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Abstract 

Understanding how uranium (U) moves through the soil and groundwater is essential to 

determine the effectiveness of cleanup technologies. Uranium release and transport in the 

subsurface under oxic conditions have been reported to be mostly dependent on sorption onto 

Fe/Mn-oxide and complex interactions with organic substances. Available information in the 

literature however presents evidence of U retardation by natural sands. The aim of this 

investigation was to characterize U dissolution from a uraninite-containing rock (UO2-rock) in 

different waters under test conditions relevant to U transport from mine wastes (tailings). For 

this purpose, not shaken batch experiments were conducted with a constant amount of an 

UO2-rock and different types of water (deionised, tap and mineral water). For comparison 

parallel experiments were conducted with 0.1 M Na2CO3 and 0.1 M H2SO4. Further 

dissolution experiments using UO2-rock together with dolomite and pyrite were conducted. 

The results indicate that carbonate addition (soluble or in-situ generated) enhanced U 
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solubilization, whereas pyrite addition essentially slowed the initial U solubilization. It is 

shown that SiO2 and other rock constituents may contribute to retard U transport. 
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Introduction 

The understanding of the processes influencing chemical weathering of minerals and the 

release of various inorganic contaminants in the hydrosphere is of worldwide concern. 

Particularly, the property of natural waters to dissolve target contaminants requires thorough 

investigation to enable realistic estimations of the suitable lifespan of in situ reactive barriers 

since the contaminants are to be leached by local waters to the barrier (Catchpole & Kirchner 

1995, McMurty & Elton 1985, Nyer et al. 1996). 

Uranium (U) has been reported to be leached from rocks and to be present in water in 

concentrations up to 10 µgL-1 (Brits & Smit 1977, Merkel & Sperling 1998). Uranium content 

of land waters in excess to 1 µgL-1 is regarded as an anomaly (Sadeghi et al. 2003). On the 

other hand, laboratory solubility experiments with synthetic schoepite (pure phase) showed 

that about 1000 µgL-1 U can be dissolved at neutral pH values (Noubactep 2003). Schoepite 

been the most soluble U(VI) solid phase. This gap between field observations and laboratory 

data gained on pure mineral phases shows that low U contents in natural waters cannot be 

explained by the solubility of pure schoepite under the same conditions. In fact, there are 

major difficulties in using reference materials to heterogeneous materials. For example, 

concentrations of complexing surface sites may be difficult to estimate from measurable 

characteristics of the natural materials (e.g. Logue et al. 2004, Grauer 1997). Additionally, a 

rock - water system is almost never in equilibrium. Some kind of steady state can be achieved 

but in nature processes are not usually in equilibrium (e.g. Meinrath & May 2002). Therefore 
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it is necessary to closely investigate the processes that influence the U dissolution and 

transport under conditions similar to oxic mine wastes. 

For modelling purposes, it is generally assumed that the solubility of U-bearing minerals is 

the critical factor in controlling U leaching from soils rather than sorption/desorption 

processes (Elless & Lee 1998, Grauer 1997). To corroborate this assumption, modellers used 

to choose less soluble minerals as solubility controlling phases (Grauer 1997). In this way, 

“residual discrepancies” are usually attributed to co-precipitation mostly with iron oxides and 

to complex interactions with supposedly available humic substances (Langmuir 1978). 

However, recent works reported considerable U sorption onto sand (quartz), which is 

commonly considered as non-reactive material (Read et al. 1993, Noubactep 2003, Logue et 

al. 2004). For example, when investigating the retention capacity of non-ferric sandstone core 

materials, Read et al. (1993) illustrated the strong affinity of aqueous U species for natural 

surfaces under strongly oxidising conditions. Noubactep (2003) used a sand column as 

reference in sand/iron experiments and reported considerable U retention in the reference 

column. Therefore it is necessary to closely investigate the processes that influence U release 

and transport in the subsurface, particularly under conditions more close to natural situations 

but in the absence of Fe/Mn-oxides and organic substances. 

The potential of natural waters to leach U from rocks or mining wastes has not been 

investigated. This issue needs to be addressed for an accurate prediction of the suitable 

lifespan of a reactive barrier (irrespective of the barrier material) downstream of U tailings 

since the contaminant is progressively leached by natural waters (Nyer et al. 1996). For this 

purpose, it is suitable to obtain and characterize simulated realistic steady states in the 

laboratory and to use them together with solubility constants (strictly defined for pure phases) 

for modelling purposes. 

The present study aims at a better characterization of the primary processes responsible for 

the U release from a well characterized rock in natural near oxidizing systems excluding 



 4

organic substances (known for sorptive and reductive properties) and only including two 

known active species (dolomite, pyrite) or supposedly inactive quartz sand. Particular 

attention was directed at quantifying the extent of U release into the aqueous phase under 

varying solution chemistry (essentially pH value, carbonate concentration, [HCO3
-] and 

presence of Fe(III)-species). 

