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ABSTRACT. We describe a Voronoi box based finite volume method for the nu-
merical simulation of thermal convection in sedimental basins. The method shows
a temperature maximum principle and consistent velocity approximation. We
present results of simulation runs in vertical slices of the North-East German basin.
These indicate that the system is far from a stationary state, it shows quasi-periodic,
and possibly chaotic behaviour. The chaos hypothesis is formulated based on the
analysis of the Nusselt number time series obtaind from simulation runs.

1. INTRODUCTION

Extensive evidence for rising saline waters is available on a regional scale within
the North German Basin with more than 100 reported locations of saline springs.
A common characteristic of these springs is their temporal and spatial instability
(vagabonding springs) - approximately one tenth of the springs are known only
from historical notes and presently cannot be observed.

For Schleswig-Holstein, Heck [Hec32] lists various locations of saltwater pres-
ence at the surface, which cannot be explained as originating from any shallow salt
deposits or salt domes and whose cause therefore remains unknown. A lack of
explanation is also noted by Johannsen [Joh80] for steep vertical plumes of saline
fluids observed in Schleswig-Holstein that reach near-surface levels. In addition,
there is no indication of related faults or high-permeability conduits. Even assum-
ing that such preferential pathways do exist, the physical driving force for the up-
ward flow of saline fluids still remains to be identified.

Hannemann and Schirrmeister [HS98] compared the chemistry of deep ground-
water levels with the chemistry of the vagabonding springs and concluded that
they originated mainly in the deeper, Pre-Tertiary sub-ground. They then hypothe-
size, that high-permeability pathways exist and that Quartenary long-term fluctu-
ations of the sea level are responsible for vertical exchange of saline and fresh wa-
ter due to the changing hydraulic pressure gradients within the basin. However,
the low topography of Brandenburg and Schleswig-Holstein does not account for a
differentiated hydraulic head which could support the vagabonding springs. The
concept of [HS98] therefore, should produce more evenly distributed replacements
on a regional level. The steep rising plumes described in [Joh80] in particular point
to the possibility of significant temperature effects on the fluid density and possi-
ble free convection. Numerical calculations [SSH99] in a rectangular cavity with
material parameters from the deep geosphere support this hypothesis.

The aim of this paper is to present first results of numerical experiments with
data from the North-East-German Basin which indeed hint into this direction. We
present a thermoconvective flow model based on a finite volume method which is
able to handle heterogeneous, layered geometries, showing consistent velocity ap-
proximation and temperature maximum principle, we address meshing issues and
we present results of transient two-dimensional numerical calculations. We eval-
uate the solutions based on the Nusselt number time series. Using spectral analy-
sis and time series analysis tools, we try to discriminate between stationary, quasi-
periodic and chaotic flow regimes. We discuss open issues in connection with this
approach.
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2. MODEL EQUATIONS

The model considered consists of the Darcy law without inertia terms, which
together with a mass balance equation describes the movement of a fluid in a sat-
urated porous medium, and the Fourier law with convection which together with
an energy balance models the movement of heat energy in a mixture of fluid and
solid phase. In [NB98] one finds an exhausting discussion of this type of models.
In a � -dimensional domain � consider

mass balance: �������
	���������� ��	�����������(2.1a)

Darcy law: ��� �! � �#"$�%� ��& �(2.1b)

energy balance: �����'�(�*) � � �+�,�-.,0/ �
	���1-.���+2#�3���4�657���(2.1c)

Fourier law: 57� ����8 �9/ �*) � � � 8 ,:�(�;2<��2 	����-.�=�(2.1d)

The basic unknowns are the pressure " and the temperature 2 of the fluid. All other
symbols are explained in appendix A. The data of the fluid – density � and viscosity! – can depend on pressure and temperature. All data of the porous matrix can
have spatial variations. Througout the paper, we assume that our computational
domain is subdivided into layers of different materials, and that we can assume
constant matrix data for each of the layers.

We assume that the boundary �>� is subdivided into non-intersecting parts ?3@
wich are due to different boundary conditions, namely either

impermeable: �7�BA��C� or(2.2a)

free: "D�E"GF�H �JI �(2.2b)

for (2.1a)-(2.1b), and either

insulating: 5D�BA���� or(2.3a)

conducting: 2K�C2 F H �JI �(2.3b)

for (2.1c)-(2.1d). For a more detailed discussion of boundary conditions and ge-
ometries see section 4.

