as well as their interiors. The life
time of a star is determined by its mass and lies between a million and 35 billion years.
Stars in their main sequence phase are hot massive dense gas spheres emitting radiation
produced in their centers from nuclear fusion processes. As a result of the nuclear reactions
the star produces metals (elements heavier than H, He). This process is the main energy
source of the star and governs its main sequence phase. A star reaches this stage, following
a period of gravitational contraction, as soon as the conditions in its center become hot and
dense enough to start burning hydrogen. The gravitational contraction phase of a young
star is qualitatively understood and there are theoretical models predicting its evolution
towards the main sequence (pre-main-sequence tracks). In the final phase of its lifetime
the star looses large amounts of material due to stellar winds and the supernova explosion.
With gas and dust lost by the dying star new objects can form. The heaviest elements are
produced during the passage of the final supernova shockwave through the outer layers of
the most massive stars. Depending on the main-sequence mass of the star, its remanent
is either a white dwarf, a neutron star or a black hole. To reach the present-day chemical
abundances observed in our solar system, material had to go through many cycles of stellar
birth and death.

For roughly the last century we have known that clouds of gas and dust are the sites
where stars form. Advances in radio and infrared astronomy have made it possible to gain
more knowledge about the interior of star-forming clouds. Nevertheless the very process
of assembling gas to form stars still poses questions that star formation theory tries to
answer. In Chapter 2 we therefore outline the observed properties of star-forming inter-
stellar clouds as well as the distribution of stellar masses that form in these regions. The
theoretical background is given in Chapter 3 where we introduce the concept of gravotur-
bulent fragmentation and give a short overview of the history of star formation theory.
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In Chapter 4 we describe the numerical method used and present our additions and im-
provements to the hydrodynamical code. Using the results of our simulations we present
in Chapter 5 work that follows the angular momentum evolution of the objects formed and
we compare our results with suitable observations. In Chapter 6 we discuss the influence
of a non-isothermal equation of state on the fragmentation behavior of the star-forming
gas and on the distribution of masses in the stellar clusters formed. The chemical and
cooling properties of the gas is not only important in regions of recent star formation but
also in the formation of stars of the first or second generation which have formed from low
metallicity gas. In Chapter 7 we describe our simulations of ionized gas in small proto-
galactic halos. We examine specifically the cooling properties and the collapse properties of
the gas in dependence on metallicity, the presence of an ultraviolet background and other
parameters. In Chapter 8 we summarize and give an outlook on work that we will do in
the future to strengthen the theory of present and early star formation.



Chapter 2

Observations of Star-forming Regions

All present-day star formation takes place in molecular clouds (see, for example, Blitz, 1993;
Williams et al., 2000), so it is vital to understand the properties, dynamical evolution, and
fragmentation behavior of molecular clouds in order to understand star formation. Molec-
ular clouds are density enhancements in interstellar matter dominated by molecular H2,
rather than the atomic or the ionized H, typical of the rest of the interstellar medium (ISM).
The formation of molecular hydrogen is due to the dust opacity of molecular clouds and
due to the self-shielding of H2 from UV radiation that elsewhere dissociates the molecules.
In the plane of the Milky Way, interstellar gas has been extensively reprocessed by stars,
so the metallicity is close to the solar value Z⊙, while in other galaxies with lower star
formation rates, the metallicity can be as little as 10−3 Z⊙. The refractory elements con-
dense into dust grains, while others form molecules. The properties of the dust grains
change as the temperature drops within the cloud, probably due to the freezing out of
volatiles such as water and ammonia onto dust grains (Goodman et al., 1995). This has
important consequences for the radiation transport properties and the optical depth of the
clouds (Tielens, 1991; van Dishoek et al., 1993). The presence of heavier elements such as
carbon, nitrogen and oxygen determines the heating and cooling processes in molecular
clouds by fine structure lines (Genzel, 1991).

In addition, continuum emission from dust as well as emission and absorption lines
caused by molecules formed from these elements are the observational tracers of cloud
structure, as cold molecular hydrogen is very difficult to observe. Observations with radio
and sub-millimeter telescopes mostly concentrate on the thermal continuum from dust and
the rotational transition lines of carbon, oxygen, and nitrogen molecules (e.g. CO, NH3, or
H2O). By now, several hundred different molecules have been identified in the interstellar
gas. An overview of the application of different molecules as tracers for different physical
conditions can be found in the reviews by van Dishoek et al. (1993), Langer et al. (2000),
and van Dishoek & Hogerheijde (2000).
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Figure 2.1: Millimeter continuum mosaic of the ρ-Ophiuchus cloud with the dense cores Oph-A,
Oph-B1, Oph-B2, Oph-C, Oph-D, Oph-E, Oph-F. From Motte et al. (1998).

2.1 Physical Properties of Molecular Clouds

The Interstellar Medium (ISM) consists of gas in all states (atoms, molecules, ions) and
dust grains. The dust component accounts for only 1 − 2% of the mass of the interstellar
medium. The gas consists mainly of hydrogen and helium. A small percentage of the gas
mass is in the form of heavier elements. Emission-line maps reveal clumps and filaments
on all scales accessible by present-day telescopes. Typical parameters of different regions
in molecular clouds are listed in Table 2.1, adapted from Cernicharo (1991). The largest
molecular structures considered to be single objects are giant molecular clouds (GMCs),
which have masses of 105 − 106 M⊙ and extend over few tens of parsecs. The smallest
observed structures are protostellar cores, with masses up to a few solar masses and sizes
of ≤ 0.1 pc, as well as less dense clumps of similar size. Star formation always occurs
in the densest regions within a cloud, so only a small fraction of molecular cloud matter
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Figure 2.2: Comparison of the immediate 1.3 mm continuum environments of the Class 1 source
EL 29 in ρ-Oph and the Class 0 source L 1527 in Taurus. From Motte et al. (1998).

is actually involved in building up stars, while the bulk of the material remains at lower
densities.

The hierarchy of clumps and filaments spans all observable scales extending down to
individual protostars studied with millimeter-wavelength interferometry. At each level
the molecular cloud appears clumpy and highly structured. When observed with higher
resolution, each clump breaks up into a filamentary network of smaller clumps. Unresolved
features exist even at the highest resolution. In Figure 2.1 we show ρ-Ophiuchi as an
example of a star-forming region and its structure. Figure 2.2a also shows that density
enhancements in this region are usually connected with clumps and young stellar objects
denoted by crosses and star markers, respectively. The environment in ρ-Ophiuchi is highly
structured, and that in the Taurus molecular cloud is much more quiescent. Figure 2.2b
shows a prestellar object in this region.

The highly supersonic line-widths that are observed in molecular clouds are always
wider than implied by the excitation temperature of the molecules. This is interpreted as
the result of bulk motion associated with turbulence (see Section 3.3.3 and see discussion in
Falgarone & Phillips, 1990). Figure 2.3 shows the distribution of clump line-widths for the
M17 SW clumps within the cloud core. In this example the derived velocity dispersion is
higher than the thermal line width of C18O, ∆vtherm = 0.27 km s−1× (T/50 K)1/2, but close
to or above the line width expected for sonic turbulence, ∆vsonic = 1.3 km s−1×(T/50 K)1/2

(Stutzki & Guesten, 1990). Expanding H ii regions and supernovae are mechanisms for
exciting turbulent motions in GMCs (Mac Low & Klessen, 2004). Some of the turbulent
motions are generated by stars within these clouds, through their winds and outflows. The
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Figure 2.3: The distribution of clump line widths for 179 individual clumps within the M17 SW
cloud core. From Stutzki & Guesten (1990).

winds, outflows and radiation from the most massive stars probably limit the lifetime of
molecular clouds by unbinding and dispersing the gas. It is likely that in their relatively
short life times (< 107 yr) molecular clouds never reach a state of dynamical equilibrium
(Ballesteros-Paredes et al., 1999a; Elmegreen, 2000b), but are rather transient compressed
features of the turbulent flow of the interstellar medium.

An alternate description of the ISM is based on fractals. High spatial dynamic range
observations of molecular clouds show exceedingly complex patterns that appear to defy a
simple description in terms of clouds, clumps and cores (Falgarone et al., 1998; Lazarian
& Pogosyan, 2000). Molecular clouds show self-similar structures down to the scales of
prestellar objects (Chappell & Scalo, 2001).

There is also evidence for magnetic fields threading the giant molecular clouds. Po-
larimetry and Zeeman splitting measurements give average magnetic field strength of
10 µG but measurements are difficult (Verschuur, 1995; Troland et al., 1996; Crutcher,
1999; Wada et al., 2000; Crutcher et al., 2003). It is under current discussion whether these
relatively weak fields can stabilize molecular clouds as a whole or not (e.g. McKee et al.,
1993; Shu et al., 1999; Mac Low & Klessen, 2004). Molecular Clouds are the birthplaces
of all known young stars. They provide the initial conditions for star formation. Myers
(1999) describes the stellar and prestellar content of molecular clouds as follows: ”They
host Young Stellar Objects (YSOs) in a wide range of evolutionary states; from Class 0
protostars some 10−2 Myr old, deriving most of their luminosity from gravitational infall,
to T-Tauri stars a few Myr old, deriving their luminosity from quasi-static contractions.
They also host stars in a wide range of spatial groupings; from isolated single stars as in
Taurus (see Figure 2.2b), having no known neighbors within a few pc, to rich star clusters
as in Orion, having a few thousand stars within a few pc. The masses of the stars in GMCs
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range from 0.1 − 30 M⊙, nearly the whole range of known stellar masses.”

Table 2.1: Physical properties of interstellar clouds

Cloud Type Size Density n(H2) Mass Temperature Linewidth
[pc] [cm−3] [M⊙] [K] [km s−1]

Giant Molecular
Cloud Complex 10 − 60 100 − 500 104 − 106 7 − 15 5 − 15
Examples: W51, W3, M17, Orion-Monoceros, Taurus-Auriga-Perseus Complex
Molecular
Cloud 2 − 20 102 − 104 102 − 104 10 − 30 1 − 10
Examples: L1641, L1630, W33, W3A, B227, L1495, L1529
Star-Forming
Clump 0.1 − 2 103 − 105 10 − 103 10 − 30 0.3 − 3
Protostellar
Core ≤ 0.1 > 105 0.1 − 10 7 − 15 0.1 − 0.7

2.2 Thermal Properties of Star-forming Clouds

Molecular clouds are cold (Cernicharo, 1991), see Section 2.1. The kinetic temperature
inferred from molecular line ratios is typically about 10 K for dark, quiescent clouds and
dense cores in GMCs that are shielded from UV radiation by high column densities of
dust. Nevertheless it can reach 50 − 100 K in regions heated from the inside by UV
radiation from high-mass stars. For example, the temperature of gas and dust behind the
Trapezium cluster in Orion is about 50 K. The thermal structure of the gas is related
to its density distribution and its chemical composition, so it is remarkable that over a
wide range of gas densities and metallicities the equilibrium temperature remains almost
constant in a small range around T ≈ 10 K (Goldsmith & Langer, 1978; Goldsmith, 2001).
These observational results influence the theoretical treatment of the thermal properties
of star-forming gas.

Early studies of the balance between heating and cooling processes in collapsing clouds
predicted temperatures of the order of 10 K to 20 K, tending to be lower at higher densities
(e.g. Hayashi & Nakano, 1965; Hayashi, 1966; Larson, 1969, 1973b). In their dynamical
collapse calculations, these and other authors approximated this varying temperature by
a simple constant value, usually taken to be 10 K. Nearly all subsequent studies of cloud
collapse and fragmentation have used a similar isothermal approximation. However, this
approximation is actually only a somewhat crude one, valid only to a factor of 2, since the
temperature is predicted to vary by this much above and below the usually assumed con-
stant value of 10 K. Given the strong sensitivity of the results of fragmentation simulations
(see, e.g. Li et al., 2003) to the assumed equation of state of the gas, temperature variations
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Figure 2.4: Theoretical and observed temperatures of interstellar clouds as a function of density.
Dots with error bars are the logarithmic averages and standard deviations of the measured cloud
temperatures compiled by Myers (1978); the solid curve is the semi-empirical temperature-density
relation of Tarafdar et al. (1985); the dashed curve is the theoretical relation of Boland & de Jong
(1984); and the dot-dash curve is the earlier theoretical relation of Larson (1973b). From Larson
(1985).

of this magnitude may be important for quantitative predictions of stellar masses and the
initial stellar mass function (see Section 2.3).

As can be seen in Figure 2.4, both, observational and theoretical studies of the thermal
properties of collapsing clouds indicate that at gas mass densities below about 10−18 g cm−3,
roughly corresponding to a gas number density of n = 2.5 × 105 cm−3, the temperature
generally decreases with increasing density. In this relatively low-density regime, clouds are
externally heated by cosmic rays or photoelectric heating, and they are cooled mainly by
the collisional excitation of low-lying levels of C+ ions and O atoms; the strong dependence
of the cooling rate on density then yields an equilibrium temperature that decreases with
increasing density. The work of Koyama & Inutsuka (2000), which assumes that photo-
electric heating dominates, rather than cosmic ray heating as had been assumed in earlier
work, predicts a very similar trend of decreasing temperature with increasing density at
low densities. The resulting gas temperature-density relation can be approximated by a
power law with an exponent of about −0.275, which corresponds to a polytropic equation
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of state with γ = 0.725. The observational results of Myers (1978), shown in Fig. 2 of
Larson (1985), suggest temperatures rising again toward the high end of this low-density
regime, but those measurements refer mainly to relatively massive and warm cloud cores
and not to the small, dense, cold cores in which low-mass stars form. As reviewed by
Evans (1999), the temperatures of these cores are typically only about 8.5 K at a density
of 10−18 g cm−3, consistent with a continuation of the decreasing trend noted above and
with the continuing validity of a polytropic approximation with γ ≈ 0.725 as low a density
as at least 10−18 g cm−3.

At densities higher than this, star-forming cloud cores become opaque to the heating
and cooling radiation that determines their temperatures at lower densities, and at densi-
ties above 10−18 g cm−3 the gas becomes thermally coupled to the dust grains, which then
control the temperature by their far-infrared thermal emission. In this high-density regime,
dominated thermally by the dust, there are few direct temperature measurements because
the molecules normally observed freeze out onto the dust grains, but most of the available
theoretical predictions are in good agreement concerning the expected thermal behavior
of the gas (Larson, 1973b; Low & Lynden-Bell, 1976; Masunaga & Inutsuka, 2000). The
balance between compressional heating and thermal cooling by dust results in a temper-
ature that increases slowly with increasing density, and the resulting temperature-density
relation can be approximated by a power law with an exponent of about 0.075, which
corresponds to γ = 1.075. Taking these values, the temperature is predicted to reach a
minimum of 5 K at the transition between the low-density and the high-density regime at
about 2 × 10−18 g cm−3, at which point the Jeans mass is about 0.3 M⊙ (see also, Larson,
2005). The actual minimum temperature reached is somewhat uncertain because obser-
vations have not yet confirmed the predicted very low values, but such cold gas would
be very difficult to observe; various efforts to model the observations have suggested cen-
tral temperatures between 6 K and 10 K for the densest observed prestellar cores, whose
peak densities may approach 10−17 g cm−3 (e.g. Zucconi et al., 2001; Evans et al., 2001;
Tafalla et al., 2004). A power-law approximation to the equation of state with γ ≈ 1.075
is expected to remain valid up to a density of about 10−13 g cm−3, above which increasing
opacity to the thermal emission from dust causes the temperature to begin rising much
more rapidly, resulting in an ”opacity limit” on fragmentation that is somewhat below
0.01 M⊙ (Low & Lynden-Bell, 1976; Masunaga & Inutsuka, 2000).

2.3 The IMF

One of the fundamental unsolved problems in astronomy is the origin of the stellar mass
spectrum, the so-called initial mass function (IMF). The IMF gives the relative number
of stars formed per unit mass interval, i.e. the distribution of stellar masses at birth. The
Mass Function (MF) was originally defined by Salpeter (1955) as the number of stars N
in a volume of space V observed at a time t per logarithmic mass interval dlog m:
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log m (Msun)

Figure 2.5: The measured stellar mass function ξL as a function of logarithmic mass log m in the
Orion nebular cluster (upper circles), the Pleiades (triangles connected by line), and the cluster
M35 (lower circles). None of the mass functions is corrected for unresolved multiple stellar
systems. The average initial stellar mass function derived from Galactic field stars in the solar
neighborhood is shown as a line with the associated uncertainty range indicated by the hatched
area. From Kroupa (2002).

ξL(log m) =
d(N/V )

d log m
=

dn

d log m
, (2.1)

where n = N/V is the stellar number density, which is in pc−3 in the following. Conversely
Scalo (1986) defines the mass spectrum as the number density distribution per mass interval
dn/dm with the relation

ξ(m) =
dn

dm
=

1

m

dn

d log m
=

1

m
ξL(log m). (2.2)

With these definitions, if the MF is approximated as a power law, the exponents are usually
denoted, respectively, x and α, with ξL(log m) ∝ m−x and ξ(m) ∝ m−α, x = α − 1.

Stars evolve off the main sequence (MS) after a certain age, so the present-day mass
function (PDMF) of MS stars, which can be determined from the observed present-day
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luminosity function, differs from the IMF as defined above. As noted by Miller & Scalo
(1979), all stars with MS lifetimes greater than the age of the Galaxy are still on the MS.
In that case the PDMF and the IMF are equivalent. For stars with MS lifetimes less than
the age of the Galaxy, i.e. massive stars, only those formed within the last MS lifetime are
observed today as MS stars. In that case, the PDMF and the IMF are different (Chabrier,
2003).

It is complicated and laborious to estimate the IMF in our Galaxy empirically. The
first such determination from the solar neighborhood (Salpeter, 1955) showed that IMF
can be approximated by a power law with index x ≈ 1.35 or α ≈ 2.35 for stars in the mass
range 0.4 ≤ m ≤ 10. However, approximation of the IMF with a single power law is too
simple. Miller & Scalo (1979) introduced a log-normal functional form, again to describe
the IMF for the Galactic field stars in the vicinity of the Sun,

log ξL(log m) = A − 1

2(log σ)2
(log(m/m0))

2. (2.3)

This analysis has been repeated and improved upon by Kroupa et al. (1990), who derive
values: m0 = 0.23 M⊙, σ = 0.42, A = 0.1. However, both studies did not take into account
the contamination of star counts by binary and multiple systems.

The IMF can also be estimated, probably more directly, by studying individual young
star clusters. Typical examples are given in Figure 2.5 (taken from Kroupa 2002), which
plots the mass function derived from star counts in the Trapezium Cluster in Orion
(Hillenbrand & Carpenter, 2000), in the Pleiades (Hambly et al., 1999), and in the cluster
M35 (Barrado y Navascués et al., 2001).

The most popular approach to approximating the IMF empirically based on Galactic
field stars is to use a multiple-component power law with the following parameters (Scalo,
1998; Kroupa, 2002):

ξ(m) =











0.26 m−0.3 for 0.01 ≤ m < 0.08
0.035 m−1.3 for 0.08 ≤ m < 0.5
0.019 m−2.3 for 0.5 ≤ m < ∞

. (2.4)

The IMF may steepen further towards high stellar masses and a fourth component could
be defined with ξ(m) = 0.019 m−2.7 for m > 1.0 (Kroupa et al., 1993; Chabrier, 2003). In
Equation 2.4, the exponents for masses m < 0.5 M⊙ are very uncertain due to the difficulty
of detecting and determining the masses of very young low-mass stars. The exponent for
0.08 ≤ m < 0.5 could vary between −0.7 and −1.8, and the value in the substellar regime
is even less certain. The above representation of the IMF which is defined for single stars
is statistically corrected for binary and multiple stellar systems too close to be resolved,
but too far apart to be detected spectroscopically. Neglecting these systems overestimates
the number of high-mass stars, while underestimating the number of low-mass stars.
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Despite the differences between the IMF obtained from field stars and the IMF of
young star clusters, all IMF determinations share the same basic features, and it appears
reasonable to say that the basic shape of the IMF is a universal property common to
all star-forming regions in the present-day Galaxy, perhaps with some intrinsic scatter
(Kroupa, 2001). However, there may still be some dependency on the metallicity of the
star-forming gas. In addition, the stellar mass function in the Arches cluster (Stolte et al.,
2005) near the center of our Galaxy is found to have a deficit of stars below 7 M⊙. This gives
observational support to the notion that the IMF shows qualitatively different behavior
in regions with special conditions, such as the Galactic center or starburst environments
(Klessen et al., 2005b)

The IMF has a nearly power-law form for larger masses and declines rapidly towards
smaller masses (Scalo, 1998; Kroupa, 2002; Chabrier, 2003). The IMF thus has a peak
at a characteristic mass of typically a few tenths of a solar mass in star-forming regions
in the solar vicinity. In contrast, the initial conditions in star forming regions can vary
considerably. If the IMF depends on the initial conditions, there would thus be no reason
for it to be universal. Therefore a derivation of the characteristic stellar mass that is based
on fundamental atomic and molecular physics would be more consistent. In this work we
make a first step towards describing the thermal properties of the star-forming gas more
precisely (see Section 3.4.2).

There have been analytical models (e.g. Jeans, 1902; Larson, 1969; Penston, 1969a;
Low & Lynden-Bell, 1976; Shu, 1977; Whitworth & Summers, 1985) and numerical inves-
tigations of the effects of various physical processes on collapse and fragmentation. These
processes include, for example, magnetic fields (Basu & Mouschovias, 1995; Tomisaka,
1996; Galli et al., 2001), feedback from the stars themselves (Silk, 1995; Nakano et al.,
1995; Adams & Fatuzzo, 1996) and competitive coagulation or accretion (Silk & Taka-
hashi, 1979; Lejeune & Bastien, 1986; Price & Podsiadlowski, 1995; Murray & Lin, 1996;
Bonnell et al., 2001a,b; Durisen et al., 2001). In another group of models, initial and
environmental conditions, like the structural properties of molecular clouds, determine
the IMF (Elmegreen & Mathieu, 1983; Elmegreen, 1997a,b, 1999, 2000c,a, 2002). Larson
(1973a) and Zinnecker (1984, 1990) argued in a more statistical approach that the central-
limit theorem naturally leads to a log-normal stellar mass spectrum at the low-mass end.
Moreover, there are models that connect turbulent motions in molecular clouds to the
IMF (e.g. Larson, 1981; Fleck, 1982; Padoan, 1995; Padoan et al., 1997; Klessen et al.,
1998, 2000; Klessen, 2001; Padoan & Nordlund, 2002; Ballesteros-Paredes et al., 2005).
Recently, Elmegreen & Scalo (2005) point out the importance of the star formation his-
tory for the shape of the IMF. Knowledge of the distribution of stellar masses at birth,
described by the IMF, is necessary to understand many astrophysical phenomena, but no
analytic derivation of the observed IMF has yet explained all observations consistently. In
fact, it appears likely that a fully deterministic theory for the IMF does not exist. Rather,
any viable theory must take into account the probabilistic nature of the turbulent process
of star formation, which is inevitably highly stochastic and indeterminate.
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Current attempts to understand the nature of the IMF, as those mentioned above,
are generally based on models that do not treat the thermal physics in detail. Typically,
they use a simple isothermal equation of state (see Section 3.4.1). In this thesis we make
an attempt to diverge from this method by modeling the thermal properties of molecular
clouds with a piecewise polytropic equation of state as explained in detail in Section 3.4.2.
In the long run, one would like to take the chemical, cooling and heating as well as radiative
processes into account. Our next step therefore is to include time-dependent chemistry into
our dynamical model and we focus on a special case: the collapse of initially ionized gas
towards the formation of the second generation of stars in the universe. In protogalactic
halos the gas has only low metal content and the cooling processes are mainly dominated by
H2. In Section 4.5 we describe in detail how cooling and the chemistry in this environment
can be modeled and what information on the thermal behavior of the gas we can infer.

2.4 The Angular Momentum Problem

Gravitational collapse in the context of star formation always involves solving the angular
momentum problem. This results from the discrepancy between the specific angular mo-
mentum observed in low-density gas on large scales and the amount of rotation or orbital
angular momentum present after collapse (Spitzer, 1968; Bodenheimer, 1995). The source
of angular momentum on large scales lies in the rotation of the galactic disk and, closely
related to that, on intermediate to small scales it results from the high degree of vortic-
ity inextricably inherent in turbulent flows. The typical specific angular momentum j of
molecular cloud material, e.g. on scales of about 1 pc, is j ≈ 1023 cm2 s−1, while on scales of
cloud cores, say below 0.1 pc, it is of order 1021 cm2 s−1. A 1 M⊙ binary star with an orbital
period of 3 days has j ≈ 1019 cm2 s−1, while the spin of a typical T Tauri star is a few
×1017 cm2 s−1. Our own Sun has only a specific angular momentum of j ≈ 1015 cm2 s−1.
This means that during the process of star formation most of the initial angular momentum
is removed from the collapsing object.

The presence of magnetic fields provides, in principle, a viable mechanism for locally
reducing the angular momentum through magnetic braking. This was treated approx-
imately by Ebert, von Hörner & Temesváry (1960), and later calculated accurately by
Mouschovias & Paleologou (1979, 1980). The criterion for effective braking is essentially
that helical Alfvén waves excited by the rotating cloud have to couple to the ambient
medium over a volume that contains roughly the same mass as the cloud itself. For the
strong magnetic fields required by the standard theory of star formation, the deceleration
time can be less than the free-fall time, leading to efficient transfer of angular momentum
away from collapsing cores, and thus, to the formation of single stars.
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Table 2.2: Characteristic values of specific angular momentum

Cloud Type Specific Angular Momentum
[cm2s−1]

Molecular Cloud (scale: 1 pc) 1023

Molecular Cloud Core (scale: 0.1 pc) 1021

Binary (period: 104 yr) 4 × 1020 − 1021

Binary (period: 10 yr) 4 × 1019 − 1020

Binary (period: 10 yr) 4 × 1018 − 1019

Disk around 1M⊙ central star (radius: 100 AU) 4.5 × 1020

T Tauri star (spin) 5 × 1017

Jupiter (orbit) 1020

Sun (present spin) 1015

Table is adapted from Bodenheimer (1995).

It is therefore a crucial test for any theory of star formation whether it can produce
the required angular momentum loss during collapse while at the same time explain the
high numbers of binaries and multiple stellar systems observed (e.g. Duquennoy & Mayor,
1991; Halbwachs et al., 2003). In a semi-empirical analysis of isolated binary star formation
Fisher (2004) presented the effects of non-magnetical turbulence in the initial state of the
gas on binary orbital parameters. These properties were in agreement with observations if
a significant loss of angular momentum was assumed. In the current investigation we focus
on numerical simulations of non-magnetic, supersonically turbulent, self-gravitating clouds
and analyze the time evolution of angular momentum during formation and subsequent
collapse of protostellar cores. Our main question is whether gravoturbulent fragmentation
can solve or at least ease the so called “angular momentum” problem without invoking the
presence of magnetic fields. We present the simulations that address this issue and our
results in Chapter 5.



