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Abstract

This work deals with the stochastic �ow simulation in statistically isotropic and

anisotropic saturated porous media in 3D case. The hydraulic conductivity is as-

sumed to be a random �eld with lognormal distribution. Under the assumption of

smallness of �uctuations in the hydraulic conductivity we construct a stochastic Eu-

lerian model for the incompressible �ow as a divergenceless Gaussian random �eld

with a spectral tensor of a special structure derived from Darcy's law.

A randomized spectral representation is then used to simulate this random �eld.

Numerical results are compared with the analytical results obtained by the small

pertrubation expansion. A series of test calculations con�rmed the high accuracy

and computational e�ciency of the method. Comparisons with asymptotically exact

results show a good agreement.

1 Introduction

The main di�culty in evaluation of pollutant transport in porous medium such as, for

instance, aquifers is the extreme heterogeneity of the media. The parameters which locally

describe the transport can be obtained in experiments, but they cannot be simply used

to characterize the transport on large scales. Here we have a classical situation where

there is a lack of knowledge on the local details of the spatial structure, but without

this structure details it is not possible to describe the large scale behaviour. A natural

approximation is based on the stochastic approach: the heterogeneities are modelled as

random �elds with given statistical properies. In hydrogeology this approach is often

used, see, e.g., [6], [20] for the �ow analysis in saturated zone, or [8], [15], [9], [3] for

the transport of a dissolved pollutant in a saturated aquifer; see also overview in the

books [5] and [10]. Stochastic approach allows for variations in other local properties,

e.g., the hydraulic conductivity and the chemical adsorption coe�cient (see [7], [2]), or

the degradation constant (see [11]). An asymptotic analysis is undertaken in [16] when

comparing two di�erent averaging procedures.

To our knowledge, in the porous media transport, only one type of stochastic models was

used, namely, the Random Displacement Method (RDM) for the hydrodynamic disper-

sion equation. It should be stressed that RDM can be applied only if the displacement

covariance tensor is known (e.g., from measurements, or numerical simulation), and can-

not be applied if the functionals of interest are evaluated at times comparable with the

characteristic correlation scale of the �ow. In contrast, the Lagrangian stochastic models

based on the tracking particles in a random velocity �eld extracted from numerical solu-

tion of the �ow equation (for brevity, we will call this model DSM, the Direct Simulation

Method) are free of these limitations, but the computational resources required are vast.

Therefore, it was quite suggestive to construct a Langevin type stochastic model which is
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an approximation to DSM, and is written in the form of a stochastic di�erential equation

for the position and velocity, see [14]. It is worth to mention that this approach is widely

used in the atmospheric transport problems. The basis for the Langevin type approach

comes from the Kolmogorov similarity theory of fully developed turbulence saying that in

the inertial subrange the velocity structure tensor is a linear function in time. The linear-

ity is the necessary condition to derive a Langevin type equation to mimic the behaviour

of the real Lagrangian trajectories (see [12], [19]).

The main purpose of the present paper is to apply the random �eld simulation technique

to the transport in porous medium, and to compare the results against the �rst order

perturbation theory which is applicable for small �uctuations. The simulation of random

�elds is based on the spectral structure of the hydraulic conductivity. The results extracted

from the numerical simulations are also useful to the parametrisation of the Lagra ngian

stochastic model developed in [14]. A stochastic Eulerian and a combined Eulerian-

Lagrangian models were used by us in [13] for the analysis of relative dispersion of two

particles.

2 Formulation of the problem

We consider a steady �ow through heterogeneous porous formation. For time- independent

�ow condition and saturated porous media the speci�c discharge is determined by the

Darcy law:

q(x) = �(x)u(x) = �K(x)r('(x))

where q is the so-called Darcy's velosity, or speci�c discharge, u is the pore velosity, �,

the porosity, ', the hydraulic potential ' = p

r0
g+z, p is the �uid pressure, z is the height,

and K - is the hydraulic conductivity. The functions K and � are key parameters of the

�ow. Experimental measurements show high heterogeneous behaviour of K in space with

the following remarkable property: when considering K as a random �eld, its distribution

is well approximated by the log-normal law. Therefore, in models, the hydraulic log-

conductivity Y = lnK is commonly considered as a statistically homogeneous random

�eld with gaussian distribution N(mY ; �Y ). Here mY = hY i, and �Y is the standard

deviation. We denote by CY Y (r) = hY 0(x)Y 0(x+ r)i the auto-correlation function, where

r is the separation vector.

