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Abstract
The Madden–Julian oscillation (MJO) is the dominant component of tropi-
cal intraseasonal variability, with wide-reaching impacts even on extratropical
weather and climate patterns. However, predicting the MJO is challenging. One
reason is the suboptimal state estimates obtained with standard data assimi-
lation (DA) approaches. These are typically based on filtering methods with
Gaussian approximations and do not take into account physical properties that
are important specifically for the MJO. In this article, a constrained ensemble
DA method is applied to study the impact of different physical constraints on
the state estimation and prediction of the MJO. The quadratic programming
ensemble (QPEns) algorithm utilized extends the standard stochastic ensemble
Kalman filter (EnKF) with specifiable constraints on the updates of all ensem-
ble members. This allows us to recover physically more consistent states and to
respect possible associated non-Gaussian statistics. The study is based on identi-
cal twin experiments with an adopted nonlinear model for tropical intraseasonal
variability. This so-called skeleton model succeeds in reproducing the main
large-scale features of the MJO and closely related tropical waves, while keeping
adequate simplicity for fast experiments on intraseasonal time-scales. Conser-
vation laws and other crucial physical properties from the model are examined
as constraints in the QPEns. Our results demonstrate an overall improvement in
the filtering and forecast skill when the model’s total energy is conserved in the
initial conditions. The degree of benefit is found to be dependent on the observa-
tional setup and the strength of the model’s nonlinear dynamics. It is also shown
that, even in cases where the statistical error in some waves remains compara-
ble with the stochastic EnKF during the DA stage, their prediction is improved
remarkably when using the initial state resulting from the QPEns.
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1 INTRODUCTION

The Madden–Julian oscillation (MJO) is the most promi-
nent component of tropical intraseasonal variability. It
consists of a deep convective center with a surrounding dry
dynamic structure that propagates slowly eastward, typi-
cally from the Indian Ocean through the western Pacific
(Zhang, 2005). Nowadays, the MJO is known to be the
planetary-scale envelope of multiple convectively coupled
equatorial waves (CCEWs: see Kiladis et al., 2009), mostly
equatorial Rossby waves of small meridional mode num-
ber and Kelvin waves (Castanheira and Marques, 2021). As
the MJO influences tropical cyclones, monsoons, and the
El Niño–Southern Oscillation (ENSO), as well as extrat-
ropical weather and climate patterns, it is of great societal
importance. Therefore, understanding and predicting the
MJO and its most important contributing tropical waves
is a central problem in contemporary meteorology (Vitart
and Molteni, 2010; Khouider et al., 2013; Zhang et al.,
2013).

However, forecasting the MJO is a challenging task.
Depending on several factors such as the MJO indices
used, the ensemble size, or the season, it has been shown
by Vitart (2017) and Wang et al. (2019) that the MJO and
its convection can be predicted for up to 4–5 weeks in
the best subseasonal operational models, in particular the
ECMWF model. In their studies, the predictability limit
is defined as the forecast lead time at which the bivariate
correlation coefficient between forecast and observations
falls below 0.6. These results are in good accordance with
the prediction skills for large-scale MJO structures that are
achieved by low-order statistical models (Seo et al., 2009;
Kondrashov et al., 2013; Chen et al., 2014). This means
that, although remarkable progress was made in the last
decade, predictions of the MJO are nowadays only pos-
sible up to roughly one month, which is insufficient for
an intraseasonal oscillation. The challenges in forecast-
ing the MJO come, on one hand, from the fact that the
detailed mechanisms behind the complex and hierarchi-
cal organization of tropical convection are not yet fully
understood and modelled. It has been shown that better
parameterizations of subplanetary-scale convective pro-
cesses in general circulation models (GCMs) become cru-
cial in characterizing the MJO (see Khouider et al., 2011;
Deng et al., 2015; Yang et al., 2019). On the other hand,
there is a general lack of data assimilation (DA) systems
tailored to the features of the tropical atmosphere. Most
operational state estimation algorithms are customized for
dry dynamic geostrophic balance in the midlatitudes and
based on filtering methods that are optimized for linear
models, as they rest on the assumption of Gaussian prob-
ability density functions (PDFs). In the tropics, however,
such comparably dominant and simple relationships are

absent and atmospheric motions are instead shaped by
nonlinear processes, in particular convection. For these
reasons, interesting approaches to tropical DA (see, e.g.,
Žagar et al., 2004; 2005; 2016) and adaptions of existing fil-
ters for non-Gaussian situations (see Bocquet et al., 2010)
have been proposed in recent years. However, little focus
has so far been placed on the MJO. It is thus of special
importance to develop a suitable DA algorithm for the
MJO.