For the density of water, use assume that 	�L�<�L�K� � "NM'2#��M'!O�K! � 2#� according to
appendix C, unless we regard for theoretical and verification reasons the Boussi-
nesq approximation.

The Boussinesq approximation assumes that 	�P�Q� � ref is constant, and the
fluid is incompressible, hence the only temperature dependent term in the pres-
sure equation remains the factor at the gravity term in the Darcy law (2.1b). It is
believed that in this case, the main physical effects still are in the model. In the
two-dimensional case, this approximation often is the base for a stream function
formulation of the problem [NB98], also exploited in numerical methods, see e.g.
[HY95].

The Boussinesq case allows for a dimensionless formulation [NB98] which in the
case of a homogeneous rectangular domain reduces the set of model parameters to
two dimensionless values, namely the Rayleigh number (4.3) and the aspect ratio.
Quite a lot is known in this case about the transition from steady state to convec-
tion. Moreover, in this case it was possible to give an existence proof for the con-
tinuous solution, and to estimate the dependency of the dimension of the attractor
of the system in dependence on the Rayleigh number [EFZ00].
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FIGURE 2.1. Geometrical coefficients of the finite volume scheme

Here, we include this model for the purpose of verification of the code and be-
cause in this case we are able to prove some qualitaive results about the discretiza-
tion we use.

3. NUMERICAL METHOD

3.1. Finite volume discretization: general ansatz. Here, we describe our finite
volume discretization ansatz for heterogeneous domains. For the convenience of
the reader, we describe the method for the two- dimensional case, but in fact, all
formulations can be extended to one and three space dimensions by dimension-
independent notations. Our description here stays mainly on the verbal level, for
a mathematically more rigorous introduction in the scalar case see [FL01]. Appear-
antly, the oldest reference to the method is found in [Mac53].

Assume that the computational domain is the union of a finite number of sub-
domains which correspond to the different geological layers:

� ��� ������ � �

Let there be given a Delaunay triangulation conforming to the exterior and in-
terior boundaries [BE95]. In the two-dimensional case, this means:

� The whole domain is the union of non-intersecting each other triangles.� If a point is the node of a triangle, it is a node of all neigbouring triangles.� Each triangle belongs to exactly one subdomain � � .� If two triangles share an edge, the sum of the angles opposite to that edge
is less or equal than � .� If a triangle shares an edge with an interior or exterior boundary, the angle
opposite to that edge is less or equal than � � .

Then we can set up the Voronoi boxes �0@ by joining the circumcenters of the sim-
plices as in fig. 2.1. The box interfaces are denoted by � @! . Their (possibly empty)
intersections with the domains � � result in the items � �@ and � �@" , respectively.



4

We will describe the finite volume scheme for the following class of problems:
We look for a vector valued function �3��� M��(��� ���
	 �PM'2������� such that

����� ��� �N/ ����� ��� � ���� ��� � �4� � ��� �(� � /�� ��� ���(3.1)

Here, � � � ��M � � � ������� !��� are vector valued functions depending on vectors, and� � � ��M�� � � �"�#���$����&% are '(�)' -tensor valued functions.
Introducing the vector valued flux functions* � ��+ M � M-,� � � * �. ��+0/-� . �&�1� � � / , . �1�&��, � �2�1�&��* �� ��+3/�� . �&�&� � � / , . �1�&��, � �(�

which should be approximations to the cell-to-cell fluxes generated by the projec-
tion of the main part of our system onto the mesh edges, we can approximate the
balance of the 4 -th equation of (3.1) over the space-time cell � @ �E� ��5 M-��576 . � by:

� �
��819;:<
� 8
<= H?> ���A@*��� M � �� � / �4��� @CB �����#D

EGF
�����IH � �@ H#J � �@ ��� 576 .@ ��� � �@ ��� 5@ �-K3/
/ D 5 F� ��� F

 �7L�MONQP @SR H �
�@" HT @! * �U HWV�X @ ��� 5#6 .@ M � 5#6 . �

(3.2)

The main idea is to cast the volume integral of the flux divergence into a surface
integral of the normal flux, to split this up into the material parts and to replace the
normal flux by the flux function. The problem now is characterized by the mass
terms � and flux function * corresponding to each material. The approximation
chosen corresponds to an implicit Euler scheme. An existence and stability anal-
ysis of this scheme for the scalar case has been carried out in [FL01].

