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Introduction

The main task of geophysics is to study the internal structure of the Earth using

surface and subsurface observational data. However, since direct measurements

of the Earth’s physical parameters can be done only on the Earth’s surface or

within an extremely narrow subsurface layer, the only method of studying the

Earth’s internal structure is based on solving inverse problems. One of such

inverse problems is the so-called seismic traveltime tomography, whose task is to

determine the velocity of seismic waves inside the Earth using the data about the

time that the seismic wave takes to travel from one point to another or so-called

traveltimes of seismic waves. The term tomography was coined from the Greek

words tomos meaning slice and graphos meaning image, and is carried out in

seismology from an analogous problem in medicine known as X-Ray tomography.

Three types of seismic waves are commonly identified: body waves, surface waves,

and free oscillations (for details see for example [1], [57]). Body waves travel

through the interior of the Earth and are divided into two types: longitudinal or

primary (P-waves) and transverse or secondary (S-waves). Longitudinal waves,

which are compression and rarefaction waves, are connected with the oscillation

of particles in the direction of propagation of the wave front; transverse waves are

connected with the oscillation of particles in a direction orthogonal to the prop-

agation direction of the wave front and characterize the resistance of the elastic

substance to shear. Surface waves are analogous to water waves and travel over

the Earth’s surface. There are two types of surface waves: Rayleigh waves and

Love waves. Due to this, in seismology, one distinguishes seismic body wave to-

mography, where the domain of the unknown velocity function and the ray paths

are lying in the Earth’s interior; and the seismic surface wave tomography, where

the domain of the unknown velocity function and the ray paths are lying on the

Earth’s surface. However, it should be mentioned that surface wave tomography
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can be used to study the deeper structure of the Earth as well (see e.g. [67], [68]).

The mechanical parameters of an isotropic elastic substance can be completely

characterized by the elastic Lamé parameters λ, µ, and the material’s density ρ.

The propagation speeds of P-waves and S-waves (in geophysics they are usually

denoted by vP and vS, respectively) are related with the Lamé parameters λ, µ,

and the density ρ by the formulas

vP =

√

λ + 2µ

ρ
, vS =

√

µ

ρ
. (1)

Although the speeds of seismic waves vP and vS cannot completely characterize

the mechanical parameters of an isotropic elastic substance but if they are known,

then, as formulas (1) show, they provide two relations between the three parame-

ters λ, µ, ρ and thus contain considerable information regarding the substance of

the Earth. Therefore, one of the most important problems of seismology consists

in finding the propagation speeds of seismic waves, which, as already mentioned

is one of the main problems of seismic tomography. It is an inverse problem and

may mathematically be represented as follows:

Given traveltimes Tq; q = 1, ..., N of seismic waves between epicenters Eq and

receivers Rq. Find a (slowness) function S, such that
∫

γq

S(x)dσ(x) = Tq, q = 1, ..., N, (2)

where integrals are path integrals over γq; q = 1, ..., N , which, in general, are

raypaths of seismic waves between Eq and Rq according to the slowness model

S. In general (2) is non-linear. However, as it is shown e.g. in [1], [11], [41],

[61] this problem can be solved approximately with the help of a linearization of

(2), by taking seismic ray paths between Eq and Rq according to some reference

slowness model as γq. In this thesis we only discuss the linear variant of the

seismic traveltime tomography problem.

At present there basically exist two concepts used to solve this problem. One

concept, which will be called here the ”block concept” subdivides the invested

region into small areas (blocks) where the velocity of the waves is assumed to be

of a simple structure (e.g. constant [13], [85], or cubic B-spline [80], [81]). This

method has some advantages in its practical implementation but has a natural

limit in the obtainable resolution (as any other method has).
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The second concept develops a spherical harmonic expansion of the velocity or its

deviation from a given model (see e.g. [17], [73], [74], [75], [82]). Its advantages

are based on the fact that the properties of spherical harmonics have been stud-

ied intensively in the past and many theorems and numerical tools are already

available for its application. The drawback of this approach is that the used basis

functions are polynomials and therefore, have a global character. However, since

seismic events strongly agglomerate in certain regions and the density of record-

ing stations extremely varies over the planet the available seismic data are by far

not uniformly distributed over the Earth’s surface. Due to this the structure of

the Earth can only coarsely be resolved in some areas, whereas detailed models

could be obtained elsewhere. This hampers the determination of local models

and the local variation of the resolution of global models.

In this thesis we demonstrate that the concept of approximating/interpolating

splines in reproducing kernel Sobolev spaces can be another alternative. Since

such splines are constructed via reproducing kernel functions that, in contrast to

spherical harmonics, are localizing (see also Section 3.2.2) we do not have the

drawback of the spherical harmonics.

In several geoscientific applications such as gravity data analysis (see e.g. [20],

[25]), modelling of the (anharmonic) density distribution inside the Earth ([45]),

modelling of seismic wave front propagation ([37], [38]) and deformation analy-

sis ([25], [77]) the splines or related spline methods derived from the harmonic

version on the sphere have already been applied successfully. In this thesis we

derive a theoretical basis for the applications of such splines to surface as well as

body wave tomography, which includes in particular the construction of a corre-

sponding spline method for the 3-dimensional ball. Moreover, we run numerous

numerical tests that justify the theoretical considerations.

The outline of this thesis is as follows:

Chapter 1 presents the basic notations, concepts, definitions and theorems within

the scope necessary for this study. In particular some orthogonal series of polyno-

mials namely Legendre and Jacobi polynomials, as well as complete orthonormal

systems on a sphere and a ball are presented.
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In Chapter 2 we give a brief introduction to inverse ill-posed problems in the

framework of linear problems in Banach spaces and in that context present (as

far as we know) a new operator-form formulation of the seismic traveltime linear

tomography problem. Furthermore, we discuss the question on uniqueness and

obtain a new result on the instability of that inverse problem.

In Chapter 3 we introduce spline functions in a reproducing kernel Sobolev space

to interpolate/approximate prescribed data. In order to be able to apply the

spline approximation concept to surface wave as well as to body wave tomog-

raphy problems, the spherical spline approximation concept, introduced by W.

Freeden in [21] and [22], is extended for the case where the domain X of the

function to be approximated is an arbitrary compact set in Rn. This concept

is discussed in details for the case of the unit ball and the unit sphere. In this

context we also obtain some new results on convergence and error estimates of

interpolating splines and demonstrate a method for construction of a regulariza-

tion of inverse problems via splines.

In Chapter 4 we present an application of a spline approximation method to

seismic surface wave traveltime tomography. We summarize briefly the results

of Chapter 3 for the case where X is the unit sphere in R3. Some other theo-

retical aspects, including a new result on uniqueness and convergence, as well as

numerical aspects of such an application are discussed. We also present results of

numerical tests which include the reconstruction of the Rayleigh and Love wave

phase velocity at 40, 50, 60, 80, 100, 130 and 150 seconds. Moreover, for com-

parison purposes (for some phases) we obtain the corresponding phase velocity

maps using the well-known spherical harmonics approximation method. To ver-

ify our spline method some tests with synthetic data sets, namely the so-called

checkerboard tests, a test by adding random noise to the initial traveltime data

and a test with a so-called hidden object, have been done as well.

In Chapter 5 an application of the discussed spline approximation method to seis-

mic body wave traveltime tomography is presented. Theoretical and numerical

aspects of such an application are discussed and some results of numerical tests

are demonstrated. Here numerical tests include a partial reconstruction of the
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P-wave velocity function (according to PREM) and its perturbation with the use

of synthetic data sets.

The results of this work are summarized in Chapter 6, some conclusions are made

and an outlook is given.

Finally, Appendix A contains a brief overview of seismic ray theory within the

framework of this thesis.
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Chapter 1

Basic Fundamentals

In this chapter we present the basic notations, concepts, definitions and theorems

within the scope necessary for this study. In particular some orthogonal series

of polynomials namely Legendre and Jacobi polynomials, as well as complete

orthonormal systems on a sphere and a ball are presented.

1.1 Preliminaries

The letters N, N0, Z, R and C denote the set of positive integers, non-negative

integers, integers, real numbers and complex numbers, respectively. Rn, n ∈ N

denotes the n-dimensional Euclidean space. We consider Rn to be equipped with

the canonical inner product · and associated norm | · |. For M ⊂ Rn by intM , ∂M

and M̄ denote the set of all inner points of M , the boundary of M , and the closure

of M , respectively. Throughout this work by Ω and B we will always denote the

unit sphere and the closed unit ball in R3, respectively, i.e. Ω = {x ∈ R3 : |x| = 1}
and B = {x ∈ R

3 : |x| ≤ 1}. We suppose that the reader is familiar with concepts

of linear, topological, Banach, pre-Hilbert and Hilbert spaces.

A set S in a real linear space X is called convex if for any two distinct points

x1, x2 ∈ S and any real 0 ≤ α ≤ 1, the point αx1 + (1 − α)x2 is in S.

A topological space is called separable if it contains a countable dense subset. Let

V be a linear space and V1 and V2 be subspaces of V . We call V the direct sum

of V1 and V2 and denote V = V1+̇V2, if any v ∈ V can be uniquely decomposed

as v = v1 + v2, where v1 ∈ V1 and v2 ∈ V2. Every direct sum induces a projector

1
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of V onto V1 along V2, defined by Pv := v1. Clearly P is a linear, idempotent

(i.e. P 2 = P ) operator, with the range V1 and null space V2. If the projector P

is continuous, V is said to be a topological direct sum of V1 and V2, and written

as V = V1 ⊕ V2. In this case V1 is called a topological complement of V2 in V .

For D ⊂ Rn and k ∈ N, we denote the set of all continuous functions F : D → R

such that every derivative of F of order ≤ k exists on intD and is continuous by

C(k)(D). For C(0)(D) =: C(D) we define

‖F‖C(D) := sup
x∈D

|F (x)|, F ∈ C(D).

The functional ‖ · ‖C(D) is a norm, if for instance D is compact. In this case C(D)

becomes a Banach space.

Let D ⊂ R
n be a compact set. The space of all on D bounded functions is

denoted by B(D). It is known that B(D) equipped with the (supremum) norm

‖F‖∞ := sup
x∈D

|F (x)|, F ∈ B(D),

is a Banach space (see e.g. [62]). Clearly, C(D) ⊂ B(D).

Let D ⊂ R
n be a compact set and Θ ⊂ D be a set of finitely many points of D. We

denote the set of all functions which are bounded on D and continuous on D \Θ

by CΘ(D), i.e. every function in CΘ(D) is bounded and piecewise continuous on

D. Clearly, for any set Θ ⊂ D of finitely many points, C(D) ⊂ CΘ(D) ⊂ B(D).

It can be shown that CΘ(D) equipped with the supremum norm is a Banach

space. In fact, since CΘ(D) ⊂ B(D) and B(D) is complete, if {Fn}n∈N ⊂ CΘ(D)

is a Cauchy sequence then there exists F ∈ B(D) such that

‖F − Fn‖∞ → 0, as n → ∞.

This implies that if for any n ∈ N, Fn is continuous at x ∈ D, then F is continuous

at x ∈ D, too. Hence F is continuous on D \Θ, and therefore F ∈ CΘ(D). Thus,

CΘ(D) is a Banach space.

Let D ⊂ Rn be an arbitrary measurable set. By L2(D) we denote the space of all

real and square-Lebesgue-integrable functions defined on D, where the elements

of L2(D) are, more precisely, equivalence classes of almost everywhere identical

functions. L2(D) equipped with the inner product

(F, G)L2(D) :=

∫

D

F (x)G(x)dx, F, G ∈ L2(D),
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is a Hilbert space.

Lemma 1.1.1 ([62]) Let D ⊂ Rn be an arbitrary compact set. Then for any

F ∈ B(D) ∩ L2(D)

‖F‖L2(D) ≤
√

measure(D) ‖F‖∞.

Definition 1.1.2 Let X be a normed linear space and {xk}k∈N0 be a sequence of

elements of X.

(i) {xk}k∈N0 is called complete in X if for any linear bounded functional F on X,

F(xk) = 0, k = 0, 1, 2, ... implies F = 0.

(ii) {xk}k∈N0 is called closed in X if any y ∈ X can be arbitrarily well approx-

imated by a finite linear combination of {xk}k∈N0, i.e. for any y ∈ X and real

ε > 0 there exists n ∈ N0 and a1, ..., an ∈ R such that

∥

∥

∥

∥

∥

y −
n
∑

i=0

aixi

∥

∥

∥

∥

∥

≤ ε.

Theorem 1.1.3 ([15]) A sequence of elements {xk} of a normed linear space X

is closed if and only if it is complete.

Theorem 1.1.4 ([15]) Let {xn}n∈N0 be an orthonormal system in a real Hilbert

space (X, (·, ·)). Then the following statements are equivalent:

(A) {xn}n∈N0 is closed (in sense the of the approximation theory) in X, i.e.

X = span{xn|n ∈ N0}
(·,·)

.

(B) {xn}n∈N0 is complete in X. That is y ∈ X and (y, xi) = 0, i ∈ N0 implies

y = 0.

(C) The Fourier series of any element y ∈ X converges in the norm to y, i.e.

lim
N→∞

∥

∥

∥

∥

∥

y −
N
∑

i=0

(y, xi)xi

∥

∥

∥

∥

∥

= 0.

(D) Any element of X is uniquely determined by its Fourier coefficients: That

is, if (y, xi) = (z, xi), for all i ∈ N0, then y = z.
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(E) Parseval’s identity holds. That is for all y, z ∈ X,

(y, z) =

N
∑

i=0

(y, xi)(z, xi).

Theorem 1.1.5 ([15]) The powers 1, x, x2, ..., defined on [a, b] are complete in

L2([a, b]).

Corollary 1.1.6 ([15]) A sequence {pn}n∈N0, where pn is a polynomial of degree

n defined in [a, b], is complete in L2([a, b]).

Theorem 1.1.7 (Weierstraß, [62]) A sequence {pn}n∈N0, where pn is a polyno-

mial of degree n defined in [a, b], is closed in C([a, b]).

Theorem 1.1.8 (Luzin, [62]) Let X ⊂ Rn, n ∈ N be a compact set. Then for

any measurable function f on X and any real number ε > 0 there exists g ∈ C(X)

such that

measure({x ∈ X : f(x) 6= g(x)}) ≤ ε.

Theorem 1.1.9 ([62]) Let X ⊂ Rn, n ∈ N be a compact set. Then

C(X)
‖·‖L2(X) = L2(X).

Taking into account that the measure of a compact set is always finite and using

Lemma 1.1.1 and Corollary 1.1.9 one obtain the following theorem.

Theorem 1.1.10 Let X ⊂ Rn, n ∈ N be a compact set and {fi}i∈N be a sequence

of continuous functions on X . If {fi}i∈N is closed in C(X) then it is closed in

L2(X) as well.

Theorem 1.1.11 (F. Riesz’ representation theorem, [84]) Let (X, (·, ·)) be a

Hilbert space and F a bounded linear functional on X. Then there exists a uniquely

determined element yF of X, called the representer of F, such that

F(x) = (x, yF) for all x ∈ X, and ‖F‖ = ‖yF‖.

Conversely, any element y ∈ X defines a bounded linear functional Fy on X such

by

Fy(x) = (x, y) for all x ∈ X, and ‖Fy‖ = ‖y‖.
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Theorem 1.1.12 ([83]) Let H be a dense and convex set in a normed linear

space E, and let F1, ..., Fn be n linear functionals over E. Then for any element

f in E and for every real ε > 0 there exists g ∈ H such that ‖f − g‖E ≤ ε and

Fif = Fig, for all i = 1, ..., n.

1.2 Legendre Polynomials

The following introduction to the theory of Legendre polynomials is based on

[24], where further details about this subject can be found.

Definition 1.2.1 The Legendre Polynomials {Pn}n∈N0 are polynomials, defined

in the interval [−1, 1] and given by Rodriguez’s formula:

Pn(t) =
1

2nn!

(

d

dt

)n

(t2 − 1)n, t ∈ [−1, 1], n ∈ N0.

Theorem 1.2.2 If for every n ∈ N0:

(i) Pn is a polynomial of degree n, defined on [−1, 1],

(ii)
∫ 1

−1
Pn(t)Pm(t)dt = 0 for all m ∈ N0\{n},

(iii) Pn(1) = 1,

then {Pn}n∈N0 is the system of Legendre Polynomials.

Theorem 1.2.3 For any n ∈ N0

‖Pn‖2
L2([−1,1]) =

2

2n + 1
.

Theorem 1.2.4 The Legendre Polynomials {Pn}n∈N and their derivatives have

the following property:

|P (k)
n (t)| ≤ |P (k)

n (1)|

for all k ∈ N0 and all t ∈ [−1, 1], in particular

|Pn(t)| ≤ |Pn(1)|

for all t ∈ [−1, 1].
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Theorem 1.2.5 (recurrence formulae)

The Legendre Polynomials {Pn}n∈N0 satisfy the following identities:

P ′
n+1(t) − tP ′

n(t) = (n + 1)Pn(t),

(t2 − 1)P ′
n(t) = ntPn(t) − nPn−1(t),

(n + 1)Pn+1(t) + nPn−1(t) = (2n + 1)tPn(t).

1.3 Jacobi Polynomials

For further constructions we also need a more general orthogonal system of poly-

nomials namely Jacobi polynomials. We only present definitions and some prop-

erties of them. For further details and proofs we refer to [44] and [70].

Definition 1.3.1 Let b > 0 and a > b − 1 be given real numbers. The Jacobi

polynomials are defined by the following Rodriguez’s formula

Gn(a, b; x) :=
(−1)nΓ(n + a)

Γ(2n + a)
x(1−b)(1 − x)(b−a)

(

d

dx

)n
(

x(n+b−1)(1 − x)n+a−b
)

for n ∈ N0 and x ∈ [0, 1], where Γ is the Gamma function.

Theorem 1.3.2 Let b > 0 and a > b − 1 be given real numbers. The Jacobi

polynomials {Gn(a, b; x)}n∈N0 are the only polynomials to satisfy the following

properties for all n ∈ N0:

(i) Gn(a, b; ·) is a polynomial of degree n, defined on [0, 1].

(ii) Gn(a, b; 0) = 1.

(iii)

∫ 1

0

xb−1(1 − x)a−bGn(a, b; x)Gm(a, b; x)dx = 0 for all m ∈ N0\{n}.

In case of m = n, we have (see [70] p. 212)

∫ 1

0

xb−1(1 − x)a−bGn(a, b; x)Gn(a, b; x)dx = n!
Γ(a + n)Γ(b + n)Γ(a − b + n + 1)

(2n + a)[Γ(a + 2n)]2
.

Hence, if we set

G̃n(a, b; x) :=

[

(2n + a)[Γ(a + 2n)]2

n!Γ(a + n)Γ(b + n)Γ(a − b + n + 1)

]1/2

Gn(a, b; x), (1.1)
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where x ∈ [0, 1], then the system {G̃n(a, b; x)}n∈N0 will be orthonormal in L2[0, 1]

with the weight function w(x) = xb−1(1 − x)a−b.

Since for any b > 0 and a > b− 1, Gn(a, b; ·) is a polynomial of degree n, defined

on [0, 1], G̃n(a, b; ·) also is a polynomial of degree n, defined on [0, 1]. Hence,

Theorem 1.1.7 implies that the system {G̃n(a, b; x)}n∈N0 is closed in C[0, 1].

Note that one finds an alternative definition in the literature (see e.g. [70]), where

the functions P
(α,β)
n , n ∈ N0, with α, β > −1 fixed, are called Jacobi polynomials

if they satisfy the following properties for all n ∈ N0:

(i) P (α,β)
n is a polynomial of degree n, defined on [−1, 1].

(ii)

∫ 1

0

(1 − x)α(1 + x)βP (α,β)
n (x)P (α,β)

m (x)dx = 0 for all m ∈ N0\{n}.

(ii) P (α,β)
n (1) =

Γ(n + α + 1)

Γ(n + 1)Γ(α + 1)
.

The relation between P
(α,β)
n and Gn(a, b; ·) is given by (see [70], p. 210)

Gn(a, b; x) =
n!Γ(n + a)

Γ(2n + a)
P (a−b,b−1)

n (2x − 1), x ∈ [0, 1]. (1.2)

Note that the Legendre Polynomials represent the special case Pn = P
(0,0)
n .

Theorem 1.3.3 For any α, β > −1 the Jacobi Polynomials P
(α,β)
n have the fol-

lowing property (see [44], p. 217):

max
x∈[−1,1]

|P (α,β)
n (x)| =







O(nq), if q = max(a, b) ≥ −1/2

O(n−1/2), if q = max(a, b) < −1/2
(1.3)

as n → ∞.

Theorem 1.3.4 (recurrence formula)

For any α, β > −1 and for all x ∈ [−1, 1] the Jacobi Polynomials P
(α,β)
n satisfy

the following identities (see [44], p. 213):

P
(α,β)
0 (x) = 1, P

(α,β)
1 (x) =

α − β

2
+

1

2
(α + β + 2)x,

and for n ≥ 2,

2n(α + β + n)(α + β + 2n − 2)P (α,β)
n (x)

= [(α + β + 2n − 2)(α + β + 2n − 1)(α + β + 2n)x + (α2 − β2)]P
(α,β)
n−1 (x)

−2(α + n − 1)(β + n − 1)(α + β + 2n)P
(α,β)
n−2 (x).
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1.4 Spherical Harmonics

Spherical harmonics are the functions most commonly used to represent scalar

fields on a spherical surface. We will use constructions with spherical harmonics

for approximations of seismic surface as well as body wave velocities. In this sec-

tion we present definitions and some well-known facts from the theory of spherical

harmonics. For the proofs of the theorems and further details we refer to [24] and

references therein.

Definition 1.4.1 Let D ⊂ R3 be open and connected. A function F ∈ C(2)(D)

is called harmonic if and only if

∆xF (x) =
3
∑

i=1

∂2F

∂x2
i

(x) = 0, for all x = (x1, x2, x3)
T ∈ D.

The set of all harmonic functions in C(2)(D) is denoted by Harm(D).

Definition 1.4.2 A polynomial P on R
3 is called homogeneous of degree n if

P (λx) = λnP (x) for all λ ∈ R, and all x ∈ R3. The set of all homogeneous

polynomials of degree n on R3 is denoted by Homn(R3).

Theorem 1.4.3 The dimension of Homn(R3) is given by

dim
(

Homn(R3)
)

=
(n + 1)(n + 2)

2
, n ∈ N0.

Definition 1.4.4 The set of all homogeneous harmonic polynomials on R3 with

degree n ∈ N0 is denoted by Harmn(R3), i.e.

Harmn(R3) :=
{

P ∈ Homn(R3) | ∆P = 0
}

, n ∈ N0.

Furthermore, we define

Harm0...n(R
3) :=

n
⊕

i=0

Harmi(R
3), n ∈ N0,

Harm0...∞(R3) :=

∞
⋃

i=0

Harm0...i(R
3).
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Definition 1.4.5 A spherical harmonic of degree n is the restriction of a homo-

geneous harmonic polynomial on R3 with degree n ∈ N0 to the unit sphere Ω. The

collection of all spherical harmonics of degree n will be denoted by Harmn(Ω), i.e.

Harmn(Ω) =
{

F |Ω | F ∈ Harmn(R3)
}

, n ∈ N0.

Theorem 1.4.6 If m 6= n then Harmm(Ω) is orthogonal to Harmn(Ω) in the

sense of L2(Ω), i.e. if m 6= n, then for all Ym ∈ Harmm(Ω) and all Yn ∈ Harmn(Ω)

(Ym, Yn)L2(Ω) = 0.

Hence, if we have orthonormal systems for every Harmn(Ω), n ∈ N0, we get an

orthonormal system for the space Harm0...∞(Ω).

Theorem 1.4.7 The dimension of Harmn(Ω), n ∈ N0 is equal to 2n + 1, i.e.

dim (Harmn(Ω)) = 2n + 1, n ∈ N0.

Therefore, a complete orthonormal system in Harmn(Ω) must have exactly 2n+1

elements.

Definition 1.4.8 By {Yn,j}n∈N0,j=−n,...,n we will always denote a complete L2(Ω)-

orthonormal system in Harm0...∞(Ω), such that Yn,j ∈ Harmn(Ω) for all j =

−n, ..., n. We call n the degree of Yn,j, and j the order of Yn,j.

The evaluation of sums with spherical harmonics can be essentially simplified by

the following theorem.