DA methods that respect non-Gaussian moments
directly, such as particle filters (PFs), are not yet suf-
ficiently robust and computationally affordable for
high-dimensional atmospheric applications. Although
strategies to mitigate these issues are progressively being
researched (see, e.g., the local PF described in Penny and
Miyoshi, 2016; Poterjoy, 2016), operational algorithms still
mostly rely on assumptions of Gaussianity. Often, ensem-
ble Kalman filters (EnKFs) are adopted inadequately for
nonlinear problems (Kalnay, 2003; Evensen, 2009; Law
et al., 2015). Moreover, traditional DA approaches are
not able to respect specific physical properties, as is com-
monly done in numerical modelling. For example, the
strict positivity of certain variables is often treated only
rudimentarily by truncations of undesirably negative val-
ues to zero. Therefore, the physical consistency of the
assimilated states cannot be guaranteed (Janjić et al., 2014;
Zeng and Janjić, 2016), which can induce artificial wave
activities in the subsequent forecast or even filter diver-
gence (Houtekamer and Zhang, 2016; Žagar et al., 2016).
In order to address these problems, a constrained DA
algorithm, the so-called quadratic programming ensemble
(QPEns), was recently developed by Janjić et al. (2014).
It extends the typical stochastic EnKF with state con-
straints on the analysis ensemble members and thereby
enables the conservation of physical properties such as
mass, energy, or positivity of specific variables. This turns
the analytic update step into an ensemble of constrained
numerical optimization problems with a quadratic cost
function. As was shown in the first applications to several
conceptual models (see Zeng et al., 2017; Ruckstuhl and
Janjić, 2018), the QPEns with well-chosen constraints
can especially improve the filtering skill in non-Gaussian
situations, since important physical properties are then
easily hurt by a filter with Gaussian assumptions. In this
article, we use this algorithm to investigate which phys-
ical constraints imposed on the initial condition in the
tropics could improve the prediction of large-scale, non-
linear MJO dynamics. More specifically, we test a QPEns
DA setup with different constraints applied to a simpli-
fied model for tropical intraseasonal variability (hereafter
called the “skeleton model”).

The skeleton model was first developed by Majda and
Stechmann (2009) in its basic linearized form and has
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become well known for its good dynamical representa-
tion of the MJO and important associated tropical waves
at the planetary scale, despite its intermediate complex-
ity. The model uses approximated dry dynamic equations
that are closely related to the standard Matsuno–Gill
model and incorporates a coarse convection parameteri-
zation together with a leading-order meridional and ver-
tical mode truncation. Since its first formulation, it has
been extended by various modifications, in particular the
inclusion of nonlinearity and stochasticity in the convec-
tion parameterization by Majda and Stechmann (2011)
and Thual et al. (2014), and to versions with meridional
and vertical truncation to higher order modes by Thual
et al. (2015) and Thual and Majda (2016), respectively.
The skeleton model has also been coupled to different
ocean models to describe the interactions between the
MJO and the ENSO (see Thual et al., 2018; Yang et al.,
2021). Although the model’s realism naturally increases
with the level of complexity, and particularly with the
inclusion of smaller-scale physical processes, in this study
we focus on the rather basic nonlinear deterministic ver-
sion as in Majda and Stechmann (2011). This version
realistically simulates important large-scale features of
equatorial Kelvin and Rossby waves of the smallest merid-
ional mode number as well as MJO signals, but still
allows for computationally affordable and easily inter-
pretable DA experiments on the intraseasonal time-scale,
due to its reduced state space and relatively simple math-
ematical modeling structure. As it furthermore incorpo-
rates a realistic non-Gaussian climatology, it provides a
good framework to study new approaches for filtering
MJO-related planetary-scale atmospheric dynamics. Note,
however, that there are other MJO models and theories
that are also widely accepted, such as the moisture mode
theory for the MJO (Sobel and Maloney, 2012; 2013).