3.2. Finite volume discretization of thermal convection. To approximate system
(2.1a)-(2.1d) we first show that it fits into the problem class (3.1). Indeed, let � �
� "NM(29� , and denote� � . � "�M(2#� � � � 	� � � "NM'2#�� �� � "�M(2#� � �(�() � � � �+� � , - � , / � � 	� � - � �+2� . � "�M(2#� � � � 	� �! � �#"$�%� �1& �� � � "�M(2#� � � � � 8 � / �() � � � � 8 � , �(�;2<��2 - � � . � "NM'2#���
(3.3)

Let � @ � �� � " @ M'2 @ � , 	� @ � 	�� � " @ M'2 @ � , ! @ � ! � 2 @ � , 8 � � � � � 8 � / �() � � � � 8 � , � .
Further, let Y ��Z � � [\-]O^ . be the Bernoulli function.

In order to discretize (2.1b), we choose the following ansatz:* �. �_* �. ��+ M � " . M(2 . �:M � " � M(2 � �'� � � � 	� . / 	� �! . / ! � > " . �D" � � � . / � �` & � + B
Exponential fitting [AS55, Il’69, SG69] is used for (2.1d) and leads to* �� �_* �� ��+ M � " . M'2 . ��M � " � M'2 � �(��� 8 � > Y � ���1-.�7* �.8 � �+2 . � Y � � ���1-.�7* �.8 � �+2 � B
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The functions � � . M � �� M-* �. M�* �� together with (3.2) completely describe the dis-
cretization ansatz used.

3.3. Properties of the discretization.
3.4. Theorem. (Consistent velocity approximation.) For an incompressible fl uid with den-
sity linearily depending on temperature in a homogeneous aquifer, the nodal projection of
the diffusive steady state solution of the continuous system is a solution of the discrete prob-
lem .

Proof. Let �� �K� ref
/���� � 2 �72 ref

� and 8 � ��8 � / �() � � � 8 ,.� . The solution mentio-
nend then is described by the system

� � �! � �#"$�%��� & � �K�(3.5a)

� ��� 8 �;2��K�(3.5b)

Let & �_*A�� and assume that Z is defined by I � I ��Z ��� I�� / Z A�� . Let �" ��Z � ��" � I ��Z �(�
and �2 ��Z ���<2 � I ��Z �'� . Substituting this ansatz yields

�"
	 � *�� � � �2 ���K�(3.6a)
� 8 �2 	 	 �K�(3.6b)

The general solution of the temperature equation then has the form 24� 2 � /�� Z
with 2 � M� being constants. For � � �K� ref

/���� � 2<�%2 � � we get
� � �C� � /�� � � �2<��2 � � �<� � /�� � � Z �

yielding the pressure eaquation

�" 	 � *�� � � *������ Z ���
with the general solution

�" ��Z ����" � / *�� �OZ / )` *������ Z �
For two neigboring discretization nodes IN@ M I  , let Z.@ � I @ �PA � . In this case, for+ � I @ � I  , & � + � Z.@ � Z  . consequently,* . � � � @ /��  ! @ /�!  �

" @ � "  � � @ / �  ` ��Z.@ � Z  �'�
� �
� @ /��  ! @ /�!  �

*�� � ��Z.@ � Z  �N/ )` *�� � � ��Z �@ � Z � �
� *�� ����Z @ � Z  ��� )` *������ ��Z @ / Z  � ��Z @ � Z  �'�

�K�
Further, due to Y � �1��� ) , we have* � � 8N��Z @ � Z  ��� 8 + @" �6A��
Putting this into the � th nodal equation yieldsF

 �7L�M&N P @ R H � @! HT @" +�@! �.A � � F
 �7L�M&N P @ R H ��@! H A @! �6A � � <� = H A � �6A ��� �

<= H � �.A � � � �K�
Consequently, we obtained a solution of the discrete system. �
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This result includes the case of Boussinesq approximation. We remark that this
problem has been addressed in [Fro98a] for a finite volume method with differently
defined control volumina where the issue had been resolved by using finite ele-
ment interpolations of different degrees.