Theorem 1.4.9 (Addition Theorem for Spherical Harmonics)

For all ξ, η ∈ Ω we have

n
∑

j=−n

Yn,j(ξ)Yn,j(η) =
2n + 1

4π
Pn(ξ · η),

where Pn is the Legendre Polynomial of degree n.

The following theorem implies that every function in C(Ω) can be approximated

arbitrarily well (in C(Ω) sense) by the system {Yn,j}n∈N0,j=−n,...,n.
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Theorem 1.4.10 The system {Yn,j}n∈N0,j=−n,...,n is closed in C(Ω).

The fundamental importance of the spherical harmonics is demonstrated by the

following theorem.

Theorem 1.4.11 The system {Yn,j}n∈N0,j=−n,...,n is complete in L2(Ω).

Hence, Theorem 1.1.4 implies that the system {Yn,j}n∈N0,j=−n,...,n is closed as well,

i.e. every function in L2(Ω) can be approximated arbitrarily well (in L2(Ω) sense)

by the system {Yn,j}n∈N0,j=−n,...,n.

In applications we will use a particular system of spherical harmonics given by

Yn,j(ξ) = Yn,j(ξ(θ, φ)) =



















√
2Xn,|j|(θ) cos(jφ), if − n ≤ j < 0,

Xn,0(θ), if j = 0,
√

2Xn,j(θ) sin(jφ), if 0 < j ≤ n,

(1.4)

n ∈ N0, j ∈ {−n, ..., n}; where

Xn,j(θ) := (−1)j

(

2n + 1

4π

)1/2(
(n − j)!

(n + j)!

)1/2

Pn,j(cos θ), (1.5)

Pn,j(t) :=
1

2nn!

(

1 − t2
)j/2

(

d

dt

)n+j
(

t2 − 1
)n

,

and θ ∈ [0, π] and φ ∈ [0, 2π) are the colatitude and the longitude corresponding

to ξ = (ξ1, ξ2, ξ3) ∈ Ω which can be calculated from the equations cos(θ) = ξ3,

tan(φ) = ξ2/ξ3. Usually Pn,j is called associated Legendre function of degree n

and order j.

We will also use a system of complex valued spherical harmonics given by

Yn,j(ξ) = Yn,j(ξ(θ, φ)) := Xn,j(θ)e
ijφ; n ∈ N0, j ∈ {−n, ..., n}, (1.6)

where Xn,j is defined in (1.5).

So, we see that, for n ∈ N0 and j ∈ {−n, ..., n},

Yn,j(ξ) =



















√
2 ReYn,|j|(ξ), if − n ≤ j < 0,

Yn,0(ξ), if j = 0,
√

2 ImYn,j(ξ), if 0 < j ≤ n,

(1.7)
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For details on the theory of complex spherical harmonics we refer to [14] and [52].

1.5 Complete Orthonormal System in L2(B)

Let {gk(r)}k∈N0 , r ∈ [0, 1] be an orthonormal system in L2[0, 1] with the weight

function w(r) = r2 in [0, 1], i.e.
∫ 1

0

r2gk(r)gl(r)dr = δk,l, k, l ∈ N0. (1.8)

We define the sequence
{

W B
k,n,j(x)

}

k,n∈N0;j=−n,...,n
by

W B
k,n,j(x) = W B

k,n,j(rxξx) :=







gk(rx)Yn,j(ξx), if x ∈ B \ {0},
1, if x = 0,

(1.9)

where rx = |x|, ξx = x/|x| and Yn,j is the spherical harmonic of degree n and

order j. Note that here any other real can be taken as W B
k,n,j(0), too. Throughout

this work by rx and ξx we will always denote the norm and the unit vector of

x ∈ R3 \ {0} respectively.

Next, we see that

(

W B
k1,n1,j1, W

B
k2,n2,j2

)

L2(B)
=

∫

B

W B
k1,n1,j1(x)W B

k2,n2,j2(x)dx

=

∫

B

(gk1(rx)Yn1,j1(ξx))(gk2(rx)Yn2,j2(ξx))d(rxξx)

=

∫ 1

0

r2
xgk1(rx)gk2(rx)

(
∫

Ω

Yn1,j1(ξx)Yn2,j2(ξx)dω(ξx)

)

drx

=

(
∫ 1

0

r2
xgk1(rx)gk2(rx)dr

)

δn1,n2δj1,j2

= δk1,k2δn1,n2δj1,j2,

where (1.8) and the orthonormality of {Yn,j}n∈N0;j=−n,...,n in L2(Ω) have been

used. Hence,
{

W B
k,n,j

}

k,n∈N0;j=−n,...,n
is orthonormal in L2(B). Moreover, it can

be shown that if {gk(r)}k∈N0 is complete in L2[0, 1] then
{

W B
k,n,j(x)

}

k,n∈N0;j=−n,...,n

will be complete in L2(B). In fact,
{

W B
k,n,j

}

k,n∈N0;j=−n,...,n
is complete in L2(B) if

for any F ∈ L2(B),
∫

B

F (x)W B
k,n,j(x)dx =

∫ 1

0

gk(rx)r
2
x

∫

Ω

F (rxξx)Yn,j(ξx)dσ(ξx)drx = 0, (1.10)
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for any k, n ∈ N0, j = −n, ...n, implies that F = 0 almost everywhere (a.e.) in

B. Take any F ∈ L2(B). We denote

Un,j(rx) := r2
x

∫

Ω

F (rxξx)Yn,j(ξx)dσ(ξx), rx ∈ [0, 1].

Now, if {gk(r)}k∈N0 is complete in L2[0, 1] then from (1.10) follows that for any

n ∈ N0, j = −n, ..., n, Un,j = 0 a.e. in [0, 1]. Hence,

∫

Ω

F (rxξx)Yn,j(ξx)dσ(ξx) = 0

for almost all rx ∈ [0, 1]. However, since {Yn,j}n∈N0;j=−n,...,n is complete in L2(Ω),

F (rxξx) = 0 for almost all rx ∈ [0, 1] and almost all ξx ∈ Ω. Therefore, F = 0

a.e. in B.

Thus, in order to
{

W B
k,n,j

}

k,n∈N0;j=−n,...,n
be a complete orthonormal system in

L2(B), we need to choose the system {gk(r)}k∈N0 such that it is complete in

L2[0, 1] and fulfils (1.8). However, in Section 1.3 we have seen that the sys-

tem {G̃k(3, 3, r)}k∈N0, r ∈ [0, 1] of normalized Jacobi polynomials is complete in

L2[0, 1] and is orthonormal in L2[0, 1] with the weight function w(r) = r2. Thus,

by taking gk(r) := G̃k(3, 3, r),
{

W B
k,n,j

}

k,n∈N0;j=−n,...,n
will be a complete orthonor-

mal system in L2(B).

Using Equations (1.1) and (1.2), we can simplify G̃k(3, 3, rx).

G̃k(3, 3, rx) =

[

(2k + 3)[Γ(3 + 2k)]2

k!Γ(3 + k)Γ(3 + k)Γ(k + 1)

]1/2

Gk(3, 3, rx)

=

[

(2k + 3)[Γ(3 + 2k)]2

k!Γ(3 + k)Γ(3 + k)Γ(k + 1)

]1/2
k!Γ(k + 3)

Γ(2k + 3)
P

(0,2)
k (2rx − 1)

=

[

(2k + 3)[2 + 2k)!]2

[k!]2[(2 + k)!]2

]1/2
k!(k + 2)!

(2k + 2)!
P

(0,2)
k (2rx − 1)

=
√

2k + 3P
(0,2)
k (2rx − 1).

Hence,

W B
k,n,j(x) = W B

k,n,j(rxξx) :=







√
2k + 3P

(0,2)
k (2rx − 1)Yn,j(ξx), if x ∈ B \ {0},

1, if x = 0,

(1.11)
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with k, n ∈ N0; j = −n, ..., n.

The set (0, 1]×Ω is isomorphic to B \ {0}, where e.g. the map (rx, ξx) 7→ (rxξx),

with rx ∈ (0, 1], ξx ∈ Ω can be taken as an isomorphism. Therefore, the continuity

of G̃k(3, 3, ·)Yn,j(·) on (0, 1] × Ω implies the continuity of W B
k,n,j(·) on B \ {0},

where k, n ∈ N0; j = −n, ..., n. However, it can be shown that for all k ∈ N0,

with G̃k(3, 3, 0) 6= 0 and for all n ∈ N0; j = −n, ..., n, W B
k,n,j(·) is not continuous at

0 ∈ B. In fact, let k ∈ N0 such that G̃k(3, 3, 0) 6= 0 and let n ∈ N0; j = −n, ..., n

be arbitrary, but fixed. Moreover, let ξ1, ξ2 ∈ Ω such that Yn,j(ξ1) 6= Yn,j(ξ2) and

let {rm}m∈N be a sequence in [0, 1] with rm → 0 as m → ∞. In this case,

lim
m→∞

x1
m = lim

m→∞
x2

m = 0,

where x1
m := rmξ1 and x2

m := rmξ2, m ∈ N. However,

G̃k(3, 3, 0)Yn,j(ξ1) = lim
m→∞

W B
k,n,j(x

1
m) 6= lim

m→∞
W B

k,n,j(x
2
m) = G̃k(3, 3, 0)Yn,j(ξ2).

Hence, taking into account the fact that for any k, n ∈ N0 and j = −n, ..., n,

W B
k,n,j is bounded on B we obtain that

{

W B
k,n,j

}

k,n∈N0;j=−n,...,n
⊂ CΘ(B), with

Θ = {0}.
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Chapter 2

Seismic Tomography as an

Inverse Problem

Here we give a brief introduction to inverse ill-posed problems in the framework of

linear problems in Banach spaces (for more details see for example [10], [19], [53],

[55], [59], [72] ). In this context we discuss questions concerning the uniqueness,

the stability and the existence of the solution of the seismic traveltime tomography

problem.

2.1 Inverse Ill-posed Problems

Let (H, ‖ · ‖H) and (K, ‖ · ‖K) be Banach spaces and Λ : H → K be a linear

bounded operator.

Problem 2.1.1 Given G ∈ K, find F ∈ H such that

ΛF = G. (2.1)

Denote the domain, range and nullspace of Λ by D(Λ), R(Λ) and N(Λ), respec-

tively.

Definition 2.1.2 The inverse problem 2.1.1 is called well-posed in the sense of

Hadamard (or in the classical sense), if the following conditions are satisfied:

• for each G ∈ K there exists F ∈ H, such that ΛF = G,

(existence of a solution)

15
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• for each G ∈ K there exists no more than one F ∈ H, such that ΛF = G,

(uniqueness of the solution)

• the solution F ∈ H depends continuously on G ∈ K.

(continuity/stability of the inverse Λ−1)

Otherwise Problem 2.1.1 is called ill-posed.

This means that for an ill-posed problem the operator Λ−1 does not exist, or is

not defined on all of K, or is not continuous.

In practice we are often not confronted with the well-posed problems. First of

all a solution of ΛF = G exists only if G is in the range of Λ. Errors due to

unprecise measurements may cause that G /∈ R(Λ). Another difficulty with an

ill-posed problem is that even if it is solvable, the solution of ΛF = G needs not

be close to the solution of ΛF = Gε if Gε is close to G.

In order to define a substitute for the solution of ΛF = G, if there is none, one

introduces a notion of a so-called generalized solution, which roughly speaking is

the F for which ΛF is ”nearest” (in some sense) to G.

Assume that there exist closed subspaces M ⊂ H and S ⊂ K such that H and

K can be represented as a direct sum of N(Λ) and M and respectively of R(Λ)

and S, i.e. H = N(Λ)+̇M and K = R(Λ)+̇S. Let P be the projector of H onto

N(Λ) along M and Q be the projector of K onto R(Λ) along S. However, it is

known that (see e.g. [65]) if a Banach space is represented as a direct sum of

two closed subspaces then this direct sum is topological, i.e. the corresponding

projectors are continuous. Hence, P and Q are continuous, i.e. H = N(Λ) ⊕ M

and K = R(Λ) ⊕ S. Let Λ0 be the restriction of Λ to M , Λ0 := Λ|M . Then

Λ0 : M → R(Λ) is bijective. The generalized inverse (see [55]) Λ+ of Λ is defined

as the unique extension of Λ−1
0 to R(Λ)+̇S such that Λ+(S) = 0. Clearly, Λ+ is

linear. It can also be shown that Λ+ is characterized by the following equations:

Λ+ΛΛ+ = Λ+ on D(Λ+) := R(Λ)+̇S

ΛΛ+ = Q on D(Λ+)

Λ+Λ = I − P

This implies that ΛΛ+Λ = Λ. We also have that Λ+ = Λ−1
0 Q on D(Λ+), R(Λ+) =

M and N(Λ+) = S. For G ∈ D(Λ+), F := Λ+G is the unique solution of

ΛF = QG (2.2)
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in M . Hence, the set of all solutions of (2.2) is Λ+G + N(Λ).

Note that if H and K are Hilbert spaces then N(Λ) and R(Λ) have topological

complements. In particular, if we take M := N(Λ)⊥ and S := R(Λ)⊥, then Λ+

is also called Moore-Penrose inverse of Λ (see e.g. [55],[59]). Moreover, in that

case, for any G ∈ D(Λ+), Λ+G is the unique least-squares solution of minimal

norm of (2.1). For Hilbert spaces one can prove also the following theorem (see

e.g. [54]).

Theorem 2.1.3 Let H and K be Hilbert spaces and Λ : H → K be a linear

bounded operator. Then, the generalized (Moore-Penrose) inverse of Λ, Λ+ is

continuous if and only if R(Λ) is closed.

We mention that motivated from this result in Hilbert spaces one can also give

another definition of ill-posedness.

Definition 2.1.4 Let H and K be Hilbert spaces and Λ : H → K be a linear

bounded operator. Problem 2.1.1 is called ill-posed in the sense of Nashed, if the

range of R(Λ) is not closed. Otherwise, it is called well-posed in the sense of

Nashed.

In general, Λ+ is not a continuous operator, this means that ”small” changes

in the data can cause ”big” changes in the solution. In order to have a con-

tinuous dependence of the solution on the data one introduces the concept of a

regularization of Λ+ (see e.g. [53], [72]).

Definition 2.1.5 Let (H, ‖·‖H) and (K, ‖·‖K) be Banach spaces and Λ : H → K

be a linear bounded operator. Assume that the closure R(Λ) has a topological

complement in K, say S. The family of operators ΛJ : K → H, J ∈ Z, is called

a regularization of the generalized inverse Λ+ if

(i) for any J ∈ Z, ΛJ is linear and bounded on K,

(ii) for any G ∈ R(Λ)+̇S,

lim
J→∞

‖ΛJG − Λ+G‖H = 0.

The function FJ = ΛJG is called J-level regularization of Problem 2.1.1 and the

parameter J is called regularization parameter.
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Obviously, ‖ΛJ‖ → ∞ as J → ∞ if Λ+ is not bounded.

With the help of regularization one can solve Problem 2.1.1 approximately in the

following sense. Let Gε be an approximation of G such that ‖Gε −G‖K ≤ ε. Let

also F+ = Λ+G, and FJ = ΛJGε, J ∈ Z. Then

‖FJ − F+‖H ≤ ‖ΛJGε − ΛJG‖H + ‖ΛJG − Λ+G‖H

≤ ‖ΛJ‖‖Gε − G‖K + ‖ΛJG − Λ+G‖H

≤ ε‖ΛJ‖ + ‖ΛJG − Λ+G‖H .

This decomposition shows that the error consists of two parts: the first term

reflects the influence of the incorrect data, while the second term is represent the

approximation error between ΛJ and Λ+. Usually the first term increases with

the increasing of J because of the ill-posed nature of the problem, whereas the

second term will decrease as J → ∞ according the definition of a regularization.

Every regularization scheme requires a strategy for choosing the parameter J in

dependence on the error level ε in order to achieve an acceptable total error for

the regularized solution.

There are several methods for constructing a regularization, e.g. the Truncated

Singular Value Decomposition, the Method of Tikhonov-Philips, Iterative Meth-

ods (see e.g. [10], [19], [72]), Regularization with Wavelets (see e.g. [23], [46], [47],

[58]), etc. In the following chapter we will present a spline approximation method

and in particular we will show that it can be considered as a regularization.

2.2 Seismic Traveltime Linearized Tomography

The task of seismic traveltime tomography is to determine the seismic wave veloc-

ity function/model out of traveltime data related to the positions of the epicenters

and the recording stations. This is an inverse problem, which can be represented

as follows:

Problem 2.2.1 Given traveltimes Tq; q = 1, ..., N of seismic waves between epi-

centers Eq and receivers Rq on the Earth’s surface. Find a (slowness) function

S, such that

Tq =

∫

γq

S(x) dσ(x), q = 1, ..., N, (2.3)
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where γq; q = 1, ..., N are seismic rays between Eq and Rq, and dσ(x) is the

arc-length element.

Seismic rays γq; q = 1, ..., N are dependent on the slowness model S, and this

brings nonlinearity into Problem 2.2.1. To avoid this nonlinearity we will use the

most common approach in seismological literature (see e.g. [12], [42], [57]), the

so-called traveltime perturbation method (see Section A.3). That is in Equations

(2.3) instead of traveltimes we will use traveltime differences or so called delay

times, with respect to traveltimes in a reference slowness model:

δTq = Tq − T 0
q =

∫

γq

S(x) dσ(x) −
∫

γ0
q

S0(x) dσ(x) q = 1, ..., N, (2.4)

where T 0
q and γ0

q , q = 1, ..., N , are respectively traveltimes and raypaths of seismic

waves in a reference slowness model S0(x). Therefore, assuming that δS = S−S0

is not ”big”, using Equation A.13, we can substitute the unknown raypaths in a

slowness model S(x) by raypaths in a reference model S0(x).

We mention that the assumption that δS is not ”big” in seismological literature

usually means that S0 and S differ from one another no more than 10%, i.e.

|δS| ≤ min(|S|, |S0|)/10.

So, with the accuracy of small quantities of the order of δS2 (see Section A.3) we

can rewrite (2.4) approximately as:

δTq = Tq − T 0
q ≈

∫

γ0
q

δS(x) dσ(x) q = 1, ..., N. (2.5)

This (approximate) equation already expresses a linear relationship between the

observed delay times and the perturbations δS =: S to the reference slowness

model S0. In the present work we only discuss the linear formulation of seismic

traveltime tomography. For investigations on the nonlinear formulation of our

problem, see e.g. [2], [8], [14] and references therein.

In seismic body wave tomography the domain of the unknown slowness function

S and the raypaths γq are lying in the Earth’s interior; whereas in seismic surface

wave tomography the domain of S and γq are lying on the Earth’s surface. In

this chapter we will consider only the case of body wave tomography, as long as

for surface wave tomography the results are analogous.
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We shall present a more precise mathematical formulation of Problem 2.2.1.

Throughout this work we will use the unit ball B in R3 as an approximation to

the Earth, and the unit sphere Ω = ∂B therefore will be used as an approximation

to the Earth’s surface.

Assumption 2.2.2 Seismic rays are uniquely determined by the given data about

the type of the considered seismic waves, reference model S0 and by the source

and receiver coordinates.

This is not a restriction since if there are several seismic rays between the given

source and receiver we will just take any particular one of them (see Section A.1).

Assumption 2.2.3 The perturbation S is a continuous function in B, i.e. S ∈
C(B).

It should be mentioned that usually the slowness perturbation function S is sup-

posed to possess continuous derivatives of second and sometimes higher order. It

will be additionally mentioned if such a requirement arises.

Assumption 2.2.4 The seismic sources and receivers are located on the Earth’s

surface.

Taking this into account we reformulate Problem 2.2.1 as follows:

Problem 2.2.5 Given real numbers Tq; q = 1, ..., N and pairs of points (Eq, Rq) ∈
Ω × Ω. Find S ∈ C(B) such that

Tq =

∫

γq

S(x) dσ(x), q = 1, ..., N, (2.6)

where γq; q = 1, ..., N , are given curves/raypaths (independent from S) between

Eq and Rq.

This is the so-called discrete formulation of the seismic traveltime linear inversion

problem, since traveltimes are given only for finitely many rays. For further dis-

cussions and analysis it is convenient to write Problem 2.2.5 in continuous form

as well (see e.g. [41],[61]).
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By γS0(ν1, ν2) =: γS0(u), u = (ν1, ν2) ∈ Ω × Ω we denote the seismic raypath

between ν1 and ν2, according to the reference model S0. If no confusion is likely

to arise, we will simply write γu instead of γS0(u).

In this case Problem 2.2.5 in continuous form can be formulated as follows:

Problem 2.2.6 Given a function τ(u) = τ(ν1, ν2), u = (ν1, ν2) ∈ Ω × Ω, find a

continuous function S in B such that

τ(u) := τ(ν1, ν2) :=

∫

γS0
(u)

S(x)dσ(x). (2.7)

This problem in the nonlinear case, i.e. when we have γS(u) instead of γS0(u) in

Equation (2.7), is also called the inverse kinematic problem of seismology, and was

first considered in 1905-1907 by G. Herglotz (see [34]) and E. Wiechert, assuming

spherical symmetry of the Earth.

We will show now that τ(ν1, ν2) can be assumed to be a continuous function of

ν1 and ν2. First, let us show that the traveltime in a non-linearized model is a

continuous function. That is

Theorem 2.2.7 Let for any u = (ν1, ν2) ∈ Ω × Ω,

τ ′
S(u) := τ ′

S(ν1, ν2) :=

∫

γS(u)

S(x)dσ(x).

Then for any non-negative measurable and bounded function S in B τ ′
S(·, ·) is a

continuous function on Ω × Ω.

Proof: Take arbitrary points ν0
1 , ν

0
2 ∈ Ω. We show that τ ′

S(·, ·) is continuous

at (ν0
1 , ν

0
2). For any ν1, ν2 ∈ Ω denote by Γ(ν1, ν2) the set of all smooth curves γ

lying in B and joining the points ν1 and ν2. Let also

Υ(ν1,ν2)(γ) :=

∫

γ

S(x)dσ(x), γ ∈ Γ(ν1, ν2).

In this case according to Fermat’s principle (see Section A.1) the seismic ray

between ν1 and ν2 (according to the slowness model S) is the curve γ ∈ Γ(ν1, ν2)

on which the functional Υ(γ) achieves its minimum, i.e.

τ ′
S(ν1, ν2) = Υ(ν1,ν2)(γS(ν1, ν2)) = min

γ∈Γ(ν1,ν2)

∫

γ

S(x)dσ(x).
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Now take any ε > 0. Clearly, for sufficiently small δ > 0 and for any ν1, ν2 ∈ Ω,

if |ν1 − ν0
1 | < δ and |ν2 − ν0

2 | < δ, then ν1 and ν2 can be smoothly connected to

γS(ν0
1 , ν

0
2) with the curves l1, l2 with the lengths smaller than C1δ, where C1 is

some positive constant (see Figure 2.1). The obtained smooth curve that connects

Figure 2.1: Construction of γ1.

the points ν1, A, B, ν2 will be denoted by γ1.

Let S be bounded by the constant C2 > 0. Since S is non-negative,

τ ′
S(ν1, ν2) = min

γ∈Γ(ν1,ν2)

∫

γ

S(x)dσ(x) ≤
∫

γ1

S(x)dσ(x)

≤
∫

l1

S(x)dσ(x) +

∫

l2

S(x)dσ(x) +

∫

γS(ν0
1 ,ν0

2)

S(x)dσ(x)

≤ 2δC1C2 + τ ′
S(ν0

1 , ν
0
2).

Hence, taking δ = ε/2C1C2 we obtain

τ ′
S(ν1, ν2) ≤ ε + τ ′

S(ν0
1 , ν

0
2).

In an analogous way we obtain that

τ ′
S(ν0

1 , ν
0
2) ≤ ε + τ ′

S(ν1, ν2).

Therefore

|τ ′
S(ν1, ν2) − τ ′

S(ν0
1 , ν

0
2)| ≤ ε,

as |ν1 − ν0
1 | < δ and |ν2 − ν0

2 | < δ.

Since ν0
1 , ν

0
2 ∈ Ω was arbitrary, τ ′

S(·, ·) ∈ C(Ω × Ω). �

Chapter2/Chapter2Figs/fCh2_1.eps
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The approximate Equation (2.5) (in a continuous form) can be written as

τ ′
S(ν1, ν2) − τ ′

S0
(ν1, ν2) ≈

∫

γS0
(u)

(S(x) − S0(x))dσ(x) for any ν1, ν2 ∈ Ω. (2.8)

where S and S0 represent real and reference slowness model respectively, and

therefore are non-negative and bounded. Theorem 2.2.7 implies that τ ′
S(·, ·),

τ ′
S0

(·, ·) ∈ C(Ω × Ω). Therefore, if we set S := S − S0 then τ(·, ·) defined by the

Equation (2.7) can be written as

τ(·, ·) ≈ τ ′
S(ν1, ν2) − τ ′

S0
(ν1, ν2).