In order to study the influence of dynamical con-
straints in DA when applied to the skeleton model, we set
up an identical twin experiment framework. This is benefi-
cial, as it resolves the need to retrieve suitable observations
for the simple model from real data and simplifies the diag-
nostics, as the truth is known. Moreover, any error sources
in the system are reduced to the update step, in particular
any neglect of non-Gaussian moments as well as imperfec-
tions in localization and inflation, which are used in our
DA system to mitigate sampling errors. Our experiments
test the influences of different analysis constraints on fil-
tering and forecasting the large-scale MJO structure and
important CCEW. Therefore, in addition to exploring the
DA skill in physical space, diagnostics for tropical waves
in the skeleton model are set up. The QPEns with differ-
ent constraints is compared with its underlying stochastic
EnKF, which is used here as the reference DA algorithm.
In particular, we examine constraints of the two energy

quantities that are conserved in the model, that is, the
moist static energy and total energy, as well as a positivity
constraint of convective activity, which is also included in
the model dynamics. Moreover, a constraint of dry mass is
also tested, as mass is a common conservation property in
many numerical weather prediction models, its constraint
has proven beneficial in earlier QPEns studies (see Janjić
et al., 2014; Ruckstuhl and Janjić, 2018), and it is con-
served in its long-time average in the skeleton model. As
we find a particularly positive influence of the total energy
constraint, we investigate this constraint further in combi-
nation with different observations and different amounts
of non-Gaussianity in the model.

The rest of the article is organized as follows. Section 2
includes a summary of the skeleton model as it is used in
this study. Section 3 describes the setup of the identical
twin experiments, the DA algorithms, and the diagnos-
tics. The DA results are presented in Section 4 and the
discussion and conclusions are included in Section 5.

2 THE SKELETON MODEL

In this section, the skeleton model is introduced in its
nonlinear deterministic version as used in this study. The
model’s underlying physical equations as well as the pro-
jections for its numerical solution and the settings used in
this article are explained in Section 2.1. In Section 2.2, the
key dynamical features found in earlier works are summa-
rized and the separation of wave signals from the model
states is described. Finally, the climatological properties
that are relevant for DA purposes, in particular conserva-
tion quantities and PDFs, are presented in Section 2.3.

2.1 Model equations and projections

The skeleton model is a dynamical model with inter-
mediate complexity that simulates tropical intraseasonal
variability, especially the MJO and its relevant tropical
waves, at the planetary scale. To retrieve its nonlinear
deterministic version as introduced in Majda and Stech-
mann (2011) and used in this study, the Matsuno–Gill
model for tropical large-scale dynamics (see Matsuno,
1966; Gill, 1980) is coupled via the diabatic heating term
to additional equations for the evolution of moisture and
convection. The latter are designed around a coarse param-
eterization for the growth of convective activity that is
derived from theoretical as well as modelling and observa-
tional indications. Moreover, the model regards the MJO
as a neutrally stable wave at the planetary scale driven
only by convective instabilities at the subplanetary scale.
Any large-scale dissipation is thus neglected, except for a
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constant radiative cooling. Furthermore, a vertical trun-
cation of the dry dynamics to the first baroclinic mode
and the replacement of pressure by potential temperature
via the hydrostatic relationship is performed. This returns
the following as underlying physical equations with peri-
odic boundary conditions along the equatorial belt and
equatorial longwave scaling:

𝜕u
𝜕t

− yv − 𝜕𝜃

𝜕x
= 0, (1a)

yu − 𝜕𝜃

𝜕y
= 0, (1b)

𝜕𝜃

𝜕t
−
(
𝜕u
𝜕x

− 𝜕v
𝜕y

)
= Ha − s𝜃, (1c)

𝜕q
𝜕t

+ Q
(
𝜕u
𝜕x

+ 𝜕v
𝜕y

)
= −Ha + sq, (1d)

𝜕a
𝜕t

= Γqa. (1e)

Here, x and y are the zonal and meridional positions
and t is the time. In the dry dynamics (Equations 1a–1c),
u, v, and 𝜃 are the zonal and meridional velocities and
potential temperature, respectively. Equation 1d describes
the evolution of the lower-tropospheric moisture q. All
variables are anomalies from radiative–convective equi-
librium (RCE), except the planetary-scale envelope of
synoptic-scale convective activity (in the following “con-
vective activity” for short), a. The skeleton model contains
a minimal number of parameters: Q is the mean back-
ground vertical moisture gradient; Γ is the growth rate
of convective activity; H is irrelevant to the dynamics
but is a scaling constant; s𝜃 and sq are external sources
of radiative cooling and moistening/latent heating that
are prescribed in the system. The model variables, with
dimensions and physical parameters, are summarized in
Table 1.