Background 

In natural U deposits and U tailings the dissolution process typically involves oxidation and 

destabilization of U(IV) minerals such as uraninite (UO2+x) and coffinite (USiO4:nH2O) 

resulting in high concentrations of U(VI) aqueous species (Langmuir 1978). In these 

environments U concentrations of up to more than 10,000 µgL-1 have been reported 

depending on the geochemical conditions (Jerden Jr. & Sinha 2003, Junghans & Helling 

1998, Langmuir 1997, Miekeley et al.1992). For example, Jerden & Sinha (2003) reported 

that groundwaters with U concentrations of up to 575,000 µgL-1 (575 ppm, average value) 

could be reduced to values as low as 15 µgL-1 in phosphate rich environments through the 

formation of low soluble U(VI) phosphate minerals. 

Apart from phosphate rich environments the transport of oxidized U (U(VI)-species) in 

natural waters (neutral pH range) is believed to be primarily controlled by sorption processes 

onto different minerals (Langmuir 1978, Merkel & Sperling 1998, Sowder et al. 2001). This 

process is in turn strongly influenced by the carbonate concentration (HCO3
-, PCO2) which 

lowers sorption onto inorganic minerals (Fe/Mn-oxides) and organic substances (Clark et al. 

1997, Kalin et al. 2005, Meinrath 1998, Wazne et al. 2003). 

When testing the effectiveness of U retention (e.g. sorption capacity, retention mechanism) by 

various materials, different technical (carbonate and acidic) leaching solutions in 

concentration varying from 0.1 to 0.5 M are commonly used: sodium carbonate (Na2CO3), 

sodium bicarbonate (NaHCO3), ammonium carbonate ((NH4)2CO3), nitric acid (HNO3), 

sulphuric acid (H2SO4) … (Sowder et al. 2001, Duff et al. 1997, Fredrickson et al. 2000, 
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Kaplan & Serkiz 2001, Mason et al. 1997, Noubactep et al. 2003). These solutions aim at 

desorbing U in an excess of carbonate at elevated pH (≥ 9) or an excess of sulphate or nitrate 

at low pH commonly employed in the soil remediation respectively in the mining industry 

(e.g. Gadelle et al. 2001, Peters 1978). These conditions are somewhat far from natural 

conditions (4.5 ≤ pH ≤ 9.5) where U is leached by natural water which is generally 

mineralised rain water with elevated CO2-pressure. Therefore leaching experiments in more 

realistic conditions are required to better understand the processes of U release. 

Although a lot of research is aimed at the investigation and/or modelling of the mechanisms 

of U transport in the subsurface (Bain et al. 2001, De Windt et al. 2003, Meinrath et al. 1999), 

experimental results based on realistic laboratory scenarios are scarce. This study aims at the 

characterization of the influence of carbonate ions and the effect of in situ generated iron-

species on the U release from a natural rock under near-natural conditions. Different near-

natural waters of varying carbonate concentrations (deionised, tap and mineral waters) were 

used in batch and column experiments and the results are compared with those obtained from 

near-technical conditions (H2SO4 and Na2CO3). Particular attention is directed at the 

comparison of results of U release in 0.1 Na2CO3 and a CO2-riched mineral water. 

Experimental Section 

Solid Materials 

The chemical composition of the rock used in this study was determined by X-ray 

fluorescence (XRF). The rock contains around 2.3 % U and is composed of: 81.25 % SiO2, 

0.14% TiO2; 7.36 % Al2O3, 1 % Fe2O3, 0.01% MnO; 0.48 % MgO, 0.67 % CaO, 1.19 % 

Na2O, 1.48 % K2O, 0.36 % P2O5 and 0.01% SO3. The EDX analysis (results not shown) 

revealed that the used U-bearing rock is a multimineralic rock containing among others 

uraninite (UO2), arsenopyrite (FeSAs), and galena (PbS). Associations of U with arsenopyrite 

was also encountered. The material was crushed and fractionated by sieving. Table 1 shows 

the different fractions that were used in this study without any further pre-treatment. 
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Pyrite mineral was crushed and sieved and the fraction 0.315 mm to 0.63 mm was used. 

The elemental composition is: Fe: 40%, S: 31.4%, Si: 6.7%, Cl: 0.5%, C:0.15% and Ca 

<0.01%. The material served as a pH shifting reagent as well as an iron oxide producer. 