That is τ(·, ·) can be represented (approximately) as a difference of continuous

functions, therefore, in the context of linear tomography it is realistic to make

the following assumption.

Assumption 2.2.8 τ(·, ·) is a continuous function on Ω × Ω.

Next, we will assume the following properties.

Assumption 2.2.9 There exists an integer L such that for any u1, u2 ∈ Ω × Ω,

with u1 6= u2 the number of intersection points of γu1 and γu2 is smaller than L.

For example if γu, u ∈ Ω × Ω are straight lines then any number greater than 1

can be taken as L. If γu, u ∈ Ω × Ω can be represented as a part of an ellipse

then any number greater than 2 can be taken as L.

Assumption 2.2.10 There exists MS0 ∈ R such that for any ball Bα ⊂ B with

radius α,

length
(

γBα

u

)

< MS0α, for all u ∈ Ω × Ω,

where length
(

γBα
u

)

is the length of the part of γu whose image is in Bα.

In particular, taking Bα = B we will have that

length(γu) < MS0 for all u ∈ Ω × Ω.

For example if γu, u ∈ Ω × Ω are straight lines then any number greater than 2

can be taken as MS0 . If γu, u ∈ Ω × Ω can be represented as a part of an ellipse
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then any number greater than 2π can be taken as MS0 .

Denote by T the operator, defined on C(B), by T (F ) = TF =: τF , where

τF (u) =

∫

γu

F (x)dσ(x), u ∈ Ω × Ω.

Using our notations we can write Problem 2.2.6 in the following form:

Problem 2.2.11 Given a function τ defined on Ω×Ω, find a function F ∈ C(B)

such that

TF = τ . (2.9)

Note that in Problem 2.2.5, as well as in practice, τ is given only in finitely many

points of Ω × Ω.

According to Assumption 2.2.8 τ(·, ·) is a continuous function on Ω × Ω. Hence

the range of T is in the space of continuous functions on Ω×Ω, i.e. T : C(B) →
C(Ω × Ω).

Clearly, T is linear. Using Assumption 2.2.10 we obtain that for any F ∈ C(B),

‖TF‖C(Ω×Ω) = max
u∈Ω×Ω

∣

∣

∣

∣

∫

γu

F (x)dσ(x)

∣

∣

∣

∣

< MS0 max
x∈B

|F (x)| = MS0‖F‖C(B).

This means that T is bounded and therefore continuous as well.

We remark also that Problem 2.2.11 can be considered as a special case of the main

problem of integral geometry, which in general case can be formulated as follows

(see [28]): Let u(x) be a sufficiently smooth function defined in n-dimensional

space, i.e. x = (x1, ..., xn), and let {M(λ)} be a family of smooth manifolds in

this space depending on a parameter λ = (λ1, ..., λk) defined on a parameter space

Λ. For a given function v(λ), it is required to find the function u(x), with

∫

M(λ)

u(x) dσ = v(λ), λ ∈ Λ,

where dσ defines the element of measure on M(λ).

Another special case of Integral Geometry is the so-called Computerized Tomog-

raphy (see e.g. [56]), which has important applications in medicine. In that

case the corresponding transform which maps a function into the set of its line

integrals is called Radon transform.
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2.2.1 On Uniqueness of the Solution

Clearly, the uniqueness of the solution of the integral geometry problem, and in

particular Problem 2.2.11 depends on the family of the curves on which the inte-

gral of the target function is given. That is, it depends on the reference slowness

function according to which these curves are generated.

The first general results on uniqueness of the integral geometry problem, in lin-

ear and nonlinear case, were obtained by R. G. Mukhometov in [48], [49] in the

two-dimensional case. The multidimensional generalization of these results have

been done by R. G. Mukhometov himself [50], [51], by I. N. Bernstein and M. L.

Gerver [7] as well as by some other authors V. G. Romanov [60], Y. E. Anikonov

and V. G. Romanov [3].

The question on uniqueness of the integral geometry problem is also discussed in

differential geometry and known as boundary rigidity problem (see e.g. [66], [69],

[78] and the references therein).

Here we present (without proof) the result of I. N. Bernstein and M. L. Gerver

obtained in [7].

Definition 2.2.12 The family Γ of curves is called regular in B if the following

holds true.

a) For any point x ∈ B and every direction θ, a unique curve γx,θ ∈ Γ passes

through the point x and its tangent has the direction θ at x.

b) Denote by y(x, θ, s) the point of the curve γx,θ, which we arrive moving along

γx,θ from x at a direction θ at a distance s. y(x, θ, s) is a smooth ∗ function of

x, θ, s on its domain, say M.

c) M is compact. In particular lengths of the curves of Γ are uniformly bounded.

d) One unique curve from Γ passes through any two different points from B, i.e.

the equality y(x, θ, s) = y has a unique solution (θ, s) for any x, y ∈ B, x 6= y.

e) That solution (θ, s) depends smoothly on x, y with x 6= y.

Theorem 2.2.13 ([7]) If the family of seismic curves Γ is regular, then Problem

2.2.11 for a smooth function F has no more than one solution.

∗For simplicity ”smooth” is understood here as infinitely often differentiable.
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In case of surface wave tomography and for a special case of Problem 2.2.11,

analogous uniqueness problems will be discussed in later chapters.

2.2.2 The Instability of the Solution

To prove the instability of the solution of Problem 2.2.11 we have to show that

if T−1 exists then it is not continuous. For this we use the following well known

theorem from functional analysis (see e.g. [84]).

Theorem 2.2.14 Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be normed linear spaces. Then a

linear operator T : X → Y admits a continuous inverse T−1 on the range of T if

and only if there exists a constant c > 0 such that

c‖x‖X ≤ ‖Tx‖Y , for all x ∈ X.

The following theorem, as far as we know, is a new result.

Theorem 2.2.15 If T−1 : T (C(B)) → C(B) exists then it is not continuous.

Proof: From Theorem 2.2.14 we see that for discontinuity of T−1 it is enough to

show that for any c > 0 there exists F ∈ C(B) such that c‖F‖C(B) > ‖TF‖C(Ω×Ω).

Take any c > 0, we can construct a continuous non-negative function Fc ∈ C(B)

such that maxx∈B |Fc(x)| = Fc(x0) 6= 0 for some x0 ∈ B and Fc(x) = 0 for any

x /∈ x0(c/M
S0), where x0(c/M

S0) is the c/MS0 neighborhood of x0.

Hence using Assumption 2.2.10 we obtain that

‖TF‖C(Ω×Ω) = max
u∈Ω×Ω

∣

∣

∣

∣

∫

γu

F (x)dσ(x)

∣

∣

∣

∣

<
c

MS0
MS0‖F‖C(B) = c ‖F‖C(B).

This completes our proof. �

2.2.3 On Existence of the Solution

The question on existence of the solution of the seismic tomography problem (in

general case) is not widely discussed and is still open. At present we can only say

that if the operator T is injective, i.e. the solution of Problem 2.2.11 is unique,

then T is not surjective, i.e. there exists τ0 ∈ C(Ω×Ω) for which Equation (2.9)

has no solution. This fact holds true due to the following theorem.
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Theorem 2.2.16 ([36]) An injective continuous linear operator between two Ba-

nach spaces has a continuous inverse if it is surjective.

Hence, if T is injective then it is not surjective, since T−1 is not continuous (see

Theorem 2.2.15).
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Chapter 3

Approximation by Splines

In this chapter we introduce spline functions in a reproducing kernel Sobolev space

W({Ak}; X) to interpolate/approximate prescribed data. Concerning to this the

following fields of interest are discussed in more detail, namely smoothing, best

approximation, error estimates, convergence results and regularization via splines.

In order to be able to apply the spline approximation concept to surface wave as

well as to body wave tomography problems, the spherical spline approximation

concept, introduced by W. Freeden in [21] and [22], is extended for the case where

the domain of the function to be approximated is an arbitrary compact set in Rn.

Results are mostly based on works of W. Freeden et al. (see [21], [22], [23], [24])

for the unit sphere, and on [4], [15] for the theory of reproducing kernels.

Note that there are alternative approaches to construct interpolating or approx-

imating structures by use of the reproducing kernel Hilbert space theory such as

in [9], [63], [64].

3.1 Sobolev Spaces

Throughout this chapter, let X ⊂ Rn, n ∈ N be an arbitrary compact set. We

will call X the initial set for spline approximation. Let also W X := {W X
k : X →

R; W X
k ∈ CΘ(X); k ∈ N0} be a complete and orthonormal (both in L2(X) sense)

system on X, where CΘ(X) is defined in Section 1.1. We will call W X the initial

basis system on X.

29
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3.1.1 Definition and basic properties

Definition 3.1.1 Let {Ak}k∈N0 be an arbitrary real sequence. By E := E({Ak}; X)

we denote the space of all F ∈ L2(X) satisfying

(

F, W X
k

)

L2(X)
= 0 for all k ∈ N with Ak = 0

and
∞
∑

k=0
Ak 6=0

A−2
k

(

F, W X
k

)2

L2(X)
< +∞

From the Cauchy-Schwarz inequality it follows that for all F, G ∈ E

∣

∣

∣

∣

∣

∣

∣

∞
∑

k=0
Ak 6=0

A−2
k

(

F, W X
k

)

L2(X)
(G, W X

k )L2(X)

∣

∣

∣

∣

∣

∣

∣

≤







∞
∑

k=0
Ak 6=0

A−2
k

(

F, W X
k

)2

L2(X)







1/2





∞
∑

k=0
Ak 6=0

A−2
k (G, W X

k )
2

L2(X)







1/2

< ∞

Therefore, E is a pre-Hilbert space if it is equipped with the inner product

(F, G)W({Ak};X) :=
∞
∑

k=0
Ak 6=0

A−2
k

(

F, W X
k

)

L2(X)
(G, W X

k )L2(X) F, G ∈ E.

The associated norm ‖ · ‖W({Ak};X) is given by ‖F‖W({Ak};X) :=
√

(F, F )W({Ak};X).

Definition 3.1.2 The Sobolev space W({Ak}; X) is defined as the completion of

E({Ak}; X) with respect to the inner product (·, ·)W({Ak};X).

If no confusion is likely to arise, we will simply write W instead of W({Ak}; X).

It is clear that W equipped with the inner product (·, ·)W is a Hilbert space.

Elements of Sobolev spaces may be interpreted as formal orthogonal expansions

in terms of functions of W X . However, Lemma 3.1.5 (see bellow), which is an

analog of the Sobolev lemma, says that under certain circumstances the formal

orthogonal expansion actually converges uniformly to a function in ordinary sense.
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Definition 3.1.3 A real sequence {Ak}k∈N0 is called summable if the sum

∞
∑

k=0

A2
k

∥

∥W X
k

∥

∥

2

∞

is convergent.

Assumption 3.1.4 We always assume that the used sequences {Ak}k∈N0 are

summable.

The summability of the sequence {Ak}k∈N0 automatically guarantees that every

element of the Hilbert space W({Ak}; X) can be related to a piecewise continuous

function such that W({Ak}; X) ⊂ CΘ(X).

Lemma 3.1.5 W({Ak}; X) ⊂ CΘ(X) and for every F ∈ W({Ak}; X) the Fourier

series

F (x) =
∞
∑

k=0

(

F, W X
k

)

L2(X)
W X

k (x) (3.1)

is uniformly convergent on X.

Proof: Application of the Cauchy-Schwarz inequality yields for F ∈ W({Ak}, X)

the estimate

∣

∣

∣

∣

∣

∞
∑

k=K

(

F, W X
k

)

L2(X)
W X

k (x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∞
∑

k=K
Ak 6=0

(

F, W X
k

)

L2(X)
A−1

k AkW
X
k (x)

∣

∣

∣

∣

∣

∣

∣

≤







∞
∑

k=K
Ak 6=0

(

F, W X
k

)2

L2(X)
A−2

k







1/2





∞
∑

k=K
Ak 6=0

A2
k(W

X
k (x))2







1/2

≤ ‖F‖W({Ak},X)







∞
∑

k=K
Ak 6=0

A2
k

∥

∥W X
k

∥

∥

2

∞







1/2

−→
K→∞

0,

where the right hand side converges as K → ∞ uniformly with respect to x ∈ X

due to the summability condition. Finally, from W X
k ∈ CΘ(X), k ∈ N0, and from

the uniform convergence of the series in (3.1) follows that F ∈ CΘ(X). �
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Corollary 3.1.6 From the proof of Lemma 3.1.5 we see that

‖F‖∞ ≤ ‖F‖
W

(

∞
∑

k=0

A2
k

∥

∥W X
k

∥

∥

2

∞

)1/2

(3.2)

In the following examples we will see how the summability of the sequence

{Ak}k∈N0 can be understood for certain types of X and W X .

3.1.2 Examples

a) unit sphere

In case of X = Ω, where Ω = {x ∈ R3 | |x| = 1} is the unit sphere in R3, the

system {Yk,j}k∈N0;j=−k,...,k of spherical harmonics can be taken as initial basis sys-

tem on Ω (see Section 1.4). Since the spherical harmonics are continuous on Ω,

Θ = ∅, i.e. CΘ(Ω) = C(Ω).

Moreover, we have the addition theorem for spherical harmonics (see Theorem

1.4.9)
k
∑

j=−k

Yk,j(ξ)Yk,j(η) =
2k + 1

4π
Pk(ξ · η); ξ, η ∈ Ω, (3.3)

where Pk is the Legendre polynomial of degree k.

In order to use the addition theorem, we take Ak,j = Ak, k ∈ N0, j = −k, ..., k.

Hence, for any ξ ∈ Ω

∞
∑

k=0

k
∑

j=−k

A2
k (Yk,j(ξ))

2 =
∞
∑

k=0

A2
k

2k + 1

4π
Pn(1) =

∞
∑

k=0

A2
k

2k + 1

4π
,

and therefore, the sequence {Ak}k∈N0 is summable if and only if

∞
∑

k=0

2k + 1

4π
A2

k < ∞. (3.4)

We also bring several examples of such a summable sequence {Ak}k∈N0.

a1) The Shannon sequence. For a non-negative integer m

Ak =







1, if k ∈ [0, m + 1),

0, if k ∈ [m + 1,∞).
(3.5)
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a2) The Abel–Poisson sequence. For a real h ∈ (0, 1)

Ak = hk/2, k ∈ N0. (3.6)

a3) The Gauß–Weierstraß sequence. For a real h ∈ (0, 1)

Ak = hk(k+1)/2, k ∈ N0. (3.7)

b) unit ball

In case of X = B, where B = {x ∈ R3 | |x| ≤ 1} is the unit ball in R3, the

system
{

W B
k,n,j

}

k,n∈N0;j=−n,...,n
defined by (1.11) can be taken as W B, an initial

basis system on B. In this case the system W B is complete and orthonormal in

L2(B) and W B ⊂ CΘ(B), where Θ = {0} (see Section 1.5).

Hence, for any x ∈ B \ {0}
∞
∑

k=0

∞
∑

n=0

n
∑

j=−n

A2
k,n

(

W B
k,n,j(x)

)2
=

∞
∑

k=0

∞
∑

n=0

n
∑

j=−n

A2
k,n (gk(rx))

2 (Yn,j(ξx))
2

=
∞
∑

k=0

∞
∑

n=0

A2
k,n

(√
2k + 3P

(0,2)
k (2rx − 1)

)2 2n + 1

4π
.

However, from Theorem 1.3.3, we see that

max
−1≤2rx−1≤1

∣

∣

∣
P

(0,2)
k (2rx − 1)

∣

∣

∣
= O(k2) as k → ∞.

Therefore, the sequence {Ak,n}k,n∈N0 is summable if

∞
∑

k=0

∞
∑

n=0

A2
k,nk5n < ∞. (3.8)

In applications it is convenient to write {Ak,n}k,n∈N0 in the form of a product of

two sequences, i.e. Ak,n = BkCn, k, n ∈ N0. Clearly, in this case the sequence

{Ak,n}k,n∈N0 will be summable if we take any of the sequences defined in (3.5).

(3.6) and (3.7) as Bk and Cn. For example {Ak,n}k,n∈N0 is summable if

Ak,n = BkCn, with Bk = h
k(k+1)/2
1 , Cn = h

n/2
2 , k, n ∈ N0, (3.9)

where h1, h2 ∈ (0, 1) are some reals.
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3.2 Reproducing Kernels

Essential for the construction of the splines here is the existence of a reproducing

kernel. This is also guaranteed by the summability of the sequence {Ak}k∈N0 (see

also [4], [15]).

3.2.1 Definition and basic properties

Definition 3.2.1 A function KW : X ×X → R is called a reproducing kernel of

W if

(i) KW(x, ·) ∈ W for all x ∈ X.

(ii) (F (·), KW(x, ·))W = F (x) for all F ∈ W and for all x ∈ X (reproducing

property).

Theorem 3.2.2 W has a unique reproducing kernel KW : X × X → R given by

KW(x, y) =
∞
∑

k=0

A2
kW

X
k (x)W X

k (y) (3.10)

Proof: A necessary and sufficient condition that W has a reproducing kernel

is that, for each fixed x ∈ X, the evaluation functional Lx : W → R given by

LxF = F (x), x ∈ X is bounded for all F ∈ W (see [4]). Suppose first that KW is

a reproducing kernel, then

|LxF | = |F (x)| = |(F, KW(·, x))
W
| ≤ ‖F‖W (KW(·, x), KW(·, x))1/2

= ‖F‖W(KW(x, x))1/2 < ∞.

And conversely if LxF is bounded (and therefore, continuous), then by Theorem

1.1.11 there exists a function Gx ∈ W such that LxF = F (x) = (F, Gx)W.

Thus, we can take KW(x, ·) = Gx, which clearly fulfils properties (i) and (ii) of

Definition 3.2.1, and therefore, is a reproducing kernel.

In W the boundedness of the evaluation functional is guaranteed by Corollary

3.1.6, since for any F ∈ W,

|F (x)| ≤ ‖F‖∞ ≤ ‖F‖
W

(

∞
∑

k=0

A2
k

∥

∥W X
k

∥

∥

2

∞

)1/2

, x ∈ X.
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If there exists another reproducing kernel K ′
W, then for each fixed x ∈ X

‖KW(x, ·) − K ′
W(x, ·)‖2 = ((KW − K ′

W) (x, ·), (KW − K ′
W) (x, ·))

= ((KW − K ′
W) (x, ·), KW(x, ·))

− ((KW − K ′
W) (x, ·), K ′

W(x, ·)) = 0

because of the reproducing property of KW and K ′
W.

Now, it is easy to check that the reproducing kernel KW is given by (3.10).

Because of the reproducing property, for each n ∈ N0 with An 6= 0 and x ∈ X

W X
n (x) = (KW(x, ·), W X

n (·))W =
∞
∑

k=0
Ak 6=0

A−2
k (KW(x, ·), W X

k (·))L2(X)(W
X
k , W X

n )L2(X)

= A−2
n (KW(x, ·), W X

n (·))L2(X).

Therefore for each n ∈ N0 (see also Definition 3.1.1 and property (i) of KW) and

x ∈ X

(KW(x, ·))∧(n) = (KW(x, ·), W X
n (·))L2(X) = A2

nW X
n (x).

Hence, KW is given by (3.10). �

Corollary 3.2.3 Clearly from (3.10) follows that KW(x, y) = KW(y, x) for all

x, y ∈ X

Theorem 3.2.4 Let F be a bounded linear functional on W. Then the function

y 7→ FxKW(x, y) is in W and

F(F ) = (F, FxKW(x, ·))W

for all F ∈ W.

(Here, FxKW(x, ·) means that F is applied to the function x 7→ KW(x, y) where

y is arbitrary but fixed.)

Proof: Let RF be the representer of Fx, i.e. FxF = (F, RF)W for all F ∈ W.

Then,

FxKW(x, y) = (KW(·, y), RF)
W

= RF(y).

Hence, for all F ∈ W

FxF = (F, RF)W = (F, FxKW(x, ·))W. �
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This theorem implies that we can define an inner product in the dual space W∗

of W as

(F, G)W∗ := (RF, RG)W = FGKW(·, ·),

where RF and RG are representers corresponding to F and G. W∗ is a Hilbert

space with respect to (·, ·)W∗. The spaces W and W∗ are known to be isomorphic

and isometric (see e.g. [15]).

Reproducing kernel representations may be used to act as a basis system in

reproducing Sobolev spaces.

Theorem 3.2.5 Assume that D ⊃ Θ is a countable and dense set of points in

X. Then

spanx∈D{KW(x, ·)}‖·‖W

= W.

Proof: According to Theorem 1.1.3 it is enough to show that the properties

F ∈ W and (F, KW(x, ·))
W

= 0 for all x ∈ D imply that F = 0, i.e. the system

{KW(x, ·)}x∈D is complete and therefore closed in X. By definition of KW, the

condition (KW(x, ·), F )
W

= 0 is equivalent to F (x) = 0 for all x ∈ D. However ac-

cording to our construction, F is continuous on X \Θ (see Lemma 3.1.5). Hence,

if F (x) 6= 0 for some x ∈ X \ Θ then F would be different from zero for some

neighborhood of x. But this is a contradiction to the fact that D is dense in X. �

The following theorem shows that in W({Ak}; X) complete sets of functions can

be generated from complete sets of functionals.

Theorem 3.2.6 The sequence {Fn}n∈N of bounded linear functionals is complete

in W∗, i.e. f ∈ W, Fn(f) = 0, n = 1, 2, ..., implies f ≡ 0, if and only if the

functions

gn(y) := (Fn)x KW(x, y), y ∈ X, n = 1, 2, ...

form a complete set for W.

Proof: By Theorem 3.2.4, Fn(f) = (f(·), gn(·)). Hence, we see that the com-

pleteness of the sequence of functions {gn} in W is equivalent to the completeness

of the sequence of functionals {Fn}n∈N in W∗. �
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Since in Hilbert spaces closure and completeness are equivalent concepts, we get

the following result.

Corollary 3.2.7 The system of bounded linear functionals {Fn}n∈N is complete

in W∗ if and only if

spann∈N{(Fn)x KW(x, y)}‖·‖W

= W. (3.11)

3.2.2 Examples

Here we bring some examples of reproducing kernels and demonstrate their lo-

calization character in case of the unit sphere and the unit ball.

a) unit sphere

As we have already seen in case of X = Ω the system {Yk,j}k∈N0;j=−k,...,k of spher-

ical harmonics can be taken as an initial basis system on Ω. Hence, using (3.3)

we obtain that

KW(ξ, η) =

∞
∑

k=0

A2
k

2k + 1

4π
Pk(ξ · η); ξ, η ∈ Ω, (3.12)

where Pk is the Legendre polynomial of degree k.

In Figure 3.1, Figure 3.2 and Figure 3.3 the reproducing kernel KW(ξ, η) with the

corresponding sequences (symbols) defined in Section 3.1.2 is plotted. KW(ξ, η)

is plotted in dependence of ξ · η = cos(ϑ), ϑ ∈ [−π, π].

It should be mentioned that for the case of the Abel–Poisson sequence we obtain

a closed representation of the reproducing kernel KW. According to [24], p. 45

we find, that for all t ∈ [−1, 1], and h ∈ (−1, 1)

∞
∑

n=0

(2n + 1)hnPn(t) =
1 − h2

(1 + h2 − 2ht)(3/2)
.

Hence, the Abel–Poisson kernel has the well–known form

KW(ξ, η) =
1

4π

1 − h2

(1 + h2 − 2h(ξ · η))(3/2)
(3.13)

where h = A2
1.

b) unit ball

In case of X = B, the system
{

W B
k,n,j

}

k,n∈N0;j=−n,...,n
defined in Section 1.5 can
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Figure 3.1: Shannon kernel for m = 15 (solid line, left), m = 30 (dashed line,

left), m = 50 (solid line, right), and m = 70 (dashed line, right)

Figure 3.2: Abel–Poisson kernel for h = 0.5 (solid line, left), h = 0.75 (dashed

line, left), h = 0.9 (solid line, right), and h = 0.95 (dashed line, right)

be taken as an initial basis system on B (see also Section 3.1.2). Hence, again

using (3.3) we obtain that for all x, y ∈ B \ {0}

KW(x, y) =

∞
∑

k=0

∞
∑

n=0

A2
k,n(2k+3)P

(0,2)
k (2|x|−1)P

(0,2)
k (2|y|−1)

2n + 1

4π
Pn

(

x

|x| ·
y

|y|

)

.

where P
(0,2)
k is the corresponding Jacobi polynomial of degree k, and Pn is the

Legendre polynomial of degree n (for similar kernels see [76]).