One could choose an upwind evaluation of the density in the gravitation term in
oder to get a maximum principle for the pressure in the incompressible case. In this
case, we would lose the consistent velocity approximation. On coarse unstructured
meshes we then would be unable to decide about the onset of convection. Instead,
as the discrete stationary solution is not convection free, we would see grid effects
interplaying with the onset of convection.
3.7. Theorem. (Maximum principle.) For the discretized Boussinesq approximation, in
each non-Dirichlet node, a temperature maximum principle is valid:

2 5@��������	� 2 5 ^ .@ 
�� �7L�M7P @ R � 2 5 

2 5@� ������� 2 5 ^ .@ 
�� �7L�M P @ R � 2 5 


Proof. For the proof, we use the methodology of [FL01]. First, we state the pressure
equation for the Boussinesq case:

(3.8) F
 �7L�M N P @SR H �@" HT @! * . �'� " @ M(2 @ ��M � "  M'2  �'���C� �

Define*��� ���9@ M �  � � 8 � > YD� ���-6� * �. �'� " @ M'2 @ ��M � "  M'2  �'�8 �
� � . � YD� � ���-6� * �. �'� " @ M'2 @ ��M � "  M'2  �(�8 �

� � � B
We note, that

(3.9) � @" � H � @! HT @! * �� ��� @ M �  ��� * �� ��� @ M � @ ��9@ � �   �PM
because of the nonnegativity of the Bernoulli function (we can extend the definition
by continuity to � @ � �  ) and

(3.10) * �� ���9@ M �9@ � � 	� � - � * . �(� " @ M(2 @ �:M � "  M(2  �(�
because of the addition theorem Y ��Z �3/ YD� � Z � � ) . Further, we have*��� � 2 @ M(2  ��� * � � 2 @ M(2  �

The temperature equation writes as

- H ��@ H � 2 5@ �%2 5 ^ .@ ��� F
 �7L�M N P @ R H � @! HT @" � * �� � 2 @ M(2  ��� * �� � 2 @ M'2 @ �(��/ F

 �7L�M N P @ R H � @! HT @" * �� � 2 @ M'2 @ �
� F
 �7L�M N P @ R H � @! HT @" * �� � 2 @ M'2  �0� * �� � 2 @ M(2 @ �2 @ �%2  � 2 @ �%2  �

/ F
 �7L�M N P @SR H � @" HT @! 	� � - � * . �'� " @ M(2 @ ��M � "  M'2  �'�

� F
 �7L�M N P @ R � @" � 2 5@ ��2 5 �
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Consequently, we have

2 5@ � - H �3@ H 2
5 ^ .@ / �

 �7L�M N P @ R � @! 2 5 
- H �3@ H / �

 �7L�M N P @ R � @" 
As all coefficients on the right hand side are nonnegative and less than ) we get the
desired result. �

Consequently, the temperature is allowed to take local extremal values only in
nodes which had been intitialised this way, or at the boundary. Please note that
this result is strongly related with the Delaunay property of the mesh which en-
sures that the expressions evaluated in order to yield the transfer coefficient H � @" Hstay nonnegative. For a treatment of this issue in connection with density driven
flow with different types of control volumina, see [Fro98b].

In the non-Boussinesq case, the maximum principle is lost. However, as we still
can assume that local density variations are small, large scale deviations from the
maximum principle should not occur.

3.4. Meshing. The geometries we deal with are described by piecewise linear
straight line graphs (PLSG) after processing measured data at GFZ [Sch97b, Sch97a,
SB99]. The Delaunay refinement algorithm of Rupert and Shewchuk [Rup95,
She97] in a constructive manner garantees the existence of a triangulation of such
geometries obeying the properties described in subsection 3.1. Moreover, with the
triangle code [She96], a tool is available which implements this algorithm in an effi-
cient manner. It has been used to generate the meshes for the presented calculation.
Besides of the boundary and layer interface information obtained from the geolog-
ical data, the main parameter to influence the mesh has been the maximal area of
a triangle.

In section 4, we perform calculations on two slices of the basin geometry, one
of of length 35 km, the other of length 105 km, both of depth approximately 6 km.
There approximate placement in the region of the North-East German basin can
be seen in fig 3.1. The meshes are depicted in figure 3.2. We controlled the trian-
gle mesh generator by calculating a maximum area from a given maximum edge
length denoted by

T
throughout the paper.