Dolomite mineral was crushed, sieved and the fraction 0.63 to 1.0 mm was used. The 

mineralogical composition is: SiO2: 1.2 %, TiO2: 0.03 %; Al2O3: 0.4 %, Fe2O3 0.6 %, MgO: 

20.24 %, CaO: 30.94, Na2O: 0.04%. Dolomite is a carbonate mineral and it is expected, that 

its dissolution and complex formation will increase the kinetics of U release. 

Solutions 

To mimic natural conditions different waters were used. Table 2 summarises the carbonate 

contents and simulated effects. Two known leaching solutions (sodium carbonate and 

sulphuric acid, both 0.1 M) were used for comparison. 

Uranium release experiments  

Three different types of experiments were conducted: 

Not homogenised batch experiments: Unless indicated otherwise, 0.1 g of the U-bearing 

rock and 0.1 g of the additive (pyrite or dolomite) were allowed to react in sealed sample 

tubes containing 13.0 mL of the tap water (reference leaching solution) at laboratory 

temperature (about 22° C). The tubes had a total volume between 13.2 mL and 14.1 mL and a 

graduation to 10 mL. The tubes were filled to a total volume to reduce the head space. The 

solid:solution ratios were 8 g/L both for the U-bearing rock and the additive. For comparison, 

a further set of experiments was conducted with the U-bearing rock alone. The tap water of 

the city of Göttingen (Lower Saxonia, Germa ny) has a composition (in mg/L) of Cl-: 7.7; 

NO3
-: 10.0; SO4

2-: 37.5; HCO3
-: 88.5; Na+: 7.0; K+: 1.2; Mg2+: 7.5; Ca2+: 36; and an initial pH 

8.3. After equilibration 0.5 mL of the supernatant solution was retrieved at the top of each 

tube for U analysis. To compare the leaching capacity of the tested waters (table 2) some 

experiments were conducted with 40 g/L of the U-bearing rock and different leaching 

solutions including 0.1 N Na2CO3 and 0.1 N H2SO4. 
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Air homogenised batch experiments: These experiments were conducted in special 

reaction vessels (Noubactep 2003) allowing the system to be homogenised by a humid current 

of air supplied by a small aquarist pump. The goal was to homogenise the experimental 

systems at atmospheric pressure without breaking down the materials. 10 g/L of the U-bearing 

rock and 0 or 7.5 g/L of the additive (pyrite or dolomite) were allowed to react in sealed 

vessels containing 100 mL of the tap water at laboratory temperature (about 22° C). At given 

dates 1.5 mL of the solution was retrieved for U analysis and the same volume of tap water 

was added to the system. The pH value and the redox potential were recorded at selected 

dates. 

Column experiments: Conventional chromatographic columns of 26 mm internal 

diameter and 300 mm length were packed in their lower part with a mixture of sand and U-

bearing rock (1 g of the d2-fraction see table 1) or sand, U-bearing rock (1 g) and an additive 

(1.5 g of pyrite or dolomite). In all systems the remaining space above the material column 

varies between 90 and 100 mL. Selected leaching solutions (DW, TW, MW, Na2CO3 or 

H2SO4) were allowed to equilibrate with the column content before being filtered through the 

material mixture after one week. The experiment was conducted for 10 weeks. Each eluted 

volume was measured and analysed for U and pH. 

Analytical Method 

 Analysis for U was performed by inductively coupled plasma mass spectrometry (ICP-

MS) at the Institute of Geosciences, University of Jena. All chemicals used for experiments 

and analysis were of analytical grade. Despite large dilution factors (up to factor 400), ICP-

MS gives satisfactory results for the concentration range of this study. Two representative 

samples were analysed by ICP-EOS, ICP-MS and spectrophotometry (ArsenazoIII-method) 

and the relative error was less that 12 % and the standard deviation was larger or equal to the 

absolute deviation. 

The pH value was measured by combination glass electrodes (WTW Co., Germany). The 

electrodes were calibrated with five standards following a multi-point calibration protocol 

(Meinrath & Spitzer 2000) and in agreement with the new IUPAC recommendation (Buck et 
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al. 2002). The redox potential measurements were corrected to give equivalency to the 

Standard Hydrogen Electrode (SHE). Krypton adsorption isotherms at 77 K were measured 

with Autosorb-1 instrument (Quantachrome). The specific surface area was calculated using 

the standard multipoint BET procedure (Brunauer et al. 1938) with a cross sectional area of 

20.5 Å2 for Kr. Prior to measurements, the samples were degassed at 300°C for 1 hour. 

A part from column experiments, all experiments were performed in triplicate. Error bars 

given in figures represent the standard deviation from the triplicate runs. 

Results and Discussion 

After the determination of the aqueous U concentration at a given date, the corresponding 

amount of leached U (mg or %) was calculated for an adequate discussion. In some cases, the 

U concentration (in µg/L) was sufficient. 