Next, Equations 1 are projected on to the parabolic
cylinder functions (PCFs) in the meridional direction.
Thereby, the dry dynamic variables can be reformulated
into model variables K and Rm, with m ≥ 1, which are
the amplitudes of the Kelvin wave and equatorial Rossby
waves of different meridional mode numbers. Note, how-
ever, that these amplitudes only propagate as known from
the theory of dry tropical waves if they are unforced. In the
case of forcing as in the skeleton model, they are coupled to
convection and each other. A subsequent truncation of the
diabatic heating variables/structures (a, s𝜃 , and sq) based
on the PCF projection determines the number of excited
Rossby-wave modes and thus reduces the model complex-
ity. In this article, we apply the leading-order meridional
truncation, which has been widely used in the literature

on the skeleton model and is sufficient to recover the key
features of the MJO. In other words, only the projection
on to the first PCF Φ0(y) ∝ exp(−y2∕2) (see Majda and
Stechmann, 2011) is retained in the meridional diabatic
heating structure. Moreover, s𝜃 = sq is assumed for reasons
of simplicity. The resulting system then excites the Kelvin
wave K and the first equatorial Rossby wave R ∶= R1.
It reads

𝜕K
𝜕t

+ 𝜕K
𝜕x

= − 1√
2

(
HA − S

)
, (2a)

𝜕R
𝜕t

− 1
3
𝜕R
𝜕x

= −
2
√

2
3

(
HA − S

)
, (2b)

𝜕Q
𝜕t

+ Q√
2
𝜕K
𝜕x

− Q

6
√

2
𝜕R
𝜕x

= −

(
1 + Q

6

)(
HA − S

)
, (2c)

𝜕A
𝜕t

= 𝛾ΓAQ, (2d)

where Q, A, and S are the projections of q, a, and s𝜃 as well
as sq on to Φ0(y), while 𝛾 is a projection coefficient (see
Table 1) for the interaction of two truncated variables in
the truncated system. The numerical parameters for the
solution of the skeleton model are also listed in Table 1 and
the physical variables can be reconstructed as

u(x, y) =

(
K(x)√

2
− R(x)

2
√

2

)
Φ0(y) +

R(x)
4

Φ2(y),

v(x, y) =

(
𝜕R(x)
𝜕x

− HA(x) + S(x)√
2

)
Φ1(y)

3
,

𝜃(x, y) =

(
−K(x)√

2
− R(x)

2
√

2

)
Φ0(y) −

R(x)
4

Φ2(y),

q(x, y) = Q(x) ⋅Φ0(y),

Ha(x, y) = HA(x) ⋅Φ0(y). (3)

Note that, corresponding to the variables K, R, Q, and
A in Equation 2 projected onto the leading meridional
basis, the dry dynamics components in Equation 3 also
contain terms with the next PCFs Φ1(y) and Φ2(y) (see
Majda and Stechmann, 2011). These terms are necessary
to retrieve the quadrupole structure of the MJO, but are
not dynamically relevant. Thus, in the following, the val-
ues of the variables in physical space consider only the
components associated with the leading PCF in the merid-
ional direction in Equation 3. Amongst other things, this
means that any meridional winds are not considered here.
Furthermore, the variable values cannot be considered as
amplitudes in a 3D grid, but can be regarded as projec-
tion amplitudes on the structures explained above in the
meridional and vertical directions.
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T A B L E 1 Variables, dimensions, and physical as well as numerical parameters in the skeleton model as used in this article

Variable Meaning Dimension/value

t Time
√

𝜋

NH𝛽

x, y Zonal, meridional position
√

NH
𝜋𝛽

u, v Zonal, meridional velocity anomalies NH
𝜋

𝜃 Potential temperature anomalies HN2𝜃0
𝜋g

q Lower-tropospheric moisture anomalies cp

Lv

HN2𝜃0
𝜋g

Ha Planetary-scale envelope of synoptic-scale
convective activity

√
H3N5𝜃2

0𝛽

𝜋3g2

Dimensional parameter

𝛽 Meridional derivative of Coriolis parameter 2.28 × 10−11 (ms)−1

H Tropopause height 16 km

N2 Brunt–Väisälä frequency 10−4 s−2

g Gravitational acceleration 9.8 m ⋅ s−2

𝜃0 Surface potential temperature 300 K

cp Specific heat of dry air at constant pressure 1006 J ⋅ kg−1 ⋅ K−1

Lv Latent heat of vaporization 2.5 × 106 J ⋅ kg−1

Nondimensional parameter

Q Mean background vertical moisture gradi-
ent

0.9

H Scaling constant for convective activity
(without dynamical meaning)

0.22

s𝜃, sq Background radiative cooling, background
latent heating (arrays with values at all grid
points)

Modelled as warm-pool s𝜃WP(x) =
sq

WP(x) = 0.022 ×
(

1 − 0.6 cos
(

2𝜋x
L

))
(Majda et al., 2019)