3.5. Time step control. We use an adaptive time step control scheme which is
aimed at holding the ��� norm of the change of the solution constant over all
timesteps. There are two exceptions from the time step control scheme. First, this
scheme appears to be to insensitive to catch the periodic behaviour described be-
low, so we had to introduce a maximal timestep chosen quite tightly. Second, the
timestep size is lowered if Newton’s method fails for a given timestep.

3.6. Equation Solver. In each time step, we have to solve a system of nonlinear
equations. This is done using Newton’s method [KA59] using an affine invariant
monotonicity test [DH79]. In the presented numerical examples, we use the direct
sparse matrix solver PARDISO [SGF00], and we solved the nonlinear equations up
to machine precision.
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Berlin

Hamburg

FIGURE 3.1. Map of North-East German basin

3.7. Implementation. The methods described have been implemented in the
pdelib/sysconlaw code [FKL01, Fuh02] for the solution of nonlinear systems of vis-
cous conservation laws.
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Slice 1, h=500m Slice 1, h=250m Slice 2, h=500m Slice 2, h=250m
1918 nodes 4833 nodes 5203 nodes 18468 nodes

FIGURE 3.2. Meshes
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FIGURE 4.1. Onset of convection for rectangular cavity (Boussi-
nesq approximation)

4. NUMERICAL RESULTS

All numerical results are obtained by a very straightforward randomized path
following method. By this, we mean the following: Starting with some initial tem-
perature gradient, we obtain a some solution (stationary or oscillating). Oscillatig
solutions are calculated for 10Ma. After a solution has been obtained, we increase
the temperature gradient by some amount by increasing the bottom heating tem-
perature. As an initial state for the new transient calculation we take the last ob-
tained solution with some random perturbation.

By this, we hope to leave solution branches as soon as they become unstable, in
oder to attach stable branches which are more likely to be realized in nature.

As a main characteristic of the solution, we take the Nusselt number. It describes
the ratio between overall heat transfer and diffusive heat transfer. For a solution
with no convection, � � � ) . Otherwise, � ��� ) .. In our case, we can define the
Nusselt number as

(4.1) � � � �
F

top

5 �6A ���
�
F

top

5�� �6A ���
where the diffusive heat flux 5�� is defined as

(4.2) 5 � � 8 �;2��K5D��2 	����-.�=�
and ? top denotes the upper boundary of the domain.

4.1. Rectangular Cavity. The first results we present in order to verify the code:
we check for the consistent velocity approximation which takes place if the purely
diffusive solution is realized independently of the mesh, and we verify that the first
bifurcation takes place at the right parameter value.

We regard a rectangular cavity filled with porous material and saturated with
water heated from below with a height of � � ) �����	� , an aspect ratio of 5 and
porous medium data taken from the Kaenozoikum layer. It is triangulated in two
ways: by a “raw” rectangular grid with given cell side length, and by a “truly un-
structured triangular” grid generated using the triangle code with a given maxi-
mum area of triangles. We fix the temperatures at the top and the bottom bound-
aries and the pressure at the top. All other boundaries are assumed to be insulating
and impermeable.
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FIGURE 4.2. Onset of convection for rectangular cavity (Full
model (C.2), (C.1))

According to [NB98], we can define the Rayleigh number ��� by

��� ���;2 � � � -.�7* � ��� � �
! ��� 8 � / �*) � � � 8 ,6�

�(4.3)

4.1.1. Onset of Convection. In the case of an infinite horizontal layer, this problem is
known as the Horton-Rogers-Lapwood problem [NB98]. It has been estimated that
for the Boussinesq approximation, the bifurcation from the stable pure diffusive so-
lution to a convective solution takes part at a Rayleigh number of

`�� � ) � , see [NB98].
This in our case would correspond to a temperature gradient of

` � 	�
��� � � . As the
geological temperature gradient is much higher, it is realistic to expect convective
flow fields in many locations of the geometry.

In the simulations performed, this critical value is approximated better as grids
become finer, both in the triangular mesh case and the raw mesh case, as shown
in figure 4.1. This confirms that our numerical method performes correctly on this
problem. Especially, in the triangular case, the consistency of the velocity approx-
imation according to theorem 3.4 is verified.