Chapter3/Chapter3Figs/shannon_15_30.eps
Chapter3/Chapter3Figs/shannon_50_70.eps
Chapter3/Chapter3Figs/AP_0.5_0.75.eps
Chapter3/Chapter3Figs/AP_0.9_0.95.eps
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Figure 3.3: Gauß–Weierstraß kernel for h = 0.9 (solid line, left), h = 0.95

(dashed line, left), h = 0.99 (solid line, right), and h = 0.995 (dashed line, right)

In Figure 3.4 and Figure 3.5 the localization character of KW(x, y), with Ak,n =

BkCn, k, n ∈ N0 for some Bk and Cn is demonstrated. In both figures we have

x = (0, x2, x3), y = (0, y2, y3), and the reproducing kernel KW(x, y) is plotted in

dependence of y2 and y3, with y2
2 + y2

3 ≤ 1 and the value of KW(0, 0) is ignored.

Figure 3.4: The reproducing kernel KW(x, y) with Bk = e−0.1k, Cn = e−0.1n,

x2 = −0.1, x3 = −0.2 (left), Bk = e−0.05k, Cn = e−0.05n, x2 = 0.1, x3 = 0.5 (right)

Chapter3/Chapter3Figs/GW_0.9_0.95.eps
Chapter3/Chapter3Figs/GW_0.99_0.995.eps
Chapter3/Chapter3Figs/APAP_0.1_0.1_-0.1_-0.2.eps
Chapter3/Chapter3Figs/APAP_0.05_0.05_0.1_0.5.eps
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Figure 3.5: The reproducing kernel KW(x, y) with Bk = e−0.05k(k+1), Cn = e−0.1n,

x2 = −0.6, x3 = −0.5 (left), Bk = e−0.05k(k+1), Cn = e−0.05n, x2 = 0.2, x3 = 0.2

(right)

3.3 Spline Interpolation

Let FN := {Fn}n=1,...,N be a linearly independent system of linear continuous

functionals on W({Ak}; X).

Definition 3.3.1 A function S ∈ W of the form

S(x) =

N
∑

k=1

akFkKW(·, x), x ∈ X,

a = (a1, ..., aN)T ∈ R
N is called spline in W({Ak}; X) relative to FN . The scalars

a1, ..., aN are called the coefficients of the spline S(x). Such splines are collected

in the space Spline({Ak}; FN) or simply SplFN .

A spline interpolation problem can be formulated as follows.

Problem 3.3.2 For a given linearly independent system FN = {F1, ..., FN} of

linear continuous functionals and a vector y = (y1, ..., yN)T ∈ RN determine

S ∈ Spline({Ak}; FN) such that

FiS = yi for all i = 1, ..., N

Chapter3/Chapter3Figs/GWAP_0.05_0.1_-0.6_-0.5.eps
Chapter3/Chapter3Figs/GWAP_0.05_0.05_0.2_0.2.eps
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Or, equivalently, determine a ∈ R
N such that

N
∑

j=1

ajFiFjKW(·, ·) = yi for all i = 1, ..., N (3.14)

This yields a linear equation system with the matrix

kN = (FiFjKW(·, ·))i,j=1,...,N (3.15)

which is positive definite according to the following theorem.

Theorem 3.3.3 Let FN := {F1, ..., FN} be a system of bounded linear functionals

on W. This system is linearly independent if and only if the matrix kN is positive

definite.

Proof: Due to Theorem 3.2.4 we see that kN is a Gram matrix since

(Fi)x(Fj)yKW(x, y) = ((Fj)yKW(·, y), (Fi)xKW(x, ·))W. (3.16)

Moreover, according to this theorem the linear independence of the system

{(Fi)xKW(x, ·))}i=1,...,N , meaning that

G(y) :=
N
∑

i=1

ai(Fi)xKW(x, y) = 0 for all y ∈ X ⇔ ai = 0 for all i = 1, ..., N,

is equivalent to the statement that

(F, G)W =

N
∑

i=1

aiFiF = 0 for all F ∈ W ⇔ ai = 0 for all i = 1, ..., N

which is true if and only if FN is linearly independent. Since a Gram matrix

is positive definite if and only if the corresponding system of vectors is linearly

independent, the statement of the theorem is valid. �

Therefore, we obtain the following theorem.

Theorem 3.3.4 The formulated (spline interpolation) Problem 3.3.2 is always

uniquely solvable.
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Remark 3.3.5 Theorem 3.3.3 implies that the system {F1KW(x, ·), ..., FNKW(x, ·)}
is linearly independent, and therefore, Spline({Ak}; FN) is an N-dimensional sub-

space of W.

Next, we will prove the W - spline formula and the Shannon Sampling Theorem.

Lemma 3.3.6 (W-spline formula) Let S ∈ SplFN with

S(x) =

N
∑

l=1

alFlKW(., x), x ∈ X.

Then, for arbitrary F ∈ W

(F, S)W =
N
∑

l=1

alFlF. (3.17)

Proof: From Theorem 3.2.4 it follows directly that

(F, S)W =

N
∑

l=1

al

(

F, (Fl)y KW(y, .)
)

W
=

N
∑

l=1

alFlF.

�

Theorem 3.3.7 (Shannon Sampling Theorem) Any spline function S ∈
Spline({An}; FN) is representable by its ”samples” FiS as

S(x) =
N
∑

k=1

(FkS)Lk(x), x ∈ X, (3.18)

where

Lk(x) =

N
∑

j=1

a
(k)
j FjKW(x, ·), x ∈ X, (3.19)

with a
(k)
j given as solution of the linear equation systems

N
∑

j=1

a
(k)
j FiFjKW(·, ·) = δi,k for all i, k = 1, ..., N. (3.20)
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Proof: The set of equation systems in (3.20) guarantees that

FiLk = δi,k,

such that

Fi

(

N
∑

k=1

(FkS)Lk

)

=

N
∑

k=1

FkSFiLk = FiS

for all i = 1, ..., N . Thus, the uniqueness of the interpolating spline implies (3.18).

�

Next, we derive the following minimum properties.

Theorem 3.3.8 (1st Minimum Property) Let y ∈ RN be given and FN :=

{F1, ..., FN} ⊂ W∗ be linearly independent. If S∗ =
∑N

i=1 ai(Fi)xKW(·, x) is the

unique spline satisfying FiS
∗ = yi for all i = 1, ..., N then S∗ is the unique

minimizer of

‖S∗‖W = min{‖F‖W|F ∈ W, FiF = yi ∀i = 1, ..., N}.

Proof: For any F ∈ W we have

‖S∗ − F‖2
W = (S∗ − F, S∗ − F )W

= (S∗, S∗)W − 2(S∗, F )W + (F, F )W

= (S∗, S∗ − 2F )W + ‖F‖2
W.

Now, if FiF = yi ∀i = 1, ..., N , then using Lemma 3.3.6 we get

(S∗, S∗ − 2F )W =

N
∑

i=1

aiFi(S
∗ − 2F ) =

N
∑

i=1

ai(−yi)

= −
N
∑

i=1

aiFiS
∗ = −(S∗, S∗)W.

Altogether

‖F‖2
W = −(S∗, S∗ − 2F )W + ‖S∗ − F‖2

W

= ‖S∗‖2
W + ‖S∗ − F‖2

W.

Therefore, for any F ∈ W, with FiF = yi ∀i = 1, ..., N ,
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‖F‖W ≥ ‖S∗‖W and ‖F‖W = ‖S∗‖W if and only if F = S∗.

�

The obtained result shows that the formulated spline interpolation problem 3.3.2

is equivalent to the minimum norm interpolation problem:

Problem 3.3.9 Let FN = {F1, ..., FN} ⊂ W∗ be a linearly independent system

and y = (y1, ..., yN)T ∈ RN . Let also F ∈ W, with FiF = yi for i = 1, ..., N .

Determine SF
FN ∈ W such that

∥

∥SF
FN

∥

∥

W
= inf

G∈IN (y)
‖G‖W, (3.21)

where

IN(y) = {G ∈ W|FiG = FiF = yi, i = 1, ..., N} (3.22)

In general, the name ’spline’ refers to a function with a property of minimizing

a certain measure among all interpolants. In the classical Euclidean case the

natural cubic spline s minimizes the linearized deformation energy ‖s′′‖L2.

Theorem 3.3.10 (2nd Minimum Property) Let F ∈ W be given and FN :=

{F1, ..., FN} ⊂ W∗ be linearly independent. If S∗ ∈ Spline({Ak}; FN) is the unique

spline satisfying FiS
∗ = FiF for all i = 1, ..., N , then S∗ is the unique minimizer

of

‖F − S∗‖W = min{‖F − S‖W|S ∈ Spline({Ak}; FN)}.

Proof: For any S ∈ Spline({Ak}; FN) we have

‖S − F‖2
W = ‖S − S∗ + S∗ − F‖2

W

= (S − S∗ + S∗ − F, S − S∗ + S∗ − F )W

= ‖S − S∗‖2
W + 2(S − S∗, S∗ − F )W + ‖S∗ − F‖2

W.

For the splines we will use the notations

S =

N
∑

i=1

aS
i FiKW(x, ·)

and

S∗ =
N
∑

i=1

aS∗

i FiKW(x, ·).
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Applying Lemma 3.3.6 we see that

(S − S∗, S∗ − F )W = (S, S∗ − F )W − (S∗, S∗ − F )W

=

N
∑

i=1

aS
i Fi(S

∗ − F ) −
N
∑

i=1

aS∗

i Fi(S
∗ − F )

= 0.

Hence, we have

‖F − S‖2
W = ‖S − S∗‖2

W + ‖F − S∗‖2
W.

Therefore, for any S ∈ Spline({Ak}; FN) ,

‖F − S‖W ≥ ‖F − S∗‖W

and

‖F − S‖W = ‖F − S∗‖W if and only if S = S∗. �

Thus, if F represents an unknown function in W, the interpolating spline S∗ rep-

resents the best possible approximation to F among all splines, measured with

respect to the metric induced by the Sobolev norm ‖ · ‖W. Moreover, among all

functions in W that fit to the known data yi the spline S∗ is the ’smoothest’ (in

‖ · ‖W-sense).

Summarizing our results we obtain the following theorem.

Theorem 3.3.11 Problem 3.3.9 is well-posed, in the sense that its solution ex-

ists, is unique, and depends continuously on the data y1, ..., yN . The uniquely

determined solution is given by

SF
FN (x) =

N
∑

i=1

aiFiKW(·, x) x ∈ X,

where the coefficients a1, ..., aN satisfy the linear equation system (3.14).

3.4 Smoothing

In practice, the observations are affected by errors and irregularities and we have

to deal with ’noisy data’. In this case strict interpolation is inappropriate and a
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combined interpolation-smoothing method should be used (for more see e.g. [22],

[26] [27], [79]). More precisely, the quantities y1, ..., yN , corresponding to a set

of linear bounded functionals F1, ..., FN , are affected with uncertainties and it is

more reasonable to look for a ’smoothing’ function rather than for an interpolating

function, i.e. we have to determine a function F ∈ W such that

FiF ≈ yi i = 1, ..., N, (3.23)

and which minimizes some quantity µ(F ).

As µ(F ) we will take

µ(F ) =
N
∑

i=1

[

FiF − yi

βi

]2

+ ρ(F, F )W. (3.24)

In this case the method is called Least Squares Adjustment.

Here β2
1 , ..., β

2
N and ρ are some positive constants, which should be adapted to

the data situation (see e.g. [19], [21], [79]).

Theorem 3.4.1 (spline smoothing) Given y = (y1, ..., yN)T ∈ RN corre-

sponding to a set of N linearly independent bounded linear functionals FN =

{F1, ..., FN} on W. Then there exists a unique element S ∈ SplFN satisfying

µ(S) ≤ µ(F ) whenever F ∈ W. (3.25)

Equality holds if and only if S = F . Moreover, the coefficients a = (a1, ..., aN)T ∈
RNof the spline S =

∑N
i=1 ai(Fi)xKW(·, x) are uniquely determined by the linear

equation system

FiS + ρβ2
i ai = yi i = 1, ..., N. (3.26)

Proof: First of all, if we set

D =







β2
1 0

. . .

0 β2
N






,

then (3.26) can be written in vectorial form as

(kN + ρD)a = y, (3.27)
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where kN is defined in (3.15). Now, since kN and D are positive definite, hence,

kN + ρD is positive definite, too, therefore (3.27) is uniquely solvable.

Next, for any F ∈ W({Ak}; X) and any S ∈ SplFN satisfying (3.26), it is easy to

see that
N
∑

i=1

FiF

[

yi − FiS

β2
i

]

= ρ
N
∑

i=1

aiFiF (3.28)

Hence, according to Lemma 3.3.6

N
∑

i=1

FiF

[

yi − FiS

β2
i

]

= ρ(S, F )W. (3.29)

Now, from the definition of µ(F ) and from (3.29) we obtain that

µ(F ) − µ(S) =
N
∑

i=1

[

FiF − yi

βi

]2

+ ρ(F, F )W −
N
∑

i=1

[

FiS − yi

βi

]2

− ρ(S, S)W

=

N
∑

i=1

(FiF )2 − 2yiFiF + y2
i − (FiS)2 + 2yiFiS − y2

i

β2
i

+ ρ(F, F )W − ρ(S, S)W

=
N
∑

i=1

(FiF )2 − 2yiFiF + yiFiS

β2
i

+
N
∑

i=1

FiS

[

yi − FiS

β2
i

]

+ ρ(F, F )W − ρ(S, S)W

=

N
∑

i=1

(FiF )2 − 2yiFiF + yiFiS

β2
i

+ ρ(F, F )W

=

N
∑

i=1

(FiF )2 − 2FiFFiS + (FiS)2 + 2FiFFiS − (FiS)2 − 2yiFiF + yiFiS

β2
i

+ ρ(F, F )W

=
N
∑

i=1

[

FiF − FiS

βi

]2

− 2
N
∑

i=1

FiF

[

yi − FiS

β2
i

]

+
N
∑

i=1

FiS

[

yi − FiS

β2
i

]

+ ρ(F, F )W

=

N
∑

i=1

[

FiF − FiS

βi

]2

+ ρ(F, F )W − 2ρ(S, F )W + ρ(S, S)W

=

N
∑

i=1

[

FiF − FiS

βi

]2

+ ρ(F − S, F − S)W

=
N
∑

i=1

[

FiF − FiS

βi

]2

+ ρ‖F − S‖2
W.



48 Chapter 3. Approximation by Splines

Hence,

µ(F ) = µ(S) +

N
∑

i=1

[

FiF − FiS

βi

]2

+ ρ‖F − S‖2
W.

This proves the theorem. �

Clearly, the condition of kN +ρD is better than the condition of kN , and the larger

ρ the better gets the condition of kN + ρD. Since the system of linear equations

obtained by the spline interpolation problem can be very ill-conditioned, this is

one way to stabilize the matrix and make such systems numerically solvable.

The constant ρ is some kind of quantifier between smoothing and closeness to

the measurements. A small value of ρ emphasizes precision of the observed data

and less smoothness for F , while a large value does the opposite. The problem of

choosing the ”optimal” smoothing parameter is widely discussed in the literature.

There exist numerous strategies for such an ”optimal” parameter choice (see e.g.

the L-curve criterion [5], [19], [32], [33], the generalized cross-validation [79] and

the quasi-optimality criterion [43], [32]), however there is no general method that

works in every situation. The L-curve is a plot of the norm of the regularized

solution (y-axis) versus the norm of the corresponding residual (x-axis). In our

case the L-curve can be constructed by plotting ‖Sρ‖W versus ‖kNaρ − y‖, where

for each ρ, aρ is the solution of Equation (3.27) and Sρ is the corresponding

spline, i.e. the spline with coefficients aρ. Here, this ρ which corresponds to

the ”corner” point of L-curve (see [32], [33]) should be taken as an ”optimal”

smoothing parameter. Using (3.15) and (3.16), ‖Sρ‖W can be written as follows.

‖Sρ‖2
W = (Sρ, Sρ)

W
=

(

N
∑

i=1

aρ
i FiKW(x, ·),

N
∑

j=1

aρ
jFjKW(·, y)

)

W

=

N
∑

i=1

N
∑

j=1

aρ
i a

ρ
j (kN)i,j = (aρ)TkN(aρ).
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3.5 Best Approximation of Functionals

Let F be a bounded linear functional on W. Consider an approximation of F by

a linear combination JN of the form

JN =
N
∑

i=1

aiFi, (3.30)

where ai ∈ R, i = 1, ..., N and FN = {F1, ..., FN} form a linearly independent

system of bounded linear functionals on W. The error or reminder, when JN is

used to approximate F is defined by RN = F − JN .

Definition 3.5.1 The best approximation to F ∈ W∗ by the system FN ⊂ W∗ is

the functional J′
N ∈ W∗, with

J′
N =

N
∑

i=1

a′
iFi, a′

i ∈ R, i = 1, ..., N,

for which, for every JN in a form of (3.30) and RN = F − JN , we have

‖R′
N‖W∗ ≤ ‖RN‖W∗ , (3.31)

where R′
N = F − J′

N .

It is clear that for all F ∈ W (see Theorem 3.2.4)

RNF = (RNKW(·, ·), F )
W

= (RN , F )W, (3.32)

where RN = RNKW(·, ·) is the representer of RN , and hence, ‖RN‖W∗ = ‖RN‖W.

So, we see that the problem of finding the best approximation to F ∈ W∗ by the

system FN ⊂ W∗ is equivalent to finding a′
i ∈ R, i = 1, ..., N for which ‖RN‖W is

minimal.

We have that

RN = RNKW(·, ·) = (F − JN ) KW(·, ·) =

(

F −
N
∑

i=1

aiFi

)

KW(·, ·)

= FKW(·, ·) −
N
∑

i=1

aiFiKW(·, ·) =: F − S,
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where F := FKW(·, ·) ∈ W and S :=
∑N

i=1 aiFiKW(·, ·) ∈ SplFN . Therefore, for

minimizing ‖RN‖W we need to find a spline S ∈ SplFN that minimizes ‖F −S‖W.

But from Theorem 3.3.10 we see that for every F ∈ W the spline that minimizes

‖F − S‖W is unique and is uniquely determined by the equations

FiF = FiS, i = 1, ..., N,

that is

FiFKW(·, ·) =
N
∑

k=1

akFiFkKW(·, ·), i = 1, ..., N. (3.33)

By applying the Cauchy-Schwarz inequality to (3.32) we get also that for any

F ∈ W

|RNF | ≤ ‖RN‖W‖F‖W.

Thus, we arrive at the following theorem.

Theorem 3.5.2 Let F ∈ W∗ and FN = {F1, ..., FN} ⊂ W∗ be a linearly indepen-

dent system. Let also aN
1 , ..., aN

N be the solution of the (uniquely solvable) linear

equation system (3.33). Then, the linear functional J′
N given by

J′
N =

N
∑

i=1

aN
i Fi

represents the unique best approximation to F by the system FN . The approxi-

mation formula

FF ≈ J′
NF, F ∈ W,

admits the a posteriori estimate

|FF − J′
NF | ≤ ‖FKW(·, ·) − J′

NKW(·, ·)‖W‖F‖W.

3.6 Error Estimates

Here we obtain some new results, namely error estimates, for our spline interpo-

lation problem. For spherical splines error estimates can be found in [24].
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Theorem 3.6.1 Let F be a function in W, y = (y1, ..., yN)T ∈ R
N and let

FN = {F1, ..., FN} ⊂ W∗ be a linearly independent system. Denote by SF
FN ∈ W

the uniquely determined solution of the Problem 3.3.9. Then

sup
L∈W∗

‖L‖W∗=1

|LF − LSF
FN | ≤ 2ΛFN‖F‖W, (3.34)

where the FN − width ΛFN is defined by

ΛFN := sup
L∈W∗

‖L‖W∗=1

(

min
J∈span(FN )

‖L − J‖W∗

)

. (3.35)

Remark 3.6.2 Note that in the definition of ΛFN the ”min” exists due to The-

orem 3.5.2. Moreover, for any L ∈ W∗ with ‖L‖W∗ = 1

min
J∈span(FN )

‖L − J‖W∗ ≤ ‖L‖W∗ = 1. (3.36)

Thus, for arbitrary FN ⊂ W∗

0 ≤ ΛFN ≤ 1.

Hence, we see that (3.34) is a more precise version of the fact that for all L ∈ W∗,

with ‖L‖W∗ = 1 and for all F ∈ W

|LF − LSF
FN | ≤ ‖L‖W∗‖F − SF

FN‖W ≤ ‖F‖W + ‖SF
FN‖W ≤ 2‖F‖W.

Proof of Theorem 3.6.1: For any L ∈ W∗ with ‖L‖W∗ = 1 there exists

JL ∈ span(FN) such that ‖L − JL‖W∗ ≤ ΛFN . Since FkF = FkS
F
FN for all

k = 1, .., N , hence JLF = JLSF
FN , and therefore

LF − LSF
FN = LF − JLF + JLSF

FN − LSF
FN = (L − JL)F − (L − JL)SF

FN .

From Theorem 3.2.4 we see that

(L − JL)F = (F, (L − JL)xKW(x, ·))W

(L − JL)SF
FN = (SF

FN , (L − JL)xKW(x, ·))W

Next, using the Cauchy-Schwarz inequality we get

|(F, (L − JL)xKW(x, ·))W| ≤ ‖F‖
W

(κW(L, JL))1/2

∣

∣(SF
FN , (L − JL)xKW(x, ·))W

∣

∣ ≤
∥

∥SF
FN

∥

∥

W
(κW(L, JL))1/2
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where

κW(L, JL) = ((L − JL)xKW(x, ·), (L − JL)xKW(x, ·))W.

Therefore, again using Theorem 3.2.4 we get

(κW(L, JL))1/2 = ((L − JL)(L − JL)KW(·, ·))1/2 = ‖L − JL‖W∗ ≤ ΛFN .

Now, since SF
FN is the ’smoothest’ interpolant (see Theorem 3.3.8), thus

∥

∥SF
FN

∥

∥

W
≤ ‖F‖W.

Therefore, summarizing our results we obtain

|LF − LSF
FN | ≤ 2ΛFN‖F‖W

which proves the theorem, since L ∈ W∗ with ‖L‖W∗ = 1 was arbitrary. �

Theorem 3.6.3 Let F be a function in W, y = (y1, ..., yN)T ∈ RN and let

FN = {F1, ..., FN} ⊂ W∗ be a linearly independent system. Then
∥

∥F − SF
FN

∥

∥

W
≤ 2Λ

1/2

FN‖F‖W, (3.37)

where SF
FN and ΛFN are defined in Theorem 3.6.1.

Proof: Due to Theorem 1.1.11 for every F ∈ W and for the corresponding SF
FN

there exists L ∈ W∗ such that F −SF
FN is the representer of L, i.e. for any G ∈ W

we have LG = (G, F − SF
FN )W. By taking G = KW(x, ·), we will have

LKW(x, ·) = (KW(x, ·), F − SF
FN )W =

(

F − SF
FN

)

(x).

Note that since L is the representer of F − SF
FN and due to Theorem 3.3.8

‖L‖W∗ = ‖F − SF
FN‖W ≤ ‖F‖W + ‖SF

FN‖W ≤ 2‖F‖W.

Let ‖F−SF
FN‖W 6= 0 (otherwise there is nothing to prove, since the right hand side

of (3.37) is non-negative). We set L0 := L/‖L‖W∗ , so L0 ∈ W∗ and ‖L0‖W∗ = 1.

Hence, we obtain

‖F − SF
FN‖W = (F − SF

FN , F − SF
FN )

1/2
W

= (F − SF
FN , LKW(x, ·))1/2

W

= (L(F − SF
FN ))1/2 = ‖L‖1/2

W∗(L0(F − SF
FN ))1/2

= ‖L‖1/2
W∗ (L0F − L0S

F
FN )1/2 ≤ ‖L‖1/2

W∗ (2ΛFN‖F‖W)1/2

≤ 2Λ
1/2

FN‖F‖W,

where we used Theorem 3.2.4 and Theorem 3.6.1. �
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3.7 Convergence Results

One of the important questions of every interpolation problem is whether (and

under which circumstances) the interpolating function converges to the initial

function. Here we obtain a necessary and sufficient condition, under which the

sequence of interpolating splines converges to the initial function, in the sense of

a strong as well as a weak convergence.