Γ Convective activity growth rate 1.66

Numerical parameter

L Zonal length of domain 26.6, that is, 40,000 km

Δx Distance between zonal grid points 0.4167, that is, 625 km

nx Number of zonal grid points 64

Δt Length of time steps 0.2083, that is, 1.66 hr

𝛾 Projection coefficient for the truncation ∫ ∞
−∞Φ0(y)Φ0(y)Φ0(y) dy =

√
2
3
𝜋−1∕4

(Majda et al., 2019)

2.2 Key dynamical features

The linear solutions of Equation 2 with a uniform
background (see Majda and Stechmann, 2009) exhibit
plane-wave eigenmodes for different zonal wavenumbers
that can be associated with the MJO, dry Kelvin, and dry
and moist Rossby waves of the smallest meridional mode
number. It should be noted, however, that these wave
modes in fact all consist of coupled Kelvin and Rossby
waves, the amplitudes of which are given by K and R,
that is, the naming refers only to the dominant Kelvin
or Rossby component, the corresponding main large-scale

characteristics, and the amount of convective coupling
(“dry” and “moist”). The MJO eigenmodes cannot be
clearly assigned to either Kelvin or Rossby waves, but cap-
ture several essential observed large-scale features of the
MJO, which include the following in particular:

• a deep convective center that is moving eastward at a
phase speed of approximately 5 m⋅s−1;

• a peculiar dispersion relation with constant intrasea-
sonal oscillation periods of 30–90 days for the leading
few zonal wavenumbers; and
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T A B L E 2 Frequencies (eigenvalues) and amplitudes of the different characteristic components (eigenvectors) of the
plane-wave MJO eigenmodes for zonal wavenumbers k ∈ {1, 2, 3} 1∕(40,000 km) in the linearized skeleton model with parameter
values as in Table 1

k in 1
40,000 km

𝝎 in 1
days

K̃ R̃ Q̃ Ã′

1 40.0 0.3224i −0.8521i −0.1465i 0.3800

2 35.4 0.2137i −0.7678i −0.2472i 0.5661

3 35.1 0.1627i −0.6728i −0.2977i 0.6771

Note: The corresponding distribution of the variables (X̃) in physical space is calculated as Xk,real(x) = X̃ i
keikx + X̃∗

ke−ikx .

• a horizontal structure with positive moisture anomalies
to the east of the convective center and a quadrupole
wind circulation around the convective center.

Table 2 shows the frequencies (eigenvalues) and ampli-
tudes of the different characteristic components (eigenvec-
tors) of the MJO eigenmodes for the leading three zonal
wavenumbers. The nonlinear nature of the model version
used here (see Majda and Stechmann, 2011) allows for
interactions between the different waves. These introduce
more realistic occurrences of individual MJO events with
variability in strength and lifetime instead of plane-wave
propagations, while all important features of the MJO
eigenmodes, that is, the coarse structure, the phase speed,
and the dispersion relation, are retained. The same is true
for the other equatorial wave types. See Figure 1 for a
Hovmöller diagram of the wave amplitudes in a model
simulation.

To retrieve the zonal wave structures, the data are
projected in zonal Fourier space on to the waves’ eigen-
modes from the linear model. Therefore, in analogy to the
MJO index in Stechmann and Majda (2015), we use an
inner product, to which the eigenmodes are orthogonal, in
order to avoid unrealistic projections of other wavetypes.
The projection is done for all planetary-scale structures
(1 ≤ k ≤ 3) and a back-transform to physical space subse-
quently yields the amplitude distributions. The matrix M
used for the inner product is

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 + 1
2

Q
1−Q

1
4

Q
1−Q

− 1√
2

1
1−Q

0
1
4

Q
1−Q

3
8
+ 1

8
Q

1−Q
− 1

2
√

2
1

1−Q
0

− 1√
2

1
1−Q

− 1
2
√

2
1

1−Q
1
Q

1
1−Q

0

0 0 0 1
𝛾ΓQS

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (4)

Notably, it has been investigated whether the stochas-
tic Skeleton model, which is a simple extension of the
deterministic model used here, is capable of reproducing
observed MJO statistics such as the average duration of
MJO events and the overall MJO activity (Stachnik et al.,
2015). It has also been illustrated that projecting reanalysis

data on to the MJO basis defined by the skeleton model
leads to a time series that resembles the real-time multi-
variate MJO index (see Wheeler and Hendon, 2004) with a
pattern correlation of 0.99 (Stechmann and Majda, 2015).
All these findings justify the suggestion that the skeleton
theory is suitable to represent and understand some main
features of the MJO.