In figure 4.2, we see that the first bifurcation point moves to higher temperatures
– approximately � � � �� � � – if we use the full model with constitutive relationships
(C.2), (C.1). We also notice (at least visually) grid convergence of the bifurcation
point. In this case, a definition of the Rayleigh number is not anymore straightfor-
ward, thus from now on, we stop using this number, the more as later on, we will
have to deal with complicated geometries.

4.1.2. Onset of Oscillatory Convection. To stay focused on the application, we pro-
vide only results for the full model.

In figure 4.3, we see the time average of the Nusselt number and the frequency
corresponding to the maximum in the power spectrum obtained with the Lomb
periodogram – a generalization of the power spectrum obtained by Fourier trans-
formation for the case of non-equidistant meshes [Lom76, Moo00] – on two subse-
quent grids.

We clearly see a jump of the average Nusselt number in the region of a tempera-
ture gradient of

� � � �1�&� � � 
��� � � . Connected with this jump of the Nusselt number
is the onset of oscillatory convection expressed by a nonzero basic frequency of os-
cillations. With increasing temperature, this basic frequency increases.
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FIGURE 4.3. Onset of oscillatory convection
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FIGURE 4.4. Lomb periodograms of oscillating solutions

FIGURE 4.5. Periodic and chaotic solutions after 10 Ma

Figure 4.4 shows the power spectra of the oscillating solutions for two subse-
quent meshes and different temperature values, showing visually the same quali-
tative behaviour.

4.1.3. Onset of Chaos. By chaos, we understand an aperiodic oscillatory behaviour
of a deterministic system which at the same time sensitively depends on initial con-
ditions. We can state chaotic behaviour of a given system just by visual evidence,
however a more correct approach is to characterize the system state by so called
invariant measures. Chaotic behaviour in a stronger mathematical sense then can
be stated if these measures lie in a certain range. This way, we hopefully are able
to distinguish the stated type of chaos from stochastical behaviour and from oscil-
lations caused by bad numerical approximation. Establishing methods to obtain
these measures efficiently in the case of data obtained from numerical solution of
a PDE system is a task for forthcoming research activity.
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FIGURE 4.6. Lomb periodograms of periodic and chaotic solu-
tions with close parameters
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FIGURE 4.7. Phase portrait reconstruction of periodic solutions
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FIGURE 4.8. Phase portrait reconstruction of chaotic solutions

However, a first insight into these phenomena can be obtained by nonlinear time
series analysis [KS97]. The basic tool is the time delay embedding which consists
in obtaining an image of the system’s phase space trajectory in an � -dimensional
space by combining the values of the time series of a functional of the system’s
state with � time shifts of the same series. An illustration for � � ` we se in 4.7.
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Taken’s famous embedding theorem [Tak81] states that under some generality as-
sumptions, if � is large enough, the image obtained from the delay embedding is
topologically equivalent to the origin in the phase space, thus bearing the same in-
variant measures. Consequently, it is sufficient to estimate invariant measures for
the phase space reconstruction in oder to get an estimate of the invariant measures
of the original system. We apply this methodology here on the base of the TISEAN
software package [HKS99].

Figures 4.6 shows the power spectra of the last periodic and the first chaotic so-
lution. On onset of chaos, we still see some dominating frequencies in the system
indicating that there could be some kind of continuity in the transition. Figures 4.7
and 4.8 show the two-dimensional time delay embeddings of the time series. So
far, chaos appears to be visually evident.

A more precise verification of chaotical behaviour can be given by estimates of
the correlation dimension � � and the maximal Lyapunov exponent from the delay
embedding of the Nusselt number time series.

Figure 4.9 shows the scaling range of the correlation dimension estimater d2
from the TISEAN package. For the both the periodic and the chaotic solutions, we
see a clear scaling range which indicates that the estimator works correctly. Ac-
cording to [HKS99] we can deduce a correlation dimension of 1 for the periodic
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solution, and an correlation dimension estimate of slightly below 2 for the chaotic
solution.

Figure 4.10 shows the estimate of the maximal Lyapunov exponent by the
lyap_k estimator from TISEAN. We can read the Lyapunov exponent from the
slope of the estimator curves. The periodic solutions have a well estimated maxi-
mal Lyapunov exponent of 0, while the “chaotic” solutions show a positive maxi-
mal Lyapunov exponent, thus confirming the chaos hypothesis.