Moreover we assume �rst that Y is statistically homogeneous and isotropic with the

exponential auto-correlation function

CY Y (r) = �2
Y
exp(�r=IY ) (1)

where r = jrj, IY is a given correlation length. We will consider also the following

anisotropic case

CY Y (r) = �2
Y
exp

(
�
�
r21
I21

+
r22
I22

+
r23
I23

�1=2
)

(2)

where r = (r1; r2; r3), and Ii, i = 1; 2; 3, is the correlation length in i-th direction.
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We will deal also with a random �eld with gaussian form of the covariance:

CY Y (r) = �2
Y
exp(� r

2

l
2

Y

) :

The porosity � is also often considered in some models as a random �eld. Howhever its

variability is in the problems we tackle generally much smaller than that of K. We assume

�(x) = � = 1.

Thus q is a random �eld obtained as the solution to the following di�usion equation:

divq = div f�K(x)r('(x))g =
@

@xi

�
�K(x)

@'

@xi

�
= 0: (3)

Here and throughout the paper we use the summation convention on repeated indices.

We assume small random pertrubation about mean values for the potential

' =< ' > +'0 = H + h ;

and for the speci�c discharge components:

qi =< qi > +q0
i
; i = 1; 2; 3 :

Gelhar [10] studied the dependence between the value of �Y and the precision of head

variance prediction. For one-dimensional �ow he compared the approximate result based

on the �rst-order approximation with exact head variance as it depends on the magnitude

of �Y . At �Y = 1 the error is about 7% and increases up to over 50% at �Y = 2.

Using spectral methods Dagan [4] derived a second-order correction of the head covari-

ances in 3D case. He noted that the �rst-order approximation is very robust and even

for a log-conductivity variance equal to unity, the second-order correction of the head

variance is smaller than 10% of �rst-order approximation. Thus, for small to moderate

values of �2
Y
, it is suggested that the �rst-order approximation is enough.

3 Spectrum of the speci�c discharge

We deal with statistically homogeneous random �elds, hence we can use the Fourier-

Stiltjes representations, in particular,

Y 0(x) =

Z Z Z
exp(i(k;x))dZY (k)

h(x) =

Z Z Z
exp(i(k;x))dZh(k)

q0
j
(x) =

Z Z Z
exp(i(k;x))dZq(k);

where k = (k1; k2; k3) is the wave number vector, x = (x1; x2; x3) is the position vector,

and the integration is over three-dimensional wave number space.

The correlation tensor fBijg and the spectral tensor fSijg are related through the equality:

Bij(r) =

Z
R3

Sij(k)e
i(r;k)dk :
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The auto-covariance (1) has the spectrum

SY Y (k) = I3
Y
�2
Y
=[�2(1 + I2

Y
k2)2]

where k = jkj, while the auto-covariance (2) has the spectrum

SY Y (k) = �2
Y
I1I2I3=[�

2(1 + I21k
2
1 + I22k

2
2 + I23k

2
3)

2] :

Note that the spectrum of the �eld with the gaussian covariance function has also a

gaussian form:

SY Y (k) =
�2
Y
l3
Y

�5=2
exp(�

l2
Y
k2

4
); IY = lY

p
�=2 :

Assuming small pertrubations (�2
Y

<< 1) Gelhar [9] evaluated the speci�c discharge

spectrum using Darsy's law with isotropic hydraulic conductivity

qi = �K(d'=dxi) = �KG exp(Y
0)(d'=dxi) = �KG[1 + Y 0 + Y 02 + :::](dH=dxi + dh=dxi)

(4)

where KG = exp(< Y >), ' = H + h.