Chapter 3

Modeling Star Formation in Different

Epochs

3.1 Cosmological Preliminaries

3.1.1 The Standard Model

Besides present-day star formation, we also address the question of early and primordial
star formation in the thesis (see Chapter 7). In the latter case, we need to place the dis-
cussion in its proper cosmological context. In this section we will give a short introduction
into the most important aspects of the early cosmic evolution.

Following Peebles (1993), we can identify a ‘standard model’ of physical cosmology
– a world picture which, although incomplete, has passed many observational tests and
is consistent with the available evidence. This cosmological principle asserts that the
distribution of matter in the universe is homogeneous and isotropic if smoothed on a
sufficiently large scale, that it is expanding and that it was substantially hotter and denser
in the past. It is based upon two assumptions and a number of important observations.

The first assumption is simply that the laws of physics on cosmological scales are
the same as those on smaller scales; in particular, that general relativity is the correct
description of gravity on large scales. This assumption is certainly consistent with the
evidence, but it is wise to remember that it involves an extrapolation from the terrestrial
scale on which general relativity is well tested to a scale that is many orders of magnitude
larger. The other assumption that we make is often termed the Copernican Principle: the
assumption that there is nothing particularly special about the position we occupy in the
universe. Moreover, there appears to be nothing particularly special about the Milky Way
compared with, say, M31 or M101, and there seems to be no good reason to suppose that
our presence in this particular galaxy is due to anything other than chance.
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Turning to the observations, we find a mixture of direct and indirect evidence for the
model. The cosmic microwave background (CMB) and the hard X-ray background both
provide strong evidence of isotropy (Wu et al., 1999). Moreover, this is also strong evidence
for homogeneity; the observed isotropy is a natural consequence of a homogeneous universe,
but it would require us to be in a particularly special location in an inhomogeneous universe.
We can also test homogeneity directly, by means of galaxy counts.

On small scales, galaxies are known to cluster inhomogeneously, but if we smooth the
number counts on larger and larger scales, we expect to see a transition to homogeneity.
Various large redshift surveys that are currently underway, such as the 2degreeField (2dF,
Maddox, 2000) or the Sloan Digital Sky Survey (York et al., 2000), have shown that voids
in the distribution of galaxies are not larger than ∼ 100 Mpc; on larger scales there seems
to be evidence for homogeneity. Evidence for expansion comes from the redshift-distance
relation: the fact that the spectra of extragalactic sources are shifted to the red by an
amount that is directly proportional to distance d. This was first noted by Wirtz (1924),
but was first quantified by Hubble (1929), and has since become known as Hubble’s law:

vr =
λobserved − λemitted

λemitted

c = z · c = H0 · d, (3.1)

where vr is the radial velocity of the source, λobserved the observed wavelength, λemitted the
emitted wavelength and c the speed of light. The proportionality constant H0 is known
as the Hubble parameter and z is known as the redshift of the object. Hubble’s law is a
natural consequence of an expanding universe, as long as the expansion is homogeneous.
Another natural consequence of an expanding universe, as long as the energy is conserved,
is the assertion that it has been hotter and denser in the past. The evidence that this was
indeed the case comes from two different sources: the observed elemental abundances and
the microwave background.

By observing elemental abundances in regions that have undergone little or no star
formation (Adams, 1976), we can attempt to infer the primordial abundances of the various
elements. We find that the inferred abundances are consistent with the predictions of the
expanding universe model, to within the observational uncertainties (Burles et al., 2001).
Moreover, the theoretical model of primordial nucleosynthesis has only one free parameter
– the baryon-photon ratio.

The microwave background is also strong evidence for a hot, dense phase of the early
universe. In particular, measurements by the FIRAS experiment on the COBE satellite
have shown that the CMB has a spectrum which corresponds to an almost perfect black-
body; any deviation is at the level of one part in ten thousand or less (Fixsen et al., 1996).
This observation is simple to explain in the standard model. At an early epoch, the tem-
perature is high enough that all of the gas is ionized and consequently radiation and matter
are closely coupled by Thomson scattering and in thermal equilibrium. At this time, the
radiation spectrum is necessarily that of a black-body. As the universe expands, however,
the temperature drops, and the gas eventually begins to recombine. At this point, the
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Thomson scattering optical depth drops sharply. The bulk of the radiation subsequently
never interacts with matter, and thus, aside from the effects of redshift1, the spectrum
remains unchanged to the present day. To produce a black-body CMB from other sources
of radiation would be far harder. It would require the action of some mechanism capable
of thermalizing the spectrum, but at the same time having no discernable effects on the
spectra of extragalactic sources visible at the present day. Increasingly precise measure-
ments of the cosmic microwave background (CMB), as exemplified by the recent results of
wmap (Bennett et al., 2003), have helped us confirm that we live in a flat universe, with
approximately 5% of the closure density provided by baryons, 25% by cold dark matter
(CDM), and the remaining 70% by some form of ‘dark energy’ or cosmological constant.
Models of such a universe – generally known as ΛCDM models – have been heavily studied
for a number of years and many of their features are well understood. For instance, the
evolution of the small inhomogeneities in the early universe that give rise to the observed
temperature anisotropies in the CMB can be followed in great detail (Seljak & Zaldarriaga,
1996), and the resulting predictions have been strongly confirmed by the wmap results.

The evolution of the dark matter component of the universe subsequent to the epoch
of last scattering at z ≃ 1100 has also been studied intensively, using a wide range of
techniques (see for example Seljak, 2000; Benson et al., 2001; Cooray & Sheth, 2002).
The general agreement between the results of these studies and an increasing number of
observational tests (e.g. Gray et al. 2002) has lent further support to this overall picture,
although some puzzles remain (Moore et al., 1999; Navarro & Steinmetz, 2000).

Individually, none of these pieces of evidence are entirely persuasive – if we tried hard
enough we could usually construct some model to explain them. Taken together, however,
the fact that the same simple model explains all of the otherwise unrelated observational
evidence argues strongly for its basic correctness. Thus, it provides us with a basic frame-
work within which our other theories must fit.

In our simulations we adopt the cosmological parameters taken from the wmap concor-
dance model (Spergel et al., 2003). Specifically: matter density Ωm = 0.29 , cosmological
constant (energy density of the vacuum) ΩΛ = 0.71 , baryon density Ωb = 0.047 , Hubble
constant h = 0.72 , amplitude of galaxy fluctuations σ8 = 0.9 and spectral index ns = 0.99 .

3.1.2 Hierarchical Structure Formation

The standard model is a good description of the universe on scales on which we can regard
it as effectively homogeneous. However, when we look at the universe on smaller scales,
we find that it is largely inhomogeneous. Galaxies have mean densities that are orders of
magnitude larger than the cosmological background density, while, on larger scales, groups,
clusters and superclusters also demonstrate the existence of departures from homogeneity.

1Redshifting a black-body spectrum does not alter its shape, but merely lowers its characteristic tem-
perature.
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Clearly, an obvious question to ask is how this wealth of structure arises in an initially
homogeneous universe.

We know from observations that the cosmic background radiation shows small variations
in intensity between two different directions. If we interpret the universe as a black-
body and take the differences in intensities to represent temperature fluctuations, then the
maximum difference observed is ∆T ∼ 10−5 K. As it might be expected, the study of how
these small perturbations develop into the structure that we see around us today forms a
major branch of cosmology.

The origin of the seed fluctuations will not be discussed here, we confine ourselves to
a discussion on the growth of these fluctuations into the clusters of galaxies that we see
today. A seed fluctuation is a region of the universe which had a density greater than the
average density of the universe. This overdensity is given by

∆ =
ρ − ρ̄

ρ̄

where ρ is the density of the region and ρ̄ is the average density of the universe. Two
competing effects act on the seed fluctuations: self-gravity, causing them to grow in mass
and density, and the expansion of the universe, dispersing the fluctuations and decreasing
their density. Because the overall density of the universe is decreasing, the fluctuations
will grow in overdensity even if their actual density is decreasing until collapse takes over.
This will happen when ∆ ∼ 1, i.e. when the density of the fluctuation is roughly twice the
average density. Note that the growth of baryonic fluctuations can only occur after the
decoupling of matter and radiation, before which the scattering of photons off ionized gas
particles tends to smooth out any matter density fluctuations.

Historically, there are two competing theories for how structures continued to evolve
after collapse. Either the first structures to collapse were very large, on the scale of clusters
of galaxies, which then fragmented and formed galaxies, or structures first appeared on the
scale of individual galaxies which progressed to form groups and clusters of galaxies through
hierarchical merging (Peebles, 1993). In CDM models, gravitationally bound objects form
in the latter way. Structure formation of the dark matter proceeds in a hierarchical, or
‘bottom-up’ fashion, with the smallest, least massive objects forming first, and larger
objects forming later through a mixture of mergers and accretion. The most compelling
evidence for this mechanism of structure formation are observations of galaxies existing at
very high redshifts (e.g. Becker et al., 2001). Although there are very few clusters known
at redshifts greater than 1, there is evidence that the most massive clusters have formed at
about z = 1 (e.g. Henry et al., 1992). The subsequent formation of larger objects occurs
rapidly, and at most redshifts a large number of gravitationally bound objects (frequently
referred to as ‘dark matter halos’) exists, with a wide range of masses. Considerable effort
has been devoted to determining the mass function of dark matter halos as a function
of redshift. The most widely used expression for the mass function is the one originally
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suggested by Press & Schechter (1974):

n(M, z) dM =

√

2

π

ρdm

M

dν

dM
exp

(

−ν2

2

)

dM. (3.2)

Here n(M, z) dM is the comoving number density of halos at redshift z with dark matter
halo masses in the interval (M,M +dM), ρdm is the cosmological background dark matter
density, and ν ≡ δc/[D(z)σ(M)], where δc is a critical overdensity (generally taken to be
1.69), D(z) is the linear growth factor (Peebles, 1980; Carroll et al., 1992) and σ(M) is the
root-mean-square (rms) fluctuation in the cosmological dark matter density field smoothed
on a mass scale M . A comprehensive discussion of the derivation of this equation is given
in Bond et al. (1991).

In CDM models, σ(M) decreases monotonically with increasing mass, and so the most
massive objects will also be the rarest. The transition to exponential behavior occurs for
ν ∼ 1, or σ(M) ∼ δc/D(z), and so this transition occurs at a progressively smaller mass
as we move to higher redshifts.

Given a mass function of this type, is there any way to specify when the first halo of a
given mass forms? Strictly speaking, the answer is no; the probability of finding a halo of
any finite mass is never zero. In practice, however, we are more interested in determining
when this probability grows to some interesting size, or when the number density of halos
exceeds some specified threshold. This is most commonly calculated by specifying a value
of ν which is of interest; for instance, reference is often made to 3σ halos, which are simply
halos for which ν = 3 and which therefore have a dark matter mass M satisfying:

σ(M) =
1

3

δc

D(z)
. (3.3)

Such halos are moderately rare objects, representing no more than a few thousandths of
the total cosmic mass (Mo & White, 2002), but are sufficiently common, so that one would
expect to find many of them within a single Hubble volume. They are often taken to be
representative of the earliest objects to form, although this choice is somewhat arbitrary.

Unfortunately, while the Press-Schechter approach allows us to determine when the
first dark matter halos of a given mass form, it does not, by itself, tell us when the
first protogalaxies form, as it contains no information about the behavior of the baryonic
component of the universe. Unlike the dark matter, the baryons do not initially form
structures on very small scales, since pressure forces act to suppress the growth of small-
scale perturbations (Jeans, 1902; Bonnor, 1957). Using linear perturbation theory Peebles
(1980) shows that in a purely baryonic universe, the growth of perturbations is completely
suppressed on scales smaller than

λJ ≤
π1/2cs√

Gρb

, (3.4)

where ρb is the cosmological baryon density. This critical wavelength is commonly known
as the Jeans length (see Section 3.3.2). The associated mass scale, known as the Jeans
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mass is defined in Equation 3.15 (where ρ0 should be replaced by ρb). The value of the
Jeans mass depends on the baryon density, which is a simple function of redshift, and on
the temperature of the intergalactic medium (through the dependence of λJ on cs). The
latter is simple to calculate at epochs prior to the onset of widespread star formation and
is well approximated by Galli & Palla (1998)

T = 410
(

1 + z

150

)2

K (3.5)

for redshifts z < 150. The corresponding Jeans mass at these redshifts is given by

MJ =
4.9 × 104

(Ωbh2)1/2

(

1 + z

150

)3/2

M⊙. (3.6)

To generalize this to the case of a universe containing both baryons and cold dark
matter, one can replace the baryon density in the above equations with the total density
ρm = ρb + ρdm, which would give us

MJ =
4.9 × 104

(Ωmh2)1/2

(

1 + z

150

)3/2

M⊙ (3.7)

for z < 150; or in other words, a Jeans mass that is a factor (Ωb/Ωm)1/2 smaller. Using
Equation 3.7, Glover (2004) estimates that protogalaxies will develop within 3σ halos once
the mass of the dark matter in the halo exceeds MJ which occurs at z ∼ 30.

3.2 Star Formation Theory - Two Short Histories

3.2.1 Early Star Formation

In the preceding section we discussed the hierarchical structure formation within the frame-
work of a cold dark matter (CDM) cosmology. In this section we show how this influences
the formation of the first and second generation of stars. We also give a short overview of
the relevant theoretical work.

At high redshifts, CDM-dominated low-mass halos with virial temperatures less than
≈ 104 K are abundant. Primordial gas in these halos cools by molecular hydrogen tran-
sitions, because H2 is the only coolant present in significant quantities that remains effective
at temperatures below 104 K (Saslaw & Zipoy, 1967; Peebles & Dicke, 1968; Matsuda et al.,
1969). Tegmark et al. (1997) developed analytic methods to model early baryonic col-
lapse via H2 cooling. Numerical studies of the formation of primordial gas clouds and
the first stars indicate that this process likely began as early as z ∼ 30 (Abel et al.,
2002; Bromm et al., 2002). Yoshida et al. (2003) further utilized simulations to develop
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a semi-analytic model based on the Tegmark et al. (1997) method and included the ef-
fects of dynamical heating caused by the thermalization of kinetic energy of infall into a
deepening potential. Both approaches suggest that only gas in halos more massive than
some critical mass Mcrit will cool efficiently (reviewed recently by Bromm & Larson, 2004;
Ciardi & Ferrara, 2005; Glover, 2004).

Population III stars were the first potential sources of UV photons that contribute
to the reionization process, and produced most of the metals required for the formation
of population II stars. An important question is whether later generations of stars can
efficiently form in the relatively high temperatures and ionization fractions of the relic H ii

regions left by the first stars. One analytical study (Oh & Haiman, 2003) found that the
first stars injected sufficient energy into the early intergalactic material (IGM), by means
of photoheating and supernova explosions, to prevent further local star formation in their
vicinity. The Lyman-Werner UV background is also thought to have contributed negative
feedback by photodissociating primordial H2 and quenching the molecular hydrogen cooling
processes, thereby delaying cooling and collapse of the primordial gas (Haiman et al., 2000;
Machacek et al., 2001). Metals produced by the first stars were also be injected into the
gas in protogalactic halos that have not collapsed yet. The question that then arises is how
this metallicity affected the ability of the gas to cool and collapse. Bromm et al. (2001)
argued that there exists a critical metallicity Zcrit = 5 × 10−4 below which the gas fails to
undergo continued collapse and fragmentation. Nevertheless in their simulations they did
not take H2 cooling into account although this is still present if self-shielding is effective.

3.2.2 Current Star Formation

In the universe stars form from gravitational contraction of gas and dust in molecular
clouds. This fact is at the center of all attempts to combine the observational results with
a theory of star formation. In particular the pioneering work by Jeans (1902) concerning
the importance of gravitational instability for stellar birth (see Section 3.3.2) triggered
numerous attempts to derive solutions to the collapse problem, both analytically and nu-
merically (e.g. Bonnor, 1956; Ebert, 1957; Larson, 1969; Penston, 1969b, for some early
studies). The classical dynamical theory focuses on the interplay between self-gravity and
pressure gradients. Turbulence is taken into account only on microscopic scales signifi-
cantly smaller than the collapse scales. In this microturbulent regime (Chandrasekhar,
1951b,a), random gas motions yield an isotropic pressure that can be absorbed into the
equation of motion as an effective sound speed (see Section 3.3.3).

From observations it became clear that substantial magnetic fields thread the interstel-
lar medium (Chandrasekhar & Fermi, 1953a). This raised the possibility that the solution
to the angular momentum problem might be found in the action of magnetic fields. Mag-
netic braking provides a mechanism that results in the loss of angular momentum during
collapse (e.g. Basu & Mouschovias, 1994). Moreover, there exists a magnetic flux prob-
lem as stars are left with little magnetic flux compared to the star-forming clouds. This
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problem was addressed in the model of low-mass star formation of Shu et al. (1987). It
involves the collapse of an isothermal sphere producing a single protostar. The isothermal
sphere loses its magnetic support via ambipolar diffusion, where neutrals slowly decouple
from the ions and the magnetic field to produce a ρ ∝ r−2 density profile. Collapse of a
sphere with such a profile gives a constant accretion rate. However, Whitworth et al. (1996)
have argued that such a density profile is unlikely to arise in nature. In addition, Class 0
protostars are observed to be undergoing collapse with a less centrally condensed profile
(Ward-Thompson et al., 1994). More accurate determinations of magnetic field strengths
in molecular clouds showed that cloud cores are not necessarily supported by the mag-
netic field (Bourke et al., 2001). Recently the concept of gravoturbulent fragmentation,
which we will introduce in the next section, has reconciled the theoretical results with the
observational evidence.

3.3 Gravoturbulent Fragmentation

In the center of our model of star formation stands the notion of gravoturbulent fragmen-
tation (e.g. Mac Low & Klessen, 2004). It is based on the interplay between turbulent
motions in gas clouds and the self-gravity of the gas cloud. As cited in Chapter 2, obser-
vations are consistent with the idea that star-forming clouds are supported by supersonic
turbulence (e.g. molecular emission lines show signs of supersonic motions). Supersonic
turbulence produces strong density fluctuations in the interstellar gas, sweeping up gas
from large regions into dense sheets and filaments, and does so even in the presence
of magnetic fields (e.g. Vázquez-Semadeni et al., 2000; Heitsch et al., 2001). Supersonic
turbulence decays quickly (Gammie & Ostriker, 1996; Stone et al., 1998; Mac Low et al.,
1998), but so long as it is maintained by input of energy from some driver, it can support
large-scale regions against gravitational collapse (e.g. Mac Low, 1999; Klessen et al., 2000).
Such support comes at a cost, however. The same turbulent flows that support a region
globally produce local density enhancements with gravity taking over in the densest and
most massive parts. Once gas clumps become gravitationally unstable, collapse sets in.
In the following sections we discuss how the gas and the above mentioned processes that
lead to star formation can be described theoretically. We will also introduce the concepts
necessary to the theory of gravoturbulence. For further details see Mac Low & Klessen
(2004).

3.3.1 Self-Gravitating Hydrodynamics

The gas in the interstellar medium is highly compressible and it is subject to its own self-
gravity. A simple description may be obtained by modeling the star-forming molecular gas
as an ideal, inviscid, self-gravitating, non-magnetic gas. The state of the gas is determined
by four parameters, namely the velocity ~v, the pressure P , the specific internal energy u,
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and the density ρ, which are functions of position ~r and time t. The gas is governed by
the following equations

dρ

dt
=

∂ρ

∂t
+ ~v · ~∇ρ = −ρ~∇ · ~v (3.8)

d~v

dt
=

∂~v

∂t
+ (~v · ~∇)~v = −

~∇P

ρ
− ~∇Φ (3.9)

du

dt
=

∂u

∂t
+ ~v · ~∇u = −P

ρ
~∇ · ~v − Λ(u, ρ)

ρ
(3.10)

∆Φ = 4πGρ (3.11)

P = RρT, (3.12)

where Φ denotes the gravitational potential.

The continuity Equation 3.8 expresses the conservation of mass. Nevertheless it implies
more than simple mass conservation, for it states that changes in the local matter content
due to fluid flow occur in a continuous fashion. Mass loss from any volume element will
occur by matter flowing in a well-defined manner across the surface of the volume.

Equation 3.9 which is also called Euler’s equation reflects the conservation of momen-
tum, where −~∇Φ represents the acceleration induced by the gravitational potential Φ
which is obtained from the density distribution via Poisson’s Equation 3.11. We can also
add a viscous acceleration (~∇· ↔

π)/ρ, where
↔
π denotes the viscous stress tensor, to the right

hand side of Equation 3.9. The conservation of energy manifests itself in Equation 3.10.
We recognize −P/ρ~∇ · ~v as the specific rate of doing PdV work. Λ represents the cooling
function that includes heating and cooling contributions. In the case of an isothermal ap-
proximation we neglect this term. The ideal gas law (Equation 3.12) serves as the closure
equation. For more information on the equation of state see Section 3.4.

3.3.2 Jeans Criterion

A thorough investigation of the stability of a homogeneous spherical density fluctuation
of radius r requires a linear stability analysis. For the case of a non-magnetic, isothermal,
infinite, homogeneous, self-gravitating medium at rest (i.e. without turbulent motions)
Jeans (1902) derived a relation between the oscillation frequency ω and the wave number
k of small perturbations,

ω2 − c2
sk

2 + 4πGρ0 = 0, (3.13)

where cs is the isothermal sound speed, G the gravitational constant, and ρ0 the initial
mass density. The derivation neglects viscous effects and assumes that the linearized
version of the Poisson equation describes only the relation between the perturbed potential
and the perturbed density (neglecting the potential of the homogeneous solution, the so-
called ‘Jeans swindle’; see, for example, Binney & Tremaine, 1987). The third term in
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Equation 3.13 is responsible for the existence of decaying and growing modes, as pure
sound waves stem from the dispersion relation ω2 − c2

sk
2 = 0. Perturbations are unstable

against gravitational contraction if their wave number is below a critical value, the Jeans
wave number kJ, i.e. if

k2 < k2
J ≡ 4πGρ0

c2
s

, (3.14)

or equivalently, if the wavelength of the perturbation exceeds a critical size given by λ ≡
2πk−1

J . Assuming the perturbation is spherical with diameter λJ, this directly translates
into a mass limit

MJ ≡
4π

3
ρ0

(

λJ

2

)3

=
π

6
(
π

G
)3/2ρ

−1/2
0 c3

s. (3.15)

All perturbations exceeding the Jeans mass MJ will collapse under their own weight. For
isothermal gas c2

s ∝ T , so MJ ∝ ρ
−1/2
0 T 3/2. The critical mass MJ decreases when the

density ρ0 grows or when the temperature T sinks.

3.3.3 Turbulence

Turbulence is nonlinear fluid motion resulting in velocity modes over a wide range of
spatial and temporal scales. Turbulence is deterministic and unpredictable, but it is not
reducible to a low-dimensional system and so does not exhibit the properties of classical
chaotic dynamical systems. The strong correlations and lack of scale separation preclude
the truncation of statistical equations at any order.

Hydrodynamic turbulence arises because the nonlinear advection operator, (~v · ~∇)~v
(see Equation 3.9), generates severe distortions of the velocity field by stretching, folding,
and dilating fluid elements. The effect can be viewed as a continuous set of topological
deformations of the velocity field (Ottino, 1989), but in a much higher dimensional space
than chaotic systems, so that the velocity field is, in effect, a stochastic field of nonlinear
straining. These distortions self-interact to generate large amplitude structure covering the
available range of scales. For incompressible turbulence (i.e. constant density) driven at
large scales, this range is called the inertial range (see below) because the advection term
corresponds to inertia in the equation of motion. For a purely hydrodynamic incompressible
system, this range is measured by the ratio of the advection term to the viscous term, which
is the Reynolds number

Re =
vL

ν
, (3.16)

where v and L are the characteristic large-scale velocity and length and ν is the kinematic
viscosity. In the cool ISM, Re ≈ 105 to 107 if viscosity is the damping mechanism. With
compressibility, magnetic fields, or self-gravity, all the associated fields are distorted by the
velocity field. Hence, one can have MHD turbulence, gravitational turbulence, or thermally
driven turbulence, but they are all fundamentally tied to the advection operator. These
additional effects lead to fundamental changes in the behavior of the turbulence. This
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may affect the way energy is distributed among scales, which is often referred to as the
turbulent cascade. For a more detailed discussion of the complex statistical characteristics
of turbulence, we refer the reader to the book by Lesieur (1997).

Most studies of turbulence treat incompressible turbulence, characteristic of most ter-
restrial applications. Root-mean-square (rms) velocities are subsonic, and the density
remains almost constant. Dissipation of energy occurs primarily in the smallest vortices2,
where the dynamical scale L becomes comparable to the length on which viscosity acts
Lvisc. Kolmogorov (1941) described a heuristic theory based on dimensional analysis that
captures the basic behavior of incompressible turbulence surprisingly well, although subse-
quent work has refined the details substantially. He assumed turbulence driven on a large
scale L, forming eddies at that scale. These eddies interact to form slightly smaller eddies,
transferring some of their energy to the smaller scale. The smaller eddies in turn form even
smaller ones, until energy has cascaded all the way down to the dissipation scale Lvisc. In
order to maintain a steady state, equal amounts of energy must be transferred from each
scale in the cascade to the next, and eventually dissipated, at a rate

Ė =
ηv3

L
(3.17)

where η is a constant determined empirically. This leads to a power-law distribution of
kinetic energy E ∝ v2 ∝ k−11/3, where k = 2π/L is the wave number, and density does not
enter because of the assumption of incompressibility. Most of the energy remains near the
driving scale, while energy drops off steeply below Lvisc. Because of the apparently local
nature of the cascade in wave number space, the viscosity only determines the behavior
of the energy distribution at the bottom of the cascade on scales below Lvisc, while the
driving only determines the behavior near the top of the cascade for spatial scales at and
above L. The region in between is known as the inertial range, in which energy transfers
from one scale to the next without influence from driving or viscosity. The behavior of the
flow in the inertial range can be studied regardless of the actual scale at which L and Lvisc

lie, so long as they are well separated.

3.3.4 Interstellar Turbulence

Gas flows in the ISM vary, however, from the above idealized picture in three important
ways. First, they are highly compressible, with Mach numbers M ranging from order unity
in the warm (104 K), diffuse ISM, up to as high as 50 in cold (10 K), dense molecular clouds.
Second, the equation of state of the gas is very soft due to radiative cooling, so that pressure
P ∝ ργ with the polytropic index falling in the range 0.4 < γ < 1.2 as a function of density
and temperature (see, for example, Scalo et al., 1998; Ballesteros-Paredes et al., 1999b;
Spaans & Silk, 2000). Third, the driving of the turbulence is not uniform, but rather comes

2A vortex can be any circular or rotational flow that possesses non-zero vorticity. Vorticity ~ω is defined
as ~ω = ~∇× ~v, where ~v is the fluid velocity.
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from inhomogeneous processes, e.g. supernovae (e.g. Norman & Ferrara, 1996; Mac Low,
1999).