From the figures 4.9,4.10 we can conclude, that the visual evidence of chaos is
supported by the observation that time series estimates of two important invari-
ant measures of the system lie in the range which indicates chaotic behaviour. A
further confirmation we obtain from the fact that these results are similar on two
meshes with different spatial resolution.
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FIGURE 4.11. Stationary, periodic and chaotic solutions after 10 Ma
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FIGURE 4.12. Onset of quasi-periodic convection in Basin slice 1

1.036

1.038

1.04

1.042

1.044

1.046

1.048

1.05

1.0361.038 1.04 1.0421.0441.0461.048 1.05

N
u(

t-
75

ka
)

Nu(t)

h=500m

1.036
1.038

1.04
1.042
1.044
1.046
1.048

1.05
1.052

1.0361.0381.041.0421.0441.0461.0481.051.052

N
u(

t-
75

ka
)

Nu(t)

h=250m

FIGURE 4.13. Phase space reconstruction for onset of quasi-
periodic convection in Basin slice 1

4.2. Basin snapshot 1.

4.2.1. Onset of convection. All calculations in the basin geometries also for very
small temperature differences give Nusselt numbers greater than one. This is not
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FIGURE 4.15. Lomb periodograms of periodic and chaotic solu-
tions with close temperature gradients (Basin slice 1)

surprising, as the steady state solution corresponding to � � � ) is bound to the
rectangular geometry of the domain. Thus, we always have to expect a – possibly
small – amount of convection in our solutions, and a clear bifurcation point where
convection starts does not exist.

4.2.2. Onset of oscillatory convection. Oscillatory convection in a quasi-periodic
manner is detected first for two subsequent meshes for a temperature gradient of
10.75 K/km. This onset of convection, like in the rectangular cavity case, can also
be seen from the � 2  �)� curves in figure 4.14. There is a kink at the mentioned
temperature gradient which possibly indicates a bifurcation.

4.2.3. Onset of chaos. An transition to presumed chaos we can see quite well in the
frequency domain (fig. 4.15). However in the estimates of the correlation dimen-
sion (fig. 4.18), we hardly detect any scaling range. The estimate of the maximal
Lyapunov exponent (fig. 4.19) shows a difference in average slopes showing that
it becomes larger than 1, thus voting for the chaos hypothesis.
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FIGURE 4.20. Stationary, periodic and chaotic solutions after 10
Ma (Basin slice 2)
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FIGURE 4.21. Onset of periodic convection in Basin slice 2

4.3. Basin snapshot 2.

4.3.1. Onset of convection. Here, we have to make the same remarks as in 4.2.1.

4.3.2. Onset of oscillatory convection. As can be seen in the figures, we see oscillatory
convection below the Zechstein layer for much less temperaturee gradients. Obvi-
ously, we have to deal with two slightly coupled domains which are due to quasi-
periodic/chaotic behaviour. Oscillatory convection in a quasi-periodic manner is
detected first for two subsequent meshes for a temperature gradient of 3.925K/km.
In the � 2  �)� curves in figure 4.23 it can be seen as well.

4.3.3. Onset of chaos. Already for a temperature gradient of
� � 	�
��� � � , we see in-

dications of chaotical behaviour. However, the univariate time series analysis as a
tool clearly is insufficient to assure this hypothesis.
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FIGURE 4.23. Time averaged Nusselt number in Basin slice 2
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tions with close parameters (Basin slice 2)
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FIGURE 4.25. Phase portrait reconstruction of periodic solutions
(Basin slice 2)
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5. CONCLUSIONS

In this paper, we presented an approach to the numerical simulation of ther-
mal convection in the deep subsurface which is based on a finite volume upwind
method preserving certain characteristics of the physical system. For a rectangular
cavity, we have been able to verify the critical Rayleigh number and the consistency
of the velocity approximation. Further, in this case we found quasi-periodic oscilla-
tions, and chaotic behaviour. Besides from stating the visual evidence of chaos, we
could verify this hypothesis by nonlinear time series analysis of the Nusselt num-
ber time series obtained from the numerical simulation.

In the case of basin slices, we get quasi-periodic and probably chaotic solutions
already at temperature gradients far less than the geological temperature gradient.
Visual evidence confirms chaos, however the univariate time series analysis tools
readily available are at the borderline of their functioning – according to the warn-
ings of their authors in [KS97, HKS99].