Under small pertrubation and dropping products of perturbed quantities, the mean-

removed form of (4) is

q0
i
= �KG[Y

0(dH=dxi) + dh=dxi]

and using the above Fourier-Stiltjes representation yields

dZqi
= KG(JidZY � ikidZh) (5)

where Ji = �dH=dxi - is the mean hydraulic gradient in xi direction, J = (J1; J2; J3).

The following relation follows from (3) (e.g., see [1])

r2h = Ji(dY
0=dxi): (6)

Indeed, by (3) we �nd that

@2'

@xi2
+
@ lnK

@xi

@'

@xi
= 0;K 6= 0;

and taking the expected values we get

@2H

@xi2
+
@hY i
@xi

@H

@xi
+

��
@Y 0

@xi

@h

@xi

��
= 0 :

After subtracting this from the original �ow equation (3) we come to the following equa-

tion:
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@2h

@xi2
+
@hY i
@xi

@h

@xi
+
@Y 0

@xi

@H

@xi
=

��
@Y 0

@xi

@h

@xi

��
�
@Y 0

@xi

@h

@xi
� 0:

From this, due to the small �uctuation assumption, we ignore the products of �uctuations,

and since the random �eld Y is homogeneous,
@hY i

@xi
= 0, we come to the formula (6):

@2h

@xi2
= Ji

@Y 0

@xi
:

From this one �nds

dZh = �iJjkjdZY =k
2;

hence,

dZqi
= KG(Ji � Jjkikj=k

2)dZY

which implies

Sqiqj(k) = hdZqi
dZqj

i = K2
G
JmJn(Æim �

kikm

k2
)(Æjn �

kjkn

k2
)SY Y (k) :

Using this spectrum we construct Monte Carlo simulation formulas for the speci�c dis-

charge pertubation q0, and hence the velocity u. Under small perturbation assumptions,

< q >= KGJ (see [5]), so the velocity is modelled as u(x) = (KGJ+ q
0(x))=�.

Note that the small perturbation assumption implies small values of �Y . In particular,

the inequality P (jexp(Y 0)� (1 + Y 0)j=exp(Y 0) < 0:1) > 0:97 holds with �Y < 0:2.

4 Simulation of speci�c discharge pertrubation random

�eld

The spectral tensor S(k) of a general 3D incompressible (div u = 0) homogeneous �eld

has the form (e.g., see [17])

Sij(k) = b2
�
Æij �

kikj

k2

�
+ aiaj

�
1�

b2

a2

�
; i; j = 1; 2; 3:

Here a = a(k) = (a1(k); a2(k); a3(k))
T , b = b(k) = (b1(k); b2(k); b3(k))

T are vector

functions such that the vectors a(k), b(k) and k are mutually orthogonal

(a;b) = (a;k) = (b;k) = 0; (a;b) =
3X

i=1

aibi;

and

ai(�k) = ai(k); bi(�k) = bi(k); i = 1; 2; 3:
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A three-dimensional homogeneous incompressible random �eld is thus fully speci�ed by

two vector functions (in general, complex-valued) satisfying the above condithions. As

mentioned in [17], p.30, this form can be transformed to

Sij(k) =

�
Æjm �

kjkm

k2

��
Æln �

klkn

k2

�
Fmn(k);

where k = jkj, and Fmn(k) is a simmetric tensor.

This makes possible to choose b(k) = 0, so that the entries of our spectral tensor S(k)
take the form

Sij(k) = ai(k)aj(k) (7)

where

ai(k) = KGJm(Æim �
kikm

k2
) (SY Y (k))

1=2
:

Now we present simulation formulae for the incompressible random �eld with the spectral

tensor fSij(k)g, see [18].

Let �i and �i be mutually independent random variables with zero mean and unit variance,

and sample k according to p(k) = a2(k)=
R
R3 a

2(k)dk, independently of �i and �i.