Supersonic flows in highly compressible gas create strong density perturbations. Early
attempts to understand turbulence in the ISM (von Weizsäcker, 1943, 1951; Chandrasekhar,
1949) were based on insights drawn from incompressible turbulence. An attempt to ana-
lytically derive the density spectrum and resulting gravitational collapse criterion was first
made by Chandrasekhar (1951b,a). This work was followed up by several authors, cul-
minating in work by Sasao (1973) on density fluctuations in self-gravitating media whose
interest has only recently been appreciated. Larson (1981) qualitatively applied the basic
idea of density fluctuations driven by supersonic turbulence to the problem of star for-
mation. Bonazzola et al. (1992) used a renormalization-group technique to examine how
the slope of the turbulent velocity spectrum could influence gravitational collapse. This
approach was combined with low-resolution numerical models to derive an effective adi-
abatic index for subsonic compressible turbulence by Panis & Pérault (1998). Adding to
the complexity of the problem, the strong density inhomogeneities observed in the ISM
can be caused not only by compressible turbulence, but also by thermal phase transitions
(Field et al., 1969; McKee & Ostriker, 1977; Wolfire et al., 1995) or gravitational collapse
(Kim & Ostriker, 2001).

In supersonic turbulence, shock waves offer additional possibilities for dissipation.
Shock waves can also transfer energy between widely separated scales, removing the local
nature of the turbulent cascade typical of incompressible turbulence. The energy spectrum
may change only slightly, however, as the Fourier transform of a step function representative
of a perfect shock wave is k−2. Integrating in three dimensions over an ensemble of shocks,
one finds the differential energy spectrum E(k)dk = ρv2(k)k2dk ∝ k−2dk. This is just
the compressible energy spectrum reported by Porter & Woodward (1994); Porter et al.

(1992, 1994). They also found that even in supersonic turbulence, the shock waves do not
dissipate all the energy, as rotational motions continue to contain a substantial fraction
of the kinetic energy, which is then dissipated in small vortices. Boldyrev (2002) has pro-
posed a theory of velocity structure function scaling based on the work of She & Leveque
(1994) using the assumption that dissipation in supersonic turbulence primarily occurs
in sheetlike shocks, rather than linear filaments at the centers of vortex tubes. The first
comparisons to numerical models show good agreement with this model (Boldyrev et al.,
2002a), and it has been extended to the density structure functions by Boldyrev et al.

(2002b). Transport properties of supersonic turbulent flows in the astrophysical context
have been discussed by de Avillez & Mac Low (2002) and Klessen & Lin (2003). The driv-
ing of interstellar turbulence is neither uniform nor homogeneous. Controversy still reigns
over the most important energy sources at different scales. For a more detailed discussion
of ISM turbulence see Elmegreen & Scalo (2004) and Scalo & Elmegreen (2004).
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3.4 Equation of State

As mentioned in Section 3.3.1, the set of hydrodynamical equations has to be closed by
an equation of state (EOS), which describes the relation between pressure P , volume V
and temperature T of the gas. Typical for a closure equation, it cannot be derived from
within the system, but stems from including additional physical phenomena connected to
the properties of the matter. In the simplest description, we consider the ISM as an ideal
gas:

P = RρT (ρ) =
kB

µmp

ρT (ρ), (3.18)

where ρ is the density. The parameters kB, µ, mp are Boltzmann constant, molecular
weight and proton mass. The ideal gas law can also be written as

P = (γad − 1)uρ, (3.19)

where γad is the ratio of specific heats3 of a substance at constant pressure and constant
volume. The variable u represents the specific internal energy (energy per unit mass).
This approximation is roughly accurate for any classical system, composed of particles not
interacting at a molecular level at low pressure and high temperature. In the following
subsections we discuss two astrophysically relevant approximations to the EOS.

3.4.1 Isothermal Equation of State

For the densities and temperatures in molecular clouds, i.e. 1 cm−1 ≤ n(H2) ≤ 107 cm−3

and T ≈ 10 K, the gas can cool very efficiently and the opacities in the molecular lines
involved are low enough for the medium to be optically thin. Hence, treating the gas
isothermally is a good first approximation (e.g. Hayashi & Nakano, 1965; Hayashi, 1966;
Larson, 1969, 1973b, see also the discussion in Section 2.2). With the isothermal sound
speed cs = (RT )1/2 it follows that

P = c2
sρ and γ = 1 (3.20)

3.4.2 Polytropic Equation of State

The true nature of the EOS remains a major theoretical problem in understanding the
fragmentation properties of molecular clouds. Some calculations invoke cooling during the
collapse (Monaghan & Lattanzio, 1991; Turner et al., 1995; Whitworth et al., 1995). Oth-
ers include radiation transport to account for the heating that occurs once the cloud reaches
densities of n(H2) ≥ 1010 cm−3 (Myhill & Kaula, 1992; Boss, 1993), or simply assume an

3The specific heat (also called specific heat capacity) is the amount of heat required to change a unit
mass (or unit quantity, such as mole) of a substance by one degree in temperature.
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adiabatic equation of state once this density is exceeded (Bonnell, 1994; Bate et al., 1995).
Spaans & Silk (2000) showed that radiatively cooling gas can be described by a polytropic
EOS, in which the polytropic exponent γ changes with gas density ρ. Considering a poly-
tropic EOS is still a rather crude approximation. In practice the behavior of γ may be
more complicated and important effects like the temperature of the dust, line-trapping and
feedback from newly-formed stars should also be taken into account (Scalo et al., 1998).
Nevertheless a polytropic EOS gives an insight into the differences that a departure from
isothermality evokes.

Following the considerations in Section 2.2, we use a polytropic equation of state to
describe the thermal state of the gas in our models (see Chapter 6) with a polytropic
exponent that changes at a certain critical density ρc from γ1 to γ2

P = K1 ργ1 ρ ≤ ρc

P = K2 ργ2 ρ > ρc, (3.21)

where K1 and K2 are constants, and P and ρ are the thermal pressure and gas density.
For an ideal gas, the equation of state is

P =
kB

µmp

ρT (ρ), (3.22)

where T is the temperature, and kB, µ, and mp are the Boltzmann constant, molecular
weight, and proton mass. So the constants K1 and K2 can be written as

K1 =
kB

µmp

ρ1−γ1T1(ρ)K2 =
kB

µmp

ρ1−γ2T2(ρ). (3.23)

Since K1 and K2 are defined as constants in ρ, it follows for T

T1 = a1 ργ1−1 ρ ≤ ρc

T2 = a2 ργ2−1 ρ > ρc, (3.24)

where a1 and a2 are constants. The initial conditions define a1

a1 = T0ρ
1−γ1

0 (3.25)

At ρc it holds that
T1(ρc) = T2(ρc) (3.26)

Thus, a2 can be written in terms of a1

a2 = a1ρ
γ1−γ2

c . (3.27)

According to the analytical work by Jeans (1902) on the stability of a self-gravitating,
isothermal medium the oscillation frequency ω and the wave number k of small perturba-
tions satisfy the dispersion relation in Equation 3.13. The perturbation is unstable if the
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Figure 3.1: Local Jeans mass as a function of density for four different critical densities nc. For
comparison the dependence is also shown for the isothermal case (dotted line). The Jeans mass
changes at the critical density. The initial mean density and the density at which sink particles
form are represented by the vertical dashed lines. The dashed-dotted lines show the minimal
resolvable mass for the runs with the highest resolution. For a description of the simulations see
Chapter 6.

wavelength λ exceeds the Jeans length λJ = 2π/kJ or, equivalently, if the mass exceeds the
Jeans mass in Equation 3.15. In a system with a polytropic EOS, i.e. P = Kργ, the sound
speed is

cs =

(

dP

dρ

)1/2

= (Kγ)1/2ρ(γ−1)/2 . (3.28)

Thus, the Jeans mass can be written as

MJ =
π5/2

6

(

K

G

)3/2

γ3/2ρ(3/2)γ−2 . (3.29)

Using equations 3.23, 3.24, 3.25, 3.27 and 3.29 one finds

MJ1 =
π5/2

6

(

kBT0ρ
1−γ1

0

Gµmp

)3/2

γ
3/2
1 ρ(3/2)γ1−2 ρ ≤ ρc,
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MJ2 =
π5/2

6

(

kBT0ρ
1−γ1

0

Gµmp

)3/2

γ
3/2
2 ρ(3/2)(γ1−γ2)

c ρ(3/2)γ2−2 ρ > ρc.

The sound speed changes when the polytropic index changes at ρc, so MJ also varies such
that

MJ1

MJ2

=

(

γ1

γ2

)
3

2

. (3.30)

In Figure 3.1 we see this change as a small jump in the evolution of MJ with density. This
jump occurs at the critical density where we change from polytropic index γ1 to polytropic
index γ2. If we use γ1=0.7 and γ2=1.1 as justified in Section 2.2 then MJ1 ∝ ρ−0.95.

During the initial phase of collapse, the turbulent flow produces strong ram pressure
gradients that form density enhancements. Higher density leads to smaller local Jeans
masses, so these regions begin to collapse and fragment. Simulations with an SPH code
different from the one used in the present work show that fragmentation occurs more
efficiently for smaller constant values of γ, and less efficiently for γ > 1, cutting off entirely
at γ > 1.4 (Li et al., 2003; Arcoragi et al., 1991). For filamentary systems, fragmentation
already stops for γ > 1 (Kawachi & Hanawa, 1998). For a more thorough discussion see
Chapter 6.

3.5 Timescales

At this point we summarize some important timescales for future reference. Comparing
the timescales enables us to determine the physical processes that influence the dynamical
evolution of star-forming gas.

• Free-fall Time:

A homogeneous sphere of pressureless material of density ρ0 will collapse to a point
within a free-fall time tff , where

tff =

√

3π

32Gρ0

. (3.31)

For a derivation see Stahler & Palla (2004).

• Sound-crossing Time:

The time a molecular cloud needs to react to a change in pressure is given by the
sound-crossing time ts, which is approximately given by the time a sound wave needs
to cross the cloud of size L

ts =
L

cs

= L

(

dP

dρ

)−1/2

. (3.32)
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For an isothermal situation with a sound speed cs =
√
RT this simplifies to

ts =
L√
RT

. (3.33)

• Turbulent Crossing Time:

The time ttc in which matter can be transported by a turbulent flow. It is given by

ttc =
L

vrms

=
L

Mcs

, (3.34)

where L, vrms and M represent, respectively, the size of the cloud, the root mean
square velocity of the gas and the associated Mach number. Thus ttc and ts are
connected via

ts
ttc

= M. (3.35)

• Cooling Time:

For our simulations with an implicit calculated cooling function (see Chapter 7) we
also have to take into account the time it takes a cloud of a certain temperature T
to cool to zero temperature if there are no heat sources:

tcool ≡
Eint

|Ėcool|
. (3.36)

For a monatomic gas with a total number density of particles ntot, and for Λ being
the cooling rate in units of erg cm−3 s−1, the cooling time is given by

tcool ≃
3
2
ntotkT

Λ
. (3.37)

The cooling function Λ depends on the temperature T and the number density ntot.

• Hubble Time:

For any cosmological simulation the Hubble time is of importance. The distance
between two fundamental observers l(t) changes with time t according to

l(t) = l(t0)R(t), (3.38)

where t0 denotes the present time and R(t) is the scale factor, which is a universal
function with R(t0) = 1. The expansion rate H(t) is defined by

H(t) ≡
˙R(t)

R(t)
. (3.39)

At the present time, H(t0) = Ṙ(t0) ≡ H0 is the Hubble constant. The Hubble time tH
can be expressed at any redshift z as

tH =
1

H(t)
=

1

H0(1 + z)3/2
. (3.40)



Chapter 4

The Numerical Scheme

Most of the calculations presented in this work were done with the publicly available code
gadget by Springel et al. (2001) which we have modified as explained in this chapter.
gadget evolves collisionless particles with the traditional N -body approach, and self-
gravitating gas by smoothed particle hydrodynamics (SPH), as explained in Section 4.1.
gadget features a parallel version that has been designed to run on massively parallel
supercomputers with distributed memory. It uses a tree algorithm1 (octal-tree, for details
see Barnes & Hut, 1986) to compute gravitational forces. Periodic boundary conditions
are supported by means of an Ewald summation technique (Hernquist et al., 1991). The
code uses individual and adaptive timesteps for all particles, and it combines this with
a scheme for dynamic tree updates. Due to its Lagrangian nature, gadget thus allows
a very large dynamic range to be bridged, both in space and time. For further detail
see the code paper by Springel et al. (2001). Because we are interested in gravoturbulent
fragmentation, we include turbulence in our version of the code that is driven uniformly
with the method described by Mac Low et al. (1998) and Mac Low (1999). We give more
details in Section 3.3.3. During gravoturbulent fragmentation it is necessary to follow the
gas over several orders of magnitude in density. SPH simulations of collapsing regions
become slower as more particles move to higher density regions and hence have small
timesteps. Replacing dense cores by accreting sink particles leads to considerable increase
of the overall computational performance. In Section 4.3 we introduce the concept of
sink particles which we have implemented into gadget and which allows us to follow the
dynamical evolution of the system over many free-fall times. In Section 4.5 we also give
an overview of the chemistry and cooling routines that we have added to the code.

1In tree methods the particles are arranged in a hierarchy of groups. When the force on a particu-
lar particle is computed, the force exerted by distant groups is approximated by their lowest multipole
moments.
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4.1 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) (Gingold & Monaghan, 1977; Lucy, 1977) is a
computational method used for simulating fluid flows. It has been used in many fields
of research, including astrophysics, ballistics, vulcanology and tsunami research. It is a
Lagrangian method and the resolution of the method can easily be adjusted with respect
to variables such as the density.

The SPH method works by dividing the fluid into a set of discrete ‘fluid elements’. These
particles have a spatial distance (known as the ‘smoothing length’, typically represented
in equations by h), over which their properties are ‘smoothed’ by a kernel function. Any
physical quantity at any position ~r can be obtained by summing the relevant properties
of all the particles which lie within a smoothing length2. For example, the temperature
of particle i depends on the temperatures of all the particles within a radial distance h of
particle i. The contributions of each particle to a fluid property are weighted according
to their distance from the particle of interest. Mathematically, this is given by the kernel
function W which is usually 1-dimensional, i.e. assumes spherical symmetry. There are a
variety of appropriate functions proposed in the literature, ranging from Gaussian functions
(Gingold & Monaghan, 1977), to spline functions of third or higher order and with compact
support (e.g. Monaghan & Lattanzio, 1985; Monaghan, 1985). These kernels interpolate
at least to second order in h, and are always positive in the range of interest. Furthermore,
all are smooth functions with well defined first derivatives. The spline functions have the
advantage, that there is a clear limit to the number of particles contributing to the average
process due to their compact support. For others one has to implement an artificial cut-off.
In gadget the smoothing kernel is a spline of the form (Monaghan & Lattanzio, 1985):

W (r, h) ≡ 8

πh3
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Note that the smoothing kernel in gadget is defined in the interval [0, h] and not on [0, 2h]
as it is frequently done in other SPH calculations.

In SPH, the value of any quantity A at a position ~r is given by the equation

A(~r) =
∑

i

mi
Ai

ρi

h−3
i W

(

|~r − ~ri|
hi

)

, (4.2)

where mi is the mass of particle i, Ai is the value of the quantity A for particle i, ρi is
the density associated with particle i, and W is the kernel function mentioned above. For
example, the density at position ~r can be expressed as:

ρ(~r) =
∑

i

mih
−3
i W

(

|~r − ~ri|
hi

)

, (4.3)

2The number of smoothing lengths used is just convention and can change between different implemen-
tations.
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where the summation over i includes all particles in the simulation. Similarly, the spatial
derivative of a quantity can be obtained by using integration by parts to shift the ∇-
operator from the physical quantity to the kernel function,

∇A(~r) =
∑

i

mi
Ai

ρi

h−4
i W ′

(

|~r − ~ri|
hi

)

~r − ~ri

|~r − ~ri|
, (4.4)

where W ′(s) ≡ dW/ds. Nevertheless in practice we apply a spline kernel with compact
support (see definition of the kernel in Equation 4.1). The summation becomes finite
due to the fact that the kernel function has compact support. This implies that we take
only contributions from a few close neighboring particles into account. It has proven
useful to determine h such that the number of neighbors always lies in the range from
30 to 70. In our simulations it varies between 35 and 45. The fact that the summation
does not need to be over all particles greatly reduces the computational costs of all SPH
calculations. Although the size of the smoothing length can be fixed in both space and
time, this does not take advantage of the full power of SPH. By assigning each particle
its own smoothing length and allowing it to vary with time, the resolution of a simulation
can be made to automatically adapt itself depending on local conditions. For example, in
a very dense region where many particles are close together the smoothing length can be
made relatively short, yielding high spatial resolution. Conversely, in low-density regions
individual particles are far apart and the resolution is low, optimizing the computation for
the regions of interest.

However, variable smoothing lengths require special care to ensure force antisymmetry.
When applying the smoothing procedure in the most straightforward way, the mutual
forces between two particles i and j are no longer necessarily anti-symmetric for different
smoothing lengths hi and hj. For example, particle i will ”see” particle j, but the reverse
need not be the case. Newton’s third law is violated and momentum is no longer a conserved
quantity. Following Benz (1990), gadget solves this problem by simply replacing h in all
previous equations by the arithmetic average of the smoothing length for all particle pairs,

h −→ hij =
hi + hj

2
. (4.5)

Combined with an equation of state and an appropriate time integration scheme, SPH
can simulate hydrodynamic flows efficiently. However, SPH tends to smear out shocks and
contact discontinuities to a much greater extent than state-of-the-art grid-based schemes.
The Lagrangian-based adaptivity of SPH is analogous to the adaptivity present in grid-
based adaptive mesh refinement codes, though in the latter case one can refine the mesh
spacing according to any criterion selected by the user. Because it is Lagrangian in nature,
SPH is limited to refining based on density alone.

Often in astrophysics, one wishes to model self-gravity in addition to pure hydrody-
namics. The particle-based nature of SPH makes it ideal to combine with a particle-based
gravity solver, for instance tree gravity, particle mesh, or particle-particle mesh.
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4.2 Resolution Issues

All numerical simulations, Eulerian or Lagrangian, have to be able to prevent the non-
physical growth of numerical perturbations and to resolve formed structures. Only then
can they give reliable and realistic results. What does his mean for SPH simulations?

SPH particles are allowed to move around and increase the resolution where needed (e.g.
regions of high density). The artificial growth of perturbations is inhibited, provided that
the SPH calculations give accurate estimates for these properties, i.e. there is adequate
sampling of the fluid with enough particles of similar properties within each kernel as
described in the preceding section. Bate & Burkert (1997) demonstrated that adequate
sampling means in this case that the local Jeans mass MJ should be resolved at all times.
By this they mean that the minimum resolvable mass by SPH, Mres should fulfill the
condition

2Mres
<∼ MJ. (4.6)

Hereby Mres denotes the mass within the radius of a kernel, with Mres = Nneighmpart,
where Nneigh is the number of neighbors within a kernel (∼ 40 in our simulations) and
mpart the mass of each SPH gas particle. With this Jeans condition and the definition of
the isothermal Jeans mass (Equation 3.15) we find the following relation between the total
number of particles N in a simulation with total gas mass M and the maximum resolvable
density ρmax:

2Nneigh
M

N
<∼ MJ =

π

6
(
π

G
)3/2ρ−1/2

max c3
s ⇐⇒ ρmax =

π5c6
s

144G3M2N2
neigh

N2 (4.7)

For a polytropic equation of state the Jeans mass changes for a polytropic index γ < 4/3
according to Equation 3.29 and therefore the number of particles needed rises accordingly
for decreasing MJ . For example, Figure 3.1 shows the values for Mres (marked by the
horizontal line) in our simulations discussed in Section 6.

4.3 Sink Particles

4.3.1 The Concept

Numerical simulations of star formation in a turbulent environment lead often to increas-
ing densities in unpredictable regions of the computational volume. As we have seen in
Section 4.2 there is a maximum resolvable density at which we have to stop the simula-
tions to guarantee reliable results. Moreover the growing density contrast demands an ever
decreasing minimum time step.
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Introducing sink particles allows us to follow the dynamical evolution of the system
over many free-fall times. We have specifically included sink particles in the gadget code.
Once the density contrast in the center of a collapsing cloud core exceeds the maximum
resolvable density ρmax, as calculated in the preceding section in Equation 4.7, the entire
central region of the core is replaced by a ‘sink particle’ (Bate, Bonnell & Price, 1995). It
is a single, non-gaseous, massive particle that only interacts with normal SPH particles via
gravity. Gas particles that come within a certain radius of the sink particle, the accretion
radius racc, are accreted if they are bound to the sink particle. This allows us to keep track
of the total mass, the linear and angular momenta of the collapsing gas.

Each sink particle defines a control volume with a fixed radius. This radius is chosen
to be the Jeans length at the threshold density ρmax, following Bate & Burkert (1997). We
cannot resolve the subsequent evolution in its interior. Combination with a detailed one-
dimensional implicit radiation hydrodynamic method shows that a protostar forms in the
very center about 103 yr after sink creation (Wuchterl & Klessen, 2001). We subsequently
call the sink protostellar object or simply protostar. Altogether, the sink particle represents
only the innermost, highest-density part of a larger collapsing region.

In reality, however, at some late phases of the collapse additional effects become im-
portant. Conservation of angular momentum enforces the formation of an accretion disk,
where matter can only stream toward the center on a viscous time scale. Magnetic fields
play an important role and may drive outflows along the spin axis. Finally at the very
center, the density might reach the level at which nuclear fusion sets in. All these effects
are not included in our code. We are interested in the earlier phases of fragmentation and
collapse.

4.3.2 Sink Particles in a Parallel Code

The parallel version of gadget distributes the SPH particles onto the individual proces-
sors, using a spatial domain decomposition. Each processor hosts a rectangular piece of
the computational volume. If the position of a sink particle is near the boundary of this
volume, the accretion radius overlaps with domains on other processors. We therefore com-
municate the data of the sink to all processors. Each processor searches for gas particles
within the accretion radius of the sink. Three criteria determine whether the particle gets
accreted or not. First, the particle must be bound to the sink particle, i.e., the kinetic
energy must be less than the magnitude of the gravitational energy. Second, the specific
angular momentum of the particle must be less than what is required to move on a circular
orbit with radius racc around the sink particle. Finally, the particle must be more tightly
bound to the candidate sink particle than to other sink particles. If all tests are satisfied
the gas particle is considered accreted, i.e. its mass, velocity and momenta are added to
those of the sink particle.
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Once the central region of a collapsing gas clump exceeds a given density contrast
∆ρ/ρ, we introduce a new sink particle. The procedure for dynamically creating a sink
particle is as follows. We search all processors for the gas particle with the highest density.
When this density is above the threshold and when its smoothing length is less than half
the accretion radius, then the gas particle is considered a candidate sink particle. If the
accretion radius around the candidate particle overlaps with another domain, its position
is sent to the other processors. Every processor searches for the particles that exist in its
domain and, simultaneously, within the accretion radius of the candidate particle. These
particles and the candidate particle undergo a series of tests to decide if they should form
a sink particle. First, the new sink particle must be the only sink within two accretion
radii. Second, the ratio of thermal energy to the magnitude of the gravitational energy
must be less than 0.5. Third, we require that the total energy is less than zero. Finally,
the divergence of the accelerations on the particles must be less than zero. If all these tests
are passed, the particle with the highest density turns into a sink particle with position,
velocity and acceleration derived from the center of mass values of the original gas particles
within racc. If these original particles are distributed over several processors the center of
mass values have to be communicated correctly to the processor that hosts the new sink
particle.

Ideally, the creation of sink particles in an SPH simulation should not affect the evo-
lution of the gas outside its accretion radius. In practice there is a discontinuity in the
SPH particle distribution due to the hole produced by the sink particles. This affects the
pressure and viscous forces on particles outside the sink. We have implemented adequate
boundary conditions at the ‘surface’ of the sink particles as described in detail in Bate et al.

(1995) to correct for these effects.

Following Bate et al. (1995) we use the Boss & Bodenheimer (1979) standard isother-
mal test case for the collapse and fragmentation of an interstellar cloud core to check our
sink implementation. Initially, the cloud core is spherically symmetric with a small m = 2
perturbation and uniformly rotating. As gravitational collapse proceeds a rotationally
supported high-density bar builds up in the center embedded in a disk-like structure. The
two ends of the bar become gravitationally unstable, resulting in the formation of a bi-
nary system. We see no further subfragmentation (see also, Truelove et al., 1997). These
tests show that the precise creation time and the mass of the sink particle at the time of
its formation can vary somewhat with the number of processors used. We also find that
simulations with different processor numbers show small deviations in the exact positions
and velocities of the gas particles. These variations are due to the differences in the extent
of the domain on each processor. When the force on a particular particle is computed, the
force exerted by distant groups is approximated by their lowest multipole moments. Since
each processor constructs its own Barnes & Hut tree, differences in the tree walk result in
differences in the computed force. Hence, the formation mass and time of sink particles
depend on the computational setup. Nevertheless, these differences are only at the 0.1%
level and the total number of collapsing objects is not influenced by changes in the number
of processors.
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Figure 4.1: Column density and velocity field in the xy-plane of the runs R6k2, R6k2r1, R6k2r2
and R6k2r3 (for details on the simulations see Chapter 6 and Table 6.1). The 4 runs differ in
the realizations of the Gaussian velocity field but they have the same Mach number and driving
scale. All runs are plotted at the same time before self-gravity has been turned on, but at a time
when dynamical equilibrium has been reached.

4.4 Turbulent Driving

We generate turbulent flows by introducing Gaussian velocity fluctuations. We include this
scheme specifically to the standard gadget code. We usually start our simulations with
a homogenous density distribution and zero velocity. We then add velocities according to
a random velocity field which we calculate separately for the three velocity components
vx, vy, vz. A Gaussian field p(~r) at position ~r is completely characterized by its first two
moments, its mean value p0 ≡ 〈p(~r′)〉~r′ and its standard deviation σ(~r) ≡ 〈p(~r′)p∗(~r′+~r)〉~r′ ,
which is equivalent to the Fourier transform of the power spectrum P (~k) (Lesieur, 1997).

For an isotropic fluctuation spectrum we get P (k) = P (|~k|). By defining a normalization
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Figure 4.2: Column density and isodensity contours in the xy-plane for the same runs as depicted
in Figure 4.1. All runs are plotted at the same time before self-gravity has been turned on, but
at a time when dynamical equilibrium has been reached. This is to illustrate various effects (see
Section 4.4).

p0 and a power spectrum P (k) in Fourier space, all statistical properties of the field p(~r)
are determined.

The values P (k) specify the contribution of wave numbers k to the statistical fluctuation
spectrum. In Gaussian random fields, the phases are arbitrarily chosen from a uniform
distribution in the interval [0, 2π], and the amplitudes for each mode k are randomly
drawn from a Gaussian distribution with width P (k) centered on zero. Since waves are
generated from random processes, the properties of an ensemble of fluctuation fields are
determined only in a statistical sense. Individual realizations may deviate considerably
from this mean value, especially at small wave numbers k, i.e. at long wavelengths, where
only a few modes (kx, ky, kz) contribute to a wave number k = |~k|.
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Figure 4.3: Column density and isodensity contours in the xy-plane for the same runs as depicted
in Figure 4.1. All runs are plotted at the time where 50 % of the gas has been accreted onto sink
particles.