Nevertheless, the possibilty of oscillatory temperature regimes in the deep sub-
surface calls for further research to be performed, namely

� Addition of salt transport to the model.� Invariant measure estimates from numerical simulations.� Three-dimensional simulations calling for improved meshing and solution
tools.� systematic correlation of the simulation output with real occurrences of
saline springs

APPENDIX A. NOTATIONS

I @ � -th node of discretization
� @ Voronoi box around I @
� �@ � � @�� � �
� @! � � @�� �  M ������ interior Voronoi box faces
� �@! � ��@! � � �A @ outward unit normal to the Voronoi box bound-

aryA @! M ������ outward unit normal interior Voronoi box faceT @! � I @ � I  M �	���� edge lengths
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2 � � Temperature" �  � 2 � � � Fluid pressure� �  2 ���  � � � � � volumetric fluid flux density5 � �2�� �  � � � � � heat flux density�� �  � � � *  ��� Fluid density
	�� �  � � � *  ��� approximate fluid density�, �  � � � *  � � matrix density-.� �

�  � 2 � � � �  � � * ��� specific heat capacity of fluid-., �
�  � 2 � � � �  � � * ��� specific heat capacity of matrix

� �
� � �

permeability of matrix
8 � � �  � 2�� � ���  � � � � � heat conduction coefficient of fluid
8 , � �  � 2�� � ���  � � � � � heat conduction coefficient of matrix	 �

� �2 � �  � thermal diffusivity! �  � 2 � � � � viscosity of fluid
� � �  � � ) pore space& �  2 � �  � � earth acceleration vector* �  2 � �  � � earth acceleration"

ref
�  � 2 � � � reference pressure of fluid2

ref
�  � 2 � � � reference temperature of fluid�

ref
�  � � � *  ��� reference density of fluid��
 � 2 � �� )  � � compressibility of fluid��� )  � )  � heat expansion coefficient of fluid

��� ) ) Rayleigh Number
� � � characteristic height,� �  2 � characteristic velocity2  � � characteristic Temperature difference

APPENDIX B. GEOLOGICAL DATA

Layer � ,�� � ��� � 	 ) � �,�� . ����� �� ��� -.,�� . ������ ��� � � 8 ,�� ���� � � , �
Kaenozoikum ) � ^ . � � � ` � ` � � � ) � ) 	 ) � 

Oberkreide ) � ^ . � � � ) ` � � ) ) �  
Unterkreide ) � ^ . � � � ) � ` � � ) � ) 	 `
Jura ) � ^ . � � � ) � ` � � ) � ) 	 `
Keuper ) � ^ ."! � � � � ` � � ) � ) 	 ` � �
Muschelkalk ) � ^ .$# � � ��� ) ` � � ) ) � 	 

Buntsandstein ) � ^ ."! � � �%� ` � � � ) � ) 	 `
Zechstein ) � ^ � � ) � ^'& ` � ) � � � 	%� � � 

ElbeSubgruppe ) � ^ ."! � � � � ` � � � ) ) � 	%�
MirowFormation ) � ^ ."! � � � � ` � � � ) ` � ) �
ParchimFormation ) � ^ ."! � � � � ` � � � ) ` � �
Vulkanite ) � ^ � � ) � ^'& ` � � 
 � �  � ` � 

Praeperm ) � ^ � � ) � ^'& ` � � ) ` � � 


APPENDIX C. FLUID DATA

We establish our results for a density model found in [Kah82] and a nonlinear
viscosity model which we believe to be appropriate for the situation in the deep
subsurface.

More precisely, we use
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� � "NM'2#� � � � � � ` � ) ��� � � ) � ^ � � " � / ) � � � � �  �� � ) � ^ .�. "$� ` � � 	 � � ) � � ) � ^ � �*2 �
/ � / ` � � � ` � � � � ) � ^ . � " � �  � �#` � ) ` � � ) � ^�� ";/ ) � ) 
�
 ) � ` �*2
/ � � � � � � ��� � ) � ) � ^ .�� " � / ` � � � � � � � � ) � ^'& ";/ 	 � � � )  %� 
 � ) � � �(C.1)

and

(C.2) ! � 2#�0� � � �9� ) � � 2 ^ !�� � . � �
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