Effect of the particle size 

Particle size is an important aspect of mineral dissolution (Malmström et al. 1996, Reiche 

1950). As a result of mechanical weathering (e.g. pressure release, freezing water, thermal 

expansion and contraction, biological action, salt crystal growth), rocks and minerals are 

broken down into smaller pieces. It can be assumed that a range of particle sizes will have 

varying dissolution rates. The current assumption is the smaller the particle size the quicker 

the dissolution (chemical weathering by water and air). The < 2 mm fractions of the studied 

U-bearing rock (table 1) can be considered as the more "reactive fraction" and four different 

sub-fractions have been used for this batch experiments (not homogenised). Table 3 and 

figure 1 summarise the results. 

According to the assumption above, the sequence of reactivity is d1 > d2 > d3 > d4; this is 

strictly true only for the experiment in 0.1 N Na2CO3 (table 3). For the systems with tap water 

(TW) and 0.1 N H2SO4, the reactivity sequence was d1 > d2 ≅ d3 > d4 (figure 1). Table 1 

shows an abnormality in the evolution of the specific surface area of another U bearing rock, 

suggesting that other effects (e.g. mineralogical effects) influence the dissolution of the 
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mineral in that range of particle size. Further investigations were not possible due to the 

limited amount of the sample. Table 3 also shows that in all the cases less than 50% of the 

total U content could be leached from the rock in a single batch experiment even with a 

reagent as strong as 0.1 N H2SO4 (43 %). The leaching rate with the tap water which can be 

assumed to be very close to most natural ground waters varies between 8 and 13 % 

confirming the reported effectiveness difficulty of the pump-and-treat technology (McMurty 

& Elton 1985; Nyer et al. 1996, Mackay and Cherry 1989). In real life other minerals and 

organic substances will further complicate the situation by reducing the leaching capacity of 

the water. The water chemistry, particularly the carbonate content (HCO3
- or PCO2) will also 

play an important role. 

Effect of the leaching solution: carbonate content 

The processes that enable U to be dissolved and leached from the ore body are known and 

used in the mining industry as solution mining (Peters 1978). To access the reactivity of 

materials for U retention or removal in the laboratory, many operational leaching solutions 

have been defined (Duff et al. 1997, Fredrickson et al. 2000, Gadelle et al. 2001, Kaplan & 

Serkiz 2001, Liu et al. 2004). All these solutions are more aggressive than natural waters. To 

check the ability of natural waters to leach U from the studied rock, parallel experiments were 

conducted with different waters (as defined in table 2) and the results where compared with 

that of 0.1 N Na2CO3 and 0.1 N H2SO4. Table 4 and figure 2 show the results. 

The results in table 4 can be summarized as follows:  

1. the dissolution of the U-bearing rock induced a minor increase in pH value when the 

initial value (pHi) was lower than 7 and a minor decrease for pHi > 7, suggesting that 

the rock dissolution will not have any major influence on the pH, this observation is 

confirmed by the mineralogical composition of the rock, that consists of 81.3 % of 

SiO2;  
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2. in natural waters the U leaching efficiency varies between 0.3 and 5 % whereas the 

leaching efficiency for Na2CO3 and H2SO4 were 2.2 and 24 % respectively (Fig. 2). 

It is interesting to note that the U leaching efficiency in mineral water (MW; pHi 6.87) is 

greater than in Na2CO3 (pHi 11.47), although comparison of the [CO3
2-] to [U] molar ratios of 

both systems indicated that there are four times more carbonate ions available for U 

complexation in the system with Na2CO3 than in the system with MW. This result can be 

justified by the trend of U to build co-precipitates at higher pH values, hence a part of 

dissolved U may co-precipitate for example as sodium uranates (Na2UO4). This hypothesis is 

supported by the Si release in three different solutions (table 4). At elevated pH value 

(Na2CO3) the U-bearing rock (81.25% SiO2) dissolves more easily. 

Considering the better reproducibility of the results in the mineral water (11 % compared to 

69% standard deviation; Fig. 2) selected CO2-saturated (therefore HCO3-rich) waters can be 

suggested as an alternative to technical carbonate solutions for leaching experiments for 

environmental purposes. The leaching efficiency in H2SO4 is by far the largest but no 

conclusions for natural conditions can be drawn from those types of experiments. Therefore 

the H2SO4-leaching were used as the maximal removable amount of U under the given 

experimental conditions and as reference for the definition of the relative leaching percentage 

(Fig. 2). 

Effect of the additive materials 

Another way to investigate the effect of reactive material on U release consisted in mixing the 

rock and an additive in the so-called “air homogenised batch experiments”. Table 5 shows the 

variation of the pH and EH values and figure 3 summarises the results of the variation of the U 

concentration. 