In most of our simulations we use a power spectrum

P (k) ∝ kN , (4.8)

with N=0. Additionally, we only drive on scales with wave numbers in a narrow interval
k − 1 ≤ |~k| ≤ k, where k = L/λd counts the number of driving wavelengths λd in a box of
size L (Mac Low et al., 1998). This offers a simple approximation to driving mechanisms
that act on a single scale. To drive the turbulence, this fixed pattern is normalized to
maintain constant kinetic-energy input rate Ė = ∆E/∆t (Mac Low, 1999). Self-gravity is
turned on only after the turbulence reaches a state of dynamical equilibrium. The mean
root square velocity of the simulated gas has then reached a certain Mach number (see
Figure 4.4).

As an example we show the velocity fields for 4 different runs in Figure 4.1. All models
shown are driven with velocity fields that have the same power spectrum that acts on scales
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Figure 4.4: Root mean square velocity of the gas particles as a function of time from the same
runs as shown in Figure 4.1 with different realizations of the Gaussian velocity field but with the
same driving scale.

between k = 1 and k = 2 and are driven with the same energy rate. They differ only in the
random number that was used to generate the Gaussian velocity field. Figure 4.2 shows the
density distribution after dynamical equilibrium has been achieved, but without considering
self-gravity of the gas. All runs show mainly large scale structures as is expected for this
scale of driving. Density enhancements occur at different locations due to the different
converging turbulent flows. Figure 4.3 shows the density distribution of the same runs
but now with self-gravity included. At the time depicted the sink particles have accreted
approximately 50 % of the gas. Filamentary structure is visible in all runs, but the spatial
distribution differs. This also influences the time and the number of sink particle creation.
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4.5 Chemistry and Cooling

In this section we give an overview of our additions to gadget that allow us to follow
the dominating cooling processes and chemical reactions in protogalactic gas of zero or
low metallicity (see Chapter 7). In large regions of our parameter space of density and
temperature the cooling is dominated by the non-equilibrium chemistry of H2 (Glover,
2003). To follow the chemistry, we associate a set of chemical abundances with each SPH
particle. Just as with the other fluid properties, such as density or internal energy, these
abundances represent averages over the local fluid flow (see Section 4.1). For each SPH
particle, we therefore must solve a set of chemical equations of the form

dxi

dt
= Ci − Dixi, (4.9)

where xi is the fractional abundance of species i, computed with respect to the total number
density of hydrogen nuclei (i.e., xi = ni/n, where ni is the number density of species i and n
is the number density of hydrogen nuclei), and where Ci and Di are terms representing the
chemical creation and destruction of species i. The values of the creation and destruction
terms generally depend on both the density and temperature of the gas, as well as on its
chemical composition.

In our code we track the abundances of H2, H+, C ii , O ii and Si ii out of equilibrium.
Using the conservation laws for charge and total number of nuclei of the elements, we also
follow H, e−, C, O and Si. Because H− and H+

2 reach equilibrium on very short time
scales, we do not attempt to follow their equilibrium directly in our simulations. Instead,
their abundances are computed only as required, under the assumption that both reach
equilibrium instantaneously. In the case of H−, one can readily show that equilibrium is
reached on a timescale

teq,H− ≃ (kadnH + kmnnH+)−1, (4.10)

where nH is the hydrogen atom density, nH+ is the H+ density, and kad and kmn are the as-
sociative detachment and mutual neutralization rate coefficients, respectively. We assume
that other processes responsible for destroying H−, such as photodetachment (reaction 6 in
Table B.1) can be neglected. If nH+ ≪ (kad/kmn)nH then the associative detachment term
dominate and since kad ≈ 10−9 cm3s−1 (to within an order of magnitude), it follows that
teq,H− ≈ 109n−1

H s. On the other hand, if nH+ ≫ (kad/kmn)nH, then the mutual neutraliza-

tion term dominates, in which case teq,H− ≈ 5 × 105
√

Tn−1
H+ s, again to within an order of

magnitude. In either case, the equilibrium timescale is shorter than either the cooling time
and the free-fall time of the gas (which are typically much longer than a Myr). In more
ionized gas, or at higher densities, teq,H− becomes even smaller relative to the cooling time
tcool and the free-fall time tff .
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The case of H+
2 is very similar: one can show that it reaches chemical equilibrium on a

timescale
teq,H+

2
≃ (kctnH + kdrne−)−1, (4.11)

where kct and kdr are the rate coefficients of the charge transfer and dissociative recombi-
nation reactions which are the main processes responsible for removing H+

2 from the gas.
Evaluating this expression, we obtain teq,H+

2
≈ 1.6 × 109nH− s in the low ionization limit,

or teq,H+

2
≈ 1.6× 108ne− s in the high ionization limit. Again, these timescale are both very

much shorter than either the cooling time or the free-fall time of the gas.

Because H− and H+
2 reach equilibrium so quickly, we do not attempt to follow their

chemical equilibrium directly in our simulations. Instead, their abundances are computed
only as required, under the assumption that both reach equilibrium instantaneously. This
approximation introduces a certain amount of error into the computed H2 abundance.
However, provided that the timesteps used to evolve the SPH particles in the simulation are
long compared to teq,H− and teq,H+

2
, which we have verified is the case for our simulations, the

size of this error is negligible compared to that arising from the rate coefficient uncertainties
(Glover, 2004).

To solve the chemical equations for a given SPH particle, we make use of a technique
known as operator splitting. We assume that within the current timestep of the SPH parti-
cle, we can solve for the density evolution of the gas separately from its chemical evolution.
The density evolution can then be computed using the same prescription as in standard
SPH (see for details Springel et al., 2001), and the updated gas density is available for use
in the chemical equations. These are then solved implicitly using dvode, a freely available
and well tested double precision ordinary differential equation solver (Brown et al., 1989).
Operator splitting introduces a certain amount of error, as in practice the density should
vary during the chemical timestep. However, the SPH algorithm naturally limits the ex-
tent to which the density can change during a single SPH particle timestep, by making
particles take shorter timesteps in rapidly evolving regions. We therefore expect the error
introduced by this technique to be small.

In common with other authors, we use a simplified reaction network that does not
include the chemistry of minor coolants such as HD or LiH. We also neglect any effects
due to the helium chemistry. Neglect of the minor coolants is justified by the fact that
H2 dominates the cooling of the gas for all of the temperatures and densities found in our
simulations (Flower & Pineau des Forêts, 2001). At worst, we may overestimate the final
temperature of the gas slightly.

Neglect of the helium chemistry is also easily justified, provided that we assume that the
bulk of the helium in the gas is in neutral form, as in this case the only reactions involving
helium that play any role in determining the H2 abundance – the collisional dissociation
of H− and H2 by He – are far less effective than the corresponding reactions with H
(Abel et al., 1997). So the error in the final H2 abundance will be small. If significant
amounts of ionized helium are present, then our assumption introduces a larger error, since
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we will underestimate the actual electron abundance in the gas, and hence the H− formation
rate. However, even in this case, we would expect the error in the final H2 abundance to
be relatively small, owing to the small abundance of helium relative to hydrogen. The
chemical reactions included in our network are summarized in Table B.1. In most cases,
we also list the reference used for the adopted rate coefficient. The exceptions are the
associative detachment and mutual neutralization reactions, which we discuss below.

Table B.1 lists three photochemical reactions: the photodetachment of H− and the
photodissociation of H+

2 and H2. When simulating protogalaxies (see Section 7), we assume
illumination by an external background radiation spectrum with the shape of a 105 K black-
body, as should be typical of the brightest population III stars (Cojazzi et al., 2000). We
cut off this spectrum at energies greater than 13.6 eV to account for absorption by neutral
hydrogen in the protogalactic gas and in the intergalactic medium. The strength of the
background is specified in terms of the flux at the Lyman limit,

J(να) = 1021J21erg s−1 cm−2 Hz−1 sr−1. (4.12)

If sufficient H2 forms within the protogalaxy, it will begin to self-shield, reducing the
effective photodissociation rate. An exact treatment of the effects of self-shielding is com-
putationally unfeasible, as it would require us to solve for the full spatial, angular and
frequency dependence of the radiation field at every timestep. Instead, we have chosen to
incorporate it in an approximate manner. We assume that the dominant contribution to
the self-shielding at a given point in the protogalaxy comes from gas close to that point, and
so only include the contribution to the self-shielding that comes from the nearby H2. To
implement this approximation numerically, we make use of the fact that gadget already
defines a suitable local length scale: the SPH smoothing length h , which characterizes
the scale over which the flow variables are averaged. In gadget, as in all modern SPH
codes, h is allowed to vary from point to point within the flow and is automatically ad-
justed in order to keep the mass enclosed within a sphere of radius h roughly constant (see
Section 4.1). Further details can be found in Springel et al. (2001).

In our calculation of the H2 column density used to compute the degree of self-shielding,
we include only H2 that lies within a single smoothing length of the point of interest. We
justify this approximation by noting that in our simulations, widely separated SPH par-
ticles typically move with a significant velocity relative to one another. Consequently,
the contribution to the total absorption arising from one particle is Doppler shifted when
viewed from the rest frame of the other particle. If this Doppler shift is large compared to
the line widths of the Lyman-Werner band transitions, then the effect will be to dramati-
cally reduce the extent to which the absorption contributes to the total self-shielding. On
the other hand, gas close to the point of interest will typically have a much smaller relative
velocity, and so will contribute far more effectively. Our approximation considers only the
latter contribution, and assumes that the former contribution is completely negligible. In
practice, of course, the distant gas is likely to contribute to some non-negligible extent,
and so we will tend to underestimate the true amount of self-shielding, unless the gas infall
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is highly supersonic. Nevertheless, we believe that our approximation remains useful as
it is computationally efficient, and also represents an improvement over previous optically
thin treatments (e.g. Machacek et al., 2001; Ricotti et al., 2002). Finally, we assume that
ionization from X-rays or cosmic rays is negligible, although previous work suggests that
even if a low level of ionization is present, it will not have a major effect on the outcome
of the collapse (Glover & Brand, 2003; Machacek et al., 2003).

A second major modification that we have made to the gadget code is the inclusion of
a treatment of radiative heating and cooling. Cooling in our model comes from three main
sources: electron impact excitation of atomic hydrogen (a.k.a. Lyman-f cooling), which is
effective only above about 8000 K, rotational and vibrational excitation of H2, and Compton
cooling. Rates for Lyman-f cooling and Compton cooling were taken from Cen (1992), while
for H2 ro-vibrational cooling we used a cooling function from Le Bourlot et al. (1999).
In models where an ultraviolet background is present, we include the effects of heating
from the photodissociation of H2, assuming that 0.4 eV of energy per photodissociation is
deposited as heat (Black & Dalgarno, 1977). We also include heating due to the ultraviolet
pumping of H2, following Burton et al. (1990), although this is only important in high
density gas (n ≥ 104cm−3). To incorporate the radiative heating and cooling terms into
gadget, we again use an operator splitting technique. In this case, we assume that the
change in the internal energy of the gas due to pressure work can be computed separately
from that due to radiative heating and cooling. The former can then be calculated in
the same fashion as in the standard gadget code, while the latter can be computed by
solving:

dǫ

dt
= Γ − Λ, (4.13)

where ǫ is our initial estimate of the internal energy density of the gas, which already
includes the effects of the pressure work term. Γ represents the heating rate per unit volume
and Λ represents the cooling rate per unit volume. We solve this equation implicitly using
dvode at the same time that we solve the chemical equations. Again, the use of operator
splitting introduces some error into the thermal evolution of the gas, but, as before, we
expect this error to be small. For a complete list of the chemical reactions and further
details on the implementation we refer the reader to Appendix B.

4.6 Periodic Boundary Conditions

Each choice of boundary conditions possesses a number of advantages and disadvantages.
In all our simulations we use fully periodic boundary conditions. The fully periodic choice
constrains the distribution of matter in a cube of finite size to appear periodic and implies
particular assumptions about long-range tidal effects. These observationally unjustified
assumptions give rise to an anisotropy in the force field due to the fact that there are more
particles along diagonal lines of the periodized cube than along the edges. However, our
choice is motivated by the demands of the problems that we investigate. Simulating the
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dynamical evolution and fragmentation in the interior of a molecular cloud, a process that
finally leads to the formation of new stars, requires periodic boundaries to prevent the whole
object from collapsing to the center. The situation is quite similar in cosmological large-
scale structure simulations, where periodic boundaries mimic the homogeneity and isotropy
of the initial matter distribution. Hernquist et al. (1991) showed that in simulations with
fully periodic boundary conditions the linear evolution of density fluctuations agrees well
with analytic calculations. In Gadget periodic boundaries are implemented by means
of the Ewald summation technique (Hernquist et al., 1991; Springel et al., 2001). This
technique has been used extensively in solid-state physics, especially in molecular dynamics,
where periodic boundaries are a natural requirement.



Chapter 5

Angular Momentum Evolution

In this chapter we investigate the rotational properties and angular momentum evolution of
prestellar and protostellar cores formed from gravoturbulent fragmentation of interstellar
gas clouds using hydrodynamic simulations. We find the specific angular momentum j
of molecular cloud cores in the prestellar phase to be on average 〈j〉 = 7 × 1020 cm2 s−1

in our models. This is comparable to the observed values. A fraction of those cores
are gravitationally unstable and go into collapse to build up protostars and protostellar
systems, which then have 〈j〉 = 8×1019 cm2 s−1. This is one order of magnitude lower than
that of their parental cores and in agreement with observations of main-sequence binaries.
The loss of specific angular momentum during collapse is mostly due to gravitational
torques exerted by the ambient turbulent flow as well as by mutual protostellar encounters
in a dense cluster environment. Magnetic torques are not included in our models, these
would lead to even larger angular momentum transport.

The ratio of rotational to gravitational energy β in cloud cores that go into gravita-
tional collapse turns out to be similar to the observed values. We find that β is roughly
conserved during the main collapse phase. This leads to the correlation j ∝ M2/3, between
specific angular momentum j and core mass M . Although the temporal evolution of the
angular momentum of individual protostars or protostellar systems is complex and highly
time-variable, this correlation holds well in a statistical sense for a wide range of turbulent
environmental parameters. In addition, high turbulent Mach numbers result in the forma-
tion of more numerous protostellar cores with, on average, lower mass. Therefore, models
with larger Mach numbers result in cores with lower specific angular momentum. We find,
however, no dependence of the angular momentum on the spatial scale of the turbulence.
Our models predict a close correlation between the angular momentum vectors of neigh-
boring protostars during their initial accretion phase. Possible observational signatures
are aligned disks and parallel outflows. The latter are indeed observed in some low-mass
isolated Bok globules.
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5.1 Initial Conditions and Model Parameters

The suite of models considered here consists of 12 numerical simulations where turbulence is
maintained with constant root-mean-square Mach numbers in the range 2 ≤ M ≤ 10. This
roughly covers the range observed in typical Galactic molecular clouds. All our simulations
start from a cube with homogeneous density and periodic boundary conditions. We apply
a non-local scheme that inserts energy in a limited range of wave numbers at a given rate
(see Section 4.4).We distinguish between turbulence that carries its energy mostly on large
scales, at wave numbers 1 ≤ k ≤ 2, on intermediate scales, i.e. 3 ≤ k ≤ 4, and on small
scales with 7 ≤ k ≤ 8. The corresponding wavelengths are ℓ = L/k, where L is the
total size of the computational volume. The models are labeled mnemonically as MMkk,
with rms Mach number M and wave number k. After 1.5 free-fall times we turn on self-
gravity and continue driving. Each of these simulations contains 205379 SPH particles.
We also consider a model that is globally unstable and contracts from an initial Gaussian
random density field without turbulence (for details see Klessen & Burkert, 2000, 2001). It
is called GA and was run with 500000 particles. The main parameters are summarized in
Table 5.1. Note that the final star formation efficiency varies between the different models,
as indicated in column 5 of Table 5.1. This simply reflects the evolutionary stage at the
time when we stop the calculation. In some cases the accretion timescale is too long to
follow the simulation to high efficiencies.

Table 5.1: Sample parameters, name of the environment used in the text consisting of the Mach
number M and the driving scale k (GA denotes the model with initial Gaussian density), number
N of protostellar objects (i.e. sink particles in the centers of protostellar cores) at the final stage
of the simulation, percentage of accreted mass at the final stage Macc/Mtot, parameter A see
Equation 5.5, parameter B see Equation 5.9

Name k M N Macc/Mtot A B
[%] [1020 cm2 s−1]

M2.0k2 1..2 2.0 68 75 1.7 1.7
M2.0k4 3..4 2.0 62 48 2.0 2.0
M2.0k8 7..8 2.0 11 66 1.7 1.6
M3.2k2 1..2 3.2 62 80 1.2 1.3
M3.2k4 3..4 3.2 37 82 2.0 1.9
M3.2k8 7..8 3.2 17 60 2.7 2.6
M6k2 1..2 6.0 110 76 1.3 1.3
M6k4 3..4 6.0 60 65 1.5 1.7
M6k8 7..8 6.0 7 4 1.9 1.4
M10k2 1..2 10.0 100 38 1.0 1.0
M10k4 3..4 10.0 10 6 2.0 1.4
M10k8 7..8 10.0 27 8 1.4 1.05
GA ... ... 56 85 1.4 1.05
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5.1.1 Physical scaling and naming convention

In this chapter we use a self-gravitating, isothermal model that studies the interplay be-
tween gravity and gas pressure, it is therefore scale free. Besides the initial conditions,
the dynamical evolution of the system depends only on one parameter, namely the ra-
tio between internal and potential energy. This ratio can be interpreted as dimensionless
temperature T ≡ ǫint/|ǫpot|. Line widths in molecular clouds are super-thermal, implying
the presence of supersonic turbulent motions (Section 2.1). In case of isotropic turbu-
lence, these non-thermal (turbulent) contributions can be accounted for by T , i.e. intro-
ducing a second parameter which can be absorbed by defining an effective temperature

T = T + σ2
turb/R, where R is the universal gas constant. The turbulent velocity disper-

sion is denoted σturb. In case of anisotropic turbulent motions, the system has (locally)
preferred axes and the concept of one single effective temperature is no longer valid.

Scaled to physical units we adopt a gas temperature of 11.3 K corresponding to a sound
speed cs = 0.2 km s−1, and we use a mean density of n(H2) = 105 cm−3, which is typical for
star-forming molecular cloud regions (e.g. in ρ-Ophiuchi, see Motte, André & Neri, 1998).
The mean thermal Jeans mass (see Section 3.3.2) in all models is 〈MJ〉 = 1 M⊙. The
turbulent models contain a mass of 120M⊙ within a cube of size 0.29 pc, and the Gaussian
model has 220M⊙ in a volume of (0.34 pc)3. The global free-fall timescale is τff = 105 yr,
and the simulations cover a density range from n(H2) ≈ 100 cm−3 in the lowest density
regions to n(H2) ≈ 109 cm−3 where the central parts of collapsing gas clumps are converted
into sink particles as described in Section 4.3.

Each sink particle defines a control volume with a fixed radius of 560 AU. We cannot
resolve the subsequent evolution in its interior. After ∼ 103 yr a protostar will form in
the very center of the sink. Because of angular momentum conservation most of the
matter that falls in will assemble in a protostellar disk. It is then transported inward
by viscous and possibly gravitational torques (e.g. Bodenheimer, 1995; Papaloizou & Lin,
1995; Lin & Papaloizou, 1996). With typical disk sizes of the order of several hundred AU,
the control volume fully encloses both star and disk. If low angular momentum material
is accreted, the disk is stable and most of the material ends up in the central star. In this
case, the disk simply acts as a buffer and smooths possible accretion spikes. It will not
delay or prevent the mass growth of the central star by much. However, if material that
falls into the control volume carries large specific angular momentum, then the mass load
onto the disk is likely to be faster than the inward transport. The disk grows large and
may become gravitationally unstable and fragment. This will lead to the formation of a
binary or higher-order multiple (Bodenheimer et al., 2000).

Throughout the next sections, we adopt the following naming convention: In the pre-
collapse phase, we call high-density gas clumps prestellar cores or simply gas clumps. They
build up at the stagnation points of converging flows. The flows result from turbulent
motion that establishes a complex network of interacting shocks. The gas clumps are
identified and characterized using a three-dimensional clump-finding algorithm as described
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in Appendix A of Klessen & Burkert (2000). The density fluctuations in turbulent velocity
fields are highly transient. They can disperse again once the converging flow fades away.
Even clumps that are strongly dominated by gravity may get disrupted by the passage of a
new shock front. For local collapse to result in the formation of stars, Jeans-unstable, shock-
generated density fluctuations must therefore collapse to sufficiently high densities on time-
scales shorter than the typical time-interval between two successive shock passages. We
include in our analysis of the angular momentum only Jeans-unstable gas clumps. Angular
momentum is calculated from the internal clump motions with respect to the location of
the density maximum. These objects correspond to the so called starless cores observed e.g.
by Goodman et al. (1993), Barranco & Goodman (1998), Jijina et al. (1999), and others.
They are thought to collapse and build up a central protostar or protostellar system in the
later stages of evolution. Once collapse has led to the formation of an embedded protostar
(in our scheme identified by a central sink particle) we call the object protostellar core

or also protostar. The angular momentum is obtained as the spin accumulated by the
sink particle during its accretion history. The angular momentum distribution is best
compared with observations of main-sequence binaries as we expect the unresolved star-
disk system interior to the sink particle to break up into a binary or higher-order multiple
(see Section 5.3).

5.2 Molecular Cloud Clumps and Prestellar Cores

Figure 5.1 shows the distribution of the specific angular momenta of the gas clumps
that were identified in the turbulent environment M6k2 (see Table 5.1). We compare
with observational values of prestellar cores taken from Caselli et al. (2002) for (a), from
Goodman et al. (1993), Barranco & Goodman (1998), Jijina et al. (1999) for (b) and from
Pirogov et al. (2003) for (c). According to Goodman et al. (1993) the values for the spe-
cific angular momenta are obtained by using best-fit velocity gradients from maps of ob-
served line-center velocities under the assumption of solid body rotation. The cores in
Goodman et al. (1993), Barranco & Goodman (1998) and Jijina et al. (1999) were mapped
in the (J,K) = (1,1) transition of NH3, whereas the massive cloud cores in Pirogov et al.

(2003) and the dense cloud cores in Caselli et al. (2002) were mapped in N2H
+. As found

in Caselli et al. (2002), the two molecular species trace essentially the same material,
especially in starless cores. Model clumps and observed molecular cloud clumps have
comparable mass spectra (Klessen, 2001) and similar shapes (Klessen & Burkert, 2000;
Ballesteros-Paredes et al., 2003). Figure 5.1 demonstrates that something similar holds for
the distribution of specific angular momenta.

Note that, when transforming from dimensionless code units into physical scales, the
specific angular momentum depends on the mean number density n and the temperature T

as j ∝ T/
√

n(H2). In Figure 5.1a, we use our standard scaling (see Section 5.1) correspond-

ing to regions like the ρ Ophiuchi main cloud (Motte et al., 1998). This is adequate for
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Figure 5.1: The distribution of specific angular momenta of prestellar cores formed in our sim-
ulations using model M6k2 (non-hatched histogram) is compared to the distribution of specific
angular momenta of observed molecular cloud cores (hatched distributions). The observational
data were taken in (a) from Table 5 in Caselli et al. (2002), in (b) from Table 2 in Goodman et al.
(1993), Table 4 in Barranco & Goodman (1998) and Table A2 in Jijina et al. (1999) and in (c)
from Table 7 in Pirogov et al. (2003). We take fj to represent the percentage of the total number
of existing cores in a specific angular momentum bin. We also give mean number densities n
and mean temperatures T for the observations. We use these values to scale the specific angular
momenta in the simulations from dimensionless to physical units (for details see text).

the low-mass cores studied by Caselli et al. (2002), and in Section 5.3 we will furthermore
show that the specific angular momenta of collapsed cores fall into the right range for
main-sequence binaries.
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We find that the specific angular momenta of prestellar cores have values between
1 × 1020 cm2 s−1 and 5 × 1021 cm2 s−1 with a mean value of approximately 〈j〉 ≈ 5 ×
1020 cm2 s−1. This is in good agreement with the Caselli et al. (2002) sample which has
〈j〉 = 7× 1020 cm2 s−1. Their cloud cores have a mean mass of ∼ 6 M⊙, comparable to the
core masses in our simulations. A Kolmogorov-Smirnov (KS) test was performed. We find
that at the 50 % level the distributions are statistically indistinguishable.

However, the cores observed by Goodman et al. (1993) and Pirogov et al. (2003) trace
lower densities and have higher mean masses of around 50M⊙ and 500M⊙, respectively.
In Figure 5.1b we therefore use n(H2) = 1 × 104 cm−3 and T = 10 K for the scaling
of our dimensionless code units leading to 〈j〉 = 1.5 × 1021 cm2 s−1. This matches the
observations, since Goodman et al. (1993) find 〈j〉 = 6 × 1021 cm2 s−1 and a median value
of 3×1021 cm2 s−1. The massive cores mapped by Pirogov et al. (2003) have higher velocity
dispersions, higher kinetic temperatures (20 − 50 K) and densities n(H2) ≥ 1 × 104 cm−3.
The resulting mean specific angular momentum is 〈j〉 = 1.5×1022 cm2 s−1. Again, adequate
scaling in Figure 5.1c results in higher values of j in our models and leads to better
agreement with the observed distribution.

Given the simplified assumptions in our numerical models, we find remarkably good
agreement with the observed specific angular momenta in the prestellar phase. Simi-
lar findings are reported by Gammie et al. (2003). Similar to our study, they follow the
dynamical evolution of an isothermal, self-gravitating, compressible, turbulent ideal gas.
However, they include the effects of magnetic fields and solve the equations of motion using
a grid-based method (the well-known ZEUS code). Their approach is thus complementary
to ours. The j distribution that results from their simulations peaks at 4 × 1022 cm2 s−1.
They fix the mean number density at n(H2) ≈ 1.0 × 102 cm−3 and use T = 10 K. Using
the same physical scaling we get very similar values, i.e. 〈j〉 = 4 × 1022 cm2 s−1.

This mean value of j also falls in the range of specific angular momenta of cores that
form in simulations by Li et al. (2004). They also use a version of the ZEUS code (ZEUS-
MP) to perform high-resolution, three-dimensional, super-Alfvénic turbulent simulations
to investigate the role of magnetic fields in self-gravitating core formation within turbulent
molecular clouds. Adopting the same physical scaling as in Gammie et al. (2003), the
specific angular momentum of their cores takes values between 5 × 1021 cm2 s−1 and 8 ×
1022 cm2 s−1.