Let F ∈ W be arbitrary and F := {F1, F2, ...} be a sequence of linearly indepen-

dent bounded linear functionals on W. For any N ∈ N define FN := {F1, ..., FN}
and consider the sequence

{

SF
FN

}

N∈N
of the (uniquely determined) solutions of

the spline interpolation problems

∥

∥SF
FN

∥

∥

W
= min

G∈W
FiG=FiF,i=1,...,N

‖G‖
W

, N ∈ N. (3.38)

Then the following theorem holds true.

Theorem 3.7.1 The following statements are equivalent

(i) lim
N→∞

‖F − SF
FN‖W = 0 for any F ∈ W,

(ii) the system {F1, F2, F3, ...} is closed in W∗ (in the sense of the approxi-

mation theory),

where for any N ∈ N, SF
FN ∈ W is the unique solution of the interpolation problem

(3.38).

Remark 3.7.2 In [23] another proof of the fact (ii) ⇒ (i) (for the spherical

case) is given. The result (ii) ⇒ (i) in the current general formulation and the

result (i) ⇒ (ii) (to the knowledge of the author) are new.

Proof of Theorem 3.7.1:

Due to Theorem 1.1.3 the closeness of {F1, F2, F3, ...} is equivalent to its com-

pleteness. Thus, using Corollary 3.2.7 we get that (ii) is equivalent to

spanN∈N
{(FN)yK(·, y)}‖·‖W

= W.

Next, it is clear that if (i) holds, then

∞
⋃

N=1

SplFN

‖·‖W

= W, (3.39)
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However, (3.39) means that for any F ∈ W and for any ε > 0 there exists N0 ∈ N

and SN0 ∈ SplFN0 such that ‖F − SN0‖W ≤ ε. Therefore, using Theorem 3.3.10

we obtain that

‖F − SF
FN‖W ≤ ‖F − SF

FN0‖W ≤ ‖F − SN0‖W ≤ ε for all N > N0.

Hence, (i) is equivalent to (3.39). Finally, observing the fact that

∞
⋃

N=1

SplFN

‖·‖W

= spanN∈N{(FN)yK(·, y)}‖·‖W

,

we get the desired result. �

Remark 3.7.3 In functional analytic language, the statement (i) in Theorem

3.7.1 means that SF
FN → F as N → ∞ in the sense of strong convergence,

and during the proof we have seen that it is true if the system {F1, F2, F3, ...} is

complete in W∗, i.e. it uniquely determines a function F ∈ W.

The following (as far as we know - new) theorem shows that the completeness

of {F1, F2, F3, ...} in W∗ is a necessary and sufficient condition for a weak con-

vergence of a sequence of interpolating splines to the initial function as well.

Theorem 3.7.4 The following statements are equivalent

(i) lim
N→∞

|LF − LSF
FN | = 0 for any F ∈ W, and for any L ∈ W∗,

(ii) the system {F1, F2, F3, ...} is complete in W∗.

where for any N ∈ N, SF
FN ∈ W is the unique solution of the interpolation problem

(3.38).

Proof: Taking into account the fact that from the strong convergence of a se-

quence follows the weak convergence of one, and using Theorem 3.7.1 we obtain

that (ii) ⇒ (i) (i.e. (ii) implies (i)). So, to prove the theorem, it is enough to

show that (i) ⇒ (ii), or equivalently Not (ii) ⇒ Not (i).

Assume now that (ii) is not true, i.e. there exists G ∈ W such that FiG = 0,
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i ∈ N, but G 6= 0. Denote by LG the functional, whose representer is G. In this

case using Lemma 3.3.6 we get

LGSG
FN = (SG

FN , G)W =
N
∑

i=1

aN
i FiG = 0, for any N ∈ N,

where for any N ∈ N, aN
1 , ..., aN

N are the coefficients of the spline SG
FN . Hence,

lim
N→∞

|LGG − LGSG
FN | = |LGG| = |(G, G)W| = ‖G‖2

W 6= 0.

That is, Not (ii) ⇒ Not (i). �

Combining Theorem 3.7.1 and Theorem 3.7.4, and taking into account Theorem

1.1.3 we obtain

Theorem 3.7.5 The following statements are equivalent

(i) lim
N→∞

|LF − LSF
FN | = 0 for any F ∈ W, and for any L ∈ W∗,

(ii) lim
N→∞

‖F − SF
FN‖W = 0 for any F ∈ W,

(iii) the system {F1, F2, F3, ...} is complete in W∗.

where for any N ∈ N, SF
FN ∈ W is the unique solution of the interpolation problem

(3.38).

We have shown that, roughly speaking, any function in W can be arbitrarily

well (in W-norm) approximated by a certain spline function (of course under

the assumption of completeness of the given system of functionals). A question

arises here, whether it is possible for an L2(X) function to get an arbitrarily good

approximation with corresponding spline functions too. In this context we are

able to prove the following theorem.

The set of all linear bounded functionals on L2(X) will be denoted by L2(X)∗. Let

F ∈ L2(X) be arbitrary and F := {F1, F2, ...} be a system of linearly independent

linear bounded functionals on L2(X). For any N ∈ N denote FN := {F1, ..., FN}.

Theorem 3.7.6 Let the system F = {F1, F2, ...} be complete in W∗, and let

F ∈ L2(X) be arbitrary. Then for any real ε > 0 and for any T ∈ N there exist

N ∈ N and a spline SN ∈ SplFN such that

FiSN = FiF, i = 1, ..., T (3.40)
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and

‖F − SN‖L2(X) ≤ ε. (3.41)

Proof: First of all, note that W ⊂ L2(X). Moreover, from Lemma 1.1.1 and

Corollary 3.1.6 follows that for any L ∈ L2(X)∗ and F ∈ W

|LF | ≤ ‖L‖‖F‖L2(X) ≤ C1‖F‖∞ ≤ C2‖F‖W,

where

C1 = ‖L‖
√

measure(X) = const,

C2 = ‖L‖
√

measure(X)

(

∞
∑

k=0

A2
k

∥

∥W X
k (x)

∥

∥

2

∞

)1/2

= const.

Therefore, F can be considered as a system of linear bounded functionals on W,

too.

By definition W X is complete and therefore closed in L2(X). Thus,

W({Ak}; X)
‖·‖L2(X) = L2(X). (3.42)

Let now F ∈ L2(X), ε > 0 and T ∈ N be arbitrary. From (3.42) and from

Theorem 1.1.12 (note that W is a linear space, and therefore is convex) follows

that there exists a function G ∈ W such that

‖F − G‖L2(X) ≤
ε

2
, (3.43)

and

FiF = FiG, i = 1, ..., T. (3.44)

Moreover, since G ∈ W, due to Theorem 3.7.5 there exists N0 = N0(ε) such that

for any N > N0 there exists SG
FN ∈ SplFN such that

‖G − SG
FN‖W ≤ ε

2C3
, (3.45)

with

FiG = FiS
G
FN , i = 1, ..., N, (3.46)

where

C3 =
√

measure(X)

(

∞
∑

k=0

A2
k

∥

∥W X
k (x)

∥

∥

2

∞

)1/2

= const.
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Thus, again using Lemma 1.1.1 and Corollary 3.1.6 we obtain that

‖G − SG
FN‖L2(X) ≤

ε

2
. (3.47)

Hence, taking N > max(N0, T ) and combining (3.43), (3.44), (3.46) and (3.47)

we obtain that there exists SN := SG
FN ∈ SplFN which satisfies (3.40) and (3.41).

�

3.8 Regularization with Splines

Let Y ⊂ Rn, n ∈ N be an arbitrary compact set and let B(Y ) be the Banach

space of all bounded functions on Y .

Let also Λ : W({Ak}; X) → B(Y ) be a linear bounded operator. We discuss the

following inverse problem.

Problem 3.8.1 Given G ∈ B(Y ), find F ∈ W such that ΛF = G.

Suppose that the solution of this problem is unstable. Hence, in order to get a

stable approximate solution of the Problem 3.8.1, we need to use a regularization

(see Section 2.1).

Let the closure of R(Λ) have a topological complement in B(Y ), say S. Let also

P be the projector of B(Y ) onto R(Λ) along S. Denote by Λ+ the generalized

inverse of Λ. For any y ∈ Y denote by Fy the functional defined on W with

FyF := ΛF (y), where F ∈ W.

From the linearity of Λ follows that for any y ∈ Y , Fy is linear, too. Moreover,

since for any y ∈ Y

|FyF | = |ΛF (y)| ≤ max
z∈Y

|ΛF (z)| = ‖ΛF‖∞ ≤ ‖Λ‖‖F‖W

and Λ is bounded, Fy is bounded as well. Now, let {y1, y2, ...} be a sequence

of points in Y such that the corresponding system of linear bounded functionals

{Fy1, Fy2, ...} is linearly independent and is complete in W({Ak}; X)∗. Denote

Fi := Fyi
, i ∈ N and FN := {F1, ..., FN}, N ∈ N.

Consider the sequence of operators ΛN : R(Λ)+̇S → W defined by

ΛNG = SF
FN for any G ∈ R(Λ)+̇S, N ∈ N, (3.48)
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where F := Λ+G, and for any N ∈ N, SF
FN is the (uniquely determined) solution

of the spline interpolation problem

∥

∥SF
FN

∥

∥

W
= min

H∈W
FiH=FiF,i=1,...,N

‖H‖
W

. (3.49)

It is not hard to check that using the linearity of Λ+ and Fi, i ∈ N, and applying

Theorem 3.3.11, one obtains that for any N ∈ N, ΛN is linear as well.

Now take an arbitrary G ∈ R(Λ)+̇S and denote G1 := PG. Note that from the

definition of Λ+ follows that Λ+G = Λ+G1. Thus, for an arbitrary N ∈ N

ΛNG = S
(Λ+G)

FN = S
(Λ+G1)

FN = ΛNG1.

Therefore, for every fixed N ∈ N using Lemma 1.1.1, Theorem 3.3.7 and the

continuity of P we obtain that

‖ΛNG‖L2(X) = ‖ΛNG1‖L2(X) =
∥

∥SF
FN

∥

∥

L2(X)
(3.50)

≤
√

measure(X)
∥

∥SF
FN

∥

∥

C(X)
≤ C1 sup

x∈X

∣

∣

∣

∣

∣

N
∑

k=1

(FkF )Lk(x)

∣

∣

∣

∣

∣

≤ C1 max
k=1,...,N

|FkF | sup
x∈X

∣

∣

∣

∣

∣

N
∑

k=1

Lk(x)

∣

∣

∣

∣

∣

≤ C1 sup
y∈Y

|ΛF (y)|C2

= ‖G1‖∞C1 C2 ≤ ‖P‖‖G‖∞C1 C2

≤ C ‖G‖∞,

where F := Λ+G1, Lk(x) is defined by (3.19), C = C1 C2, C1 =
√

measure(X)

and

C2 = sup
x∈X

∣

∣

∣

∣

∣

N
∑

k=1

Lk(x)

∣

∣

∣

∣

∣

= const

is bounded since
∑N

k=1 Lk is in W and thus, bounded. So, for any N ∈ N, ΛN is

a linear bounded and therefore continuous operator on R(Λ)+̇S. However since

B(Y ) = R(Λ)+̇S, ΛN admits a uniquely determined extension Λ′
N to B(Y ), for

any N ∈ N (see e.g. [39]) with ‖Λ′
N‖ = ‖ΛN‖, N ∈ N.

Hence, we obtain a family of linear bounded operators Λ′
N : B(Y ) → W, N ∈ N

such that for any G ∈ R(Λ)+̇S (see Theorem 3.7.5)

lim
N→∞

‖Λ′
NG − Λ+G‖W = lim

N→∞
‖SF

FN − F‖W = 0.
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That is, the family of operators Λ′
N , N ∈ N defined via splines can be considered

as a regularization of the generalized inverse Λ+ (see Definition 2.1.5).

It should also be mentioned that the described method of the construction of a

regularization can work only if in the range space of the operator Λ from the

closeness (nearness) in norm follows pointwise closeness, as e.g. in B(Y ) or C(Y )

with the supremum norm. Otherwise, the operators ΛN can be non-continuous.



60 Chapter 3. Approximation by Splines



Chapter 4

Application to Seismic Surface

Wave Tomography

In this chapter we present an application of a spline approximation method,

described in Chapter 3, to seismic surface wave traveltime tomography.

As we have already mentioned, the task of seismic (traveltime) tomography is to

determine the seismic wave velocity function/model out of traveltime data related

to the positions of the epicenters and the recording stations. The problem of

seismic surface wave traveltime tomography can be formulated as follows:

Given traveltimes Tq; q = 1, ..., N of seismic surface waves between epicenters Eq

and receivers Rq on the Earth’s surface. Find a (slowness) function S̃, such that

∫

γq

S̃(x)dσ(x) = Tq, q = 1, ..., N, (4.1)

where integrals are path integrals over γq; q = 1, ..., N , which, in general, are ray-

paths of seismic surface waves between Eq and Rq. Following the considerations

in Chapter 2 we will discuss the linearized inverse problem, by taking PREM (see

[16]) as a reference model. However, since in PREM the surface wave velocity is

constant, the minimal spherical distances, i.e. the geodesic minimal arcs, between

Eq and Rq should be taken as γq; q = 1, ..., N . As we have already mentioned

we will use the unit ball as an approximation for the earth. Therefore, the given

data, i.e. Eq, Rq and Tq; q = 1, ..., N , also must be normalized accordingly.

So, we can reformulate the discussed inverse problem as follows:
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Problem 4.0.2 Given real numbers Tq; q = 1, ..., N and points Eq,Rq; q =

1, ..., N on the unit sphere Ω. Find a function S̃ ∈ C(Ω) such that

∫

γq

S̃(x)dσ(x) = Tq, q = 1, ..., N,

where γq; q = 1, ..., N are the geodesic minimal arcs between Eq and Rq.

Note that here as Tq; q = 1, ..., N the delay times with respect to PREM should

be taken and S̃ already will approximate the perturbations of the slowness to

PREM. This is allowed due to the linearity of the problem.

Assumption 4.0.3 We will assume that γi 6= γj, if i 6= j, i, j = 1, ..., N .

4.1 Initial Constructions

Since here the function S̃, which needs to be approximated, is defined on the

unit sphere, we will take as an initial set (see Section 3.1) the unit sphere X =

Ω = {x ∈ R
3 | |x| = 1}. As an initial basis system on Ω we take the system

{Yn,j}n∈N0;j=−n,...,n of spherical harmonics defined by (1.4) (see also Section 3.1.2

and Section 3.2.2). As we have already seen, in this case Θ = ∅, i.e. CΘ(Ω) =

C(Ω).

The results of the Section 3.1 and Section 3.2 will be summarized briefly here for

a special case of initial set and initial basis system.

If {An}n∈N0 is an arbitrary real sequence, where An 6= 0 for all n ∈ N0, then

E := E({Ak}; X) denotes the space of all functions F ∈ L2(Ω) satisfying

∞
∑

n=0

n
∑

j=−n

A−2
n

(

(F, Yn,j)L2(Ω)

)2

< +∞.

This space is a pre-Hilbert space if it is equipped with the inner product

(F, G)H({Ak};Ω) :=
∞
∑

n=0

n
∑

j=−n

A−2
n (F, Yn,j)L2(Ω) (G, Yn,j)L2(Ω) ; F, G ∈ E({Ak}; Ω);

which is always finite due to the Cauchy–Schwarz inequality. The Hilbert space

H := H({Ak}; Ω) is defined as the completion of E({Ak}; Ω) with respect to



4.2. Application 63

(., .)H. The induced norm is denoted by ‖F‖H :=
√

(F, F )H.

As we have already seen in Section 3.1.2, here {An}n will be summable if

∞
∑

n=0

2n + 1

4π
A2

n < +∞.

And if {An}n is summable, then this Sobolev space H possesses a unique repro-

ducing kernel KH : Ω × Ω → R given by

KH(ξ, η) =

∞
∑

n=0

n
∑

j=−n

A2
nYn,j(ξ)Yn,j(η) =

∞
∑

n=0

A2
n

2n + 1

4π
Pn(ξ · η); ξ, η ∈ Ω;

and is, consequently, a radial basis function.

Moreover, the summability also implies that H({Ak}; Ω) ⊂ C(Ω), i.e. every func-

tion in H is continuous on Ω (see Lemma 3.1.5), and

‖F‖C(Ω) ≤ ‖F‖H

(

∞
∑

n=0

A2
n

2n + 1

4π

)1/2

for all F ∈ H.

Moreover, using Theorem 1.4.10 and the fact {Yn,j}n∈N0,j=−n,...,n ⊂ H ⊂ C(Ω) we

obtain the following result.

Theorem 4.1.1

H
‖·‖C(Ω)

= C(Ω).

4.2 Application

We define functionals Fq : H → R, q = 1, ..., N as path integrals of a function in

H over γq, i.e. for any F ∈ H

FqF :=

∫

γq

F (ξ) dσ(ξ), q = 1, ..., N. (4.2)

The discussed functionals Fq are obviously linear, due to the linearity of the

integral, and continuous on H ⊂ C(Ω) since

|FqF | ≤ ‖F‖C(Ω) length (γq) ≤ ‖F‖
H

(

∞
∑

n=0

A2
n

2n + 1

4π

)1/2

π

for all F ∈ H.
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Theorem 4.2.1 From Assumption 4.0.3 follows that the system of functionals

{F1, F2, ..., FN} is linearly independent.

Proof: Let Assumption 4.0.3 hold, i.e. γi 6= γj, if i 6= j, i, j = 1, ..., N , but

{F1, F2, ..., FN} is linearly dependent. That is there exist coefficients a1, ..., aN

where at least one of them is not 0, such that
∑N

k=1 akFk = 0. However, this

means that for any F ∈ H
N
∑

k=1

akFkF = 0. (4.3)

Let ai0 6= 0. Assume without loss of generality that ai0 > 0. We will construct

a function in H for which (4.3) does not hold. Clearly from Assumption 4.0.3

follows that there exists x0 ∈ γi0 and ε > 0 such that x0(ε)∩γi = ∅ if i 6= i0, where

x0(ε) is the ε-neighborhood of x0. Now, clearly for an arbitrary real M0 > 0 we

can construct F1 ∈ C(Ω) such that F1(x) ≥ 0, x ∈ Ω and

F1(x) =







M0, if x ∈ x0(ε/2)

0, if x ∈ Ω\x0(ε).
(4.4)

Hence,

λ1 :=
N
∑

k=1

ak

∫

γk

F1(ξ)dσ(ξ) = ai0

∫

γi0

F1(ξ)dσ(ξ) > ai0M0ε/4 =: M1 > 0. (4.5)

Now since length(γi), i = 1, ..., N is bounded

M2 :=

N
∑

k=1

|ak| length(γk) < ∞.

However, due to Theorem 4.1.1 we can arbitrarily well (in ‖ · ‖C(Ω) norm) approx-

imate F1 by a function in H. It follows that for δ := M1M2/2 there exists F2 ∈ H

such that ‖F1 − F2‖C(Ω) ≤ δ. Hence, if we denote

λ2 :=
N
∑

k=1

akFkF2 =
N
∑

k=1

ak

∫

γk

F2(ξ)dσ(ξ),

then

|λ1 − λ2| =

∣

∣

∣

∣

∣

N
∑

k=1

ak

∫

γk

(F1 − F2)(ξ)dσ(ξ)

∣

∣

∣

∣

∣

≤ ‖F1 − F2‖C(Ω)

N
∑

k=1

|ak| length(γk)

≤ δM2 =
M1

2
.
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That is

λ1 − M1/2 ≤ λ2 ≤ λ1 + M1/2,

such that using (4.5) we obtain that

N
∑

k=1

akFkF2 = λ2 > M1 −
M1

2
=

M1

2
> 0.

However, this is a contradiction to (4.3), hence, {F1, F2, ..., FN} is linearly inde-

pendent. �

The idea that we follow here is to approximate S̃ by a harmonic spline S ∈ H

based on a system {F1, F2, ..., FN}, i.e. by a spline of the form

S(ξ) =

N
∑

k=1

akFkKH(., ξ), ξ ∈ Ω. (4.6)

Note that in this case the spline S will be harmonic function since the sum

of a uniformly convergent series of harmonic functions (in our case - spherical

harmonics) is harmonic (see e.g. [6]).

As we can see from (4.6), the evaluation of the linear functionals FqF , F ∈ W,

q = 1, ..., N , or in our case (see (4.2)) the evaluation of the line integrals over

the geodesic minimal arc γq between Eq and Rq is essential for the evaluation of

the spline function S. Here we present two methods for the evaluation of such

functionals.

4.2.1 First Method

It is known that the geodesic minimal arc between two points on a sphere is the

arc of the great-circle which contains these points.

Now, let P = (xP , yP , zP ), Q = (xQ, yQ, zQ) be points on the unit sphere Ω,

w = Q − (P · Q)P and QP =
w

|w| . Then, the parametric equation of the great-

circle which is given by the points P and Q can be written as (see e.g. [40])

r(t) = cos(t)P + sin(t)QP . (4.7)

Moreover r(0) = P , r(d) = Q, where d = arccos(P ·Q), and the minimal spherical

distance between P and Q is equal to d. Note also that |r′(t)| = 1, for all t ∈ [0, d].
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It is also known that if L is a curve parameterized by a C(1)([a, b], R3)–function

l, and F is a continuous scalar field, then
∫

L

F (ξ) dσ(ξ) =

∫ b

a

F (l(t)) |l′(t)| dt .

Let now the curves γq; q = 1, ..., N ; on the unit sphere Ω be parameterized by

rq(x) = cos(x)Eq + sin(x)QEq
, 0 ≤ x ≤ dq,

where QEq
=

Rq − (Eq · Rq)Eq

|Rq − (Eq · Rq)Eq|
and dq = arccos(Eq · Rq).

Thus, the functionals FqF , F ∈ W, q = 1, ..., N can be calculated by the formula

FqF :=

∫

γq

F (ξ) dσ(ξ) =

∫ dq

0

F (rq(t))dt, q = 1, ..., N. (4.8)

Therefore, the matrix corresponding to such a spline interpolation problem has

the following components:

(Fl)ξ(Fk)ηKH(η, ξ) =

∫

γl

∫

γk

KH(η, ξ) dσ(η) dσ(ξ)

=

∞
∑

n=0

A2
n

2n + 1

4π

∫

γl

∫

γk

Pn(ξ · η)dσ(η) dσ(ξ)

=

∞
∑

n=0

A2
n

2n + 1

4π

∫ dl

0

∫ dk

0

Pn (rk(x) · rl(y)) dx dy .

Note that here we can change the order of integration and summation, since the

discussed functionals Fq are linear and continuous. Thus, by solving the linear

equation system

N
∑

k=1

ak(Fl)ξ(Fk)ηKH(η, ξ) = Tq for all q = 1, ..., N ;

we obtain the coefficients (ak)k=1,...,N of the spline

S(ξ) =
N
∑

k=1

ak(Fk)ηKH(η, ξ) =
N
∑

k=1

ak

∞
∑

n=0

A2
n

2n + 1

4π

∫ dk

0

Pn (rk(x) · ξ) dx

approximating the function S̃. Note that the obtained integrals can easily be

calculated approximately by appropriate quadrature methods such as the trape-

zoidal rule.
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For the case of the Abel–Poisson kernel we obtain a closed representation of the

reproducing kernel. As we have seen in Section 3.2.2, the Abel–Poisson kernel is

given by

KH(ξ, η) =
1

4π

1 − h2

(1 + h2 − 2h(ξ · η))(3/2)
(4.9)

where h = A2
1.

Therefore, the matrix corresponding to such a spline interpolation problem has

the following components:

(Fl)ξ(Fk)ηKH(η, ξ) =

∫

γl

∫

γk

KH(η, ξ) dσ(η) dσ(ξ)

=
1 − h2

4π

∫

γl

∫

γk

(

1 + h2 − 2h(η · ξ)
)(−3/2)

dσ(η) dσ(ξ)

=
1 − h2

4π

∫ dl

0

∫ dk

0

1

(1 + h2 − 2h(rk(x) · rl(y)))3/2
dx dy .