Let

�0
i
(a) = �i a(k) ; �0

k
(a) = �i a(k) :

Then we construct the vector random �eld

u(x) =
1p
p(k)

(�0
i
(a) cos(k;x) + �0

i
(a) sin(k;x)) :

It is easy to verify that

h�0
i
(a)�0

i
(a)jki = h�0

i
(a)�0

i
(a)jki = S(k);

and

h�0
i
(a)�0

i
(a)jki = 0

by de�nition. Using these properties, it is possible to show that the random �eld u has

the desired spectral tensor fSij(k)g.

We have described the simulation of a random �eld with zero mean u(x) = 0 and with

a given spectral tensor S(k), where no assumption about multidimensional distributions

of the random �eld have been made. In the case of gaussian random �elds the algorithm

can be modi�ed as follows. We simulate i = 1; 2; : : :N independent random �elds with

S(k), then we set

u
(N)(x) =

1
p
N

NX
i=1

"
1p
p(ki)

(�0
i
(a) cos(ki;x) + �0

i
(a) sin(ki;x))

#
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Figure 1: Samples of speci�c discharge pertrubation random �elds q1; q2, for the isotropic hy-

draulic conductivity. Left picture: the correlation length IY = 1, right picture: IY = 0:5. The

number of harmonics was N = 100.

where

�0
i
(a) = �i a(k) ; �0

i
(a) = �i a(k)

and ki, �i, �i are all sampled independently.

The central limit theorem ensures, under some general assumption, that u(N)(x) converges
to an ergodic gaussian random �eld with the spectral tensor S(k), as N !1.

5 Testing the simulation procedure

In this section we present some results of simulation, in particular, we show examples of

the discharge �eld samples with the given spectrum, and compare the simulation results

against the exact solutions.

5.1 Samples examples

In Figure 1, left picture, we show one sample of speci�c discharge pertrubation random

�eld q1; q2, in the region (x1; x2), x3 �xed, for the correlation length IY = 1; right picture:
the same as left, but for IY = 0:5.

Here we have chosen the gaussian form of the covariance: CY Y (r) = �2
Y
exp(� r

2

l2Y

) hence in

the spectrum (7) the function SY Y has also a gaussian form: SY Y (k) =
�2Y l

3

Y

�5=2
exp(� l2Y k

2

4
);

where IY = lY
p
�=2.
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Figure 2: The functions Bd(r) = Bd11(r)+Bd22(r)+Bd33(r) for (I) Isotropic case: correlation

length IY = 1, and (II) Anisotropic case: I1 = 1, I2 = 2, I3 = 3.

5.2 Comparison with exact results

For testing our model we calculate the correlation functions

Bij(r) = hui(x)uj(x+ r)i

by using Monte Carlo simulation and compare them with results of numerical integration

Bij(r) =

Z
R3

Sij(k)e
i(r;k)dk : (8)

The hydraulic conductivity Y = ln(K) is assumed to be normal with the mean hY i =
3:4012 and covariances (1) or (2). The mean hydraulic gradient is �xed as J = (0:01; 0; 0),
�2
Y

= 1. The expectation was calculated as an arithmetic mean over N = 107 samples,

while the Simpson's rule was used to evaluate the integral (8).

Let us consider the correlations along the diagonal, i.e., let Bdij(r) = hui(0; 0; 0)uj(r; r; r)i.

We have considered two cases: (I) Isotropic case: correlation length IY = 1, and
(II) Anisotropic case: I1 = 1, I2 = 2, I3 = 3.

In Figure 2 we plot the function Bd(r) = Bd11(r) + Bd22(r) + Bd33(r) for the isotropic
and anisotropic cases. The error of calculations in the isotropic case is too small to

see the di�erence between the curves (the lower curve). A small di�erence between the

exact (Simpson's rule) and Monte Carlo results is seen in the anisotropic case (two upper

curves). The same is true for the cross correlations Bd12 and Bd12 presented in Figure 3.
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Figure 3: The functions Bd12(r) (left picture) and Bd23(r) (right picture) for the isotropic case:

correlation length IY = 1.
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Figure 4: Monte Carlo calculations of functionsD
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(left picture) andD
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Y
(right picture)

compared against the asymptotic formulae (10 ) and (11 ), respectively. The variance of Y :

�
2
Y
= 0:01.
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Figure 5: The same as in Figure 4, but for small values of t
0
: the curves are compared against

the results plotted according to the formulae (12).