Table 5 shows that: 

• the pH of the reference system and the system with dolomite was constant at a value 

of about 8.3 during the whole experiment whereas the system with pyrite shows a 
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lower pH (initial value 6.38) that progressively increases to a final value of 8.00 after 

70 days. It can be emphasized that the pH will reach the equilibrium value of 8.3 for 

longer experimental duration; 

• the redox potential (EH) shows the same trend and a final value of about 430 mV was 

obtained in all systems. 

The decrease of the pH is due to pyrite oxidation (Bain et al. 2001, Williamson & Rimstidt 

1994) that normally increases the solubility of U (Noubactep et al. 2002). Under the 

experimental conditions (neutral pH, oxic) however dissolved Fe2+ ions from pyrite lead upon 

oxidation by dissolved oxygen to Fe(OH)3(am) precipitates that are excellent sorbents for U 

(Ho & Miller 1986, Jambor & Dutrizac 1998). This fact explains the low U concentration in 

the initial phase of the experiment (Fig. 3a). After this initial phase (4-5 days), the U 

concentration progressively increased, indicating that the acidification capacity of the pyrite is 

consumed and the pH of the system progressively increased. The continuous increase of the U 

concentration suggests that the sorptive capacity of in situ produced Fe(OH)3(am) and that of 

pyrite by-mineral are consumed while the U-bearing rock continues to release U into the 

solution as the pH increases. This suggestion is supported by the comparison between the 

reference system and the system with dolomite that showed a very similar evolution in the 

initial phase (Fig. 3a) and a net difference above 14 days, while the system with dolomite 

shows higher U release efficiency (Fig. 3b) due to increased carbonate concentrations. 

Bernhard et al. (1996, 2001) showed that under similar natural conditions (pH = 8.1), the 

aqueous U speciation of a seepage water was dominated by a soluble aquo-complex of di-

calcium uranyl carbonate (Ca2[UO2(CO3)3].10H2O). At the end of the experiment (day 70) the 

reference system and the system with pyrite showed almost the same leaching efficiency, 

suggesting that a steady state was achieved. The discussion of the experiment “rock at pH 4” 

is given later in the text. 

Effect of locally induced variations 



 12

An important aspect of contaminant transport that is often neglected when transport processes 

are modelled is the local evolution of the system at non-equilibrium (or before an equilibrium 

state is established). Such situations are for example (Spiessl 2004): 

1. bulk dilution (mixture of infiltrating non-contaminated water with water of a 

contaminated zone);  

2. soil contamination (contaminated water enters a region of non contaminated soil); and  

3. a zone directly downstream of an acid producing area (the recharging acid water can 

be assumed to be of constant pH). 

To simulate the two first cases, the following modifications were performed in experiments 

carried out in a similar way to the above described air homogenised experiments (“reference”, 

“rock + dolomite” and “rock + pyrite”, Fig. 3) at day 70: 50 mL of the solution was retrieved 

from the reference system and replaced by 50 mL of the tap water (1:1 dilution). In the 

systems with additives 2 g of the corresponding material (resulting total additive amount: 3.5 

g or 35 g/L) was added to the bulk solution in the vessel. It is important to note that these 

experiments differed from those presented in figure 3 in that the rock particle sizes were 

smaller (d1, table 1). It is therefore not surprising that the initial concentrations here are higher 

than the final concentrations of figure 3. The evolution of the systems were recorded for two 

weeks (U, pH). Figure 4 shows the evolution of the U concentration in the three systems. 

The third modification was simulated by conducting an experiment parallel to those described 

above but re-adjusting the pH value to 4 after each sampling operation, the results are shown 

in Figure 3. 

It is apparent from Figure 3 that the adjustment of the pH value at 4 increases considerably the 

initial leaching rate of U (2768 µg/L after 0.4 day) but only at the beginning of the experiment 

(first day, figure 3a); further pH-fixation leads to a decrease of the U concentration to values 

lower than 1100 µg/L even after the pH fixation was stopped at day 34 (marked in Fig. 3b). 
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This observation is probably due to the formation of co-precipitation products of U, Ca 

(Morrison & Spangler 1992). 