Thus, by solving the linear equation system

N
∑

k=1

ak(Fl)ξ(Fk)ηKH(η, ξ) = Tl for all l = 1, ..., N ;

we obtain the coefficients (ak)k=1,...,N of the spline

S(ξ) =
N
∑

k=1

ak(Fk)ηKH(η, ξ) =
N
∑

k=1

ak
1 − h2

4π

∫ dk

0

1

(1 + h2 − 2h(rk(x) · ξ))3/2
dx

approximating the function S̃.

4.2.2 Second Method

For the evaluation of the spline S one can also use an alternative algorithm, which

will be described next.

According to [14] (p. 930) we find that for all n ∈ N0 and j = −n, ..., n

∫

γq

Yn,j(ξ) dσ(ξ) =
n
∑

m=−n

i

m
Xn,m

(π

2

)

(

1 − eimϑq
)

D
(n)
m,j(αq, βq, ηq), (4.10)
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where Yn,j are the complex spherical harmonics defined by (1.6), Xn,m is defined

by (1.5) and

D
(n)
m,j(α, β, η) = eimηP m

n,j(cos β)eijα,

P m
n,j(t) =

1

2n

(

1

(n + m)!(n − m)!

)1/2(
(n + j)!

(n − j)!

)1/2

(1 − t)−
1
2
(j−m)

(1 + t)−
1
2
(j+m) ·

(

d

dt

)n−j
(

(t − 1)n−m(t + 1)n+m
)

.

Here P m
n,j is called generalized Legendre function of degree n, order j ∈ {−n, ..., n},

and upper index m ∈ {−n, ..., n} and can be calculated recursively (see [14], p.

899f). Moreover, the Euler angles (αq, βq, ηq) are given by

tanαq =
sin θR

q cos θE
q cos ϕR

q − cos θR
q sin θE

q cos ϕE
q

cos θR
q sin θE

q sin ϕE
q − sin θR

q cos θE
q sin ϕR

q

,

cos βq =
sin θR

q sin θE
q sin

(

ϕR
q − ϕE

q

)

sin ϑq
,

tan ηq =
cos θE

q cos ϑq − cos θR
q

cos θE
q sin ϑq

and the geodesic angular distance ϑq between epicenter and receiver is defined

via

cos ϑq = cos θR
q cos θE

q + sin θR
q sin θE

q cos
(

ϕR
q − ϕE

q

)

.

Here θE
q , ϕE

q and θR
q , ϕR

q are colatitude and longitude of Eq and Rq respectively.

From Equation (4.10) we have that

∫

γq

Yn,j(ξ) dσ(ξ) =

n
∑

m=−n

i

m
Xn,m

(π

2

)

(

1 − eimϑq
)

D
(n)
m,j(αq, βq, ηq)

=

n
∑

m=−n

[

i

m

(

1 − eimϑq
)

eimηqeijαq

]

Xn,m

(π

2

)

P m
n,j(cos βq)

=
n
∑

m=−n

[

1

m

(

ieimηq+ijαq − ieimϑq+imηq+ijαq
)

]

Xn,m

(π

2

)

P m
n,j(cos βq)

=
n
∑

m=−n

1

m

[

i(cos(mηq + jαq) − cos(mϑq + mηq + jαq))

+(sin(mϑq + mηq + jαq) − sin(mηq + jαq))
]

Xn,m

(π

2

)

P m
n,j(cos βq)
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Therefore, using Equation (1.7) we obtain that for all n ∈ N0 the following holds

true:

if −n ≤ j < 0, then
∫

γq

Yn,j(ξ) dσ(ξ) =

∫

γq

√
2Re Yn,|j|(ξ) dσ(ξ) =

√
2Re

∫

γq

Yn,|j|(ξ) dσ(ξ)

=
√

2
n
∑

m=−n

1

m

[

sin(mϑq + mηq − jαq) − sin(mηq − jαq)
]

Xn,m

(π

2

)

P m
n,−j(cos βq),

if j = 0, then

∫

γq

Yn,0(ξ) dσ(ξ) =

∫

γq

Yn,0(ξ) dσ(ξ) =
n
∑

m=−n

i

m
Xn,m

(π

2

)

(

1 − eimϑq
)

D
(n)
m,0(αq, βq, ηq)

and if 0 < j ≤ n, then
∫

γq

Yn,j(ξ) dσ(ξ) =

∫

γq

√
2 Im Yn,j(ξ) dσ(ξ) =

√
2Im

∫

γq

Yn,j(ξ) dσ(ξ)

=
√

2

n
∑

m=−n

1

m

[

cos(mηq + jαq) − cos(mϑq + mηq + jαq)
]

Xn,m

(π

2

)

P m
n,j(cos βq).

Hence, the matrix corresponding to such a spline interpolation problem has the

following components:

(Fl)ξ (Fk)η KH(η, ξ) =

∞
∑

n=0

A2
n

n
∑

j=−n

∫

ηk

Yn,j(η) dσ(η)

∫

ηl

Yn,j(ξ) dσ(ξ),

where the path integrals can be calculated by the obtained formulae.

Thus, by solving the linear equation system

N
∑

k=1

ak (Fl)ξ (Fk)η KH(η, ξ) = Tl for all l = 1, ..., N

we obtain the coefficients (ak)k=1,...,N of the spline

S(ξ) =
N
∑

k=1

ak (Fk)η KH(η, ξ) =
N
∑

k=1

ak

∞
∑

n=0

A2
n

n
∑

j=−n

∫

γk

Yn,j(η) dσ(η) Yn,j(ξ)

approximating the function S̃.
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4.3 Numerical Tests

For testing the described spline approximation method we used phase data which

were kindly provided by Jeannot Trampert (University of Utrecht) [73], [74]. Us-

ing that method we obtain phase velocity maps at 40, 50, 60, 80, 100, 130 and

150 seconds for Rayleigh and Love waves. We calculated the deviation ”dc
c
” from

the PREM phase velocity. In all cases the Abel–Poisson kernel with the symbol

A2
n = e−0.2n = hn has been used. The parameter h ∈ (0, 1) determines the ”hat-

width” of the kernel KH (see Section 3.2.2), the closer h is to 1 the narrow the

hat will be. It should be mentioned that the choice of an ”optimal” h depends on

the given data ”density” and the a priori information about the smoothness of

the approximated function. Currently there is no general method to determine

an ”optimal” symbol for each particular problem.

The integral terms representing the matrix components and the spline basis have

been calculated approximately with the trapezoidal rule as described in Section

4.2.1. Moreover, a smoothing (regularization) of the linear equation system has

been done (see Section 3.4), where in each case the smoothing parameter ρ has

been determined using the L-curve method (see Section 3.4) and the identity ma-

trix has been taken as a matrix D. We choose the smoothing parameters for the

construction of L-curves such that every next parameter value is the double of

the previous one. As we can see in Figures 4.9, 4.10 and 4.11 in our case L-curves

have no sharp ”corner”, however they suggest an approximate region for the

choice of the smoothing parameter. Due to this in each case (unless mentioned

otherwise) of the global spline approximation we choose the same smoothing pa-

rameter ρ = 0.123. In each velocity map N indicates the number of used ray

paths.

For comparison purposes we have constructed the spherical harmonic approxi-

mation for some phases as well (see Figures 4.13 to 4.18), using the same data

as for the corresponding phase in spline approximation. Spherical harmonic ap-

proximations are constructed using the real spherical harmonics (up to degree

L = 39) defined by (1.4) and applying a standard least-squares algorithm (see

e.g. [71], [73]). In order to reduce the so-called ringing effect (see e.g. [73]) an

(L + 1)2 × (L + 1)2 diagonal matrix Cm given by (C−1
m )j,j = λ[l(l + 1)]2 has been

taken as an a priori model covariance matrix, where j is the index numbering the
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(L + 1)2 coefficients, l is the degree of the corresponding spherical harmonic and

λ is a smoothing parameter. In this case also the smoothing parameter λ has

been determined using the L-curve method (see Figure 4.12).

The obtained phase velocity maps (see Figures 4.2 to 4.8) in comparison with the

corresponding maps obtained via the spherical harmonic approximation method

(see Figures 4.13 to 4.18 and also [17], [73], [74]) have similar structure, however,

as further tests (with the synthetic data sets) show splines allow more ”accurate”

reconstruction. The advantages of our spline method are particularly visible in

the tests with local/localized models (see Figures 4.32 and 4.25).

It should be mentioned that we do not claim that the chosen smoothing parame-

ter ρ is the ”optimal” one. For example the phase velocity maps in [17], [73], [74]

are visually more ”smooth” than our ones. However, if an a priori information

about the smoothness of a model is known the desired smoothness degree can be

obtained by manipulating the parameter ρ (see e.g. Figure 4.1 vs Figure 4.5(a)).

Figure 4.1: Rayleigh wave phase velocity maps at 80 seconds, with N = 8490,

ρ = 0.491 obtained using the spline approximation method

Chapter4/Chapter4Figs/R80_x15.eps


72 Chapter 4. Application to Seismic Surface Wave Tomography

(a) Rayleigh wave phase velocity map at 40 seconds, with N = 8433, ρ = 0.123

(b) Love wave phase velocity map at 40 seconds, with N = 8022, ρ = 0.123

Figure 4.2: Rayleigh and Love wave phase velocity maps at 40 seconds obtained

using the spline approximation method

Chapter4/Chapter4Figs/R40.eps
Chapter4/Chapter4Figs/L40.eps
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(a) Rayleigh wave phase velocity map at 50 seconds, with N = 8459, ρ = 0.123

(b) Love wave phase velocity map at 50 seconds, with N = 7995, ρ = 0.123

Figure 4.3: Rayleigh and Love wave phase velocity maps at 50 seconds obtained

using the spline approximation method

Chapter4/Chapter4Figs/R50.eps
Chapter4/Chapter4Figs/L50.eps


74 Chapter 4. Application to Seismic Surface Wave Tomography

(a) Rayleigh wave phase velocity map at 60 seconds, with N = 8521, ρ = 0.123

(b) Love wave phase velocity map at 60 seconds, with N = 8062, ρ = 0.123

Figure 4.4: Rayleigh and Love wave phase velocity maps at 60 seconds obtained

using the spline approximation method

Chapter4/Chapter4Figs/R60.eps
Chapter4/Chapter4Figs/L60.eps
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(a) Rayleigh wave phase velocity map at 80 seconds, with N = 8490, ρ = 0.123

(b) Love wave phase velocity map at 80 seconds, with N = 8089, ρ = 0.123

Figure 4.5: Rayleigh and Love wave phase velocity maps at 80 seconds obtained

using the spline approximation method

Chapter4/Chapter4Figs/R80.eps
Chapter4/Chapter4Figs/L80.eps
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(a) Rayleigh wave phase velocity map at 100 seconds, with N = 8490, ρ = 0.123

(b) Love wave phase velocity map at 100 seconds, with N = 8600, ρ = 0.123

Figure 4.6: Rayleigh and Love wave phase velocity maps at 100 seconds obtained

using the spline approximation method

Chapter4/Chapter4Figs/R100.eps
Chapter4/Chapter4Figs/L100.eps
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(a) Rayleigh wave phase velocity map at 130 seconds. with N = 8545, ρ = 0.123

(b) Love wave phase velocity map at 130 seconds, with N = 7941, ρ = 0.123

Figure 4.7: Rayleigh and Love wave phase velocity maps at 130 seconds obtained

using the spline approximation method

Chapter4/Chapter4Figs/R130.eps
Chapter4/Chapter4Figs/L130.eps
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(a) Rayleigh wave phase velocity map at 150 seconds, with N = 8424, ρ = 0.123

(b) Love wave phase velocity map at 150 seconds, with N = 8100, ρ = 0.123

Figure 4.8: Rayleigh and Love wave phase velocity maps at 150 seconds obtained

using the spline approximation method

Chapter4/Chapter4Figs/R150.eps
Chapter4/Chapter4Figs/L150.eps
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(a) L-curve for Rayleigh waves at 40 s (b) L-curve for Love waves at 40 s

Figure 4.9: L-curve corresponding to the spline approximation of Rayleigh (left)

and Love (right) wave phase velocity at 40 seconds

(a) L-curve for Rayleigh waves at 80 s (b) L-curve for Love waves at 80 s

Figure 4.10: L-curve corresponding to the spline approximation of Rayleigh (left)

and Love (right) wave phase velocity at 80 seconds

Chapter4/Chapter4Figs/LCurveR40.eps
Chapter4/Chapter4Figs/LCurveL40.eps
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Chapter4/Chapter4Figs/LCurveL80.eps
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(a) L-curve for Rayleigh waves at 150 s (b) L-curve for Love waves at 150 s

Figure 4.11: L-curve corresponding to the spline approximation of Rayleigh (left)

and Love (right) wave phase velocity at 150 seconds

(a) L-curve for Rayleigh waves at 80 s (b) L-curve for Love waves at 80 s

Figure 4.12: L-curve corresponding to the spherical harmonic approximation of

Rayleigh (left) and Love (right) wave phase velocity at 80 seconds

Chapter4/Chapter4Figs/LCurveR150.eps
Chapter4/Chapter4Figs/LCurveL150.eps
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(a) Rayleigh wave phase velocity map at 40 seconds, with λ = 10−6

(b) Rayleigh wave phase velocity map at 40 seconds, with λ = 10−5

Figure 4.13: Rayleigh wave phase velocity maps (with different smoothing pa-

rameters) at 40 seconds obtained using the spherical harmonic approximation

method

Chapter4/Chapter4Figs/R40sph10e-6.eps
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(a) Rayleigh wave phase velocity map at 80 seconds, with λ = 10−6

(b) Rayleigh wave phase velocity map at 80 seconds, with λ = 10−5

Figure 4.14: Rayleigh wave phase velocity maps (with different smoothing pa-

rameters) at 80 seconds obtained using the spherical harmonic approximation

method

Chapter4/Chapter4Figs/R80sph10e-6.eps
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(a) Rayleigh wave phase velocity map at 150 seconds, with λ = 10−6

(b) Rayleigh wave phase velocity map at 150 seconds, with λ = 10−5

Figure 4.15: Rayleigh wave phase velocity maps (with different smoothing pa-

rameters) at 150 seconds obtained using the spherical harmonic approximation

method

Chapter4/Chapter4Figs/R150sph10e-6.eps
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(a) Love wave phase velocity map at 40 seconds, with λ = 10−6

(b) Love wave phase velocity map at 40 seconds, with λ = 10−5

Figure 4.16: Love wave phase velocity maps (with different smoothing parame-

ters) at 40 seconds obtained using the spherical harmonic approximation method

Chapter4/Chapter4Figs/L40sph10e-6.eps
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(a) Love wave phase velocity map at 80 seconds, with λ = 10−6

(b) Love wave phase velocity map at 80 seconds, with λ = 10−5

Figure 4.17: Love wave phase velocity maps (with different smoothing parame-

ters) at 80 seconds obtained using the spherical harmonic approximation method

Chapter4/Chapter4Figs/L80sph10e-6.eps
Chapter4/Chapter4Figs/L80sph10e-5.eps
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(a) Love wave phase velocity map at 150 seconds, with λ = 10−6

(b) Love wave phase velocity map at 150 seconds, with λ = 10−5

Figure 4.18: Love wave phase velocity maps (with different smoothing parame-

ters) at 150 seconds obtained using the spherical harmonic approximation method

Chapter4/Chapter4Figs/L150sph10e-6.eps
Chapter4/Chapter4Figs/L150sph10e-5.eps
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To verify our spline method some tests with synthetic data sets, namely the so-

called checkerboard tests, a test by adding random noise to the initial traveltime

data and a test with a so-called hidden object, have been done as well.

All these tests have been done using spline and spherical harmonic approximation

methods. The results show that in all cases (in particular for reconstructions of

local/localized models) the spline approximation is more accurate in the sense

that the so-called root-mean-square (RMS) of the difference of the initial model

and the reconstruction via splines is smaller than the RMS for the corresponding

reconstruction via spherical harmonics (see Figures 4.23, 4.25 to 4.29 and 4.32). It

should be mentioned that here all functions are calculated and plotted such that

one point corresponds to each pair of colatitude and longitude, i.e. for example

global maps are calculated and plotted on a 180×360 point grid. Hence, we obtain

the difference of the initial model and the reconstruction (i.e. the reconstruction

error) in a matrix form. Note that for a matrix A = {ai,j}i=1,...,n;j=1,...,m the RMS

is calculated by the following formula

RMS(A) =

√

∑n
i=1

∑m
j=1 a2

i,j
√

nm
.

Tests with the checkerboard models include the reconstruction of the model pre-

sented in Figure 4.21(a) using the rays in Figure 4.19 (global case) (see Figure

4.22) and the reconstruction of the model presented in Figure 4.21(b) at Australia

and the neighborhood using rays in Figure 4.20 (local case) (see Figure 4.24), via

splines and spherical harmonics. For the spherical harmonic reconstruction we

took the smoothing parameter λ such that the corresponding RMS of the recon-

struction error is minimal (see Table 4.3).

To see how the measurement errors affect the result, we add a random error of

one percent to the traveltimes used to obtain the models in Figure 4.22 and recal-

culate the corresponding maps using spline (Figures 4.26 and 4.27) and spherical

harmonic (Figures 4.28 and 4.29) approximation methods. The spline as well as

the spherical harmonic reconstruction is presented for two different smoothing

parameters, ρ = 0.06, ρ = 0.25, and respectively λ = 10−5, λ = 10−6. For the

reconstructions with a bigger smoothing parameter the obtained maps (Figures

4.26 and 4.28) visually are closer to the original (Figure 4.21(a)), while for the

reconstructions with a smaller smoothing parameter (Figures 4.27 and 4.29) the
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corresponding RMS of the reconstruction error is smaller (see also Table 4.3).

These results demonstrate that the ”sensitivity” of our spline method to the

measurement errors, at least, is not more than the corresponding ”sensitivity” of

the spherical harmonic approximation method.

Next we want to see how the changes of a model in some area affect the model

elsewhere. For this purpose we obtain reconstructions of the velocity model in

Figure 4.30 using spline (see Figures 4.31(a) and 4.32(a)) and spherical harmonic

(see Figures 4.31(b) and 4.32(b)) approximation methods. Here also for the spher-

ical harmonic reconstruction we took the smoothing parameter λ such that the

corresponding RMS of the reconstruction error is minimal (see Table 4.3). As we

can see from Figure 4.32, comparing with the spherical harmonic reconstruction,

in case of spline reconstruction the error is more concentrated around the ”hid-

den object”. Moreover, for the spline reconstruction the corresponding RMS is

smaller than for the spherical harmonic reconstruction.

(a) ray sources (red) and receivers (blue) (b) ray paths

Figure 4.19: ray sources, receivers and paths used for the calculations for Figure

4.5(a)

Chapter4/Chapter4Figs/R80sSR.eps
Chapter4/Chapter4Figs/R80sRays.eps
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(a) global case

λ RMS(∆)

10−5 0.0563

10−6 0.0504

10−7 0.0483

10−8 0.0497

10−9 0.0539

(b) local case

λ RMS(∆)

10−5 0.0907

10−6 0.0634

10−7 0.0336

10−8 0.0273

10−9 0.0271

10−10 0.0276

10−12 0.0295

Table 4.1: RMS table for the spherical harmonic reconstruction of checkerboard

models in Figure 4.21(a) (left) and in Figure 4.21(b) (right), where λ is the

smoothing parameter, and ∆ is the reconstruction error

λ RMS(∆)

10−3 0.0881

10−4 0.0704

10−5 0.0580

10−6 0.0554

10−7 0.0646

10−8 0.1493

Table 4.2: RMS table for the spherical harmonic reconstruction of the checker-

board model in Figure 4.21(a), where a random error of 1% has been added to

the corresponding traveltimes

λ RMS(∆)

10−3 0.0406

10−4 0.0341

10−5 0.0321

10−6 0.0324

10−7 0.0382

Table 4.3: RMS table for the spherical harmonic reconstruction of the velocity

model in Figure 4.30
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(a) ray sources (red) and receivers (blue) (b) ray paths

Figure 4.20: sources, receivers and paths of 500 synthetic rays

(a) a = 8, b = 10 (b) a = 16, b = 20

Figure 4.21: synthetic (checkerboard) velocity model given by the formula

F (θ, φ) = 4 + 0.2 sin(aθ) sin(bφ), with θ ∈ [0, π], φ ∈ [0, 2π)

Chapter4/Chapter4Figs/SR500.eps
Chapter4/Chapter4Figs/Rays500.eps
Chapter4/Chapter4Figs/SynthModel.eps
Chapter4/Chapter4Figs/SynthModel_sm.eps
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(a) spline reconstruction with ρ = 10−4. (b) spherical harmonic reconstruction with

λ = 10−7

Figure 4.22: reconstructions of the synthetic velocity model presented in Fig-

ure 4.21(a) (global case) by the spline (left) and the spherical harmonic (right)

approximation method, respectively

(a) error of spline reconstruction, where

RMS(∆) = 0.0438

(b) error of spherical harmonic reconstruction,

where RMS(∆) = 0.0483

Figure 4.23: errors of the reconstructions presented in Figure 4.22

Chapter4/Chapter4Figs/out_spl_synth_global.eps
Chapter4/Chapter4Figs/out_sph_synth_global.eps
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(a) spline reconstruction with ρ = 10−5 (b) spherical harmonic reconstruction with

λ = 10−9

Figure 4.24: reconstructions of the synthetic velocity model presented in Fig-

ure 4.21(b) (local case) by the spline (left) and the spherical harmonic (right)

approximation method, respectively

(a) error of spline reconstruction, where

RMS(∆) = 0.005

(b) error of spherical harmonic reconstruction,

where RMS(∆) = 0.0271

Figure 4.25: errors of the reconstructions presented in Figure 4.24

Chapter4/Chapter4Figs/out_spl_synth_local.eps
Chapter4/Chapter4Figs/out_sph_synth_local.eps
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(a) spline reconstruction with ρ = 0.25 (b) error of spline reconstruction where

RMS(∆) = 0.0568

Figure 4.26: spline reconstruction (left) with ρ = 0.25, and corresponding er-

ror (right), of the velocity model in Figure 4.21, with 1% random error in the

traveltimes

(a) spline reconstruction, with ρ = 0.06 (b) error of spline reconstruction, where

RMS(∆) = 0.0542

Figure 4.27: spline reconstruction (left) with ρ = 0.06, and corresponding er-

ror (right) of the velocity model in Figure 4.21, with 1% random error in the

traveltimes

Chapter4/Chapter4Figs/spl1perx14.eps
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Chapter4/Chapter4Figs/Dspl1perx12.eps
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(a) spherical harmonic reconstruction with

λ = 10−5

(b) error of spline reconstruction where

RMS(∆) = 0.0580

Figure 4.28: spherical harmonic reconstruction (left) with λ = 10−5, and cor-

responding error (right), of the velocity model in Figure 4.21, with 1% random

error in the traveltimes

(a) spherical harmonic reconstruction with

λ = 10−6

(b) error of spline reconstruction where

RMS(∆) = 0.0554

Figure 4.29: spherical harmonic reconstruction (left) with λ = 10−6, and cor-

responding error (right), of the velocity model in Figure 4.21, with 1% random

error in the traveltimes

Chapter4/Chapter4Figs/sph1per10e-5.eps
Chapter4/Chapter4Figs/Dsph1per10e-5.eps
Chapter4/Chapter4Figs/sph1per10e-6.eps
Chapter4/Chapter4Figs/Dsph1per10e-6.eps
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Figure 4.30: velocity model with a hidden object

(a) reconstruction via splines (b) reconstruction via spherical harmonics

Figure 4.31: reconstruction of the velocity model in Figure 4.30 using the ray

system in Figure 4.19 via splines with ρ = 0.05 (left) and spherical harmonics

with λ = 10−5 (right), respectively

Chapter4/Chapter4Figs/HTin.eps
Chapter4/Chapter4Figs/HTspl_out.eps
Chapter4/Chapter4Figs/HTsph_out.eps


96 Chapter 4. Application to Seismic Surface Wave Tomography

(a) error of the reconstruction via splines (b) error of the reconstruction via spherical

harmonics

Figure 4.32: errors of the reconstructions presented in Figure 4.31, where for the

spline reconstruction RMS(∆) = 0.0288 and for spherical harmonic reconstruc-

tion RMS(∆) = 0.0321

Chapter4/Chapter4Figs/HTin-out_spline.eps
Chapter4/Chapter4Figs/HTin-out_spharm.eps
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4.4 On Uniqueness and Convergence Results

As we have seen in case of seismic surface wave tomography with PREM as a

reference model for any ν1, ν2 ∈ Ω the seismic ray γ(ν1, ν2) between ν1 and ν2

is the arc of the great circle connecting these points. In this case we obtain the

following new result.