A preferential localization of the MJO over areas with
enhanced background radiative cooling and latent heat-
ing can be observed when modelling the background RCE
as a warm pool (see Table 1). This is in good accordance
with the geographical confinement of the MJO to the
eastern Indian and western Pacific oceans, which have
warmer sea-surface temperatures. We thus use this setup
in this study. Many more features, such as the complex
westward-tilted vertical structure and overturning circula-
tion, a seasonal cycle, or interactions with the extratropics
can be incorporated into the skeleton model (Thual et al.,
2015; Thual and Majda, 2016). However, they are not the
main focus of this study and are thus omitted here.

In analogy to the experiments in Majda and Stech-
mann (2011) (see the scenario WP-MJO), we initialize the
model in our experiments with the normalized MJO eigen-
mode of the linearized model for the zonal wavenumber
2 multiplied by an amplitude of 0.05. The initialization is
important for the simulation results in the skeleton model,
which is understandable from the fact that the model is
deterministic and holds two energy conservation princi-
ples approximately. After the initialization, we conduct a
10-year spin-up run to let the climatology build up due
to nonlinearity and interactions with the warm-pool back-
ground (see figure 7 in Majda and Stechmann (2011) for a
visualization of the typical model spin-up).

2.3 DA relevant climatological
properties

The underlying skeleton model Equations 1 have the fol-
lowing two domain-integrated energy conservation quan-
tities when equalized background forcing (s𝜃 = sq) is
assumed:
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F I G U R E 1 Wave amplitudes
during a one-year model run after
the model’s spin up, calculated by
projection on to the linear model’s
eigenmodes for zonal wavenumbers
1–3 (from Gleiter, 2021) [Colour
figure can be viewed at
wileyonlinelibrary.com]

• moist static energy conservation:

∫ (𝜃 + q) = const, (5)

and
• total energy conservation (consisting of contributions

from dry kinetic energy, potential energy, moist poten-
tial energy, and convective energy (Majda et al., 2019):

∫
⎛⎜⎜⎝u2

2
+ 𝜃2

2
+ 1

2
Q

1 − Q

(
𝜃 +

q

Q

)2

+ H
ΓQ

a − s
ΓQ

ln (a)
⎞⎟⎟⎠

= const. (6)

These also hold approximately in the meridion-
ally truncated Equation 2. On the other hand, the
domain-integrated dry mass (here ∫ 𝜃) is not conservative
in the underlying equations, but it is conserved in its long
time average, since 𝜃 is only the deviation from the back-
ground mean. A further physical property in the skeleton
model is the strict positivity of convective activity:

a > 0. (7)

The climatological univariate PDFs in the skeleton
model with the configuration used in this article are
shown in Figure 2. They have a significant amount of
non-Gaussianity in the convective activity, connected to
its strict positivity, while the other variables are approxi-
mately Gaussian-distributed and seem to be rather unaf-
fected by the amount and shape of non-Gaussianity in the
convective activity.

3 METHODS

In this section, the setup of the identical twin experiments
conducted in this study is detailed. The identical twin
approach means that we generate a synthetic “truth” and
synthetic “observations” from a nature run of the skeleton
model, while the same model is used as the forecast model
for the ensemble propagation in the DA algorithm and sub-
sequent prediction. Such a setup has the advantage that
no model error exists and the observational error is exactly
known, which allows us to focus on studying impacts of
changes in the DA update step, that is, how the different
constraints in the QPEns affect the filtering skill. The pre-
cisely given truth also simplifies the error assessment and
moreover enables us to implement exact state constraints,
since all physical properties are known.

The section starts in Section 3.1 with a description of
the identical twin setup, thus the initialization of truth and
ensemble, and the generation of the observations. Subse-
quently, the DA algorithms, that is, the stochastic EnKF
and the QPEns, are introduced in Section 3.2. The diagnos-
tics employed when discussing the results are explained in
Section 3.3.

3.1 Identical twin setup

Initial values of the truth and the ensemble
members

The initial ensemble for the ensemble DA and prediction
is selected as equally distributed states from a 100-year
climatological run of the skeleton model starting after

http://wileyonlinelibrary.com
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F I G U R E 2 Visualizations of skeleton-model variable zonal climatologies retrieved from 12,200 (100 years, every three days) samples
starting after 10 years of model spin-up: top: five random draws showing the typical spatial variability; middle: univariate PDFs calculated
with 100 histogram bins and moving-average smoothing over 10 values; bottom: skewness values of the univariate climatological PDFs
[Colour figure can be viewed at wileyonlinelibrary.com]

10 years of model spin-up. This is possible since the model
does not have a seasonal cycle. The ensemble obtained is
found to be approximately orthogonal. However, its details
only play a subordinate role for the general filter quality
after the filter spin-up. All experiments are conducted with
an ensemble size of 50 members. The final time instant of
the above climatological run is used as the initial value of
the truth in the test period.