Figure 4 shows that the dilution (system I) diminished the U concentration by approximately 

64 %. The addition of pyrite (system II) and dolomite (system III) induced a decrease of U 

concentration of 89% and 4% respectively. In all cases the U concentration increases 

continuously until the experiment was stopped after 14 days. It can be emphasised that the U 

concentration will rise to the initial value (before perturbation) for a longer experimental 

duration. The fact that the U concentration decreases in all systems (even in the presence of 

dolomite) shows that sorption onto mineral is not always negligible, even in the presence of 

carbonate species. At the end of the experiment the percent concentration decrease (relative to 

the start at day 70) in the system I, II and III were 43, 72 and 12 % respectively, showing that 

the U concentration in system III is above the value at day 70, whereas the concentration 

increase in the other systems occurs only very slowly. The processes in system II (pH 

decrease, formation of Fe(OH)3(am)) have already been discussed. The decrease of the U 

concentration to more than 50% (64%) as result of a 1:1 dilution in system I is difficult to 

explain, since the U concentration increases only to 43% of its initial value even after 14 days 

equilibration. Co-precipitation of U with Ca2+ ions contained in tap water, flocculation with 

Al-Species from the rock and sorption onto the reactor vessel are possible reasons for this 

decrease. The minor and very short decrease of the U concentration in system III, confirms 

the fact that the presence of dissolved carbonate species inhibits U sorption (Langmuir 1978, 

Langmuir 1997, Ho & Miller 1986).  

Column experiments 

Two types of experiments were conducted. The first aimed at simulating the repeated leaching 

of a mineral by the same solution as it probably occurs in nature in a soil profile (saturated 

zone). These experiments where conducted as described in the experimental section. A 

variation consisted of charging the column with a layer of pyrite or dolomite above the U-
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bearing rock layer, while separating the two layers with ca. 5 cm of quartz, the material 

mixtures were then leached with tap water once a week for 10 weeks (table 6). The second 

type of experiments aimed at the relationship between the kinetics of U release and the 

particle size. Figure 5 and 6 summarise the results. 

Figure 5 confirms the leaching capacity of the tested solutions as observed in batch 

experiments: H2SO4 >> MW > Na2CO3 > TW > DW. It also shows that a steady state was 

achieved only after 5 runs and that even at the end of the experiment (10 runs), the residual U 

concentration of the effluents were higher than 260 µg/L (EPA threshold value 30 µg/L). 

These result illustrates confirmed the difficulty of “sweeping” the contaminant from the soil 

with groundwater with a pump-and-treat technology (as discussed above) and also the 

difficulty of predicting the life time of a reactive barrier. In fact under the above experimental 

conditions the leaching efficiency at the end was 5, 22, and 35 % of the total amount of U for 

DW, TW and MW respectively.  

Assuming steady state at the end of the experiment, the number of flushings needed to 

achieve a complete leaching of the remaining U from the rock was estimated as 25 for the 

mineral water (MW), 41 for tap water (TW), and 722 for deionised water (DW). Depending 

on the climatic conditions at individual sites, the estimated flushing efficiencies can take up to 

several decades to be achieved. It should be kept in mind, that these results are only valid for 

the particle size used. Natural systems however are characterized by large heterogeneities. 

Figure 6 shows that the assumed steady state concentration will be different for another range 

of particle sizes.  

The experiments with dolomite and pyrite (table 6) generally supported the observations from 

the batch study: no major change due to the presence of dolomite and a retardation in the 

presence of pyrite. In the batch experiment, however, a clearly higher U release due to the 

presence of dolomite was observed in comparison to the reference system. In column 

experiments this difference was not obvious. This can be explained by both U sorption onto 
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sand particles and the slow kinetics of dolomite dissolution in tap water since the equilibration 

time was only one week. Homogenised batch experiments have shown that the influence of 

dolomite dissolution is significant only after two weeks (figure 3). In the field, elevated 

carbonate concentrations originate both from mineral dissolution and biological processes. 

Table 6 shows the systems classified from the top to the bottom in order of increasing U 

leaching efficiency. The observed leaching efficiency of batch experiments is confirmed for 

each range of particle size (d2 and d4). These results can be summarised as follows: 

• the systems with natural waters showed leaching efficiency of up to 35 % (after 10 

flushings). In both types of batch experiments the maximum achieved leaching 

efficiency was 5%; 

• the systems with higher particle sizes (d4 and d5) and H2SO4 exhibited leaching goals 

(PU) higher than 100% (m1
U < 0). This justifies the definition of an operative relative 

leaching percent (PH2SO4). Beside the inhomogeneity of rock samples, the well known 

difficulty of completely dissolving rocks for elemental analysis are two possible 

justifications for this observation. 

• to achieve a complete leaching of U from the rock, the flushing will have to be 

performed at least 25 times (n values see table 6). 