Theorem 4.4.1 Let S ⊂ Ω be an open set in Ω-topology, i.e. for any x ∈ S

there exists δ = δ(x) > 0 such that {y ∈ Ω : d(y, x) < δ} ⊂ S, where d(x, y)

is the spherical distance between x and y. Let also A, B ⊂ S be non-empty sets

with A ∪ B = S and Γ := {γ(ν1, ν2); ν1 ∈ A, ν2 ∈ B}. Then for any function

F ∈ C(Ω), from

Fγ :=

∫

γ

F (ξ)dσ(ξ) = 0, for any γ ∈ Γ (4.11)

follows that F ≡ 0 on S.

First let us prove the following lemma.

Lemma 4.4.2 Let F ∈ C(Ω) be a given function and P, Q0, with Q0 6= P and

Q0 6= −P be arbitrary points on Ω. Then for any ε > 0 there exists δ > 0 such

that for any Q ∈ Ω \ {−P}, with |Q0 − Q| < δ,

∣

∣

∣

∣

∫

γ(P,Q0)

F (ξ)dσ(ξ) −
∫

γ(P,Q)

F (ξ)dσ(ξ)

∣

∣

∣

∣

≤ ε, (4.12)

where γ(P, Q0) and γ(P, Q) are the minimal spherical arcs between P and Q0 and

respectively P and Q.

Proof: Take an arbitrary ε > 0. Let g0(t) and g(t) be the parametric equations

of γ(P, Q0) respectively γ(P, Q). Then (see (4.7))

g0(t) = cos(t)P + sin(t)QP0, t ∈ [0, d0],

g(t) = cos(t)P + sin(t)QP , t ∈ [0, d],

where d0 := arccos(P · Q0), d := arccos(P · Q), QP0 := w0/‖w0‖, QP := w/‖w‖,
with w0 := Q0 − (P · Q0)P and w := Q − (P · Q)P .

Since F ∈ C(Ω) and Ω is compact, F is uniformly continuous on Ω, and there
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exists a constant M > 0 such that |F (ξ)| ≤ M , for any ξ ∈ Ω. Let ε0 := ε/(2π).

It follows that there exists a constant δε0 with 0 < δε0 ≤ ε/(2M) such that

|F (ξ) − F (η)| ≤ ε0, whenever |ξ − η| ≤ δε0 . (4.13)

From the definition of QP follows that it can be considered as a continuous func-

tion of Q on Ω \ ({P} ∪ {−P}).
Now let Q ∈ Ω \ ({P} ∪ {−P}). Hence there exists a constant δ1 > 0 such that

|QP0 − QP | ≤ δε0, whenever |Q0 − Q| ≤ δ1. (4.14)

Moreover, since P ·Q ∈ [−1, 1] and the function arccos(·) is continuous on [−1, 1],

d also can be considered as a continuous function of Q. Therefore, there exists a

constant δ2 > 0 such that

|d0 − d| ≤ δε0, whenever |Q0 − Q| ≤ δ2. (4.15)

Now let δ3 := min(δ1, δ2), d̄ := min(d0, d) and |Q0 − Q| ≤ δ3.

Hence, from (4.14) follows that for all t ∈ [0, d̄]

|g0(t) − g(t)| = | cos(t)P + sin(t)QP0 − cos(t)P − sin(t)QP | (4.16)

= | sin(t)(QP0 − QP )| ≤ |QP0 − QP | ≤ δε0.

Combining (4.13),(4.15) and (4.16) we obtain that

if d0 ≤ d then

∣

∣

∣

∣

∫

γ(P,Q0)

F (ξ)dσ(ξ)−
∫

γ(P,Q)

F (ξ)dσ(ξ)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ d0

0

F (g0(t))dt −
∫ d

0

F (g(t))dt

∣

∣

∣

∣

∣

∣

∣

∣

∫ d0

0

(F (g0(t)) − F (g(t)))dt−
∫ d

d0

F (g(t))dt

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ d0

0

(F (g0(t)) − F (g(t)))dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ d

d0

F (g(t))dt

∣

∣

∣

∣

≤ sup
t∈[0,d0]

|F (g0(t)) − F (g(t))| d0 + sup
ξ∈Ω

|F (ξ)| |d0 − d|

≤ ε0d0 + M |d0 − d| ≤ ε/2 + ε/2 = ε,
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otherwise

∣

∣

∣

∣

∫

γ(P,Q0)

F (ξ)dσ(ξ)−
∫

γ(P,Q)

F (ξ)dσ(ξ)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ d0

0

F (g0(t))dt −
∫ d

0

F (g(t))dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ d

0

(F (g(t)) − F (g0(t)))dt −
∫ d0

d

F (g0(t))dt

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ d

0

(F (g(t)) − F (g0(t)))dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ d0

d

F (g0(t))dt

∣

∣

∣

∣

≤ sup
t∈[0,d]

|F (g(t)) − F (g0(t))| d + sup
ξ∈Ω

|F (ξ)| |d0 − d|

≤ ε0d + M |d0 − d| ≤ ε/2 + ε/2 = ε.

Note that since Q0 6= P we can choose δ0 > 0 sufficiently small such that

|Q − Q0| < δ0 implies Q 6= P . Hence, for the given ε > 0, the correspond-

ing δ can be taken as δ := min(δ1, δ2, δ0). �

Proof of Theorem 4.4.1: Suppose there exists x0 ∈ S such that F (x0) 6= 0. Let

F (x0) > 0 (otherwise instead of F we will take −F ). Since F is continuous on Ω,

there exists U(x0), an open ball with center x0, such that F (x) > 0, x ∈ U(x0).

Now, there are only two possible cases:

1. U(x0) ∩ A 6= ∅ and U(x0) ∩ B 6= ∅.
2. U(x0) ∩ A = ∅ or U(x0) ∩ B = ∅.
The first case implies that there exists γ(x′

0, x
′′
0) ∈ Γ such that x′

0 ∈ A ∩ U(x0)

and x′′
0 ∈ B ∩ U(x0), hence, γ(x′

0, x
′′
0) ⊂ U(x0). However, from (4.11) we have

that
∫

γ(x′

0,x′′

0 )

F (ξ)dσ(ξ) = 0

which is a contradiction to the fact that F (x) > 0, x ∈ U(x0) and F is continuous

on U(x0).

In the second case: let U(x0) ∩ B = ∅ (the case U(x0) ∩ A = ∅ is analogous).

It follows that U(x0) ⊂ Ā. Take any y1 ∈ B \ (∂U(x0) ∪ (−∂U(x0)) (if B \
(∂U(x0) ∪ (−∂U(x0)) = ∅ then decrease the radius of U(x0)). Denote the great

circle connecting x0 and y1 by l0. l0 will intersect the boundary of U(x0) in two

points: x0
1 and x0

2. Now let ε > 0 be arbitrary. Since U(x0) ⊂ Ā, for arbitrarily

small δ > 0 there exists x1, x2 ∈ A ∩ U(x0) such that x1 6= −y1, x2 6= −y2,

|x1 − x0
1| < δ and |x2 − x0

2| < δ (see Figure 4.33). But since x1, x2 ∈ A and
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y1 ∈ B, there exist γ(x1, y1), γ(x2, y1) ∈ Γ and therefore

∫

γ(x1,y1)

F (ξ)dσ(ξ) = 0 and

∫

γ(x2,y1)

F (ξ)dσ(ξ) = 0.

Figure 4.33: illustration of U(x0), l0, γ(x1, y1), γ(x2, y1)

In this case from Lemma 4.4.2 follows that we can choose δ such that
∣

∣

∣

∣

∣

∫

γ(x0
1,y1)

F (ξ)dσ(ξ)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

γ(x1,y1)

F (ξ)dσ(ξ)

∣

∣

∣

∣

+
ε

2
,

∣

∣

∣

∣

∣

∫

γ(x0
2,y1)

F (ξ)dσ(ξ)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

γ(x2,y1)

F (ξ)dσ(ξ)

∣

∣

∣

∣

+
ε

2
.

Therefore,

∣

∣

∣

∣

∣

∫

γ(x0
1,x0

2)

F (ξ)dσ(ξ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

γ(x0
1,y1)

F (ξ)dσ(ξ)−
∫

γ(x0
2,y1)

F (ξ)dσ(ξ)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

γ(x0
1,y1)

F (ξ)dσ(ξ)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

γ(x0
2,y1)

F (ξ)dσ(ξ)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

γ(x1,y1)

F (ξ)dσ(ξ)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

γ(x2,y1)

F (ξ)dσ(ξ)

∣

∣

∣

∣

+
ε

2
+

ε

2
= ε.
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From the arbitrariness of ε follows that
∫

γ(x0
1,x0

2)

F (ξ)dσ(ξ) = 0, (4.17)

which is again a contradiction to the fact that F (x) > 0, x ∈ U(x0) and F is

continuous on U(x0). �

Hence, this result can be applied for local as well as global approximation prob-

lems. More precisely, it follows that for any open in Ω-topology set S ⊂ Ω, if the

union of the sets of the given seismic sources and receivers is dense on S then

Problem 4.0.2 (in continuous case) in S has no more than one solution. In partic-

ular by taking S = Ω we obtain that if the union of the sets of the given seismic

sources and receivers is dense on Ω then Problem 4.0.2 (in continuous case) has

no more than one solution. Moreover, it follows that in this case the system

of linear bounded functionals corresponding to our spline interpolation problem

is complete and therefore (see Theorem 3.7.5), the sequence of approximating

splines converges to the initial function in the sense of strong W convergence.

A question arises whether it is not sufficient for the unique determination of a

continuous function on the sphere that the corresponding system of rays covers

the sphere, in the sense that the union of the images of the rays gives the sphere.

The following example shows that although the system of corresponding rays

covers the domain, we have non-uniqueness in the determination of the function.

Let Ω1 be a spherical cap which in the spherical coordinates can be written

as Ω1 := {ξ = ξ̄(1, θ, φ) ∈ Ω | θ ≤ π/4}, where ξ̄(1, θ, φ), with θ ∈ [0, π] and

φ ∈ [0, 2π), is the representation of ξ ∈ Ω in the spherical coordinates. For

any φ ∈ [0, π] by γφ we denote the minimal spherical arc between the points

Eφ = ξ̄(1, π/4, φ) and Rφ = ξ̄(1, π/4, φ + π) (see Figure 4.34).

Let also Γ1 :=
⋃

φ∈[0,π] γφ
∗. Clearly Γ1 = Ω1. And if we set

f1(ξ) = f1(ξ̄(1, θ, φ)) = sin(8θ), ξ ∈ Ω1,

then it is not hard to check that
∫

γ

f1(ξ)dσ(ξ) = 0, for all γ ∈ Γ1. (4.18)

∗γφ is understood here as a set of points
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Figure 4.34: Plot of Ω1 and γφ.

In fact Eφ = ξ̄(1, π/4, φ) and Rφ = ξ̄(1, π/4, φ+π) can be written in the cartesian

coordinates as

Eφ =

(

cos(φ)√
2

,
sin(φ)√

2
,

1√
2

)

Rφ =

(

−cos(φ)√
2

,−sin(φ)√
2

,
1√
2

)

.

We see that Eφ · Rφ = 0 for all φ ∈ [0, π], therefore the parametric equation of

γφ, φ ∈ [0, π], rφ(·), can be written as (see (4.7))

rφ(t) = (xφ(t), yφ(t), zφ(t)) = cos(t)Eφ + sin(t)Rφ, t ∈ [0, π/2].

Hence

zφ(t) =
cos(t)√

2
+

sin(t)√
2

= cos(π/4 − t), t ∈ [0, π/2].

Therefore if ξ̄(1, θφ(t), ϕφ(t)) is the representation of rφ(t) in the spherical coor-

dinates, then

θφ(t) = arccos(zφ(t)) =







π
4
− t, if t ∈ [0, π

4
],

t − π
4
, if t ∈ [π

4
, π

2
].

(4.19)

Chapter4/Chapter4Figs/fCh4_2.eps
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Hence, (4.18) is true since, for any φ ∈ [0, π] and the corresponding γφ

∫

γφ

f1(ξ)dσ(ξ) =

∫

γφ

f1(ξ̄(1, θ, ϕ))dσ(ξ̄(1, θ, ϕ)) =

∫ π/2

0

sin(8θφ(t))dt

=

∫ π/4

0

sin(2π − 8t)dt +

∫ π/2

π/4

sin(8t − 2π)dt

= −
∫ π/4

0

sin(8t)dt +

∫ π/2

π/4

sin(8t)dt = 0.

Furthermore, we denote

f(ξ) =







f1, if ξ ∈ Ω1,

0, if ξ ∈ Ω \ Ω1.
(4.20)

Clearly f ∈ C(Ω). Let also Γ2 be a system of rays such that it covers Ω \Ω1 but

has no intersection with Ω1, i.e. Γ2 = Ω\Ω1 (such a set of rays can be constructed

in an analogous way to Γ1). Then clearly by taking Γ := Γ1 ∪ Γ2 we obtain a set

of rays that covers Ω, i.e. Γ = Ω, and
∫

γ

f(ξ)dσ(ξ) = 0, for all γ ∈ Γ. (4.21)

However f 6≡ 0 (see Figure 4.35).

Figure 4.35: Plot of the function f(ξ), ξ ∈ Ω defined by (4.20)

.

From the constructions above we see that this counterexample also works for local

approximation problems.

Chapter4/Chapter4Figs/fCh4_3.eps
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Chapter 5

Application to Seismic Body

Wave Tomography

In this chapter we present an application of the spline approximation method,

described in Chapter 3, to the seismic body wave traveltime tomography.

Following the considerations in Chapter 2 we will discuss the linearized inverse

problem which can be formulated as follows (see Problem 2.2.5):

Problem 5.0.3 Given real numbers Tq; q = 1, ..., N and pairs of points (Eq, Rq) ∈
Ω × Ω. Find a function S̃ ∈ C(B) such that

Tq =

∫

γq

S̃(x) dσ(x), q = 1, ..., N, (5.1)

where γq; q = 1, ..., N , are given curves/raypaths (defined according to the refer-

ence model S0) between Eq and Rq.

Here we will also take PREM ([16]) as a reference model, or more precisely for a

simpler numerics an approximation to PREM.

Assumption 5.0.4 We assume that γi 6= γj, if i 6= j, i, j = 1, ..., N .

5.1 Initial Constructions

Since here the function S̃ which needs to be approximated is defined on a unit ball,

we will take the unit ball B = {x ∈ R3 | |x| ≤ 1} as an initial set (see Section 3.1).

105
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As an initial basis system on B we will take the system {W B
k,n,j}k,n∈N0;j=−n,...,n

defined in Section 1.5 (see also Section 3.1.2 and Section 3.2.2). Note that here

W B
k,n,j ∈ CΘ(B), with Θ = {0}, k, n ∈ N0; j = −n, ..., n, i.e. any W B

k,n,j is

continuous on B \ {0} and bounded on B.

The results of Section 3.1 and Section 3.2 will be summarized briefly here for a

special case of initial set and initial basis system.

If {Ak,n}k,n∈N0 is an arbitrary real sequence, with Ak,n 6= 0 for all k, n ∈ N0, then

E := E({Ak,n}; B) denotes the space of all functions F ∈ L2(B), satisfying

∞
∑

k=0

∞
∑

n=0

n
∑

j=−n

A−2
k,n

∣

∣

∣

(

F, W B
k,n,j

)2

L2(B)

∣

∣

∣
< +∞

This space is a pre-Hilbert space if it is equipped with the inner product

(F, G)H({Ak,n};B) :=

∞
∑

k=0

∞
∑

n=0

n
∑

j=−n

A−2
k,n

(

F, W B
k,n,j

)

L2(B)

(

G, W B
k,n,j

)

L2(B)
F, G ∈ E,

which is always finite due to the Cauchy–Schwarz inequality. The Hilbert space

H := H({Ak,n}; B) is defined as the completion of E({Ak,n}; B) with respect to

(., .)H. The induced norm is denoted by ‖F‖H :=
√

(F, F )H.

As we have already seen in Section 3.1.2, here {Ak,n}k,n∈N0 will be summable if

∞
∑

k=0

∞
∑

n=0

A2
k,nk

5n < ∞.

And if {Ak,n}k,n∈N0 is summable, then this Sobolev space H possesses a unique

reproducing kernel KH : B × B → R given by

KH(x, y) =
∞
∑

k=0

∞
∑

n=0

n
∑

j=−n

A2
k,nW

B
k,n,j(x)W B

k,n,j(y).

Moreover, the summability also implies that H({Ak,n}; B) ⊂ CΘ(B) and

‖F‖∞ ≤ ‖F‖H

(

∞
∑

k=0

∞
∑

n=0

A2
k,n

(√
2k + 3

∥

∥

∥
P

(0,2)
k

∥

∥

∥

C[−1,1]

)2
2n + 1

4π

)1/2

(5.2)

for all F ∈ H.
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5.2 Application

We define functionals Fq : H → R, q = 1, ..., N as path integrals of a function in

H over γq, i.e. for any F ∈ H

FqF :=

∫

γq

F (x) dσ(x), q = 1, ..., N.

The discussed functionals Fq are obviously linear, due to the linearity of the

integral, and continuous on H ⊂ CΘ(B) since

|FqF | ≤ ‖F‖∞ · length (γq)

≤ ‖F‖
H

(

∞
∑

k=0

∞
∑

n=0

A2
k,n

(√
2k + 3

∥

∥

∥
P

(0,2)
k

∥

∥

∥

C[−1,1]

)2
2n + 1

4π

)1/2

MS0 ,

for all F ∈ H, where we have used Equation (5.2) and Assumption 2.2.10.

Theorem 5.2.1 From Assumption 5.0.4 follows that the system of functionals

{F1, F2, ..., FN} is linearly independent.

Proof: Let Assumption 5.0.4 hold, i.e. γi 6= γj, if i 6= j, i, j = 1, ..., N , but

{F1, F2, ..., FN} is linearly dependent. That is there exist coefficients a1, ..., aN

where at least one of them is not 0, such that
∑N

k=1 akFk = 0. However, this

means that for any F ∈ H
N
∑

k=1

akFkF = 0. (5.3)

Let ai0 6= 0. Assume without loss of generality that ai0 > 0. We will construct a

function in H for which (5.3) does not hold. As we have already mentioned by

rx and ξx we will always denote the norm and the unit vector of x ∈ R3 \ {0}
respectively. Clearly, from Assumption 5.0.4 and Assumption 2.2.9 follows that

there exists x0 ∈ γi0, with x0 6= 0 and ε > 0 such that x0(ε) ∩ γi = ∅ if i 6= i0,

where x0(ε) is the ε-neighborhood of x0. Now, it is not hard to check that for an

arbitrary real M0 > 0 we can construct u1 ∈ C[0, 1] and v1 ∈ C(Ω) such that for

F1(x) = F1(rxξx) := u1(rx)v1(ξx), x ∈ B \ {0} we have that F1(x) ≥ 0, x ∈ B

and

F1(x) =







M0, if x ∈ x0(ε/n0)

0, if x ∈ B\x0(ε),
(5.4)
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where n0 is some fixed integer.

Hence,

λ1 :=
N
∑

k=1

ak

∫

γk

F1(x)dσ(x) = ai0

∫

γi0

F1(x)dσ(x) >
ai0M0ε

2n0

=: M1 > 0. (5.5)

Now since length(γi), i = 1, ..., N is bounded

M2 :=
N
∑

k=1

|ak| length(γk) < ∞.

Let p := max(‖u1‖∞, ‖v1‖∞) and gk(r) := G̃k(3, 3, r), k ∈ N, r ∈ [0, 1]. Since the

system {gk}k∈N0 is closed in C[0, 1] (see Section 1.3) and the system {Yn,j}n∈N0;j=−n,...,n

is closed in C(Ω) (see Theorem 1.4.10), for δ := M1/(2M2) and for δ1 < min(p, δ/(3p))

there exist linear combinations

g̃ :=
k0
∑

k=0

bkgk and Ỹ :=
n0
∑

n=0

n
∑

j=−n

cn,jYn,j

such that

‖u1 − g̃‖∞ ≤ δ1,

‖v1 − Ỹ ‖∞ ≤ δ1.

Hence, if we denote F2(x) = F2(rxξx) = g̃(rx)Ỹ (ξx), x ∈ B \ {0} and F2(0)

appropriate, then clearly, F2 ∈ H and

sup
x∈B\{0}

|F2(x) − F1(x)| = sup
x∈B\{0}

∣

∣

∣
g̃(rx)Ỹ (ξx) − u1(rx)v1(ξx)

∣

∣

∣

= sup
x∈B\{0}

∣

∣

∣
(g̃(rx) − u1(rx))(Ỹ (ξx) − v1(ξx))

+v1(ξx)(g̃(rx) − u1(rx)) + u1(rx)(Ỹ (ξx) − v1(ξx))
∣

∣

∣

≤ sup
r∈(0,1]

|g̃(r) − u1(r)| sup
ξ∈Ω

∣

∣

∣
Ỹ (ξ) − v1(ξ)

∣

∣

∣

+ sup
ξ∈Ω

|v1(ξ)| sup
r∈(0,1]

|g̃(r) − u1(r)| + sup
r∈(0,1]

|u1(r)| sup
ξ∈Ω

∣

∣

∣
Ỹ (ξ) − v1(ξ)

∣

∣

∣

≤ δ2
1 + 2pδ1 ≤ 3pδ1

≤ δ.
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Thus, if we denote

λ2 :=

N
∑

k=1

akFkF2 =

N
∑

k=1

ak

∫

γk

F2(x)dσ(x),

then using in the case of 0 ∈ γk the fact that path integrals are invariant w.r.t.

changes of the function at one single point

|λ1 − λ2| =

∣

∣

∣

∣

∣

N
∑

k=1

ak

∫

γk

(F1 − F2)(x)dσ(x)

∣

∣

∣

∣

∣

≤ sup
x∈B\{0}

|F1(x) − F2(x)|
N
∑

k=1

|ak| length(γk)

≤ δM2 =
M1

2
.

That is

λ1 − M1/2 ≤ λ2 ≤ λ1 + M1/2,

such that using (5.5) we obtain that

N
∑

k=1

akFkF2 = λ2 > M1 −
M1

2
=

M1

2
> 0.

However, this is a contradiction to (5.3), hence, {F1, F2, ..., FN} is linearly inde-

pendent. �

The idea that we follow here is to approximate S̃ by a spline S ∈ H based on a

system {F1, F2, ..., FN}, i.e. by a spline of the form

S(x) =

N
∑

k=1

akFkKH(., x), x ∈ B.

It is known that if L is a curve parameterized by a C(1)([a, b], R3)–function l, and

F is a continuous scalar field, then
∫

L

F (x) dσ(x) =

∫ b

a

F (l(t)) |l′(t)| dt .

Hence, knowing parametric equations of raypaths γq; q = 1, ..., N we can calculate

the matrix components corresponding to our spline interpolation problem:

(Fl)x (Fq)y KH(y, x) =
∞
∑

k=0

∞
∑

n=0

A2
k,n

n
∑

j=−n

∫

γl

W B
k,n,j(x) dσ(x)

∫

γq

W B
k,n,j(y)dσ(y).
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And by solving the linear equation system

N
∑

q=1

aq (Fl)x (Fq)y KH(y, x) = Tl for all l = 1, ..., N

we obtain the coefficients (aq)q=1,...,N of the spline

S(x) =
N
∑

q=1

aq (Fq)y KH(y, x) =
N
∑

q=1

aq

∞
∑

k=0

∞
∑

n=0

A2
k,n

n
∑

j=−n

∫

γq

W B
k,n,j(y) dσ(y) W B

k,n,j(x)

approximating the function S̃.

Methods of determining the parametric equations of the raypaths γq; q = 1, ..., N

are described in Appendix A.

5.3 Numerical Tests

Let V0 be the P-wave velocity function according to PREM. In numerical tests

we take S1 := 1/V1 as a reference slowness model , where V1 is an approximation

to V0 with a function which stepwise is of the form (see Figures 5.1 and 5.2):

V (r) = A r(1−b), r ∈ [0, 1], A, b = const. (5.6)

Figure 5.1: P-Wave velocity V0 (according to PREM) (left), approximation of V0,

with a function V1 which stepwise is of the form (5.6) (right).