Generating the observations

The observations contain a subset of the variables in the
physical domain (i.e., u, v, 𝜃, and a) and are generated
by adding uncorrelated noise to the truth. Except for
the noise in the convective activity, all other noise sat-
isfies a zero-mean Gaussian distribution, with variances
being equal to 10% of the climatological variances. For the
convective activity, which takes only positive values, the
noisy observations satisfy a lognormal distribution with
the same noise level, that is, same variance. A lognormal
distribution is chosen, as it approaches a Gaussian for suf-
ficient distance from the zero point and furthermore has
lim
x→0

PDFlognl(x) = 0.

3.2 Data assimilation algorithms

3.2.1 Stochastic ensemble Kalman filter

Algorithm

The stochastic EnKF (Evensen, 1994; Burgers et al., 1998)
is a DA algorithm that is widely used in the atmospheric
sciences. It updates the background ensemble {xb,i}N

i=1
with perturbed observations {yi}N

i=1 using Kalman fil-
ter equations. The algorithm requires a specification of
the observation-error covariance matrix Rk, while the
background-error covariance matrix Pb

k at time k is calcu-
lated from the ensemble as

Pb
k = 1

N − 1

N∑
i=1

(
xb,i

k − xb,i
k

)(
xb,i

k − xb,i
k

)T
, (8)

with xb,i
k representing the background ensemble mean at

time k. The stochastic EnKF reproduces the Kalman filter
update statistically. This means that it relies on the same
assumption of Gaussianity in its analysis step, based on
which the Kalman filter is derived from perfect sequential
Bayesian filtering. Nevertheless, its advantages over the
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exact Kalman filter are that it is very efficient, it can also
be applied with a nonlinear model and/or observational
operator, and its outcome can be used directly for ensem-
ble forecasts. In the setup of identical twin experiments,
the error sources in the stochastic EnKF are reduced to
sampling errors and the neglect of non-Gaussian moments
in the PDF. The former are mitigated in this study using
inflation and localization.

Generating the perturbed observations

The perturbed observations that are used for the updates
of the individual ensemble members are generated as
Gaussian samples distributed around the actual observa-
tions with the diagonal observation-error covariance Rk.
In order to get an accurate representation of the observa-
tion, the error in the sample mean is corrected by sub-
traction. For convective activity, this procedure is again
adapted, and the observation perturbations are sampled
from a lognormal distribution. The sampling error cor-
rection is therefore done differently by a transform from
the sampled lognormal distribution, with an erroneous
mean, to a lognormal distribution, with a more accurate
mean.

Tuning by localization and inflation

The unavoidable sampling errors in the stochastic EnKF
introduce the well-known problems of erroneous spuri-
ous correlations in the background-error covariance and a
self-enforcing decrease in ensemble spread that saturates
at a level with far underestimated variance (van Leeuwen,
1999). These issues necessitate some tuning, which is
done by the typical measures of localization and inflation
(Houtekamer and Zhang, 2016). The details of the imple-
mentation in this study are included in the Appendix.
Moreover, an additional relaxation of any occurring nega-
tive convective activity values in the analysis ensemble to
a small value of 10−5 was implemented in the stochastic
EnKF in order to enable the subsequent model propaga-
tion.

3.2.2 Quadratic programming ensemble
(QPEns)

Principle

The idea behind the QPEns introduced by Janjić et al.
(2014) is to extend the stochastic EnKF by imposing

additional physical constraints on the atmospheric
states when updating the ensemble members. This can
yield more physically plausible states and also allows
us to consider nonlinear relationships and therefore
non-Gaussian moments in the background PDF. If used
without constraints, the QPEns equals the stochastic
EnKF.

Adding constraints transforms the update step into a
set of N numerical minimization problems of the form

xa,i
k = arg min

x
 i

k(x)

subject to cl(x) = 0, l ∈  and/or cm(x) ≤ 0, m ∈ ,
(9)

with  i
k(x) =

1
2
(x − xb,i

k )TPb
k
−1(x − xb,i

k )

+ 1
2
(yi

k −(x))TR−1
k (yi

k −(x)),

with cl and cm being nonlinear or linear equality and
inequality constraint functions, the multitude of which is
indicated by  and . The minimizations of the cost func-
tions/objective functions  i

k in respect of these constraints
yield the analysis ensemble members xa,i

k at times k. In the
case of a linear observation operator, that is, k = Hk, the
cost functions are quadratic and the problems can thus
be reformulated. The quadratic structure of the objective
functions is then clearly visible and their Hessians and
gradients can be directly read off (Janjić et al., 2014):

za,i
k = arg min

z
 i

k(z)

subject to

cl(xb,i
k + Xb

kLz) = 0, l ∈  and/or

cm(xb,i
k + Xb

kLz) ≤ 0, m ∈ ,

with  i
k(z) =

1
2

zT (I + (HkXb
kL)

TR−1
k HkXb

kL

)
z

+
(

Hkxb,i
k − ri

k − yk

)T
R−1

k HkXb
kLz.