6 Lagrangian statistical characterisics

In this section we present the results of numerical simulations for some Lagrangian sta-

tistical characteristics of the �ow, and compare them with known exact or asymptotically

exact results.

In simulations, Y = ln(K) was taken as an isotropic gaussian random �eld with the mean

hY i = 3:4012 and the exponentially decaying covariance (1 ) with the unit correlation

length IY = 1. The mean hydraulic gradient is again �xed as J = (J1; 0; 0), J1 = 0:01.

Let us introduce a Lagrangian trajectory X(t) = (X1(t); X2(t); X3(t)) starting at a point

x0 as a function satisfying the equation:

dX

dt
= u(X); X(0) = x0 : (9)

It is assumed that the random velocity �eld u is smooth enough so that there exists a

unique solution to (9) which is a vector random process with a mean hX(t)i. Then the

displacement covariances are de�ned by

Dij(t) = h(Xi(t)� hXii(t))(Xj(t)� hXji(t))i :

In what follows we deal with the normalized dispersions:

D0
ij
= Dij=I

2
Y
; i; j = 1; 2; 3;

and dimensionless time t0 = t U=IY , where U = KGJ1 (recall that we have assumed that

� = 1).
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Figure 6: The same as in Figure 4, but for di�erent values of �Y : �Y = 0:2 and 0:8 for D
0
11=�

2
Y

(left picture), and �Y = 0:1, 0:01 for D
0
22=�

2
Y

(right picture). Monte Carlo calculations are

compared against the asymptotics (10).

In small pertrubation expansion Dagan [3] derived an asymptotical behaviour for the

longitudial and transversal covariances D0
11, D

0
22 and D0

33. In the case of isotropic media

for t0 >> 1 he found

D0
11=�

2
Y
= 2t0 � 2[(8=3)� (4=t0)� (8=t02) + :::] (10)

for the longitudinal, and

D0
22=�

2
Y
= D0

33=�
2
Y
= 2[(1=3)� (2=t0)� (4=t02) + :::] (11)

for the transverse covariances, while for small values of t0:

D0
11=�

2
Y
= (8=15)t02 ; D0

22=�
2
Y
= (1=15)t02 : (12)

In Figure 4 the Monte Carlo calculations of functions D0
11=�

2
Y
(left picture) and D0

22=�
2
Y

(right picture) are compared against the results plotted according to asymptotic formulae

(10) and (11), respectively. The variance of Y was taken as �2
Y
= 0:01, the relative error

in the evaluation of D0
11=�

2
Y
was less than 1%. The calculated and asymptotic curves

in the left picture are practically coincident, so Dagan's formula works well in this time

interval. The highest error in the evaluation of D0
22=�

2
Y
was about 3% at t0 = 150.

The same functions are shown in Figure 5 for small values of t0: these curves are compared

against the results plotted according to formulae (12). Again, there is a good agreement

between the Monte Carlo calculations (Monte Carlo error varries between 3% and 5%)

and the asymptotic formulae (12).

It is interesting to estimate how large should be the �uctuations to make the asymptotic

formulae (10 ) and (11 ) (large times) not applicable. To this end, we compare these

formulae with the results of numerical simulation for di�erent values �2
Y
. In Figure 6, left

11



picture, we plot the curves calculated for �Y = 0:2; 0:3 and 0:8 (Monte Carlo error less

than 2%) and the asymptotics (10).

It is seen that �2
Y

= 0:2; 0:3 can be considered as the cases of small �uctuations, while

�2
Y
= 0:8 results in a considerable deviation wich implies that the asymptotics fails.

The same kind of comparison is illustrated in the right picture of this �gure, where D0
22=�

2
Y

is presented for �2
Y
= 0:01 and �2

Y
= 0:1. These results show that the asymptotics for the

transverse covariance D0
22=�

2
Y
holds for much smaller �uctuations compared to the case

of longitudinal covariance.