5.3 Protostars and Protostellar Systems

Figure 5.2 shows the distribution of specific angular momenta of collapsed cores at four
different stages of mass accretion, ranging from the stage at which 15 % of the total avail-
able mass in the molecular cloud has been accreted onto collapsed cores in Figure 5.2a to
60 % in Figure 5.2d. As in the preceding section we use values from model M6k2. While
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Figure 5.2: Distribution of specific angular momenta of the protostars or protostellar systems at
different evolutionary phases of the numerical model M6k2 as denoted by the local star formation
efficiency in percent ((a)-(d)). We compare with the j-distribution of binaries among nearby G-
dwarf stars from Duquennoy & Mayor (1991) (for details see text) in (e) and with the distribution
of specific angular momenta of binaries in the Taurus star-forming region from Figure 5 in Simon
(1992) in (f). Again, fj represents the distribution function which is normalized to 1.

the distribution of j narrows during the collapse sequence, the mean specific angular mo-
mentum remains essentially at the same value j = (8± 2)× 1019 cm2 s−1 with a range from
1018 cm2 s−1 to 5× 1020 cm2 s−1. The specific angular momenta of the protostellar cores in
the considered model are approximately one order of magnitude smaller than the ones of
the Jeans-unstable clumps for the same model, but both distributions join without a gap.
In a statistical sense, there is a continuous transition as loss of angular momentum occurs
during contraction. The range of specific angular momenta of the protostellar cores agrees
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well with the observed values for binaries (e.g. Bodenheimer, 1995). For this reason we
compare in Figures 5.2a–d the model distributions with observations of binaries among G-
dwarf stars by Duquennoy & Mayor (1991) in Figure 5.2e and with observations of young
binaries in the Taurus star forming region by Simon (1992) in Figure 5.2f.

Duquennoy & Mayor (1991) derived a Gaussian-type period P distribution for their
sample. Based on this distribution we calculated the distribution of the specific angular
momenta using the following equation (see also Kroupa, 1995b, Equation 10):

j = 6.23 × 1018
(

1 − e2
)1/2

P 1/3 m1m2

(m1 + m2)
4/3

(

cm2 s−1
)

(5.1)

where masses are in M⊙ and P in days. We used a primary mass m1 of 1 M⊙, a mean mass
ratio between primary and secondary q = m2/m1 = 0.25 and a mean eccentricity e = 0.31.

The resulting distribution has a mean specific angular momentum of 1.6×1020 cm2 s−1,
which agrees well with the values from the protostars in the simulations. This also holds
for Figure 5.2f which was taken from Figure 5 in Simon (1992). The mean specific angular
momentum here has a value of 1.6 × 1020 cm2 s−1. The agreement of the distributions
was confirmed by a χ2 statistical test. Since our numerical resolution is not sufficient
to follow the subfragmentation of collapsing cores into binary or higher-order multiple
systems, the time evolution of j is an important tool to evaluate our models. We see a
clear progression from the rotational properties of gas clumps (as discussed in Section 5.2)
to those of the resulting collapsed cores. A similar correlation is observed between the
cloud cores (Caselli et al., 2002) and typical main-sequence binaries (Duquennoy & Mayor,
1991). The former may be the direct progenitors of the latter.

5.3.1 Example of the Angular Momentum Evolution of a Proto-

stellar Core in a Cluster

The evolution of the specific angular momenta of individual protostellar cores can be very
complex depending on the rotational properties of their environment. There is a strong
connection to the time evolution of the mass accretion rate. In Figure 5.3 we select five
collapsed cores in model M6k2 with about the same final mass. All of them show a similar
evolution of the specific angular momentum with increasing mass (Figure 5.3a) and time
(Figure 5.3b). Nevertheless there are visible differences in the details.

Initially, the specific angular momentum increases with growing mass. However, at later
stages the evolution strongly depends on the secular properties of the surrounding flow. In
cores 43, 96, and 101, for example, j decreases again after reaching a peak value, while for
cores 17 and 47 j stays close to the maximum value. Depending on the specific angular
momentum of the accreted material, the resulting protostellar disks are expected to evolve
quite differently. For example, preliminary 2-dimensional hydrodynamic calculations show
that core 17 and core 47 will probably develop a stable disk (Bodenheimer 2003, priv.



5.3 Protostars and Protostellar Systems 55

Figure 5.3: Absolute value of specific angular momentum (solid line) of our model M6k2 as (a) a
function of mass and as (b) a function of time for five different protostellar objects with approxi-
mately equal final masses (M = 0.94 M⊙). In (a) the x-component (dotted line), the y-component
(dashed line) and the z-component (dashed-dotted line) of the specific angular momenta are shown
as well. For comparison the mass accretion rates onto the protostar are indicated in (b) by a
dashed line (associated y-axis on the right hand side).
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comm.). Boss (1999) showed that a high value of the ratio of rotational to gravitational
energy β > 0.01 leads to fragmentation whereas β < 0.01 results in a stable disk. The ratio
β for the peak value of j is β = 0.005 for core 17 and β = 0.003 for core 43 (for the definition
of β see Equation 5.10). On the other hand, core 101 will probably fragment into a binary
star. It has a β = 0.016. Also, the disk of core 96 is highly unstable with corresponding
β = 0.016. The evolution of core 43 has not yet been followed sufficiently long to determine
whether it will fragment to form a binary star or not. These results show the importance
of the specific angular momentum on the evolution of the protostellar object. A similar
result was found by Boss (1999) for slowly rotating, magnetic clouds.

Figure 5.3b shows that the change in specific angular momentum is closely linked to
the mass accretion. At the point in time where the mass accretion rate (dotted line) has
a pronounced peak, the change in specific angular momentum is also significant. A high
mass accretion rate can result in an increase of specific angular momentum. But as seen
for core 96 in Figure 5.3b, a high mass accretion rate can also lead to a reduction of specific
angular momentum. The exact evolution of the specific angular momentum is thus closely
linked to the flow properties of the surrounding material.

5.3.2 Statistical Correlation between Specific Angular Momen-

tum and Mass

As mentioned in the introduction to this chapter, we find a correlation between mass M and
specific angular momentum j in a statistical sense. The result is depicted in Figure 5.4.
It shows the angular momentum evolution as a function of mass for all 110 collapsed
cores in model M6k2. In Figure 5.4a, following Goodman et al. (1993), we adopt rigid
body rotation with constant angular velocity Ω and uniform core density ρ. With these
assumptions the specific angular momentum j can be written as

j = pΩR2. (5.2)

For a uniform density sphere p = 2
5
. The mass M of a sphere with constant density ρ0 is

related to the radius R via

M =
4π

3
ρ0R

3. (5.3)

From Equations 5.2 and 5.3 follows that j can be expressed as:

j = pΩ

(

3

4πρ0

)2/3

M2/3. (5.4)

Therefore we fit the average angular momentum with a function of the form

j = A(M/M⊙)2/3, (5.5)
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Figure 5.4: Absolute values of specific angular momenta (dotted lines) of all protostars (i.e. sink
particles) from our model M6k2 as a function of mass. The specific angular momenta are averaged
at certain mass values which are separated by 0.01 M⊙ and the resulting points are indicated by
crosses. The solid line represents a fit of these averaged specific angular momenta in the mass
range between 0 and 1.7 M⊙ In (a) we fit with a function of the form: j = A(M/M⊙)2/3,
A = (1.3 ± 0.6) × 1020 cm2 s−1, and in (b) we use a square root function: j = B

√

M/M⊙,
B = (1.3 ± 0.6) × 1020 cm2 s−1. One standard deviation is marked by the dashed lines.

where A = pΩ
(

3M⊙

4πρ0

)2/3
. The constant A in Figure 5.4a has a value of (1.3 ± 0.6) ×

1020 cm2 s−1. This fit formula can be applied to different turbulent cloud environments,
and we list the corresponding values of A for our model suite in Table 5.1. Using the
fitted value and the density ρ0 = 4 × 10−15 g cm−3 where protostellar cores are identified,
we calculate an angular velocity Ω = 1.33 × 10−11 s−1.
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In this picture the ratio of rotational to gravitational energy β can be written as

β =
(1/2)IΩ2

qGM2/R
=

3p

8πq

Ω2

ρ0G
, (5.6)

where the moment of inertia is given by I = pMR2, and q = 3
5

is defined such that
qGM2/R represents the gravitational potential of a uniform density sphere. With the
assumptions of constant angular velocity and uniform density it follows that β is also
constant. With Ω and ρ0 as above, we get values β ≈ 0.05. Goodman et al. (1993) as

Figure 5.5: Distribution of β obtained from our model M6k2 with 15 % (a), 30 % (b), 45 % (c) and
60 % (d) of the material accreted. For the collapsed protostellar cores in our models (solid lines)
we calculate β using Equation 5.6, where we assume solid-body rotation of a uniform density
sphere and take the calculated specific angular momentum j. For the prestellar cores (i.e. Jeans-
unstable gas clumps; see the dashed lines) we derive β self-consistently from the three-dimensional
density and velocity structure (using Equation 5.10). For comparison we also indicate with dotted
lines the values reported by Goodman et al. (1993, see their Figure 11) for observed molecular
cloud cores. These were obtained with the same assumptions, and we use the same binning with
fβ representing the fraction of objects per β bin.
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well as Burkert & Bodenheimer (2000) derived scaling relations where β is independent of
radius. Similar values for β were also found by Goodman et al. (1993) for the observed
cloud cores. In good agreement with our calculations they found that all values are below
0.18 with the majority being under 0.05.

The fit in Figure 5.4a rests on the assumption of the collapse of an initially homogeneous
sphere with constant angular velocity. Using sink particles, however, which have a constant
radius, makes it necessary to examine another possibility. In Figure 5.4b we thus assume a
constant radius R and a constant β. Choosing a constant β is supported by the observations
as discussed above and by our simulations as we show below. With β and Equation 5.6
(which still holds) it follows that the angular velocity depends on the density as

Ω =

√

8πq

3p
Gρβ . (5.7)

Thus, the angular velocity Ω is no longer a constant. This implies for the specific angular
momentum j

j = pΩR2 =
√

2pRqGβ
√

M. (5.8)

Following Equation 5.8 we fit our data in Figure 5.4b with a square root function

j = B
√

M/M⊙ , (5.9)

where the moment of inertia is given by I = pMR2, and q = 3
5

is defined such that qGM2/R
represents the gravitational potential of a uniform density sphere. With the above density
and angular velocity we find from Equation 5.6 that β ≈ 0.05. For the new fit we find a
scaling factor B = (1.3 ± 0.6) × 1020 cm2 s−1 in the mass range 0 ≤ M/M⊙ ≤ 1.7. Again,
this fit formula can be applied to different turbulent cloud environments, and we list the
corresponding values of B for our model suite in Table 5.1.

The question remains if our simulations support the assumption of a constant β. In
Figure 5.5 we compare the distribution of β measured by Goodman et al. (1993) with
values we extract from our model. For the prestellar cores we use the definition

β =
Erot

Egrav

, (5.10)

and calculate rotational and potential energy, Erot and Egrav, consistently from the full
three-dimensional gas distribution of each gas clump. We do not adopt any assumption
about symmetry and shape of the density and velocity structure. If we assume that each
clump is spherical and has roughly constant density, as implied for example by Equation 5.6,
then β is overestimated by a factor of 2.7. This shows the importance of taking the full
three-dimensional clump structure into account when analyzing the rotational properties
of molecular cloud cores. Both prestellar cores (i.e Jeans-unstable gas clumps) and proto-
stellar cores in our model typically have β < 0.3 with similar distributions. Thus, β stays
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mainly in the interval [0, 0.3] and in this sense it remains approximately constant during
the collapse.

It should be noted in passing that we also looked at the density structure of purely
hydrodynamic turbulence, i.e. without self-gravity. If we again perform a clump-decom-
position of the density structure and compute hypothetical β-values, we find β ≈ 2. This
is indicative of the high degree of vorticity inherent in all turbulent flows. However, it
also suggests that dense molecular cloud cores are strongly influenced by self-gravity. The
fact that all cores in the observational sample have β < 0.2 implies that gravitational
contraction is needed to achieve density contrasts high enough for sufficiently low β. This
agrees with the picture of gravoturbulent fragmentation where molecular cloud structure
as whole is dominated by supersonic turbulence but stars can only form in those regions
where gravity overwhelms all other forms of support.

Comparing the two fits in Figure 5.4 shows that our first set of assumptions is a better
representation of the data. This is especially true during the early accretion phase where
we have good statistics. It applies to different turbulent cloud environments as well. We
conclude that – in a statistical sense – the angular momentum evolution of collapsing cloud
cores can be approximately described as contraction of initially constant-density spheres
undergoing rigid body rotation with constant angular velocity. This is consistent with
the fact that cores from gravoturbulent fragmentation follow a Bonnor-Ebert-type radial
density profile (Ballesteros-Paredes et al., 2003) and have roughly constant density in their
innermost regions. It also supports the assumptions adopted by Goodman et al. (1993)
and Burkert & Bodenheimer (2000).

5.3.3 Dependence of the Specific Angular Momentum on the En-

vironment

When we compare the results of our complete suite of numerical models (see Table 5.1)
we find as a general trend that the average angular momentum falls with increasing Mach
number. This is illustrated in Figure 5.6a. However, this follows mainly from the positive
dependence of angular momentum on mass and from a correlation between average mass of
the cloud cores and Mach number. As seen in Section 5.3.2, the specific angular momentum
increases on average as the mass of the core rises. In environments with a low Mach number
the mass growth of the cores is undisturbed over longer periods of time and so larger masses
can accumulate. This can be inferred from Table 5.1, where we list both the number of
cores and the accreted mass. For higher Mach numbers higher number of cores form with
on average less mass. Thus, the average angular momentum is expected to decrease with
increasing Mach number (Figure 5.6a).

To detect a direct dependence of the specific angular momentum on the Mach num-
ber we select cores that belong in a certain mass bin and average the specific angular
momentum only over those cores. The results are shown in Figures 5.6b-5.6d. We find
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Figure 5.6: Average specific angular momentum of protostellar objects in different turbulent en-
vironments as a function of the associated Mach number. Different shapes mark different driving
scales k (circle - k = 2.0, star - k = 4.0, square - k = 8.0). GA stands for the Gaussian col-
lapse without driving (triangle pointing downward). Different shades represent different stages
of accretion (white - 15 % material accreted, gray - 30 % material accreted, black - 45 % material
accreted). In a) all protostars (identified as sink particle in the simulations) were used in calcu-
lating the average, in b) through d) only objects in the denoted mass bins were considered. The
error bars show the Poissonian standard deviation of < j >. For more clarity the symbols are
distributed around the corresponding Mach number M with ∆M/M = 5 %.

that independently of the Mach number there is in general little spread of specific angular
momentum for different driving scales and different times in the accretion history . Low
mass protostars (Figure 5.6b) are an exception. In low Mach number environments they
show especially low angular momentum in the early accretion phase. However, within the
error bars we do not find a further dependence of j on the Mach number.

Compared to the Gaussian collapse case, turbulent driving with small Mach numbers
results in higher specific angular momenta. This is due to input of turbulent energy that
can be converted into rotational energy if the turbulent velocities are not too high.
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5.4 Loss of Angular Momentum during Collapse

We find the specific angular momentum j of molecular cloud cores in the prestellar phase
to be on average 〈j〉 = 7× 1020 cm2 s−1 in our models. This is comparable to the observed
values. A fraction of those cores is gravitationally unstable and goes into collapse to build
up protostars and protostellar systems, which then have 〈j〉 = 8×1019 cm2 s−1. This is one
order of magnitude lower than their parental cores and in agreement with observations of
main-sequence binaries. The loss of specific angular momentum during collapse is mostly
due to gravitational torques exerted by the ambient turbulent flow as well as by mutual
protostellar encounters in a dense cluster environment. In a semiempirical analysis of
isolated binary star formation, Fisher (2004) presented the effects of turbulence in the initial
state of the gas on the binary orbital parameters. These properties were in agreement with
observations if a significant loss of angular momentum was assumed. Magnetic torques are
not included in our models, these would lead to even larger angular momentum transport.

5.5 Orientation of Angular Momentum Vector

We find in our simulations that neighboring protostellar cores have similarly oriented an-
gular momenta. In Figure 5.7 the correlation of specific angular momenta of different
protostellar cores with respect to their orientations is shown as a function of distance. We
calculate the scalar product ~j ·~j for all cores and average it over cores with similar distances
between each other.

Figure 5.8a shows the spatial configuration in model M6k2 after 15 % of the available
material has been accreted onto the protostellar cores. These cores form in small aggregates
with diameters below 0.07 pc. The corresponding Figure 5.7a shows a spatial correlation
of the specific angular momenta for small distances. The correlation length, defined as
the maximum distance between cores at which the cores show a positive correlation in
Figure 5.7a, is approximately 0.05 pc. Thus, correlation length and cloud size are closely
connected. This can be understood in the following way. Within one molecular cloud
clump neighboring cores accrete from the same reservoir of gas and consequently gain
similar specific angular momentum. In the early phase of accretion we therefore expect
disks and protostellar outflows of neighboring protostars to be closely aligned. Indeed,
several examples of parallel disks and outflows have been reported in low-mass, isolated
Bok globules by Froebrich & Scholz (2003), Kamazaki et al. (2003), Nisini et al. (2001),
and Saito et al. (1995). Alternative explanations for the alignment of the symmetry axes
of young stars include density gradients in the prestellar phase or the presence of strong
magnetic fields. However, Ménard & Duchêne (2004) found that the disks of T-Tauri stars
driving jets or outflows are perpendicular to the magnetic field but disks of T-Tauri stars
without jet are parallel to the field lines. This is very puzzling, showing the complexity of
the situation that will naturally arise in strongly turbulent flows.
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Figure 5.7: The correlation of specific angular momenta of different protostellar cores in model
M6k2 with respect to their orientations as a function of distance between the cores. As a measure
for the correlation the scalar product of j of different cores was taken and averaged over cores
that exhibit similar distances between each other. High positive values denote co-aligned and
high negative values denote anti-aligned angular momenta. The three graphs (a)-(c) show three
different times at which 15 % (a), 30 % (b) and 45 % (c) of the available material was accreted.
The error bars show the Poissonian standard deviation of the averaged correlations.

During subsequent accretion the correlation length decreases to values below 0.015 pc
(Figure 5.7b). This means that only close systems remain correlated (see also Figure 5.8b).
This has three reasons. First, small N systems of embedded cores are likely to dissolve
quickly as close encounters lead to ejection (e.g. Reipurth & Clarke, 2001). Only close
binaries are able to survive for a long time (e.g. Kroupa, 1995a,b). The correlation length
therefore decreases with time. Second, the same turbulent flow that generated a collaps-
ing high-density clump in the first place may also disrupt it again before its gas is fully
accreted. If the clump contains several protostars they will disperse, again decreasing the
correlation. Third, the opposite may happen. Turbulence may bring in fresh gas. The
protostars are then able to continue accretion, but the specific angular momentum of the
new matter is likely to be quite different from the original material. As protostars accrete
at different rates, we expect a spread in ~j to build up and the alignment may disappear.
At later stages of the evolution, we expect that the correlation between the specific angu-
lar momenta of close protostellar objects disappear almost completely. This is evident in
Figure 5.7c. Furthermore, Figure 5.8c demonstrates that most of the initial subclustering
has disappeared by this late stage.
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Figure 5.8: Orientation of the angular momenta (arrows) and spatial distribution of the proto-
stellar cores (diamonds) that formed in model M6k2. We present the projections on the xy, xz
and yz-plane. The spatial distributions are compared for three different times at which 15 % (a),
30 % (b) and 45 % (c) of the available material is accreted. The length of the arrows scales with
the specific angular momentum of the protostellar core.

5.6 Summary and Conclusions

We studied the rotational properties and time evolution of the specific angular momentum
of prestellar and protostellar cores formed from gravoturbulent fragmentation in numerical
models of supersonically turbulent, self-gravitating molecular clouds. We considered rms
Mach numbers ranging from 2 to 10, and turbulence that is driven on small, intermediate,
and large scales, as well as one model of collapse from Gaussian density fluctuations without
any turbulence. Our sample thus covers a wide range of properties observed in Galactic
star-forming regions, however, our main focus lies in typical low- to intermediate-mass
star-forming regions like ρ-Ophiuchi or Taurus.

With the appropriate physical scaling, we find the specific angular momentum j of
prestellar cores in our models, i.e. cloud cores as yet without central protostar, to be on
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average 〈j〉 = 7 × 1020 cm2 s−1. This agrees remarkably well with observations of cloud
cores by Caselli et al. (2002) or Goodman et al. (1993). Some prestellar cores go into
collapse to build up stars and stellar systems. The resulting protostellar objects have
on average 〈j〉 = 8 × 1019 cm2 s−1. This is one order of magnitude less, and falls into
the range observed in G-dwarf binaries (Duquennoy & Mayor, 1991). Collapse induced
by gravoturbulent fragmentation is accompanied by a substantial loss of specific angular
momentum. This is mostly due to gravitational torques exerted by the ambient turbulent
flow and due to close encounters occurring when the protostars are embedded in dense
clusters. This eases the angular momentum problem in star formation as described in
Section 2.4 without invoking the presence of strong magnetic fields.

The time evolution of j is intimately connected to the mass accretion history of a
protostellar core. As interstellar turbulence and mutual interaction in dense clusters are
highly stochastic processes, the mass growth of individual protostars is unpredictable and
can be very complex. In addition, a collapsing cloud core can fragment further into a
binary or higher-order multiple or evolve into a protostar with a stable accretion disk. It
is the ratio of rotational to gravitational energy β that determines which route the object
will take. This is seen in the turbulent cloud cores studied here as well as in simulations
of isolated cores where magnetic fields are important (e.g. Boss, 1999). The β-distribution
resulting from gravoturbulent cloud fragmentation reported here agrees well with β-values
derived from observations (Goodman et al., 1993). The average value is β ≈ 0.05. Note,
that we find that the distribution of β stays essentially the same during collapse and
accretion (see also Burkert & Bodenheimer, 2000; Goodman et al., 1993).

Although the accretion history and thus the evolution of the specific angular momentum
of a single protostellar object is complex, we find a clear correlation between j and mass
M . This can be interpreted conveniently assuming collapse of an initially uniform density
sphere in solid body rotation. Our models of gravoturbulent cloud fragmentation are best
represented by the relation j ∝ M2/3.

When prestellar cores form by compression as part of supersonically turbulent flows and
then go into collapse and possibly break apart into several fragments due to the continuing
perturbation by their turbulent environment, we expect neighboring protostars to have
similarly oriented angular momentum, at least during their early phases of accretion. Star
clusters form hierarchically structured, with several young stellar objects being embedded
in the same clump of molecular cloud material. These protostars accrete from one common
reservoir of gas and consequently gain similar specific angular momentum. Their disks and
protostellar outflows, therefore, will closely align. Indeed, there are several examples of
parallel disks and outflows seen in low-mass, isolated Bok globules (Froebrich & Scholz,
2003; Kamazaki et al., 2003; Nisini et al., 2001; Saito et al., 1995). During later phases
of cluster formation, the initial substructure becomes erased by dynamical effects and
the correlation between the angular momenta of neighboring protostars vanishes. This
is in agreement with our numerical calculations of gravoturbulent cloud fragmentation.
These show small groups of close protostellar objects that have almost aligned specific
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angular momenta at birth. As expected, the alignment occurs during the early phase of
accretion as neighboring protostars accrete material from the same region with similar
angular momentum. During the subsequent evolution the above correlation decreases.
This is either because protostellar aggregates disperse, or because infalling new material
with different angular momentum becomes distributed unevenly among the protostars.

Altogether, the process of gravoturbulent fragmentation, i.e. the interplay between
supersonic turbulence and self-gravity of the interstellar gas, constitutes an attractive base
for a unified theory of star formation that is able to explain and reproduce many of the
observed features in Galactic star forming regions (Mac Low & Klessen, 2004). Our current
study contributes with a detailed analysis of the angular momentum evolution during
collapse.



Chapter 6

Non-isothermal Gravoturbulent

Fragmentation

Gravity in galactic molecular clouds is initially expected to be opposed mainly by a com-
bination of supersonic turbulence and magnetic fields (Mac Low & Klessen, 2004). The
velocity structure in the clouds is always observed to be dominated by large-scale modes
(Mac Low & Ossenkopf, 2000; Ossenkopf et al., 2001; Ossenkopf & Mac Low, 2002). In
order to maintain turbulence for some global dynamical timescales and to compensate for
gravitational contraction of the cloud as a whole, kinetic energy input from external sources
seems to be required. Star formation then takes place in molecular cloud regions which are
characterized by local dissipation of turbulence and loss of magnetic flux, eventually leaving
thermal pressure as the main force resisting gravity in the small dense prestellar cloud cores
that actually build up the stars (Klessen et al., 2005a; Vázquez-Semadeni et al., 2005). In
agreement with this expectation, observed prestellar cores typically show a rough balance
between gravity and thermal pressure (Benson & Myers, 1989; Myers et al., 1991). There-
fore the thermal properties of the dense star-forming regions of molecular clouds must play
an important role in determining how these clouds collapse and fragment into stars.

In this chapter, we focus on the thermodynamic state of the star-forming gas and how
it influences its fragmentation behavior. We also study the role that the thermal properties
play in determining the IMF. We address the issue by studying the effects of a piecewise
polytropic EOS (see Section 3.4.2) on the formation of stellar clusters in turbulent, self-
gravitating molecular clouds using three-dimensional, smoothed particle hydrodynamics
simulations. In this completely new set of simulations stars form via a process we call
gravoturbulent fragmentation as described in Section 3.3. To approximate the results
of published predictions of the thermal behavior of collapsing clouds, we increase the
polytropic exponent γ from 0.7 to 1.1 at a critical density nc, which we estimated to be
2.5×105 cm−3. The change of thermodynamic state at nc selects a characteristic mass scale
for fragmentation Mch, which we relate to the peak of the observed IMF. A simple scaling
argument based on the Jeans mass MJ at the critical density nc leads to Mch ∝ n−0.95

c .
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We perform simulations with 4.3 × 104 cm−3 < nc < 4.3 × 107 cm−3 to test this scaling
argument. Our simulations qualitatively support this hypothesis, but we find a weaker
density dependence of Mch ∝ n−0.5±0.1

c . We also investigate the influence of additional
environmental parameters on the IMF. We consider variations in the turbulent driving
scheme, and consistently find that Mch is decreasing with increasing nc. Our investigation
generally supports the idea that the distribution of stellar masses depends critically on
the thermodynamic state of the star-forming gas. The thermodynamic state of interstellar
gas is a result of the balance between heating and cooling processes, which in turn are
determined by fundamental atomic and molecular physics and by chemical abundances.
Given the abundances, the derivation of a characteristic stellar mass can thus be based on
universal quantities and constants.

6.1 Model Parameters

In all our models we adopt an initial temperature of 11.4 K corresponding to a sound
speed cs = 0.2 km s−1, a molecular weight µ of 2.36 and an initial number density of
n = 8.4 × 104 cm−3, which is typical for star-forming molecular cloud regions (e.g. ρ-
Ophiuchi, see Motte et al., 1998, or the central region of the Orion Nebula Cluster, see
Hillenbrand, 1997; Hillenbrand & Hartmann, 1998). Our simulation cube holds a mass of
120 M⊙ and has a size of L = 0.29 pc. The cube is subject to periodic boundary conditions
in every direction (see Section 4.6). The mean initial Jeans mass is 〈MJ〉i = 0.7 M⊙.