In summary these results show the difficulty to predict leaching rate of U under natural 

conditions. When considering n-values between the systems it can be seen that the “H2SO4 

(d2)”-system with a PU = 70.3 % has a n-value of 284 whereas the MW (d2)-system with a PU 

= 35.2 % has a n-value of only 25. This result is apparently contradictory but become 

comprehensible when one considers the v-values. This is mathematically correct since the 

smaller the v-value the larger the n-value. Physically this can be explained by the fact that a 

real steady state is achieved for the “H2SO4 (d2)”-system whereas the MW (d2)-system will 

only slowly attain such a stage. This observation corresponds to the well known tailings effect 

(Sontheimer et al. 1988) and is responsible for the non-effectiveness of pump-and-treat 
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systems in groundwater remediation for U contaminates sites. It also shows how difficult it 

will be to predict the suitable service life of reactive barriers, since in natural systems the 

heterogeneity of the subsurface together with the variability of the geochemical conditions 

(presence of U sorbents, solution chemistry…) will further complicate any accurate 

prediction. 

Conclusion 

In this study the leaching process of U from a natural rock was characterised by three 

different types of experiments. Known active species (carbonate) were added as solute to the 

rock in batch experiments on one hand, and on the other hand, the U bearing rock was mixed 

in batch experiments with an active mineral (dolomite or pyrite) or were packed into a column 

the active mineral been upwards from the U-bearing rock. The results show that: 

• From the tested natural near solutions, the carbonate rich mineral water (MW) was the 

most effective one for leaching U from the rock. 

• The U release from the rock increases with the carbonate concentration as long as the 

rock dissolution is not competing with the U co-precipitation at elevated pH values; 

• The presence of any mineral (including SiO2) retards the U transport; the strong 

retarding influence of Fe(OH)3 (am) has been confirmed in experiments with pyrite. 

• The mobilisation rate will rapidly decrease with time, yielding a tailing effect that will 

complicate any prediction effort if the residual contamination level is above a 

threshold value. 

Another important result of this investigation is that well characterized over-saturated CO2 

solutions are better alternatives to conventional carbonate solutions for the assessment of the 

leaching ability of U from environmental samples. In this study a commercially available 

mineral water was used. 

Among the list of natural processes believed to inhibit migration of U, sorption onto Fe/Mn-

oxide and other so-called active organic and inorganic substances have been assumed to be 
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the most important ones. This study has shown that, understanding the retarding influence of 

by-minerals both of the U rocks and the active inorganic substances can help to develop better 

strategies for understanding / predicting the transport of U and thus managing contaminated 

sites and nuclear waste repositories. 

Since weathering is controlled by the climate (temperature, precipitation), rock properties 

(surface area, permeability and mineralogy), contact time, and microbiological processes it is 

necessary to thoroughly assess the geochemical situation of a site (U content of the mineral or 

tailings, by-mineral, organic substances) in order to accurately predict the migration rate of 

the contaminant to the barrier zone. An effort should be taken to keep the short possible 

pathway from the contaminant source zone to the reactive barrier to minimise uncertainties 

due to various complex processes. 
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Table 1: Used particle sizes of the U-bearing rock and corresponding specific surface area. 

S1(m2/g) is the specific surface area for a different rock with around 1.2 % U (n.d. = not 

determined). 

 

Size range (mm) 0.063 - 0.125 0.250 - 0.315 0.315 - 0.630 0.630 - 1.0 1.6 - 2.0 

S (m2/g) 4.66 3.53 n.d. n.d. n.d. 

S1 (m2/g) 2.03 0.64 2.06 1.81 n.d. 

Code d1 d2 d3 d4 d5 

 

 

Table 2: HCO3-content and simulated conditions of the used waters (n.d. = not determined). 

 

Water 

(reagent) 

Code [HCO3
-]  

(mg/L) 

simulated conditions Example 

Deionised DW n.d. HCO3-poor water   rain water 

Tap  TW 89  current groundwater  infiltrating rainwater 

Mineral MW 1854 HCO3-rich water  a HCO3-rich GW 
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Table 3: Absolute (PU) and relative (Prel) variation of the percent U release rate in different 

leaching solutions as a function of the particle size. The maximal leaching capacity 

(100%) in each case has been attributed to the smallest particle size (d1). Data have 

been won in not homogenised batch experiments with 40 g/L U-bearing rock. 

 

Reagent and percent (%) leaching 

TW Na2CO3 H2SO4 

 Prel  PU Prel  PU Prel  PU 

d1 100 13 100 17 100 43 

d2 81 10 53 9 68 29 

d3 78 10 40 7 70 30 

d4 61 8 28 5 47 20 

 

 

Table 4: Variation of the pH value and U leaching efficiency as a function of the leaching 

solution for two weeks. pHi = initial pH value; pHf = final pH value; and PU = 

percentage of leached U. [Si] is the silicon release from a pure SiO2 phase for 72 

hours in the corresponding solutions. 