The Lagrangian trajectories (9 ) can be used to calculate the mean concentrtaions and

other Lagrangian statistcis. As an example we plot in Figure 7 the trajectories of 500

particles started at t0 = 0 and �nished at t0 = 30: we have taken �2
Y
= 10�2 (left picture)

and �2
Y

= 1 (right picture). The parameters were chosen as follows: IY = 1, isotropic
case, Y = ln(K) is normal with mean < Y >= 3:4012 and exponential covariance (1 ).

The mean hydraulic gradient is �xed as J = (0:01; 0; 0).

In Figure 9 the in�uence of the correlation function decay on the longitudinal (left picture)

and transversal (right picture) dispersions is illustrated. It is seen that the gaussian form

of the correlation function leads to a faster dispersions both in longitudinal and transverse

directions.

Further we consider the anisotropic case with I1 = I2 = Ih; I3 = Iv, and the anisotropy

ratio being de�ned as e = Iv=Ih. We use again the renormalized functions D0
ij

=
Dij=I

2
h
; i; j = 1; 2; 3; and the dimensionless time t0 = t U=Ih.

In Figure 10 the Monte Carlo calculations of the function D0
11=�

2
Y
for e = 0:2 and e = 1,

and the transvere dispersion D0
22=�

2
Y
for e = 0:2, e = 0:6 and e = 1 are presented. The

results agree well with the theoretical curves given in [5]. It is seen that the anisotropy

has a much stronger in�uence on the transverse dispersion than on the longitudinal ones.

Important Lagrangian characteristic is the Lagrangian correlation tensor of velocity:

Rij(�) = h[(ui(X(t))� hui(X(t))i] [(uj(X(t+ �))� huj(X(t+ �))i]i

where X is a Lagrangian trjectory started at the time t.

We have calculated R11(�) and R22(�), - the Lagrangian correlation functions of the lon-

gitudinal and transverse velocities, respectively. In Figure 11 we plot these functions

1-normalized through dividing by Rii(0), i = 1; 2 for two cases, (1) Left picture: for ex-

ponential covariance of the hydraulic conductivity, and (2) Right picture: for the gaussian

covariance of the hydraulic conductivity. The longitudinal correlation function is positive,

and it seems to decay exponentially, similar to the Eulerian correlation function. As to

the transverse correlation function, there is (see the left picture) a clear interval betveen

� 0 = 1:83 and � 0 = 28 where this function is negative, achieving its minimum value of

about � 0:1 at � 0 = 3:51. In the case (2) the behaviour is similar, but the negative values

are in the interval (1:32; 16), with the minimal value �0:23 at � 0 = 2:14.

Remakably, the transversal integral time scale de�ned as the integral of the transverse

correlation function appears to be zero which makes impossible the application of the clas-

sical Taylor formula relating the dispersion with the integral of the correlation function.

The long negative time correlations lead also to a trapping of particles and a non-Fickian

behaviour of the transverse dispersion, see the right pictures of Figure 4 and Figures 6-10.
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Figure 11: Lagrangian correlation functions of velocity: �
2
Y
= 0:01, J = (0:01; 0; 0). Left picture:

exponential covariance of the hydraulic conductivity; Right picture: gaussian covariance of the

hydraulic conductivity;
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Figure 13: Squared transverse separation vector for two particles, initially separated by �0 = 1

(left picture) and �0 = 0:01 (right picture).
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Figure 14: Squared longitudinal separation vector for two particles, initially separated by

�0 = 1:, for small times (left picture) and large times (right picture).
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Important Lagrangian statistical characteristics are the Lagrangian velocity structure

functions de�ned as [17]

Gij(t) = h�Vi(t)�Vj(t) jX(t0) = x0; i ; i; j = 1; 2; 3 ;

where �Vi(t) = ui(X(t; t0;x0))�ui(t0). We have made the calculations of the longitudinal

and transverse Lagrangian velocity structure functions, for two cases, when the correlation

function of hydraulic conductivity is (1) exponential (see the left picture in Figure 12) and

(2) gaussian (right picture in Figure 12). We do not show here the small time behaviour

of these functions, which in the case (2) is quadratic in time while in the case (1) it is

rather linear. In both cases a linear behaviour is seen in the time interval of about 1,

while then it asymptotically approaches a constant as the time increases.