We use the EOS described in Section 3.4.2, and compute models with 4.3×104 cm−3 ≤
nc ≤ 4.3 × 107 cm−3 in four steps, separated by a decade. Note, that the lowest and the
highest of these critical densities represent rather extreme cases. From Figure 6.1, where
we show the temperature as a function of number density, it is evident that they result in
temperatures that are too high or too low compared to observations and theoretical pre-
dictions. Nevertheless, including these cases helps us to clarify the influence of a piecewise
polytropic EOS. Each simulation starts with a uniform density. Driving begins immedi-
ately, while self-gravity is turned on at t = 2.0 tff , after turbulence is fully established.
The global free-fall timescale is tff ≈ 105 yr. Our models are named mnemonically. R5
up to R8 stand for the critical density nc (4.3 × 104 cm−3 ≤ nc ≤ 4.3 × 107 cm−3) in the
equation of state, k2 or k8 stand for the wave numbers (k = 1..2 or k = 7..8) at which the
driving energy is injected into the system and b flags the runs with 1 million gas parti-
cles. The letter L marks the high resolution runs for critical densities nc = 4.3 × 106 cm−3

and nc = 4.3 × 107 cm−3 with 2 million and 5.2 million particles, respectively. Different
realizations of the turbulent velocity field are denoted by r1, r2, r3. For comparison we
also run isothermal simulations marked with the letter I that have particle numbers of
approximately 200000, 1 million and 10 million gas particles.

The number of particles determines the minimum resolvable Jeans mass in our models
(see Equation 4.7). Figure 3.1 shows the dependence of the local Jeans mass on the density.
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At the critical density the dependency of the Jeans mass on density changes its behavior.
The minimum Jeans mass Mres that needs to be resolved occurs at the density at which
sink particles are formed. A local Jeans mass is considered resolved if it contains at least
2×Nneigh = 80 SPH particles (Bate & Burkert, 1997). As can be seen in Figure 3.1 we are
able to resolve Mres with 1 million particles for critical densities up to nc = 4.3× 105 cm−3.
Since this is not the case for nc = 4.3× 106 cm−3 and nc = 4.3× 107 cm−3, we repeat these
simulations with 2 million and 5.2 million particles, respectively. Due to long calculation
times we follow the latter only to the point in time when about 30% of the gas has been
accreted.

At the density where γ changes from below unity to above unity, the temperature
reaches a minimum. This is reflected in the ”V” shape shown in Figure 6.1. All our
simulations start with the same initial conditions in temperature and density as marked
by the dotted lines. In a further set of simulations we analyze the influence of changing
the turbulent driving scheme on fragmentation while using a polytropic equation of state.
These models contain 2 × 105 particles each.

Following Bate & Burkert (1997), the runs for nc ≥ 4.3 × 105 are not considered fully
resolved at the density of sink particle creation, since MJ falls below the critical mass
of 80 SPH particles. We note, however, that the global accretion history is not strongly
affected and that we only compare similarly unresolved runs. First, we study the effect
of different realizations of the turbulent driving fields on typical masses of protostellar
objects. We simply select different random numbers to generate the field while keeping the
overall statistical properties the same. This allows us to assess the statistical reliability
of our results. These models are labeled from R5..8k2r1 to R5..8k2r3. Second, driving in
two different wave number ranges is considered. Most models are driven on large scales
(1 ≤ k ≤ 2) but we have run a set of models driven on small scales (7 ≤ k ≤ 8) for
comparison.

The main model parameters are summarized in Table 6.1.

6.2 Gravoturbulent Fragmentation in Polytropic Gas

Turbulence establishes a complex network of interacting shocks, where converging flows
and shear generate filaments of high density. The interplay between gravity and thermal
pressure determines the further dynamics of the gas. Adopting a polytropic EOS (Equa-
tion 3.21), the choice of the polytropic exponent plays an important role determining the
fragmentation behavior. From Equation 3.29 it is evident that γ = 4/3 constitutes a criti-
cal value. A Jeans mass analysis shows that for three-dimensional structures MJ increases
with increasing density if γ is above 4/3. Thus, γ > 4/3 results in the termination of
any gravitational collapse. Also, collapse and fragmentation in filaments depend on the
equation of state. The equilibrium and stability of filamentary structures has been stud-
ied extensively, beginning with Chandrasekhar & Fermi (1953b), and this work has been
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Table 6.1: Sample parameters, name of the used in the text, driving scale k, critical density nc,
number of SPH particles, number N of protostellar objects (i.e., “sink particles” in the centers
of protostellar cores) at final stage of the simulation, percentage of accreted mass at final stage
Macc/Mtot

Name k log10 nc particle N Macc

Mtot

[cm−3] number [%]
Ik2 1..2 — 205 379 59 56
Ik2b 1..2 — 1 000 000 73 78
Ik2L 1..2 — 9 938 375 6 4
R5k2 1..2 4.63 205 379 22 73
R5k2b 1..2 4.63 1 000 000 22 70
R6k2 1..2 5.63 205 379 64 93
R6k2b 1..2 5.63 1 000 000 54 61
R7k2 1..2 6.63 205 379 122 84
R7k2b 1..2 6.63 1 000 000 131 72
R7k2L 1..2 6.63 1 953 125 143 46
R8k2 1..2 7.63 205 379 194 78
R8k2b 1..2 7.63 1 000 000 234 53
R8k2L 1..2 7.63 5 177 717 309 29
R5k8 7..8 4.63 205 379 1 64
R6k8 7..8 5.63 205 379 38 68
R7k8 7..8 6.63 205 379 99 60
R8k8 7..8 7.63 205 379 118 72
R5k2r1 1..2 4.63 205 379 16 62
R6k2r1 1..2 5.63 205 379 34 72
R7k2r1 1..2 6.63 205 379 111 68
R8k2r1 1..2 7.63 205 379 149 64
R5k2r2 1..2 4.63 205 379 21 72
R6k2r2 1..2 5.63 205 379 51 74
R7k2r2 1..2 6.63 205 379 119 70
R8k2r2 1..2 7.63 205 379 184 70
R5k2r3 1..2 4.63 205 379 18 90
R6k2r3 1..2 5.63 205 379 52 85
R7k2r3 1..2 6.63 205 379 123 76
R8k2r3 1..2 7.63 205 379 196 71

reviewed by Larson (1985, 2003). For many types of collapse problems, insight into the
qualitative behavior of a collapsing configuration can be gained from similarity solutions
(Larson, 2003). For the collapse of cylinders with an assumed polytropic equation of state
solutions have been derived by Kawachi & Hanawa (1998), and these authors found that
the existence of such solutions depends on the assumed value of γ: similarity solutions exist



6.2 Gravoturbulent Fragmentation in Polytropic Gas 71

Figure 6.1: Temperature as a function of density for four runs with different critical densities nc.
The dotted lines show the initial conditions. The curve has a discontinuous derivative at the
critical density nc.

for γ < 1 but not for γ > 1. These authors also found that for γ < 1, the collapse becomes
slower and slower as γ approaches unity from below, asymptotically coming to a halt when
γ = 1. This result shows in a particularly clear way that γ = 1 is a critical case for the
collapse of filaments. Kawachi & Hanawa (1998) suggested that the slow collapse that is
predicted to occur for γ approaching unity will in reality cause a filament to fragment into
clumps, because the timescale for fragmentation then becomes shorter than the timescale
for collapse toward the axis of an ideal filament. If the effective value of γ increases with
increasing density as the collapse proceeds, as is expected from the predicted thermal be-
havior discussed in Section 2.2, fragmentation may then be particularly favored to occur at
the density where γ approaches unity. In their numerical study Li et al. (2003) found, for
a range of assumed polytropic equations of state each with constant γ, that the amount of
fragmentation that occurs is indeed very sensitive to the value of the polytropic exponent
γ, especially for values of γ near unity (see also, Arcoragi et al., 1991).

The fact that filamentary structure is so prominent in our results and other simulations
of star formation, together with the fact that most of the stars in these simulations form in
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Figure 6.2: Column density distribution of the gas and location of identified protostellar objects
(black circles) using the high-resolution models R6..8k2b at the stage where approximately 50%
of the gas is accreted. Projections in the xy-, xz-, and yz-plane are shown for three different
critical densities.

filaments, suggests that the formation and fragmentation of filaments must be an important
mode of star formation quite generally. This is also supported by the fact that many
observed star-forming clouds have filamentary structure, and by the evidence that much
of the star formation in these clouds occurs in filaments (Schneider & Elmegreen, 1979;
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Larson, 1985; Curry, 2002; Hartmann, 2002). As we note in sections 2.2 and 3.4.2 and
following Larson (1973b, 2005), the Jeans mass at the density where the temperature
reaches a minimum (see Figure 6.1), and hence, γ approaches unity, is predicted to be
about 0.3 M⊙, coincidentally close to the mass at which the stellar IMF peaks (also see
Figure 3.1). This similarity is an additional hint that filament fragmentation with a varying
polytropic exponent may play an important role in the origin of the stellar IMF and the
characteristic stellar mass.

The filamentary structure that occurs in our simulations is visualized in Figure 6.2. Here
we show the column density distribution of the gas and the distribution of protostellar
objects. We display the results for three different critical densities in xy-, xz- and yz-
projection. The volume density is computed from the SPH kernel in 3D and then projected
along the three principal axes. Figure 6.2 shows for all three cases a remarkably filamentary
structure. These filaments define the loci where most protostellar objects form.

Clearly, the change of the polytropic exponent γ at a certain critical density influences
the number of protostellar objects formed. If the critical density increases then more
protostellar objects form but their mean mass decreases. We show this quantitatively in
Figure 6.3. In (a) we compare the number of protostellar objects for different critical
densities nc for the models R5...8k2b. The rate at which new protostars form changes with
different nc. Models that switch from low γ to high γ at low densities built up protostellar
objects more rarely than models that change γ at higher densities.

Figure 6.3b shows the accretion histories (the time evolution of the combined mass
fraction of all protostellar objects) for the models R5..8k2b. Accretion starts for all but
one case approximately at the same time. In model R5k2b, γ = 1.1 already at the mean
initial density, thus γ does not change during collapse. In this case accretion starts at a
later time. This confirms the finding by Li et al. (2003) that accretion is delayed for large γ.
In the other four cases the accretion history is very similar and the slope is approximately
the same for all models.

In both plots we also show the results from our high resolution runs R7k2L and R8k2L.
These simulations with 2 million and 5.2 million particles, respectively, have an accretion
history similar to the time evolution of the accreted mass fraction in the runs with 1 million
particles. The number of protostellar objects, however, is larger for the runs with increased
particle numbers. Combining our results in these two figures we find that an environment
where γ changes at higher densities produces more, but less massive objects. Thus, the
mean mass of protostellar objects does indeed depend on the critical density at which γ
changes from 0.7 to 1.1.
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Figure 6.3: Temporal evolution of the number of protostellar objects (upper plot) and of the
ratio of accreted gas mass to total gas mass (lower plot) for models R5..8k2b. The legend shows
the logarithms of the respective number densities in cm−3. The times are given in units of a
free-fall time τff . We also show the models R7k2L and R8k2L with 2× 106 and 5× 106 particles,
respectively, which are denoted by the letter “L”. For comparison the dotted lines indicate the
values for the isothermal model Ik2b.

6.3 Dependence of the Characteristic Mass on the

Equation of State

Further insight into how the characteristic stellar mass may depend on the critical density
can be gained from the mass spectra of the protostellar objects, which we show in Fig-
ure 6.4. We plot the mass spectra of models R5...6k2b, model R7k2L and model R8k2L at
different times, when the fraction of mass accumulated in protostellar objects has reached
approximately 10%, 30% and 50%. In the top row we also display the results of an isother-
mal run for comparison. We used the same initial conditions and parameters in all models
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Figure 6.4: Mass spectra of protostellar objects for models R5..6k2b, model R7k2L and
model R8k2L at 10%, 30% and 50% of total mass accreted on these protostellar objects. For
comparison we also show in the first row the mass spectra of the isothermal run Ik2b. Critical
density nc, ratio of accreted gas mass to total gas mass Macc/Mtot and number of protostellar
objects are given in the plots. The vertical solid line shows the position of the median mass. The
dotted line has a slope of -1.3 and serves as a reference to the Salpeter value (Salpeter, 1955).
The dashed line indicates the mass resolution limit. Model R8k2L was stopped at 30% due to
long computational time.
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shown. Dashed lines indicate the mass resolution limits.

We find closest correspondence with the observed IMF (see, Scalo, 1998; Kroupa, 2002;
Chabrier, 2003) for a critical density of 4.3 × 106 cm−3 and for stages of accretion around
30% and above. At high masses, our distribution follows a Salpeter-like power law. For
comparison we indicate the Salpeter slope x ≈ 1.3 (Salpeter, 1955) where the IMF is
defined by dN/d log m ∝ m−x (see Equation 2.2). For masses close to the median mass
the distribution exhibits a small plateau and then falls off towards smaller masses.

The model R5k2b where the change in γ occurs below the initial mean density, shows
a flat distribution with only few, but massive protostellar objects. They reach masses up
to 10M⊙ and the minimum mass is about 0.3 M⊙. All other models build up a power-law
tail towards high masses. This is due to protostellar accretion processes, as fragmen-
tation starts earlier and eventually more and more gas gets turned into stars (see also,
Bonnell et al., 2001b; Klessen, 2001; Schmeja & Klessen, 2004). The distribution becomes
more peaked for higher nc and there is a shift of the peak to lower masses. This is already
visible in the mass spectra when the protostellar objects have only accreted 10% of the
total mass. Model R8k2L has minimum and maximum masses of 0.013 M⊙ and 1.0 M⊙,
respectively. There is a gradual shift in the median mass (as indicated by the vertical line)
from Model R5k2b, with Mmed = 2.5 M⊙ at 30%, to Model R8k2L, with Mmed = 0.05 M⊙

at 30%. A similar trend is noticeable during all phases of the model evolution.

Figure 6.5: The plot shows the median mass of the protostellar objects over critical density
for models R5..6k2b, model R7k2L and model R8k2L. We display results for different ratios of
accreted gas mass to total gas mass Macc/Mtot. We fit our data with straight lines for different
stages of accretion. The slopes have the following values: −0.43 ± 0.05 (solid line), −0.52 ± 0.06
(dashed-dotted line), −0.60 ± 0.07 (dashed line).
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What happens when γ increases above unity at the critical density ρc? One suggestion
is that the increase in γ is sufficient to strongly reduce fragmentation at higher densities,
introducing a characteristic scale into the mass spectrum at the value of the Jeans mass at
ρc. Then the behavior of the Jeans mass with increasing critical density would immediately
allow us to derive the scaling law

Mch ∝ ρ−0.95
c . (6.1)

This simple analytical consideration would then predict a characteristic mass scale which
corresponds to a peak of the IMF at 0.35 M⊙ for a critical density of ρc = 10−18 g cm−3

or equivalently a number density of nc = 2.5 × 105 cm−3 when using a mean molecular
weight µ = 2.36 appropriate for solar metallicity molecular clouds in the Milky Way. Note,
however, that this simple scaling law does not take any further dynamical processes into
account.

This change of median mass with critical density nc is depicted in Figure 6.5. Again, we
consider models R5...6k2b, model R7k2L and model R8k2L. The median mass decreases
clearly with increasing critical density as expected. As we resolve higher density contrasts
the median collapsed mass decreases. We fit our data with a straight lines. The slopes
take values between −0.4 and −0.6. These values are larger than the slope −0.95 derived
from the simple scaling law (Equation 6.1) based on calculation of the Jeans mass MJ at
the critical density nc.

One possible reason for this deviation is the fact that most of the protostellar objects are
members of tight groups. Hence, they are subject to mutual interactions and competitive
accretion that may change the environmental context for individual protostars. This in turn
influences the mass distribution and its characteristics (see, e.g. Bonnell et al., 2001a,b).
Another possible reason is that the mass that goes into filaments and then into collapse
may depend on further environmental parameters, some of which we discuss in Section 6.4.

6.4 Dependence of the Characteristic Mass on Envi-

ronmental Parameters

6.4.1 Dependence on Realization of the Turbulent Velocity Field

We compare models with different realizations of the turbulent driving field in Figure 6.6.
We fit our data with straight lines for each stage of accretion. Figure 6.6a shows the results
of models R5..8k2 which were calculated with the same parameters but lower resolution
than the models used for Figure 6.5. As discussed in Section 6.2, although the number
of protostellar objects changes with the number of particles in the simulation, the time
evolution of the total mass accreted on all protostellar objects remains similar. Thus, lower
resolution models exhibit the same general trend as their high-resolution counterparts and
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Figure 6.6: Median mass of protostellar objects over critical density at different evolutionary
phases (ratio of accreted gas mass over total gas mass Macc/Mtot:10% (circle), 30% (star), 50%
(triangle), 70% (square)). In (a)-(d) we show identical models but with different realizations of
the turbulent velocity field ((a): R5..8k2, (b): R5..8k2r1, (c): R5..8k2r2, (d): R5..8k2r3). The
models R6..8k8 in (e) are driven on a smaller scale k = 7..8 than in the other cases. All relevant
parameters are summarized in Table 6.1. We fit the median values with straight lines for different
stages of accretion. The slopes are given in the plot and denoted as follows: 10% – solid line,
30% – dashed-dotted line, 50% – dashed line, 70% – dashed-double-dotted line.
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show the same global dependencies. We notice, however, that the slope of the Mmedian-
nc relation typically is shallower in the low-resolution models. This can be seen when
comparing Figure 6.5 and Figure 6.6a, where we used identical turbulent driving fields.
This is clearly a numerical artifact because more objects form artificially in low resolution
runs.

For all four different realizations of the turbulent driving field shown in Figure 6.6a-d
we see a clear trend of decreasing median mass Mmedian with increasing nc. We conclude
that, qualitatively, the Mmedian-nc relation is independent of the details of the turbulent
driving field but, quantitatively, there are significant variations. This is not surprising
given the stochastic nature of turbulent flows. A further discussion on this issue can be
found in Klessen et al. (2000) and Heitsch et al. (2001).

6.4.2 Dependence on the Scale of Turbulent Driving

Figure 6.6e shows the results for models where the driving scale has been changed to a
lower value (k = 7..8). The overall dependency of Mmedian on nc is very similar to the cases
of large-scale turbulence. However, we note considerably larger uncertainties in the exact
value of the slope. This holds especially for the phases where 30% and 50% of the total
gas mass has been converted into stars. One of the reasons is lower statistics, i.e. for the
smallest critical density only one protostellar object forms. Moreover, it has already been
noted by Klessen (2001); Li et al. (2003) that driving on small wavelength results in less
fragmentation. The small-scale density structure formed is not so strongly filamentary,
compared to the case of large-scale driven turbulence. Local differences have a larger influ-
ence on the results for driving on small wavelengths. Nevertheless, for most of the models
the mean mass decreases with increasing critical density. Observational evidence suggests
that real molecular clouds are driven mainly from large scales (e.g. Ossenkopf & Mac Low,
2002; Brunt et al., 2005), although some authors claim that jets and winds provide driving
from small scales (Shang et al., 2006).

6.5 Summary

Using SPH simulations we investigate the influence of a piecewise polytropic EOS on
fragmentation of molecular clouds. We study the case where the polytropic index γ changes
from a value below to one above unity at a critical density nc. We consider a broad range
of values of nc around a realistic value to determine the dependence of the mass spectrum
on nc.

Observational evidence predicts that dense prestellar cloud cores show a rough balance
between gravity and thermal pressure (Benson & Myers, 1989; Myers et al., 1991). Thus,
the thermodynamical properties of the gas play an important role in determining how dense
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star-forming regions in molecular clouds collapse and fragment. Observational and theo-
retical studies of the thermal properties of collapsing clouds both indicate that at densities
below 10−18 g cm−3, roughly corresponding to a number density of nc = 2.5 × 105 cm−3,
the temperature decreases with increasing density. This is due to the strong dependence of
molecular cooling rates on density (Koyama & Inutsuka, 2000). Therefore, the polytropic
exponent γ is below unity in this density regime. At densities above 10−18 g cm−3, the gas
becomes thermally coupled to the dust grains, which then control the gas temperature by
far-infrared thermal continuum emission. The balance between compressional heating and
thermal cooling by dust causes the temperature to increase again slowly with increasing
density. Thus the temperature-density relation can be approximated with γ above unity
(Larson, 1985) in this regime. Changing γ from a value below unity to a value above unity
results in a minimum temperature at the critical density. Li et al. (2003) showed that gas
fragments efficiently for constant γ < 1.0 and less efficiently for higher γ or not not all
if gas distribution is filamentary and γ > 1. Thus, the Jeans mass at the critical density
defines a characteristic mass for fragmentation, which may be related to the peak of the
IMF.

We investigate this relation numerically by changing γ from 0.7 to 1.1 at different critical
densities nc varying from 4.3×104 cm−3 to 4.3×107 cm−3. A simple scaling argument based
on the Jeans mass MJ at the critical density nc leads to MJ ∝ n−0.95

c . If there is a close
relation between the average Jeans mass and the characteristic mass of a fragment, a
similar relation should hold for the expected peak of the mass spectrum. Our simulations
qualitatively support this hypothesis, however, with the weaker density dependency Mch ∝
n−0.5±0.1

c . The density at which γ changes from below unity to above unity selects a
characteristic mass scale. Consequently, the peak of the resulting mass spectrum decreases
with increasing critical density. This spectrum not only shows a pronounced peak but also
a power-law tail towards higher masses. Its behavior is thus similar to the observed IMF.

Altogether, supersonic turbulence in self-gravitating molecular gas generates a complex
network of interacting filaments. The overall density distribution is highly inhomogeneous.
Turbulent compression sweeps up gas in some parts of the cloud, but other regions become
rarefied. The fragmentation behavior of the cloud and its ability to form stars depend
strongly on the EOS. If collapse sets in, the final mass of a fragment depends not only on
the local Jeans criterion, but also on additional processes. For example, protostars grow in
mass by accretion from their surrounding material. In turbulent clouds the properties of
the gas reservoir are continuously changing. In a dense cluster environment, furthermore,
protostars may interact with each other, leading to ejection from the cluster or mass
exchange. These dynamical factors modify the resulting mass spectrum, and may explain
why the characteristic stellar mass depends on the EOS more weakly than expected.

We also studied the effects of different turbulent driving fields and of a smaller driving
scale. For different realizations of statistically identical large-scale turbulent velocity fields
we consistently find that the characteristic mass decreases with increasing critical mass.
However, there are considerable variations. The influence of the natural stochastic fluc-
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tuations in the turbulent flow on the resulting median mass is almost as pronounced as
the changes of the thermal properties of the gas. Also when inserting turbulent energy at
small wavelengths we see the peak of the mass spectrum decrease with increasing critical
density.

Our investigation supports the idea that the distribution of stellar masses depends,
at least in part, on the thermodynamic state of the star-forming gas. If there is a low-
density regime in molecular clouds where temperature T decreases with increasing density
ρ, followed by a higher-density phase where T increases with ρ, fragmentation seems likely
to be favored at the transition density where the temperature reaches a minimum. This
defines a characteristic mass scale. The thermodynamic state of interstellar gas is a result
of the balance between heating and cooling processes, which in turn are determined by
fundamental atomic and molecular physics and by chemical abundances. The derivation
of a characteristic stellar mass can thus be based on quantities and constants that depend
solely on the chemical abundances in a molecular cloud. The current study using a piece-
wise polytropic EOS can only serve as a first step. Future work will need to consider a
realistic chemical network and radiation transfer processes in gas of varying abundances.



Chapter 7

Cooling and Collapse of Ionized Gas

in Small Protogalactic Halos

In the preceding chapter we discussed how the thermodynamical behavior of star-forming
gas can be modeled with a polytropic EOS. Nevertheless, we also stated that a realistic
chemical network and the consideration of radiation transfer processes would be desirable
for the study of star formation in gas of varying abundances. Whereas this is still a
future goal for molecular clouds in the present universe, we can approach the problem
more easily in regions with metal free gas or gas with very low metallicity. The important
chemical reactions and cooling processes are low in number and therefore computationally
feasible. In particular, we are interested in the formation of the first and mainly the second
generation of stars ever formed.

We study the cooling properties and the collapse of ionized gas in small protogalac-
tic dark matter halos (see Section 3.1.2) using three-dimensional, smoothed particle hy-
drodynamics simulations. Again, we use the publicly available parallel code gadget

(Springel et al., 2001) in which we have implemented a sink particle algorithm which al-
lows us to safely represent gas which has collapsed beyond the resolution limit without
causing numerical errors within the resolved regions of the simulation. Instead of dark
matter particles, we use a fixed background potential to model the influence of a dark
matter halo (see Section 7.1). We have also added the necessary framework for following
the non-equilibrium chemistry of H2 in the protogalactic gas and an appropriate treatment
of radiative heating and cooling. In contrast to most previous simulations, we have also
incorporated self-shielding of H2, albeit in a rather approximate manner.

Our initial conditions represent protogalaxies forming within what Oh & Haiman (2003)
call a ”fossil” H ii region - a previously ionized H ii region which has not yet had time to
cool and recombine. Prior to cosmological reionization, such regions should be relatively
common, since the characteristic lifetime of the likely ionizing sources are significantly
shorter than a Hubble time. In this study we investigate how the collapse of the initially
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ionized gas depends on various parameters such as redshift, metallicity, mass of the dark
matter halo and strength of the ultraviolet background.