Chapter5/Chapter5Figs/V-prem.eps
Chapter5/Chapter5Figs/V-app.eps
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r V0(r) r V0(r)

0.00000 11.26620 0.62784 13.24532

0.03139 11.25593 0.65924 13.01579

0.06278 11.23712 0.69063 12.78389

0.09418 11.20576 0.72202 12.54466

0.12557 11.16186 0.75341 12.29316

0.15696 11.10542 0.78481 12.02445

0.18835 11.03643 0.81620 11.73357

0.19173 11.02827 0.84759 11.41560

0.19173 10.35568 0.87898 11.06557

0.21975 10.24959 0.89484 10.75131

0.25114 10.12291 0.89484 10.26622

0.28253 9.98554 0.90582 10.15782

0.31392 9.83496 0.92152 9.64588

0.34531 9.66865 0.93722 9.13397

0.37671 9.48409 0.93722 8.90522

0.40810 9.27876 0.95134 8.73209

0.43949 9.05015 0.96547 8.55896

0.47088 8.79573 0.96547 7.98970

0.50228 8.51298 0.97646 8.03370

0.53367 8.19939 0.98744 8.07688

0.54623 8.06482 0.99617 8.11061

0.54623 13.71660 0.99617 6.80000

0.56506 13.68753 0.99765 6.80000

0.56977 13.68041 1.00000 5.80000

0.59645 13.44742

Table 5.1: The values of V0(r) for different r ∈ [0, 1]
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Figure 5.2: Difference of V1 and V0, ∆V = V1 − V0.

More precisely, we get V1 by dividing [0,1] into 48 parts (according to Table 5.1)

and in each of these parts approximating V0 with a function of a form (5.6). Thus,

rays should be generated according to the slowness model S1. In this case the

parametric equations of the raypaths γq; q = 1, ..., N can be written in a simple

analytic form (see Section A.2).

As a sequence {Ak,n}k,n∈N0 we took A2
k,n = B2

kC
2
n, k, n ∈ N0, where B2

k =

e−λ1 k(k+1) is the Gauß–Weierstraß symbol, and C2
n = e−λ2 n is the Abel-Poisson

symbol (see Section 3.1.2 and Section 3.2.2). In this case our reproducing kernel

KH(·, ·) can be written as (see (1.11) and [24], p. 45)

KH(x, y) =

∞
∑

k=0

∞
∑

n=0

n
∑

j=−n

A2
k,nW

B
k,n,j(x)W B

k,n,j(y) (5.7)

=
1

4π

1 − h2

(1 + h2 − 2h( x
|x|

· y
|y|

))(3/2)

×
∞
∑

k=0

B2
k(2k + 3)P

(0,2)
k (2|x| − 1)P

(0,2)
k (2|y| − 1)

= K1 (x/|x|, y/|y|) K2 (|x|, |y|) ,

where

K1 (x/|x|, y/|y|) = K1 (ξx, ξy) :=
1

4π

1 − h2

(1 + h2 − 2h(ξx · ξy))(3/2)
, (5.8)

Chapter5/Chapter5Figs/dV.eps
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with h := C2
1 = e−λ2 and

K2 (|x|, |y|) = K2 (rx, ry) :=

∞
∑

k=0

B2
k(2k + 3)P

(0,2)
k (2rx − 1)P

(0,2)
k (2ry − 1). (5.9)

We see that for fixed x0 ∈ B, K1 only depends on ξy, i.e. on the unit vector of

y, and K2 only depends on ry, i.e. on the radius of y. This suggests that we

can choose parameters λ1, λ2 independently to control the localization character

(hat-width) of KH in the direction of ry and ξy respectively. The last point is

particularly important in body wave tomography, since here the unknown (ve-

locity) function has strong variations in the direction of ry and relatively small

variations in the direction of ξy.

The representation of x ∈ B in the spherical coordinates will be denoted by

x̄(r, θ, φ), where r ∈ [0, 1], θ ∈ [0, π] and φ ∈ [0, 2π).

(a) paths of 360 synthetic rays (b) paths of 300 synthetic rays

Figure 5.3: paths of synthetic rays generated according to V1 and plotted on the

plane φ = 90◦

Here we run two numerical tests. In the first one we reconstruct V1(r) in the

segment r ∈ [0.65, 1] with θ = 120◦ and φ = 90◦ (see Figures 5.4 and 5.5) using

the synthetic ray system presented in Figure 5.3(a), while in the second one we

approximate the function V2(x̄(r, θ, φ)) := 5 + 0.1 sin(5r) cos(20θ) at r = 0.98,

Chapter5/Chapter5Figs/rays_prem.eps
Chapter5/Chapter5Figs/rays_premVar.eps
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r = 0.99, θ ∈ [100◦, 125◦] and φ = 90◦ (see Figures 5.6 and 5.7) using the

synthetic ray system presented in Figure 5.3(b). The integral terms representing

the matrix components and the spline basis have been calculated approximately

with the trapezoidal rule, where the series in (5.9) has been truncated at level

50. Moreover, a smoothing (regularization) of the linear equation system, with a

smoothing parameter ρ, has been done.

The results show that with our spline method we are able to obtain a good

approximation for a relatively smooth model (see Figures 5.6 and 5.7) as well

as for a model with a rather big variations (see Figures 5.4 and 5.5). Hence,

the described spline approximation method proved to be an alternative to the

existing methods in seismic body wave tomography.
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(a) reconstruction of V1 (b) error of the reconstruction of V1

Figure 5.4: reconstruction and corresponding error of V1 using the rays in Figure

5.3(a), with λ1 = 0.001, λ2 = 10, ρ = 10−6

Figure 5.5: comparison of the profiles of V1 (solid line) and its reconstruction

(dashed line)

Chapter5/Chapter5Figs/PREMRecons.eps
Chapter5/Chapter5Figs/PREMReconsError.eps
Chapter5/Chapter5Figs/PREMcomp.eps
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(a) comparison of the profiles of V2 (solid line)

and its reconstruction (dashed line)

(b) error of the reconstruction of V2

Figure 5.6: reconstruction of V2(r, θ) using the rays in Figure 5.3(b), with λ1 =

0.2, λ2 = 0.3, ρ = 0.04 at r = 0.99, θ ∈ [100◦, 125◦] and φ = 90◦

(a) comparison of the profiles of V2 (solid line)

and its reconstruction (dashed line)

(b) error of the reconstruction of V2

Figure 5.7: reconstruction of V2(r, θ) using the rays in Figure 5.3(b), with λ1 =

0.2, λ2 = 0.3, ρ = 0.04 at r = 0.98, θ ∈ [100◦, 125◦] and φ = 90◦

Chapter5/Chapter5Figs/comp1.eps
Chapter5/Chapter5Figs/In_Out1.eps
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5.4 On Uniqueness and Convergence Results

If the reference slowness model S0 depends only on the radius r, i.e. S0 = S0(r)

r = |x|, x ∈ B, then the rays are planar (see e.g. [1], [12]) and Problem 2.2.6

can be considered separately in each cross-section of B by the plane of a great

circle. Hence, the problem of finding the function S becomes planar, and can be

formulated as follows.

Problem 5.4.1 Given a function τ(u) = τ(ν1, ν2), u = (ν1, ν2) ∈ Ω2 × Ω2, find

a continuous function S on B2 such that

τ(ν1, ν2) =

∫

γS0
(u)

S(x)dσ(x), (5.10)

where Ω2 and B2 are the unit circle and respectively the unit disk in R2.

For this problem V. Romanov (see [61]) obtained the following uniqueness result.

Theorem 5.4.2 Let r0 > 0 and the function m(r) = rS0(r) satisfy the conditions

m(r) > 0, m′(r) > 0, m(r) ∈ C(2)[r0, 1]. (5.11)

in the domain D = {x : r0 ≤ |x| ≤ 1}. In this case the continuous function S is

uniquely defined in the domain D by the function τ(ν1, ν2) for those ν1, ν2 ∈ Ω2

for which the rays γ(ν1, ν2) are contained in D.

In our case of the reference velocity function V0 defined in the previous section, we

see that S0 = 1/V0 is a piecewise smooth (continuously differentiable) function,

and therefore can be arbitrarily well approximated by a smooth function, which

again will be denoted by S0. So, we can assume that S0 ∈ C(2)[0, 1]. Hence,

m(r) = rS0(r) is in C(2)[0, 1], too.

As we can see from Figure 5.8, m′(r) > 0 for r ∈ [d2, 1]. Hence, from Theorem

5.4.2 follows that (5.10) uniquely determines S in {x : d2 ≤ |x| ≤ 1}. However,

we will see that in the whole B2 the solution of Problem 5.4.1 in general can be

non-unique.

Let S1 : B2 → R be a solution of Problem 5.4.1. We present a procedure to

construct a function S2 ∈ C(B2) which differs from S1 and which solves Problem
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Figure 5.8: Plot of m(r) = rS0(r)

5.4.1. From Figure 5.8 we can see that m(r) monotonically decreases from m0 to

m1 with the decreasing r in [d2, 1]. In [d1, d2] it increases then again decreases

with the decreasing r, such that m(d1) = m(d2) = m1. In this case it can be

shown that there is no ray with the turning point (see Section A.2) in [d1, d2] (see

e.g. [1], [12]).

Denote D1 := {x ∈ R2 : |x| ≤ d1}, D2 := {x ∈ R2 : d1 ≤ |x| ≤ d2} and

D3 := {x ∈ R2 : d2 ≤ |x| ≤ 1}. Take F1 ∈ C(D2 ∪ D3) such that F1 = S1 on D3

but F1 6= S1 on D2. For any seismic ray γ(ν1, ν2), ν1, ν2 ∈ Ω2 that intersects D1,

denote by γ′(ν1, ν2) the part of γ(ν1, ν2) whose image is in D1, by γ′′(ν1, ν2) the

part of γ(ν1, ν2) whose image is in D2 ∪ D3 (see Figure 5.9), and denote

τ ′(ν1, ν2) := τ(ν1, ν2) −
∫

γ′′(ν1,ν2)

F1(x)dσ(x).

Discuss now the problem of finding a function S which is given on D1 by the

equation

τ ′(ν1, ν2) =

∫

γ′(ν1,ν2)

S(x)dσ(x). (5.12)

Chapter5/Chapter5Figs/fCh5_3.eps
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Figure 5.9: illustration of D1, D2, D3 and γ(ν1, ν2)

If we suppose that there exists F2 ∈ C(D1) such that it solves (5.12) and F2 = F1

on the boundary of D1, then it is easy to check that the function

S2(x) =







F1(x), x ∈ D2 ∪ D3,

F2(x), x ∈ D1,

will be a solution of Problem 5.4.1 which differs from S1.

Clearly, the existence of such an F2 depends on F1, in particular it depends on

the values of F1 on D2. We shall mention that the problem of describing the set

of such functions, i.e. the problem of describing the set of non-uniqueness of the

solution of Problem 5.4.1 is still open.

For the one-dimensional and non-linear analog of Problem 5.4.1 the nature of the

non-uniqueness of the solution was studied by M. Gerver and V. Markushevich

(see [29], [30]).

Taking into account facts mentioned above, from Assumption 2.2.8 follows that

if the sets of the given seismic sources and receivers are dense in Ω, then the

function τ(·, ·) uniquely determines the function S in D3. However, in this case

the corresponding system of functionals need not to be complete in whole W,

and thus, the convergence Theorem 3.7.5 can be invalid. Note that it is possible

to develop the described spline approximation concept in a closed spherical shell

as well. The closed spherical shell is compact and thus, can be considered as an

initial set. Hence, here the problem is the choice of the corresponding initial basis

system. For similar bases see e.g. [76] and the references therein.
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Chapter 6

Conclusions and Outlook

The main aim of this work was to obtain an approximate solution of the seismic

traveltime tomography problems with the help of splines based on reproducing

kernel Sobolev spaces. It was shown that the seismic traveltime tomography

problem is ill-posed and regularization can be constructed with the help of such

splines. In order to be able to apply the spline approximation concept to sur-

face wave as well as to body wave tomography problems, the spherical spline

approximation concept was extended for the case where the domain of the func-

tion to be approximated is an arbitrary compact set in Rn and a finite number

of discontinuity points is allowed. This concept was discussed in details for the

case of the unit ball and the unit sphere. Furthermore, we presented applica-

tions of such spline interpolation/approximation method to seismic surface wave

as well as body wave tomography, and discussed the theoretical and numerical

aspects of such applications. It has been shown that the question of uniqueness

of the seismic traveltime tomography problem and the question of convergence of

the interpolating spline sequence have close relationship; more precisely the se-

quence of interpolating splines converges if and only if the corresponding system

of functionals is complete in a corresponding space. In other words in that case if

the corresponding system of functionals is complete then the constructed spline

method enables a well-posed determination of an arbitrarily good approximation

to the solution of the seismic traveltime tomography problem. It also has been

shown that in the case of surface wave tomography for that completeness it is

enough that the union of the sets of given seismic sources and receivers is dense
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on the sphere.

The results of numerous numerical tests have been presented in this work as well.

For the surface wave tomography the numerical tests include the reconstruction

of the Rayleigh and Love wave phase velocity at 40, 50, 60, 80, 100, 130 and 150

seconds and comparison (for some phases) with the corresponding maps obtained

with the well-known spherical harmonics approximation method. Moreover, some

tests with synthetic data sets including the so-called checkerboard tests, a test

by adding random noise to the initial traveltime data and a test with a so-called

hidden object have been presented as well. It has been observed that the phase

velocity maps obtained via splines have similar structure as the corresponding

maps obtained via the spherical harmonic approximation method. However, in

the tests with the synthetic data sets it was shown that splines (in particular in

case of local/localized models) allow more accurate reconstruction. For the body

wave tomography numerical tests include a partial reconstruction of the P-wave

velocity function (according to PREM) and its perturbation with the use of syn-

thetic data sets.

These results demonstrate that the spline interpolation or approximation method

indeed represents an alternative to the present methods in seismic tomography.

It was shown that this spline method can be used for global velocity determina-

tion as well as for local calculations. The advantage of the method should be the

localizing character of the spline basis functions, which becomes clearly visible in

case of local data sets or regional disturbances.

The disadvantage of the method is that it requires relatively large computational

time, in particular for the calculation of the matrix kN (see (3.15)), with a rela-

tively big N . Moreover, since kN has N2 elements one requires O(N2) operations

for the necessary calculations. For some inverse problems there are algorithms

which reduce the computational costs to, for example, O(Nα), 1 ≤ α < 2 or

O(N log N) (see e.g. [23], [31], [35]). This motivates further research on finding

such a procedure for our problem. From the practical point of view, of course,

it is interesting to obtain velocity models for body wave tomography, using real

data sets, too. In this context the test calculations in Section 5.3 show promising

results. The problem of choosing an ”optimal” sequence {Ak}k∈N0 (see Section

3.1) for each special approximation problem is also a topic of further research.



Appendix A

On Seismic Ray Theory

In this appendix, we shall present, without derivation or proofs, a brief introduc-

tion into the seismic ray theory in the context of this work. This introduction is

based on [12] where further details can be found.

A.1 Seismic Rays

The waves that arise in earthquakes are called seismic waves. These waves propa-

gate in the elastic body of the Earth according to the laws of geometric seismology

which are altogether analogous to the laws of propagation of a light ray. The tra-

jectories, which are orthogonal to the wave fronts, are here called seismic rays,

by analogy with a light ray.

The study on seismic rays can be divided into two parts: kinematic and dynamic.

The computation of seismic rays, wave fronts, and traveltimes are subject of the

kinematic part, while the computation of synthetic seismograms, particle ground

motion diagrams and the vectorial amplitudes of the displacement vector are sub-

ject of the dynamic part. These both parts can be investigated by the application

of so-called asymptotic high-frequency methods to the elastodynamic equations.

The kinematic part, however, may also be developed by some simple approaches,

for example, by Fermat principle. In this work we are interested only in the kine-

matic part of seismic ray theory.

Let v(·) be the propagation speed of the seismic wave. Since in the body of

the Earth v is not constant but varies from point to point, seismic rays are not
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straight lines. Fermat’s principle from variational calculus (see e.g. [12], [18])

states: a ray joining any pair of points x0, x is an extremal of the functional

J(l) =

∫

l(x0,x)

1

v(y)
dσ(y), (A.1)

where l(x0, x) is an arbitrary sufficiently smooth curve joining the pair of points

x0, x; dσ(x) is the element of its length in the Euclidean metric.

Clearly, from (A.1) follows that J(l) gives the time a wave takes to travel from

the point x0 to x over the curve l(x0, x). Thus, a seismic ray is a curve l(x0, x)

on which the traveltime of the wave is a minimum. Actually, for rather complex

media where the function v differs strongly from a constant, the pair of points

x0, x can be joined by several rays (or even an uncountable set of rays), where on

each of these rays the functional J(·) has a minimum. In this case we will take

as a seismic ray any particular one of them.

We denote the seismic ray joining the points x0 and x by γ(x0, x). So, the

traveltime τ(x0, x) of the wave along this ray or so-called first-arrival traveltime

between x0 and x is calculated by the formula

τ(x0, x) =

∫

γ(x0,x)

1

v(y)
dσ(y). (A.2)

The wave front at T = const is the surface defined by the equality τ(x0, x) = T ,

where x0 is fixed. Let ν(x0, x) be the unit vector tangential to the ray γ(x0, x) at

the point x directed to the side of increasing τ . Then (A.2) implies that

∇xτ(x0, x) =
1

v(x)
ν(x0, x) =: s(x0, x),

where ∇xτ denotes the gradient of the function τ computed with respect to the

variable x and s is the slowness vector. We denote also s = |s|, i.e. s(x) = 1/v(x).

Hence, we arrive at the so-called Eikonal equation

|∇xτ(x0, x)|2 = s2(x). (A.3)

As is demonstrated in the variational calculus (see e.g. [12]) the characteristics

of this nonlinear first-order partial differential equation are precisely the rays, i.e.

the extremals of the functional in (A.1).

Let the distance of the ray path measured along the ray be σ, and the length of
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the ray path be L. Let also the parametric equation of the ray path be written

as x = x(σ), σ ∈ [0, L]. In this case from the Eikonal equation (A.3) using the

method of characteristics one can derive the so-called ray tracing system

∂x

∂σ
= v s,

∂s

∂σ
= ∇

(

1

v

)

. (A.4)

These equations give a system of six first order ordinary differential equations

which in general must be integrated numerically to find the ray path x = x(σ)

(for more see e.g. [12]). In some special cases it is also possible to find an

analytical solution of the system (A.4).

A.2 Mohorovičić velocity distribution

Let the unit ball B = {x ∈ R3 : |x| ≤ 1} be an approximation to the Earth. In

the spherical coordinates B can be represented as B = {(r, θ, φ) : r ∈ [0, 1], θ ∈
[0, π], φ ∈ [0, 2π)}. Assume that a wave velocity function v is depends only on

the radius r, i.e. v = v(r), r ∈ [0, 1]. Moreover, suppose that B can be divided

into N layers defined by spherical surfaces r0 = 0, r1, r2, ..., rN = 1, where in the

layer i, i.e. when ri−1 ≤ r < ri the velocity function v can be represented as

v(r) = Ai r
(1−Ci), Ai, Ci = const. (A.5)

Velocity distribution (A.5) is known as the Mohorovičić velocity law (see [11]) or

also as Bullen’s velocity law. Following [12] we present here an analytical solution

of the ray tracing system (A.4), in case of v being given by (A.5).

Since the velocity v is depends only on r, a ray as a whole is situated in a plane

passing through the origin of B, the start and the end point of the ray in question.

So, any point of a ray can be represented by two coordinates, say (r, θ). It should

be mentioned also that in this case a ray is symmetric with respect to the line

passing through the origin of B and the mid-point of the part of the great circle

connecting the start and the end points of the ray in question (see e.g. [1], [12]).

Let now γ be an arbitrary ray with start point P = (rP , θP ) and end point

Q = (rQ, θQ). The traveltime corresponding to γ will be denoted by Tγ , i.e.

∫

γ

1

v(x)
dσ(x) =: Tγ .
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Figure A.1: illustration of a ray path

Let (r, θ) be an arbitrary point on γ. The acute angle between the radius vector

of (r, θ) and the tangent vector of γ at (r, θ) is denoted by i(r) (see Figure A.1).

Here, we have that

p :=
r sin i(r)

v(r)
= const. (A.6)

In seismology p is usually called the ray parameter, and (A.6) is the generalized

Snell’s law for a radially symmetric medium (see e. g. [1], [11]).

Denote the coordinate r of the turning point of γ (i.e. the point on γ with the

minimal radius vector) by rM (see Figure A.1), i.e. i(rM) = π/2, and rM/v(rM) =

p. Moreover,

w(r) :=

√

r2

v2(r)
− p2, r ∈ [0, 1],

and

r(t) := a t2 + b t + 1, t ∈ [0, Tγ], (A.7)

where a := 4(1 − rM)/T 2
γ and b := −4(1 − rM)/Tγ.

Choose j ∈ N such that rj−1 ≤ rM < rj, i.e. rM is in the j-th layer.

Take any t ∈ [0, Tγ] and let r(t) be in the k-th layer, i.e. rk−1 ≤ r(t) < rk.

Now
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(i) if t ≤ Tγ/2 then denote

θ(t) := θP +

N
∑

i=k+1

( −1

Ci−1

)(

arctan

(

w(ri−1)

p

)

− arctan

(

w(ri)

p

))

+

( −1

Ck−1

)(

arctan

(

w(r(t))

p

)

− arctan

(

w(rk)

p

))

,

(ii) if t > Tγ/2 and k = j then

θ(t) := θ(Tγ/2) +

( −1

Ck−1

)(

arctan

(

w(r(t))

p

)

− arctan

(

w(rM)

p

))

,

(iii) otherwise, i. e. if t > Tγ/2 and k > j then

θ(t) := θ(Tγ/2) +

( −1

Ck−1

)(

arctan

(

w(r(t))

p

)

− arctan

(

w(rM)

p

))

+
k−1
∑

i=j

(−1

Ci

)(

arctan

(

w(ri+1)

p

)

− arctan

(

w(ri)

p

))

+

( −1

Ck−1

)(

arctan

(

w(r(t))

p

)

− arctan

(

w(rk)

p

))

.

Finally, from [12] pp. 177 follows that γ can be parameterized by the equation

x(t) = (r(t), θ(t)), t ∈ [0, Tq],

where r(t) and θ(t) are defined above.

It is easy to check that in this case x(·) ∈ C1[0, Tγ], i.e. x′(·) is a continuous

function on [0, Tq]. Note that actually in [12] the parametrization of γ is given

using r as a parameter, in which case θ′(r) is not continuous at rM , that is why,

to avoid that discontinuity, we introduced the parameter t.

A.3 The Linearized Eikonal Equation

Equation (A.3) is nonlinear. To linearize it we assume that an initial estimate s0

of the slowness function s is available. The traveltime corresponding to s0 will

be denoted by τ0. From (A.3) we have

|∇τ0|2 = s2
0. (A.8)
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Denote also τ1 := τ − τ0, and s1 := s− s0. With these definitions, we can rewrite

Equation (A.3) in the form

(∇τ0+∇τ1)
2 = (∇τ0)

2+2∇τ0 ·∇τ1+(∇τ1)
2 = (s0 +s1)

2 = s2
0+2s0s1+s2

1, (A.9)

or, taking into account the Equation (A.8),

2∇τ0 · ∇τ1 + (∇τ1)
2 = 2s0s1 + s2

1. (A.10)

Neglecting the squared terms, we arrive at the equation

∇τ0 · ∇τ1 = s0s1, (A.11)

which is the linearized version of the eikonal equation (A.3). The accuracy of the

linearization depends on the relative ratio of the slowness perturbation s1 and

the true slowness model s. Although it is difficult to give a quantitative estimate,

in seismology the ratio of 10% is generally assumed to be a safe upper bound.

We can rewrite Equation (A.11) in the form

ν0 · ∇τ1 = s1, (A.12)

where ν0 is the unit vector, pointing in the gradient direction for the initial

traveltime τ0. The integral solution of Equation (A.12) takes the form

τ1(x0, x) =

∫

γ0(x0,x)

s1(x)dσ(x), (A.13)

which states that the traveltime perturbation τ1 can be computed by integrating

the slowness perturbation s1 along the ray γ0 defined by the initial slowness model

s0 (see e.g. [12], [42], [61]). This is the basic principle of traveltime linearized

tomography.
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