Reagent pHi pHf ∆pH [U] PU [Si] 

    (ppb) (%) (mM/L) 

DW 5.86 7.82 1.96 583 0.3 0.12 

TW 8.43 7.77 -0.66 3854 2.0 2.09 

Na2CO3 11.47 11.2 -0.27 4634 2.2 10.15 

MW 6.87 6.92 0.05 10028 5.0 - 

H2SO4 1.09 1.24 0.15 51843 23.9 - 
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Table 5: Variation of the pH and EH values in the air homogenised batch experiments. The EH 

values were corrected to give equivalency to the Standard Hydrogen Electrode. 

 

 Reference (rock) Rock + dolomite Rock + pyrite 

time  pH EH pH EH pH EH 

(day)  (mV)  (mV)  (mV) 

0.1 8.33 366 8.31 441 6.38 324 

0.3 8.32 401 8.28 422 6.37 374 

0.5 8.29 441 8.27 428 7.71 381 

1 8.31 324 8.32 426 7.54 466 

2 8.22 445 8.25 439 7.51 461 

4 8.31 433 8.31 442 7.76 453 

9 8.33 427 8.33 442 7.97 446 

18 8.30 422 8.30 434 7.93 445 

34 8.33 428 8.33 443 7.99 465 

42 8.31 416 8.29 425 7.96 428 

70 8.28 427 8.25 432 8.00 433 
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Table 6: Comparison of the U leaching rate from various column experiments. mU is the total 

leach amount (initial amount: 23.2 mg); m1
U is the remaining amount in the rock, v 

is the leached amount of the 10th week which is consider as constant for further 

irrigations and “n” in the number of irrigations necessary to leach m1
U. di is the 

particle size of the used rock as defined in table 1. PH2SO4 is the relative percent 

leaching assuming 100% leaching efficiency in H2SO4 for a given di, and PU is the 

absolute percent leaching related to the initial U in 1 g of rock. 

 

System mU PH2SO4 PU m1
U v n 

 (mg) (%) (%) (mg) (mg/week) - 

DW (d2) 1.13 6.9 4.9 22.03 0.031 722 

pyrite (d4) 2.39 5.6 10.3 20.77 0.122 170 

dolomite (d4)2.52 6.0 10.9 20.64 0.13 159 

TW (d4) 2.57 6.1 11.1 20.59 0.136 151 

TW (d2) 5.11 31.4 22.1 18.05 0.446 41 

Na2CO3 (d2) 6.89 42.3 29.8 16.27 0.514 32 

MW (d2) 8.18 50.2 35.3 14.98 0.602 25 

H2SO4 (d2) 16.28 100.0 70.3 6.88 0.024 284 

H2SO4 (d4) 41.82 100.0 180.6 -18.66 0.061 - 

H2SO4 (d5) 42.30 100.0 182.6 -19.13 0.348 - 
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Figure 1 

 

 d1 d2  d3  d4
0

6000

12000

18000

24000

30000

61

7881

100

7.7

9.810.2

12.6

a) rock: 40 g/L
duration: 14 days
solution: TW

ur
an

iu
m

 / 
[p

pb
]

particle size

 



 28

Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figures Captions 

 

Figure 1: Total U concentration as a function of particle size for tap water as leaching 

solution. The experiments were conducted in triplicate. Error bars give standard 

deviations. The values in the bars represent the leaching percentage assuming 

100% leaching for the smallest particle size and the values above the give leaching 

percentage referred to the total U amount in the rock.  

Figure 2: Total U concentration as a function of the leaching solution for a rock particle size 

of 0.250 - 0.315 mm (d2). The experiments were conducted in triplicate. Error bars 

give standard deviations (values in %). The values in the bars represent the relative 

leaching percentage assuming 100% leaching in H2SO4 (0.1 M). 

Figure 3: Evolution of the total U concentration as a function of time in air homogenized 

batch experiments. a) initial phase (13 days) and b) entire experiment (70 days). 

“rock at pH 4” represents an experiment in which the pH of the system was 

repeatedly adjusted to a value of approx. 4 with 0.2 M HCl. This adjustment was 

stopped at day 34 as indicated by an arrow. PCO2 is the atmospheric partial pressure 

of CO2 (open system). 

Figure 4: Variation of the U concentration as reaction of the system to dilution and addition 

of additive (20 g/L) as a function of the time in air homogenized batch 

experiments. The initial time (t = 0) corresponds to the end of an equilibration time 

of 70 days. 

Figure 5: Variation of the leaching rate of U from the rock as a function of time in various 

leaching solutions. A steady state is achieved after about 5 weeks. 

Figure 6: Variation of the leaching rate of U from the rock as function of the particle size in 

tap water. In each case a steady state was achieved after about 8 weeks. 