Table 7.1: Sample parameters of the simulations, name of the simulation, redshift z, ν, mass of
the dark matter halo MDM, metallicity of the gas Z, UV background J21 (see Equation 4.12),
mass per SPH particle mpart, length of the computational box L and the scale radius rs.

name z ν MDM Z J21 mpart L rs

[M⊙] [Z⊙] [M⊙] [kpc] [kpc]
ZM15s 15 1.7 6.7 × 104 0.0 0.0 0.25 0.7 0.019
ZM20s 20 2.2 5.3 × 104 0.0 0.0 0.25 0.5 0.014
ZM25s 25 2.7 4.5 × 104 0.0 0.0 0.25 0.5 0.011
ZM30s 30 3.2 4.0 × 104 0.0 0.0 0.25 0.5 0.0092
ZM15m 15 2.2 4.2 × 106 0.0 0.0 5.0 2.8 0.076
ZM20m 20 2.7 1.5 × 106 0.0 0.0 5.0 1.6 0.043
ZM25m 25 3.2 7.8 × 105 0.0 0.0 2.5 1.0 0.029
ZM30m 30 3.7 4.8 × 105 0.0 0.0 2.0 0.8 0.021
ZM15l 15 2.4 1.5 × 107 0.0 0.0 5.0 4.2 0.118
ZM20l 20 3.1 1.2 × 107 0.0 0.0 5.0 3.0 0.088
ZM25l 25 3.7 7.0 × 106 0.0 0.0 5.0 2.2 0.061
ZM30l 30 4.3 4.8 × 106 0.0 0.0 5.0 1.8 0.046
ZM15sUV 15 1.7 6.7 × 104 0.0 10−2 0.25 0.7 0.019
ZM20sUV 20 2.2 5.3 × 104 0.0 10−2 0.25 0.5 0.014
ZM25sUV 25 2.7 4.5 × 104 0.0 10−2 0.25 0.5 0.011
ZM30sUV 30 3.2 4.0 × 104 0.0 10−2 0.25 0.5 0.0092
ZM15mUV 15 2.2 4.2 × 106 0.0 10−2 5.0 2.8 0.076
ZM20mUV 20 2.7 1.5 × 106 0.0 10−2 5.0 1.6 0.043
ZM25mUV 25 3.2 7.8 × 105 0.0 10−2 2.5 1.0 0.029
ZM30mUV 30 3.7 4.8 × 105 0.0 10−2 2.0 0.8 0.021
ZM15lUV 15 2.4 1.5 × 107 0.0 10−2 5.0 4.2 0.118
ZM20lUV 20 3.1 1.2 × 107 0.0 10−2 5.0 3.0 0.088
ZM25lUV 25 3.7 7.0 × 106 0.0 10−2 5.0 2.2 0.061
ZM30lUV 30 4.3 4.8 × 106 0.0 10−2 5.0 1.8 0.046

7.1 Initial Conditions

As we wish to run a large number of simulations of protogalactic collapse, we have chosen to
limit the computational cost of each simulation by starting from somewhat simplified initial
conditions. Since we are not particularly interested (at this stage at least) in following the
assembly history of the dark matter halo in which the protogalaxy resides, or in studying
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Table 7.1: –Continued

name z ν MDM Z J21 mpart L rs

[M⊙] [Z⊙] [M⊙] [kpc] [kpc]
ZM15sUV2 15 1.7 6.7 × 104 0.0 10−1 0.25 0.7 0.019
ZM20sUV2 20 2.2 5.3 × 104 0.0 10−1 0.25 0.5 0.014
ZM25sUV2 25 2.7 4.5 × 104 0.0 10−1 0.25 0.5 0.011
ZM30sUV2 30 3.2 4.0 × 104 0.0 10−1 0.25 0.5 0.0092
ZM15mUV2 15 2.2 4.2 × 106 0.0 10−1 5.0 2.8 0.076
ZM20mUV2 20 2.7 1.5 × 106 0.0 10−1 5.0 1.6 0.043
ZM25mUV2 25 3.2 7.8 × 105 0.0 10−1 2.5 1.0 0.029
ZM30mUV2 30 3.7 4.8 × 105 0.0 10−1 2.0 0.8 0.021
ZM15lUV2 15 2.4 1.5 × 107 0.0 10−1 5.0 4.2 0.118
ZM20lUV2 20 3.1 1.2 × 107 0.0 10−1 5.0 3.0 0.088
ZM25lUV2 25 3.7 7.0 × 106 0.0 10−1 5.0 2.2 0.061
ZM30lUV2 30 4.3 4.8 × 106 0.0 10−1 5.0 1.8 0.046
LM15s 15 1.7 6.7 × 104 10−3 0.0 0.25 0.7 0.019
LM20s 20 2.2 5.3 × 104 10−3 0.0 0.25 0.5 0.014
LM25s 25 2.7 4.5 × 104 10−3 0.0 0.25 0.5 0.011
LM30s 30 3.2 4.0 × 104 10−3 0.0 0.25 0.5 0.0092
LM15m 15 2.2 4.2 × 106 10−3 0.0 5.0 2.8 0.076
LM20m 20 2.7 1.5 × 106 10−3 0.0 5.0 1.6 0.043
LM25m 25 3.2 7.8 × 105 10−3 0.0 2.5 1.0 0.029
LM30m 30 3.7 4.8 × 105 10−3 0.0 2.0 0.8 0.021
LM15l 15 2.4 1.5 × 107 10−3 0.0 5.0 4.2 0.118
LM20l 20 3.1 1.2 × 107 10−3 0.0 5.0 3.0 0.088
LM25l 25 3.7 7.0 × 106 10−3 0.0 5.0 2.2 0.061
LM30l 30 4.3 4.8 × 106 10−3 0.0 5.0 1.8 0.046

the response of the halo to the cooling of the gas, we choose to model the influence of the
halo by using a fixed background potential and not by dark matter particles. To construct
this potential, we assume that the halo is spherically symmetric, with the density profile
of Navarro et al. (1996):

ρdm(r) =
δcρcrit

r/rs(1 + r/rs)2
, (7.1)

where rs is a scale radius, δc is a characteristic (dimensionless) density and ρcrit = 3H2/8πG
is the critical density for closure. Following Navarro et al. (1997) we calculate the char-
acteristic density and scale radius using a given redshift and dark halo mass. We choose
halo masses for four different redshifts z: 15, 20, 25 and 30. Numerical studies of the
formation of primordial gas clouds and the first stars indicate that baryonic collapse due
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Table 7.1: –Continued

name z ν MDM Z J21 mpart L rs

[M⊙] [Z⊙] [M⊙] [kpc] [kpc]
LM15sUV 15 1.7 6.7 × 104 10−3 10−2 0.25 0.7 0.019
LM20sUV 20 2.2 5.3 × 104 10−3 10−2 0.25 0.5 0.014
LM25sUV 25 2.7 4.5 × 104 10−3 10−2 0.25 0.5 0.011
LM30sUV 30 3.2 4.0 × 104 10−3 10−2 0.25 0.5 0.0092
LM15mUV 15 2.2 4.2 × 106 10−3 10−2 5.0 2.8 0.076
LM20mUV 20 2.7 1.5 × 106 10−3 10−2 5.0 1.6 0.043
LM25mUV 25 3.2 7.8 × 105 10−3 10−2 2.5 1.0 0.029
LM30mUV 30 3.7 4.8 × 105 10−3 10−2 2.0 0.8 0.021
LM15lUV 15 2.4 1.5 × 107 10−3 10−2 5.0 4.2 0.118
LM20lUV 20 3.1 1.2 × 107 10−3 10−2 5.0 3.0 0.088
LM25lUV 25 3.7 7.0 × 106 10−3 10−2 5.0 2.2 0.061
LM30lUV 30 4.3 4.8 × 106 10−3 10−2 5.0 1.8 0.046
LM15sUV2 15 1.7 6.7 × 104 10−3 10−1 0.25 0.7 0.019
LM20sUV2 20 2.2 5.3 × 104 10−3 10−1 0.25 0.5 0.014
LM25sUV2 25 2.7 4.5 × 104 10−3 10−1 0.25 0.5 0.011
LM30sUV2 30 3.2 4.0 × 104 10−3 10−1 0.25 0.5 0.0092
LM15mUV2 15 2.2 4.2 × 106 10−3 10−1 5.0 2.8 0.076
LM20mUV2 20 2.7 1.5 × 106 10−3 10−1 5.0 1.6 0.043
LM25mUV2 25 3.2 7.8 × 105 10−3 10−1 2.5 1.0 0.029
LM30mUV2 30 3.7 4.8 × 105 10−3 10−1 2.0 0.8 0.021
LM15lUV2 15 2.4 1.5 × 107 10−3 10−1 5.0 4.2 0.118
LM20lUV2 20 3.1 1.2 × 107 10−3 10−1 5.0 3.0 0.088
LM25lUV2 25 3.7 7.0 × 106 10−3 10−1 5.0 2.2 0.061
LM30lUV2 30 4.3 4.8 × 106 10−3 10−1 5.0 1.8 0.046

to H2 began as early as z ∼ 30 (Abel et al., 2002; Bromm et al., 2002). Thus, we choose
this redshift as our highest value and investigate the behavior at redshifts down to 15, as
the wmap polarization results (Kogut et al., 2003) suggest that the cosmological reioniza-
tion occurred somewhere in the redshift range 17± 5. According to the Press & Schechter
(1974) formalism (see Section 3.1.2) we choose 3 different halo masses from the halo mass
function with the parameter ν varying between 1.7 and 4.3. We choose ν to be around
3.0, since such halos are often taken to be representative of the earliest objects to form,
although this choice is somewhat arbitrary. These halos are moderately rare objects, rep-
resenting no more than a few thousandths of the total cosmic mass (Mo & White, 2002),
but are sufficiently common, so that one would expect to find many of them within a single
Hubble volume. Table 7.1 gives an overview of the different simulations. The number in
the notation of the run name stands for the redshift at the start of the run, whereas s,
m, l denote small, medium and large halo masses respectively. We truncate the halo at
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a radius rt where ρdm equals the background density at this redshift. For the gas, we
assume an initially uniform distribution, with an initial density ρg, taken to be equal to
the cosmological background density. We evolve the gas for 1 Gyr until the gas follows the
dark matter distribution. The initial temperature of the gas is taken to be uniform, with
a value Tg = 10000 K, the choice of which is discussed below.

The computational volume is a box of side length L. The length is chosen so that it
is the maximum of 2rt and twice the radius at which the gas density is almost uniform.
We use periodic boundary conditions for the hydrodynamic part of the force calculations
to keep the gas bound within the computational volume. The self-gravity of the gas and
the gravitational force exerted by the dark matter potential are not calculated periodically
(see Section 4.6).

The quantity of gas present in our simulation was taken to be a fraction Ωb/Ωdm of the
total dark matter (baryon density over dark matter density), where Ωdm = Ωm − Ωb. We
took values for the cosmological parameters from Spergel et al. (2003), and so the baryon
density is Ωb = 0.047 and the matter density is Ωm = 0.29, giving us a total gas mass of
Mg = 0.19 Mdm. In our simulations we give each SPH particle a mass between 0.25 M⊙ and
5.0 M⊙, depending on the total gas mass (for details see Table 7.1). In order to properly
resolve gravitationally bound clumps (or other gravitationally bound structures) in SPH
simulations, these must be represented by at least twice as many SPH particles as those
included in the SPH smoothing kernel (see Section 4.2). In our simulations, our smoothing
kernel encompasses approximately 40 particles for reasons of computational efficiency; the
number is allowed to vary slightly, but never by more than 5 particles – and so our minimum
mass resolution varies between Mres ≃ 80mpart ≃ 20 M⊙ and 400 M⊙.

To prevent artificial fragmentation or other numerical artifacts from affecting our re-
sults, it is necessary either to halt the simulation before the local Jeans mass, MJ falls
below Mres in any part of the simulation volume, or to use sink particles to represent re-
gions where MJ < Mres (see Section 4.2). We choose the latter. According to Equation 4.7
the maximum resolvable density depends on the sound speed and the total gas mass. Since
the sound speed depends on the varying temperature, we have to give a lower limit for
the temperature to estimate the maximum resolvable mass. We choose the temperature
that corresponds to the cosmic microwave background (CMB) at the redshift of the run.
Therefore, we create our sink particles at a hydrogen number density of approximately
500 cm−3 and with an accretion radius of approximately 0.1rs.

We initialize each of our simulations with gas that is hot (Tg = 104 K) and fully ionized
(xe, xH2

, description of fractional abundances see Section 4.5). The physical situation that
these initial conditions are intended to represent is that of a protogalaxy forming within
what Oh & Haiman (2003) term a ”fossil” H ii region – an H ii region surrounding an
ionizing source which has switched off, but the surrounding gas has not yet had time to
cool and recombine. Prior to cosmological reionization, such regions should be relatively
common, since the characteristic lifetime of the likely ionizing sources – massive population
III stars and/or active galactic nuclei – are significantly shorter than the Hubble time.
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We study two different cases. First we focus on primordial, zero-metallicity gas, and
second, we study regions which had time to mix with enriched gas from supernovae explo-
sions of the first generation of stars. For these regions we assume an average metallicity of
10−3Z⊙. A metallicity of Z = 10−3 Z⊙ is an upper limit derived from QSO absorption-line
studies of the low column density Lyman-α forest at z ∼ 3 (Pettini, 1999). Estimates of the
globally-averaged metallicity produced by the sources responsible for reionization are also
typically of the order of 10−3 Z⊙ (see, e.g. Ricotti & Ostriker, 2004). In our simulations
of metal-enriched gas, we assume that mixing is efficient and that the metals are spread
out uniformly throughout the computational domain. We also assume that the relative
abundances of the various metals in the enriched gas are the same as in solar metallicity
gas; given the wide scatter in observational determinations and theoretical predictions of
abundance ratios in very low metallicity gas (see the discussion in Glover 2006), this seems
to us to be the most conservative assumption. However, variations in the relative abun-
dances of an order of magnitude or less will not significantly alter our results. We denote
runs with zero metallicity with ”ZM” and low metallicity with ”LM”.

Moreover we investigate the influence of a UV background. Already at z = 20 a consid-
erable UV background may already have developed (Haiman et al., 2000; Glover & Brand,
2003). Indeed, if cosmological reionization is to occur somewhere in the redshift range
zreion = 17±5, as is suggested by the wmap polarization results (Kogut et al., 2003), there
must already be a fairly strong background in place. To explore how the presence of a UV
background may influence our conclusions, we have run several sets of simulations in which
the strength of the UV background has been varied. These runs are named with ”UV”.

7.2 Zero Metallicity Gas

In this section we discuss our results for the case of primordial gas. We compare with the
findings of other authors that have reported similar simulations concerning the formation
of the first stars. This gives us confidence in our model and in the new conclusions we
draw.

There are two evolutionary pathways that we want to separate depending on the pa-
rameters varied in the simulations: The initially ionized gas in the protogalactic halo is able
either to cool sufficiently and collapse, or to remain at a relatively high temperature and
not collapse towards the center of the dark matter halo. In Figure 7.1 we show a projection
of the hydrogen nuclei number density on the x-y plane at two different times. The data
are from model ZM25m. This model has a dark matter halo with a mass of 7.8 × 105 M⊙

at a redshift of z = 25. We start our simulations from an equilibrium situation, therefore,
the density distribution of the gas follows the density profile of the dark matter halo. In
the top panel of Figure 7.1 we see a slight increase in gas density in the center of the
computational volume 15 Myr after the onset of the simulations. 50 Million years later the
central number density rises to approximately 1000 cm−3. Moving from the outer parts of
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Figure 7.1: Projection of the hydrogen nuclei number density in x-y plane of run ZM25m. The
density varies between 0.01 cm−3 (red) and 1000 cm−3 (white). The top panel shows the number
density 15 Myr after the start of the simulation. After 65 Myr one can see the collapsed gas in
the middle of the computational volume (lower panel).
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the simulated region towards the center of the box, we find an increase in number density
by a factor of 105. This is a clear indication for collapse of the gas. Nevertheless, we also
have to take the temperature distribution into account to determine the dark matter halos
in which stars eventually form (see Figure 7.6). In the next section we will investigate how
halo mass and redshift influence the ability of zero-metallicity gas in the corresponding
protogalactic halos to cool.

7.2.1 Dependence of Cooling and Collapse on Halo Mass

For the redshifts that we study here, namely z = 15, z = 20, z = 25 and z = 30, we choose
three different halo masses, namely, a large, a medium and a small mass. We select the
masses such that the corresponding change in ν (see Equations 3.2 and 3.3) between the
different mass bins is similar at all 4 redshifts used and, in particular, the change in ν takes
a value of approximately 0.5. This leads to differences in the actual value of the mass of
the dark matter halo when comparing different redshifts. For the mass bin ‘small’ we take
a dark matter halo with a mass above 4.0×104 M⊙ since we do not expect efficient cooling
within several Hubble times for halos less massive than this. The ν of the mass bin ‘small’
is different for the various redshifts since the probability of finding a dark matter halo of
this mass depends on the redshift. We give the exact values of the different dark matter
halo masses in Table 7.1. In Figure 7.2 we show the temporal evolution of the hydrogen
nuclei number density within the scale radius rs (see Table 7.1). The number density in
this central region indicates the collapse properties of the gas in the corresponding dark
matter halo. All models shown (ZM15..30s, ZM15..30m and ZM15..30l) follow gas with
zero metallicity. As explained in Section 7.1 sink particles may form at number densities
above 500 cm−3. In the top panel of Figure 7.2 we show 4 low halo mass runs at different
redshifts. They all have a dark matter halo with a mass below 7.0 × 104 M⊙. Only the
model with redshift z = 30 shows an increase in central density. Nevertheless, the increase
is very slow and it takes more than 400 Myrs until the gas reaches densities above 500 cm−3.
We have to compare this time with the Hubble time at the corresponding redshift. For a
redshift of 30 the Hubble time (see Equation 3.40) is approximately 80 Myr. Due to the
hierachical structure formation in the universe (see Section 3.1.2) dark matter halos will
probably merge within one or two Hubble times. Therefore, we are mainly interested in
cooling and collapse processes that happen within times that are smaller than 2 Hubble
times. The approximate Hubble times at redshifts z = 15, z = 20, z = 25 and z = 30 are
200 Myr, 140 Myr, 100 Myr and 80 Myr, respectively (see Figure 7.2, top panel).

From the top panel of Figure 7.2 we conclude that in dark matter halos with a mass
below 7.0 × 104 M⊙ the zero metallicity gas does not collapse on the timescale explained
above. The middle panel shows the models ZM15..30m. The protogalactic halos in these
runs have masses between 5.0 × 105 M⊙ and 4.2 × 106 M⊙. The gas in all runs cools
sufficiently to collapse in less than a Hubble time. These protogalactic halos are relativly
small, especially at high redshifts, but also moderately abundant. Nevertheless the gas in
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Figure 7.2: The time evolution of the number density of hydrogen nuclei within the scale radius
rs of the dark matter halo for three suites of runs in different bins of the dark matter halo mass:
top panel - model ZM15..30s with small masses; middle panel - model ZM15..30m with medium
masses; bottom panel - model ZM15..30l with large masses. Please note the different time axes.
For clarity, we only plot the evolution up until the point at which a sink particle forms or until
the end of the run, if no sink forms. The arrows in the top panel mark twice the Hubble time.
The crosses show the creation of a sink particle.
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these halos is able to cool and collapse, therefore, these halos are potential sites of star
formation. The gas in dark matter halos of larger masses, as shown in the bottom panel of
Figure 7.2, cools vary rapidly due to the increase in gravitational potential. In these halos
the gas reaches higher densities where H2 cooling is more efficient. Nevertheless, these
halos have only a ν of approximately 4 at high redshifts, i.e. they are not as abundant
as smaller halos. From our models we can infer that only protogalactic halos with masses
above ∼ 5.0×105 M⊙ can host cold gas. This is consistent with the result by Yoshida et al.

(2003) who find cold gas clumps only in halos with masses above ∼ 7.0 × 105 M⊙. In the
following section we focus on one specific run to investigate the influence of the ultraviolet
background on the collapse of protogalactic gas.

7.2.2 Dependence of Cooling and Collapse on UV Background

In this section we study in some detail the influence of an external UV background. As
explained in Section 7.1, a considerable UV background may already have developed by
z = 20 (Haiman et al., 2000; Glover & Brand, 2003) by reionization processes, e.g. the
influence of the very first stars. We use 2 different values for J21 (see Equation 4.12):
0.01 and 0.1. We also choose these values to be able to directly compare our results with
other authors. In this section we concentrate for simplicity on a specific dark matter halo
(model ZM25m) at a redshift of 25.

Figures 7.3 and 7.4 compare the time evolution of the number density and the temper-
ature of the gas within the scale radius rs for the runs with gas of zero metallicity. After
50 Myr the central gas in run ZM25m starts collapsing as explained in the previous section.
In run ZM25mUV an imposed UV background of J21 = 0.01 photodissociates part of the
molecular gas delaying the process of collapse and effective cooling by more than 30 Myr. A
further increase in UV background by a factor of 10 inhibits the collapse of the gas within
the time frame of our simulation. These results agree with the findings by Haiman et al.

(2000); Machacek et al. (2001). These authors also find that UV background can delay
cooling and collapse of small or medium mass halos.

Table 7.2 gives an overview on the properties of the gas within the scale radius af-
ter 100 Myr of evolution which corresponds to exactly one Hubble time. We show the
minimum central temperature Tc,min, the maximum central density nc,max, the maximum
central fractional abundance xH2,c,max of H2, computed with respect to the total number
of hydrogen nuclei and the fraction fcoll of the initial gas mass within the virial radius of
the dark matter halo that is cold and dense, i.e. with a temperature below 200 K and
a density above 500 cm−3. In runs ZM25m and ZM25mUV a sink particle forms in the
center of the dark matter halo. Since we have no information on the true temperature and
density distribution of the gas represented by the sink particle, we can only give limits.
From the criterium for sink particle formation, we know the central density must exceed
n = 500 cm−3. Similar holds for the central temperature which we know must be cooler
than that of the gas just prior to sink particle formation, which corresponds to T = 200 K.
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Figure 7.3: The time evolution of the gas number density within the scale radius rs of the dark
matter potential. We show runs ZM25m (red line), ZM25mUV (green line) and ZM25mUV2
(blue line) which all have zero metallicity. The UV background increases from run ZM25m to run
ZM25mUV2 (see Table 7.2). For clarity, we only plot the evolution up until the point at which
a sink particle forms (or until the end of the run, if no sink forms).
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Figure 7.4: Same as Figure 7.3, but for the central temperature of the gas.
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The high fraction of the gas within the sink particle in run ZM25m clearly shows the ad-
vanced state of the collapse which is due to the relatively high H2 abundances achieved.
In this case H2 cooling is very effective. The UV photons that are present in the other
two cases hinder the formation of H2 by photodissociation. This decreases the maximum
abundance of H2 and delays cooling and collapse.

Table 7.2: Physical state of the densest gas within the scale radius rs after 1 Hubble time.

run Za J21
b Tc,min

c nc,max
d xH2,c,max

e fcoll
f

[Z⊙] [K] [Z⊙] [cm−3]
ZM25m 0.0 0.0 < 200 > 500 4 × 10−3 0.17
LM25m 10−3 0.0 < 200 > 500 2 × 10−3 0.20

ZM25mUV 0.0 10−2 < 200 > 500 5 × 10−4 0.005
LM25mUV 10−3 10−2 < 200 > 500 5 × 10−4 0.01

ZM25mUV2 0.0 10−1 4400 0.7 1.6 × 10−5 0.0
LM25mUV2 10−3 10−1 5900 0.6 1.5 × 10−5 0.0

aMetallicity of the gas.
bStrength of the UV background.
cMinimum temperature of the gas within the scale radius rs.
dMaximum number density of the gas within the scale radius rs.
eMaximum fractional H2 abundance within the scale radius rs.
fMass fraction of gas within a sink particle.

7.3 Low Metallicity Gas

After studying the cooling and collapse behavior of metal-free gas in protogalactic halos,
in this section we turn to gas with a low metal content. After the first stars in the universe
have exploded in a supernova, the formed metals have mixed with primordial gas. In
addition, the gas in these halos has been fully ionized, and it is hot and metal enriched.
The question that arises is how this low metal content in these H ii regions influences the
cooling and collapse properties of the gas in the halo. We try to give a first answer using
the chemistry and cooling routines introduced in Section 4.5.

7.3.1 Dependence of Cooling and Collapse on Metallicity

In this section we consider whether gas with metallicity Z = 10−3 Z⊙ changes its cooling
and collapse behavior compared to the zero metallicity case. We study the influence of the
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Figure 7.5: The radial dependence of the number density of the gas for models ZM25m (blue)
and LM25m (red) at several times. For comparison we show a dotted line with a slope of −2.

metallicity for 2 specific models ZM25m and LM25m which only differ in metal content.
We select these models because they represent the best cases to study the importance of
small dark matter halos for the formation of the second generation of stars. In Figure 7.5
we show the temporal evolution of the radial distribution of the hydrogen nuclei number
density. We directly compare the model with metal free gas to the model with gas of low
metal content. The models show striking similarity in the temporal evolution. The gas
collapses in both cases, and up to densities around 10 cm−3 the evolution of the density
profiles is almost indistinguishable. After 65 Myr both radial profiles approach n ∝ r−2.

From Figure 7.5 we can conclude that the metals do not influence the collapse by
much. More support to this result comes from Figure 7.6. Here we show the radial
profiles of temperature, fractional H2 abundance and fractional H+ abundance (from top
to bottom) and their temporal evolution. Again, we compare the results for model ZM25m
(no metallicity) on the left hand side and model LM25m on the right hand side of the
figure. Before we discuss the evolution of the individual profiles, we can infer from this
figure that the metal content does not result in effective changes in the radial profile of
all variables. The top panels show the temporal evolution of the radial profile of the
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(left) and LM25m (right) at several times. We show the dependence of temperature (top panel),
fractional H2 abundance (middle panel) and fractional H+ abundance (bottom panel).

temperature during collapse. Gas that is outside the virial radius (for this example rvir ≈
100 pc) cools predominantly via Compton cooling and, therefore, the cooling process starts
5 Myr after initialization. For smaller radii the cooling time is much longer since cooling
can only set in efficiently after enough H2 has been formed. We show the evolution of the
fractional H2 abundance in the middle panel of Figure 7.6. Efficient cooling via H2 only
sets in after the fractional H2 abundance has reached a value of 10−3. While the fractional
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abundance of H2 rises, the fractional abundance of H+ decreases. In the bottom panel of
Figure 7.6 we show how the initially fully ionized gas partially recombines. This process
is especially prominent in the core region where H2 forms. From the above evidence we
conclude that H2 cooling is the dominant cooling mechanism, this is true for gas with zero
metallicity as well as for gas with low metallicity. Nevertheless, it is also interesting to
investigate how the most important metals O, C, Si evolve during the collapse process.
The metals as well as the hydrogen are initially fully ionized. In Figure 7.7 we show the
temporal evolution of the radial profiles of C ii , O ii and Si ii for the model LM25m. With
time all metals recombine and the ionization fraction decreases.

7.3.2 Dependence of Cooling and Collapse on Metallicity and

UV Background

The evidence in the preceding section implies that the metallicity of the gas does not
dominate its cooling behavior. We arrive at this result using initially ionized gas with
number densities below 10 cm−3 in small protogalactic halos. The question remains if
further parameters like the UV background can change this result. We investigate this
possibility in this section.

In Figures 7.8 and 7.9 we compare the time evolution of the relative difference of
central gas density and central gas temperature between corresponding runs with low
metallicity and runs with zero metallicity. For times below 50 Myr the difference between
corresponding runs stays below 1 % of the value for zero metallicity gas. This holds true
for both, the central density and the central temperature. As shown in the previous
sections, the cooling of the gas is dominated by H2 cooling for densities below 1 cm−3 and
temperatures above 2000 K. Fine structure cooling due to the presence of metals only
contributes marginally to the overall cooling of the gas. The evolution of cooling during
the first 50 Myr and the onset of collapse are thus almost independent from the metallicity
of the gas if the metallicity is below Z = 10−3 Z⊙. Nevertheless, once the central region
goes into collapse the efficiency of the metal cooling rises. Only run LM25m that collapses
first shows a slight difference in the fraction of gas that is represented by a sink particle
(see Table 7.2). The influence of the UV background remains the same as in the case of
zero metallicity gas. Cooling and collapse is delayed or inhibited depending on the strength
of the UV background. The metals in the gas cannot initiate collapse if the gas cannot go
into collapse without any metals present.
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7.4 Summary and Discussion

The results that we have presented in this chapter are a first step to a better understanding
of the formation of stars in the early universe. So far many authors have modeled the dark
matter halos where the first generation of stars are born. For example, calculations per-
formed by Abel et al. (2002) show that rapid accretion rates driven by molecular hydrogen
cooling cause the formation of solitary massive protostars in the range 30 to 300 M⊙ in
minihalos of 105 − 106 M⊙ at redshifts > 20. Over the main sequence lifetime of the cen-
tral star (on the order 2 − 6 Myr for the range of 30 - 300 M⊙) half of the baryons within
the minihalo are driven beyond its virial radius by ionized flows that quickly steepen into
shocks. An important question is whether later generations of stars can efficiently form in
the relatively high temperatures and ionization fractions of the relic H ii regions left by
the first stars. This question is still an open issue.