In the analysis of superdi�usion regime, and in the estimation of the concentration �uc-

tuations the mean separation of two particles, �(t), plays a crucial role,

�(t) = X
(1)(t)�X

(2)(t) ;

where X
(1)(t), X(2)(t) are two Lagrangian trajectories initially separated by a vector

�0. Thus the function �2(t) depends generally on the time and on the initial separation

�0. But it is heuristically clear that after a certain time instant the two particles will

move independently hence the function �2(t) should be linear. The main interest in the

turbulence studies is here concerned with the question if there exists a time interval where

the function �2(t) depends cubically on time, like in the inertial subinterval of the fully

developed turbulence, see [17]. It should be noted however that in our case we have to

analyse the transverse and longitudinal components of �2(t) separately, i.e.,

�2(t) = �2
t
+ �2

l
;

where �l is the longitudinal, and �
t
is the transverse vector component of �(t) so that

�2
t
= �2

t1 + �2
t2.

In Figure 13 we present �2
t
, where the particles were initially separated by �0 = 1 (left

picture), and �0 = 0:01 (right picture), for both exponential and gaussian correlation

functions. Here the behaviour agrees with the existence of the negative Lagrangian cor-

relation part: the function �2
t
is not monotonically increasing as we might have expect

in analogy with the turbulent transport. However the longitudinal component, �2
l
shows

a classical �di�usion behaviour�: it increases at small times quadratically (left picture of

Figure 14), then switsches to a power law, and ends up with a linear behaviour for large

times which says us that the motion of the two particles is decorrelated in the longitudinal

direction.

In conclusion we mention that di�erent expansions of the desired Lagrangian statistical

characteristics can be used, e.g., expansion in �Y for small �uctuations, or for large Pekle

numbers, in Pe�1, where Pe, the Pekle number is de�ned as Pe = U IY =Dd with Dd, the

dispersion at the pore-scale level. Of course, these two expansions are not independent,

and one should carefully estimate the coe�cients of the relevant expansions. In [5], an

expansion in �Y leads generally to an arti�cial underestimation of the transverse dispersion

(see Figures 4, 6 (right pictures) and 15, and formula (11)). However since it was assumed

that the Pekle number is large, and hence the dispersion is dominated by the convective

mechanism, the estimation is qualitatively not too crude.
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Figure 15: Transverse dispersion D
0
22=�

2
Y
for di�erent values of the variance �Y .

In Figure 15 we show the transverse dispersion D0
22=�

2
Y
for di�erent values of �Y , and

compare the curves with Dagan's asymptotics. This comparison can be considered only

qualitatively, since the spectral tensor of the modeled velocity �eld is changing with the

increase of the �uctuations. It is seen from Figure 15 that Dagan's asymptotics for large

times is practically coincident with the curve with �Y = 0:1; the dispersion D0
22=�

2
Y

increases with �Y . Note that the curve with �Y = 5: has a di�erent behaviour: it is

linearly increasing from the origin, and is down all the curves with smaller �Y which says

about a superdi�usion regime in the time interval (0; 14) for smaller values of �Y .

7 Conclusion

Stochastic Eulerian model for the �ow in statisticaly isotropic and anisotropic porous

media is constructed using spectral representational method. The randomized simulation

approach developed in [18] is used to construct a divergenceless vector �eld with a given

spectral tensor derived under the assumption of small hydraulic conductivity �uctuations.

A series of test calculations con�rmed the high accuracy and computational e�ciency of

the method. Comparisons with asymptotically exact results show a good agreement. This

makes possible to �nd the applicability conditions of these asymptotics. Calculations of

the longitudinal and transverse dispersions, the Lagrangian correlation functions and

the distance between two particles have been carried out to extract the main statistical

features of the �ow. In particular a time interval with a superdi�usion regime in the

transverse dispersion for small values of the hydraulic conductivity has been found.
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