Recently O’Shea et al. (2005) showed that a second primordial star can form in the
relic H ii region of an earlier Pop III star. But other studies show that the feedback on the
following generation of stars will be negative, i.e. prevent subsequent star formation. One
analytic study (Oh & Haiman, 2003) found that the first stars injected sufficient entropy
into the early intergalactic material, by photoheating and supernova explosions, to prevent
further local star formation in their vicinity. UV background radiation is also thought to
have contributed a negative feedback by photodissociating primordial H2 and quenching
the molecular hydrogen cooling processes that allowed the first primordial stars to form
(Haiman et al., 2000; Machacek et al., 2001).

In this chapter we have adressed the issue of cooling and collapse of ionized gas in
small protogalactic halos. We find that cooling and collapse is possible even in halos with
low mass (MDM > 5.0 × 105 M⊙) and at high redshifts (30 < z < 15). UV background
delays or quenches molecular hydrogen cooling processes. In regions with a UV background
J21 > 0.01 further star formation may not be possible.

The chemical network that we have implemented in a 3-dimensional hydrodynamics
code allows us to study gas with zero metallicity as well as gas with low metallicity. From
our models we find that gas with low metallicity collapses very similar to gas with zero
metallcity. Although the gas is pre-enriched, H2 cooling remains the dominant process.
At first sight, the fact that fine structure cooling from metals has so little impact on the
thermal or dynamical evolution of the gas even when Z = 10−3 Z⊙ is somewhat surprising,
given that Bromm et al. (2001) found that gas with this metallicity could cool rapidly and
fragment even in the absence of molecular hydrogen. However, comparison of the cooling
time due to fine structure emission to the free-fall time helps to make the situation clear.
The cooling time due to fine structure emission is given by

tcool,fs =
1

γ − 1

nkT

Λfs

, (7.2)

where Λfs is the total cooling rate per unit volume due to fine structure emission, T is the



7.4 Summary and Discussion 100

Number Density [cm-3]

101

10-2

102

103

104

10-1 100 10-1 102 103

T
em

p
er

at
u

re
 [

K
]

tcool, fs > tff

xe  = 1.0 xe  = 10-2 xe = 10-4

Figure 7.10: The black contours indicate the temperature and density at which the cooling time
due to fine structure emission, tcool,fs, equals the free-fall time, tff , for gas with a metallicity
Z = 10−3 Z⊙ and with fractional ionizations xe = 1.0, xe = 10−2 and xe = 10−4. To the left of
each line, tcool,fs > tff , so metal cooling is inefficient. In every case, we assume that all of the
carbon and silicon is present as C ii and Si ii respectively; in the xe = 1.0 case, we assume that
all of the oxygen is present in the form of O ii , but otherwise that it is all O i . To compute the
free-fall time, we take the density to be the sum of the gas density ρg and the dark matter density
at the center of the halo ρdm. The figure also shows how the temperature and density of the gas
at the centre of the halo evolve in runs L25m (red), L25mUV (green) and L25mUV2 (blue). The
evolution of the fractional ionization in these runs is indicated by the star symbols: xe = 1.0 for
T = 104 K, and decreases by a factor of 10 between each successive star.

temperature of the gas, γ is the adiabatic index, n is the number density of the gas and k
is the Boltzmann constant. The free-fall time can be written as

tff =

(

3π

32Gρ

)1/2

. (7.3)

where G is the gravitational constant and ρ = ρgas+ρdm (see Equation 3.31). The variables
ρgas and n are connected via the molecular weight µ: ρgas = µn. In Figure 7.10, we indicate
the temperature and density at which tcool,fs = tff for 10−3 Z⊙ gas, for three different
assumed fractional ionizations, with xe = 1.0 (fully ionized gas), xe = 10−2, and xe = 10−4.
In each case, we assume that the carbon and silicon are present only as C ii or Si ii , since
a fairly small external UV flux is sufficient to achieve this. In the xe = 1.0 case, we also
assume that all of the oxygen is O ii , since charge transfer between oxygen and hydrogen,
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which have nearly identical ionization potentials, typically ensures that xO+/xO ≃ xH+/xH.
For the dark matter density ρdm, we adopt the value found at the center of our model
protogalactic halo, ρdm ≃ 8 × 10−22 g cm−3 at t=0. In the plot, regions to the left of the
lines have tcool,fs > tff , while those to the right have tcool,fs < tff .

At the beginning of our simulations, gas in the center of the halo has a temperature
T = 104 K and a number density n = 0.03 cm−3. It therefore lies outside of the regime
where fine structure cooling is efficient, and so it is not surprising that we find that metal
line cooling is initially unimportant. As the gas cools, whether through Compton cooling
or H2 emission, and begins to compress as it falls in to the halo, it moves towards the
temperature and density regime in which fine structure cooling is effective. At the same
time, however, the gas is recombining, which moves the boundary of this regime to the
right in the plot, towards higher densities. The physical reason for this shift is the fact that
free electrons are much more effective than neutral hydrogen at exciting the C+ and Si+

fine structure lines, and so electron excitation dominates for xe > 10−2–10−3, depending on
the temperature. The net effect is that fine structure cooling remains of little importance
until the gas is near the high-cooling regime. This does not occur until after considerable
cooling and compression has already taken place, and therefore does not occur at all if H2

cooling is ineffective, as in runs ZM25mUV2 and LM25mUV2.

Why then do Bromm et al. (2001) come to such a different conclusion? The answer lies
in the difference between the initial conditions used in their simulations and in ours. They
adopt a low initial temperature for the gas of 200 K at z = 100, and this declines further due
to adiabatic cooling prior to the formation of their simulated protogalactic halo at z ∼ 30.
Since this halo has a mass of 2 × 106 M⊙ and a virial temperature Tvir ≃ 5000 K, the gas
temperature is initially very much smaller than the halo virial temperature. Consequently,
gas pressure support is initially ineffective at preventing the collapse of gas into the halo.
Pressure effects only become important once the gas becomes virialized, at which time it
has a temperature Tgas = Tvir ≃ 5000 K, and, crucially, a characteristic number density
n ≃ 102.5 cm−3. As can be seen from Figure 7.10, gas with this combination of temperature
and density lies close to or within the regime where tcool,fs < tff , depending on its fractional
ionization, and so it is not surprising that Bromm et al. (2001) find that fine structure
cooling is effective and that the gas can cool even in the complete absence of H2.

On the other hand, in our simulations the high initial temperature of 104 K and lower
virial temperature Tvir ≃ 1900 K mean that Tgas > Tvir initially, and that gas pressure
support is important right from the start. Indeed, at the beginning of our simulations it
precisely balances the effects of gravity, since we start with the gas in hydrostatic equilib-
rium. Therefore, there is no initial phase of free-fall collapse as in the Bromm et al. (2001)
simulations. Instead, significant gravitational collapse occurs only if the gas is able to
cool to a temperature of order Tvir or below, which, since fine structure cooling is initially
ineffective, will only occur if enough H2 can form in the low density gas.

Therefore, the key question is which set of initial conditions is more appropriate. It is
difficult to see how intergalactic gas could become metal enriched without at some point
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being ionized, since previous calculations have shown that the size of a typical region
enriched by a population III supernova is much smaller than the size of the H ii region cre-
ated by its progenitor star (see, e.g. Bromm et al., 2003). We would thus expect our initial
conditions to be more appropriate than those of Bromm et al. (2001) for treating recently
enriched and ionized regions. However, if enough time elapses following the enrichment
event for the gas to be able to cool down to a temperature of a few hundred K, then the
Bromm et al. (2003) initial conditions will be more appropriate. As Oh & Haiman (2003)
show, this is most likely to occur in high redshift gas with a low overdensity, as in this case
Compton cooling is fast and highly effective and can cool the gas to T ∼ 300 K within a
recombination time. On the other hand, at lower redshifts, or at higher overdensities, the
gas recombines before it can cool, and the temperature that can be reached by Compton
cooling alone is much higher, as is the case in our simulated halos. Note that in either case
the metals play no significant role in determining the final temperature of the gas.

An important implication of these results is that if we are primarily concerned with
investigating questions such as how Mcrit evolves with redshift, or how UV feedback in the
form of Lyman-Werner photons affects the ability of the gas to cool, then we need not worry
about the effects of metal enrichment, as the thermal evolution of the gas on the scales of
interest for these questions is completely dominated by Compton cooling and/or H2 cooling.
Therefore, results from studies such as Haiman et al. (2000) or Yoshida et al. (2003) give
a better guide to the behavior of small, low-metallicity protogalaxies than might have
been anticipated (although the additional complications posed by the mechanical energy
injected into the gas by H ii regions and supernovae do of course still need to be taken into
account).

However, it is important to stress that our results do not address the question of whether
or not there is a critical metallicity Zcrit above which fine structure cooling from metals
allows efficient fragmentation to occur. This is because if fragmentation does occur, we
would expect it to occur at densities n > 500 cm−3 which are unresolved in our current
simulations. We intend to examine this question using much higher resolution simulations
in future work.

Our results show that even with a high UV background, H2 remains the dominant
coolant up to hydrogen nuclei number densities of n ≈ 1 cm−3 irrespective of the metallicity
of the gas. Nevertheless, it will be important to see if this trend continues for higher
densities. We plan to access this region of the parameter space in future work by running
high resolution simulations that will enable us to resolve higher densities and smaller
masses. This will enable us to follow the collapse of individual protostars and thus address
questions of the stellar mass function and give us more insight into the transition from
massive population III stars to stars of solar metallicity.



Chapter 8

Summary and Future Prospects

Understanding the processes leading to the formation of stars is one of the fundamental
challenges in astronomy. Our understanding of the fundamental physics underlying star
formation has advanced greatly in recent years. Nevertheless there is still a strong demand
for theoretical work to reduce the gap between observations and theory. In this thesis we
study two important aspects that any theory of star formation should solve, namely the
angular momentum and the mass distribution problem (Zinnecker, 2004). In particular, we
concentrate on the influence of the thermodynamic properties of star-forming gas on the
initial stellar mass function. However, we do not address the question of how to solve the
third problem of star formation, the magnetic flux problem (only magnetically supercritical
cores can collapse and form stars Appenzeller, 1982; Shu et al., 2004). This remains a task
for future work.

We use 3-dimensional hydrodynamical simulations that follow the interplay between
gravity, interstellar turbulence and gas pressure. From these models we find that the
process of gravoturbulent fragmentation, i.e. the interplay between supersonic turbulence
and the self-gravity of the gas, is able to produce many of the observed features in Galactic
star forming regions. In Chapter 5 we perform a detailed analysis of the evolution of
the angular momentum during collapse. With the appropriate physical scaling, we find
the specific angular momentum j of prestellar cores in our models, i.e. cloud cores as yet
without central protostar, to be on average 〈j〉 = 7× 1020 cm2 s−1. This agrees remarkably
well with observations of cloud cores by Caselli et al. (2002) or Goodman et al. (1993).
Some prestellar cores go into collapse to build up stars and stellar systems. The resulting
protostellar objects have on average 〈j〉 = 8×1019 cm2 s−1. This is one order of magnitude
less, and falls into the range observed in G-dwarf binaries (Duquennoy & Mayor, 1991).

We also find that the time evolution of specific angular momentum j is intimately
connected to the mass accretion history of a protostellar core. As interstellar turbulence
and mutual interaction in dense clusters are highly stochastic processes, the mass growth
of individual protostars is unpredictable and can be very complex. Nevertheless, in a
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statistical sense, we identify a clear correlation between the specific angular momentum j
and mass M , that is best represented by the relation j ∝ M2/3. This can be interpreted
conveniently assuming collapse of an initially uniform density sphere in solid body rotation.
A collapsing cloud core can fragment further into a binary or higher-order multiple or evolve
into a protostar with a stable accretion disk. It is the ratio of rotational to gravitational
energy β that determines which route the object will take. The β-distribution resulting
from gravoturbulent cloud fragmentation reported here agrees well with β-values derived
from observations (Goodman et al., 1993). The average value is β ≈ 0.05. The fact that
all cores in the observational sample have β < 0.2 implies that gravitational contraction
is needed to achieve density contrasts high enough for sufficiently low β. This fits in the
picture of gravoturbulent fragmentation where molecular cloud structure as a whole is
dominated by supersonic turbulence but stars can only form in those regions where gravity
overwhelms all other forms of support. In our simulations angular momentum is lost during
collapse mostly due to gravitational torques exerted by the ambient turbulent flow as well
as by mutual protostellar interactions in a dense cluster environment.

In future work it will be desirable to quantify the contribution of each of these effects
in more detail. Magnetic torques are not included in our models, these would lead to even
larger angular momentum transport. Simulations that include self-gravity, turbulence and
magnetic fields would be desirable to investigate the overall evolution of the angular mo-
mentum (see e.g. Ziegler, 2005). However, smoothed particle hydrodynamics with magnetic
fields are still problematic although there have been many attempts to merge these (e.g.
Maron & Howes, 2003; Price & Monaghan, 2004). Another effect which could influence
the evolution of the angular momentum is feedback from evolved massive stars. Bipolar
outflows, winds and the radiation from young stars are also able to deposit large amounts
of energy and momentum into the surrounding molecular cloud and thus also change the
angular momentum in cloud cores. The inclusion and treatment of these phenomena in
the current models are the next step towards a better understanding and a more complete
theory of star formation.

The second point that we discuss in this thesis is the initial stellar mass function. In
particular, we focus on the dependence of the fragmentation behavior of star-forming gas
on its thermodynamic state. We conclude that the detailed knowledge of the thermal
properties of the gas is very important for the adequate modeling of star formation. These
properties are determined by the balance between heating and cooling processes in the gas.
This is not only true for star formation in the solar neighborhood but also for star formation
at high redshifts. The thermodynamic properties of the gas in these environments might
be considerably different but they are equally important to the corresponding process of
star formation.

In Chapter 6 we approach the problem by using a piecewise polytropic equation of
state (EOS) to describe the thermal evolution of the gas during collapse. This deviation
from the usual isothermal description shows that changes in the EOS influence directly the
characteristic mass scale for fragmentation, and consequently the peak of the initial stellar
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mass function. This characteristic mass can be obtained from observations and is strikingly
universal in regions in the solar neighborhood. Initial conditions in these regions can vary
considerably. If the IMF depends on the initial conditions, there would be thus no reason
for the characteristic mass to be universal. Therefore, a derivation of the characteristic
stellar mass that is based on fundamental atomic and molecular physics would be more
self-consistent.

Another mass scale in star formation that depends only on fundamental physics is the
opacity limit mass, a lower limit on the mass scale for fragmentation at high densities,
that is determined by the onset of a high opacity to the thermal emission from dust
(Low & Lynden-Bell, 1976). Nevertheless in our simulations we do not reach this mass
scale.

We approximate the temperature-density relationship at lower densities with the piece-
wise EOS given by Larson (1985). Here we show that differences in the thermodynamic
behavior of the gas may give discernible changes in the IMF. Knowledge of more detailed
temperature-density relations like that of Spaans & Silk (2000, 2005) will thus add more
predictive power to our models.

Nevertheless, a polytropic EOS can only serve as a first approach. In order to properly
model the collapse of star-forming gas, we need to be able to follow the major chemical
reactions in the gas, while also following its dynamical and thermal evolution. A common
assumption is that the chemical evolution of the gas can be decoupled from its dynamical
evolution, with the former never affecting the latter. Although justified in some circum-
stances, this assumption is not true in every case (see below). In particular, it does not
allow us to study some of the most interesting problems related to star formation, such
as the collapse of molecular cloud cores or the formation of stars from low metallicity gas.
In recent years the advances in observational techniques as well as space-based telescopes,
like the Hubble Space Telescope (HST) and the Spitzer Space Telscope, make it possible
to gain more and more information about star formation processes from the solar neigh-
borhood to distant galaxies at high redshifts. The interpretation of these observations
requires appropriate models that take into account the dynamical evolution as well as the
chemical properties of the gas. Our ultimate goal is the meaningful comparison between
our simulations and observations of star-forming regions. In order to achieve this aim we
have to be able to model the chemistry of the most important tracers, like CO, CS and NH3

in dynamical environments. These challenges require high-resolution, 3D modeling of the
collapsing region with an appropriate chemical network. For present-day metallicities these
simulations are not computationally feasible even with present state-of-the-art computers
and techniques, thus we focus on primordial star formation in the current study.

In Chapter 7 we take a first approach to combine a chemical network with a hydro-
dynamical code, in order to investigate the thermodynamic behavior of hot ionized gas of
low metallicity in small protogalactic halos. These regions are the probable birthplaces of
the second generation of stars in the universe. It is now clear that one of the keys to a
better understanding of the early episodes of star formation in the cosmos is the detailed
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appreciation of the chemistry and thermodynamics of H2. Despite the limited number
of elements available, primordial gas chemistry can be very complex. Nevertheless, the
amount of chemical reactions and cooling processes remain manageable within the pos-
sibilities of available computers. Therefore, the problem of the cooling and collapse of
hot ionized gas in small protogalactic halos is a good starting point to test our ability to
combine hydrodynamical simulations with appropriate cooling and chemistry routines.

Our simulations of regions that were ionized and heated by hard UV radiation from
the first stars show that cooling and collapse of the gas to form the second generation of
stars is possible if certain conditions are met. We find that the dark matter halo must have
a mass above 5.0 × 105 M⊙ and the UV background has to be below J21 = 0.01 for the
hot, ionized gas (T ≈ 104 K) to be able to cool. In this thesis we are especially interested
in the influence of low metallicity on the cooling properties of the gas. Our results show
that up to densities of 1 cm−3 and down to temperatures of 2000 K fine structure line
cooling by the metals only contributes below the 1% level to the overall cooling. H2 is
still the dominant coolant. This conclusion also holds for our simulations including UV
background radiation. As already discussed in Section 7.4 our results on the gas with zero
metallicity confirm the findings of previous authors (Haiman et al., 2000; Machacek et al.,
2001; Yoshida et al., 2003), a fact that gives us confidence in our method. These results
shed new light on the simulations of Bromm et al. (2001) of pre-enriched gas. They have
suggested that there is a fundamental difference between the cooling processes in gas with
a metallicity of Z = 10−3Z⊙ and those in gas with a metallicity of Z = 10−4Z⊙. In their
simulations these authors assumed that H2 has been radiatively destroyed by the presence
of a UV background. Also, by starting with cold gas they implicitly assumed that no
extra entropy or energy had been added to the gas during its enrichment, although as
Oh & Haiman (2003) have shown, this is unlikely to be the case. Our results show that
even with a high UV background, H2 remains the dominant coolant up to hydrogen nuclei
number densities of n ≈ 1cm−3. Nevertheless, it will be important to see if this trend
continues at higher densities. We plan to access this region in future work by running high
resolution simulations that enable us to resolve higher densities and smaller masses. This
will enable us to follow the collapse of individual protostars and thus address questions of
the stellar mass function, and give us more insight into the transition from massive Pop
III stars to stars of solar metallicity.



Appendix A

Physical Units and Constants

Table A.1: Physical Units

Name Symbol Value
parsec 1 pc = 3.085678 × 1018 cm
astronomical unit 1 AU = 1.495979 × 1013 cm
solar mass 1 M⊙ = 1.989 × 1033 g
year 1 yr = 3.155815 × 107 s
solar luminosity 1 L⊙ = 3.826 × 1033 erg s−1

Table A.2: Physical Constants

Name Symbol Value
gravitational constant G = 6.67259 × 10−8 cm3 g−1 s−2

gas constant R = 8.314510 × 107 erg K
Boltzmann constant kB = 1.380658 × 10−16 erg K−1

proton mass mp = 1.672623 × 10−24 g
speed of light c = 2.998 × 1010 cm s−1

Hubble constant H = 70 km s−1 Mpc−1



Appendix B

Primordial and Low Metallicity Gas

Chemistry

H2 collisional dissociation The reaction coefficients for the collisional dissociation of
H2 by atomic hydrogen (reaction 10) and molecular hydrogen (reaction 11) are density
dependent, since they are sensitive to the population of the vibrational and rotational
levels of H2. To treat the former, we use a rate coefficient

log kH =

(

n/ncr

1 + n/ncr

)

log kH,h +

(

1

1 + n/ncr

)

log kH,l (B.1)

where kH,l is the low density limit of the collisional dissociation rate and is taken from
Mac Low & Shull (1986), while kH,h is the high density limit, taken from Lepp & Shull
(1983). The critical density, ncr, is given by

1

ncr

=
xH

ncr,H

+
2xH2

ncr,H2

, (B.2)

where ncr,H and ncr,H2
are the critical densities in pure atomic gas with an infinitesimally

dilute quantity of H2 and in pure molecular gas respectively. The first of these values
is taken from Lepp & Shull (1983), but has been decreased by an order of magnitude, as
recommended by Martin et al. (1996); the other value comes from Shapiro & Kang (1987).
To treat the collisional dissociation of H2 by H2 we use a similar expression

log kH2
=

(

n/ncr

1 + n/ncr

)

log kH2,h +

(

1

1 + n/ncr

)

log kH2,l (B.3)

where the low density limit, kH2,l, is taken from Martin et al. (1998) and the high density
limit, kH2,h, is taken from Shapiro & Kang (1987). The collisional dissociation rates com-
puted in this way are acceptably accurate when nH ≫ nH2

or nH ≪ nH2
, but may be less

accurate in gas with nH ≈ nH2
; further study of the collisional dissociation of H2 in gas

which is a mixture of H and H2 would be desirable to help remedy this.
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Table B.1: A list of all the gas-phase reactions included in our chemical model.

Number Reaction Reference

1 H + e− → H− + γ Wishart (1979)

2 H− + H → H2 + e− Launay et al. (1991)

3 H + H+ → H+
2 + γ Ramaker & Peek (1976)

4 H + H+
2 → H2 + H+ Karpas et al. (1979)

5 H− + H+ → H + H Moseley et al. (1970)

6 H− + γ → H + e− Wishart (1979)

7 H+
2 + e− → H + H Schneider et al. (1994)

8 H2 + H+ → H+
2 + H Savin et al. (2004)

9 H2 + e− → H + H + e− Stibbe & Tennyson (1999)

10 H2 + H → H + H + H See text on page 108

11 H2 + H2 → H2 + H + H See text on page 108

12 H2 + γ → H + H Draine & Bertoldi (1996)

13 H + e− → H+ + e− + e− Janev et al. (1987)

14 H+ + e− → H + γ Ferland et al. (1992)

15 H− + e− → H + e− + e− Janev et al. (1987)

Dust extinction We use a local approximation to take account of the effects of dust
extinction on the photochemical rates. This approximation is similar to the one used for
the self-shielding as described in section 4.5. We first calculate the total column density
of hydrogen (in all forms) within a single smoothing length. For H2 photodissociation, the
appropriate scale factor can then be obtained directly, following Draine & Bertoldi (1996):

Rpd = Rpd,τ=0e
−τd,1000 (B.4)
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Table B.1: –Continued

Number Reaction Reference

16 H− + H → H + H + e− Janev et al. (1987)

17 H− + H+ → H+
2 + e− Poulaert et al. (1978)

18 H+
2 + γ → H + H+ Dunn (1968)

19 C+ + e− → C + γ Nahar & Pradhan (1997)

20 Si+ + e− → Si + γ Nahar (2000)

21 O+ + e− → O + γ Nahar (1999)

22 C + e− → C+ + e− + e− Voronov (1997)

23 Si + e− → Si+ + e− + e− Voronov (1997)

24 O + e− → O+ + e− + e− Voronov (1997)

25 O+ + H → O + H+ Stancil et al. (1999)

26 O + H+ → O+ + H Stancil et al. (1999)

27 C + H+ → C+ + H Stancil et al. (1998)

28 Si + H+ → Si+ + H Kingdon & Ferland (1996)

29 C+ + Si → C + Si+ Le Teuff et al. (2000)

30 C + γ → C+ + e− Verner et al. (1996)

31 Si + γ → Si+ + e− Verner et al. (1996)

where Rpd,τ=0 is the photodissociation rate in the absence of dust, and where τd,1000 is the
optical depth due to dust at 1000Å, which is given in terms of the total hydrogen column
density by

τd = 2 × 10−21NH,tot. (B.5)
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Table B.1: –Continued

Number Reaction Reference

32 H + c.r. → H+ + e− Liszt (2003)

33 H2 + c.r. → H+
2 + e− Liszt (2003)

34 C + c.r. → C+ + e− Liszt (2003)

35 O + c.r. → O+ + e− Liszt (2003)

36 Si + c.r. → Si+ + e− —

Adapted from Glover (2004). References are to the primary source of data for each

reaction. Photochemical reactions assume an incident spectrum corresponding to a

modified, diluted black-body, as described in the text.

For the other photochemical rates, we use the total hydrogen column density to compute
the visual extinction, AV, using a modified form of a relationship from Draine & Bertoldi
(1996):

AV = 5.348 × 10−22NH,tot(D/D⊙) (B.6)

where D is the actual dust-to-gas ratio, and D⊙ is the dust-to-gas ratio in solar metallicity
gas. Finally, we scale the rates with AV according to the scalings given in Le Teuff et al.

(2000), which are taken in most cases from van Dishoeck (1988).

Grain surface chemistry Several of the reactions in our model involve chemistry oc-
curring, not in the gas phase, but on the surface of interstellar dust grains. For these
reactions, we use rates from the literature that were originally computed for Galactic dust,
but scale the rates by (D/D⊙), the ratio of the actual dust-to-gas ratio to the dust-to-gas
ratio in solar metallicity gas. Since we also assume that the former is directly proportional
to metallicity, this essentially means that the rates scale as (Z/Z⊙).

Although there are some indications that both the composition and the size distribu-
tion of high redshift dust may differ significantly from those of Galactic dust (see, e.g.
Todini & Ferrara, 2001; Nozawa et al., 2003; Schneider et al., 2004) the theoretical uncer-
tainties remain large, and so we feel justified in continuing to use scaled Galactic rates at
the present time.

Cosmic rays The ionization rate of H due to cosmic rays is a free parameter in our
simulations, and is specified during the initialization of the simulation. The ionization
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Table B.2: A list of all the grain surface reactions included in our chemical model.

Number Reaction Reference

S1 H + H → H2 Hollenbach & McKee (1979)

S2 H+ + e− → H Weingartner & Draine (2001)

S3 C+ + e− → C Weingartner & Draine (2001)

S4 Si+ + e− → Si Weingartner & Draine (2001)

References are to the primary source of data for each reaction.

A grain size distribution and composition appropriate to

Milky Way dust is assumed.

rates for H2, C and O are computed based on the H rate using the scalings given by Liszt
(2003), while the rate for Si is assumed to be the same as that for C.
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