(10)

Here, Xb
kL signifies the square root of the localized

background-error covariance matrix that is gained by
Cholesky decomposition, that is, Pb

kL = Xb
kLXb

k
T
L, and a vari-

able transformation xa,i
k → za,i

k is made with xa,i
k = xb,i

k +
Xb

kLza,i
k . As this transformation is linear, it does not change

the respective linear or nonlinear nature of the con-
straints. Depending on the type of constraints (linear/non-
linear, equality/inequality), different numerical minimiza-
tion algorithms with different computational demands
and either local or global minima can be used for the
solution.
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Implementation

In this study, constraints on the following properties are
taken into consideration:

• the total energy in the truth,
• the moist static energy in the truth,
• the dry mass in the truth, and
• the positivity of convective activity.

For the solution of the numerical optimization prob-
lems, we use the MATLAB Optimization Toolbox 2019
algorithms “quadprog” and “fmincon” with their solvers
“interior-point-convex” and “interior-point”, for linear
and nonlinear constraints respectively. The interior-point
methods solve the problem sequentially using iteratively
updated penalty terms in the objective function for values
close to inequality constraint boundaries. This is efficient
and requires only a small amount of memory; however, the
exact inequality constraint boundary can not be reached.
Such an algorithm is thus a suitable choice in terms of
efficiency, accuracy, and robustness for the purpose of this
study, since the boundary for the only possible inequal-
ity constraint, that is, the positivity of convective activity,
should not be reached anyway.

We specify the gradients and Hessians of the objec-
tive function and nonlinear constraints. Other than this,
the default settings of the MATLAB minimization algo-
rithms stay untouched. In particular, there is no change
in the tolerance on constraint violations and the values of
the stopping criteria. The accuracy of this setup is high
and the computational cost affordable in combination with
the comparably low-dimensional state space of the skele-
ton model. Moreover, we neglect any theoretical need for
global minimization in the case of nonlinear constraints,
since no significant deviations due to this were observed in
earlier experiments.

3.3 Diagnostics

To assess the DA skill, we set up the following three
verification metrics. Here, 𝝁c and 𝝈c represent the
n-dimensional vectors of the climatological mean and the
climatological standard deviation, respectively (n being
the length of the atmospheric state vector, that is, u, 𝜃, q,
and a at all zonal grid points). The n-dimensional truth at
time instant k is denoted by xt

k and the best estimate/anal-
ysis is denoted by xa

k, which is the same as the ensemble

mean xa,i
k for Gaussian distributions. The symbol .∕ signi-

fies a pointwise division. In our study, the ensemble mean
is adopted as analysis throughout. Any of these verification

metrics can be calculated equally for a subset of the state
variables, e.g., especially a single variable.

• The root-mean-square error (RMSE) of the best estimate
with respect to the truth scaled by the climatological
standard deviations is

RMSE =
√

1
n
[(

xa
k − xt

k

)
.∕𝝈c

]T [(xa
k − xt

k

)
.∕𝝈c

]
. (11)

The possible values of the RMSE are ∈ [0,∞]. It mea-
sures the mean error in the state estimate. When RMSE
> 1, the state estimate loses its skill, since the error
reaches the climatological standard deviation.

• The Pearson correlation coefficient (PCC) (often also
referred to as pattern correlation) between the best esti-
mate and the truth is given by

PCC =

(
xt

k − 𝝁c
)T (xa

k − 𝝁c
)√(

xt
k − 𝝁c

)T (xt
k − 𝝁c

)√(
xa

k − 𝝁c
)T (xa

k − 𝝁c
) .

(12)

The possible values of the PCC are∈ [−1, 1]. It measures
the spatial correlations between the state estimate and
the truth. When PCC < 0.5, the state estimate is often
said to lose its skill.

• The relative ensemble spread (RES) is

RES =

∑
n

[
̄||||xa,i

k − xa,i
k

||||.∕𝝈c

]
∑
n

[|||xa
k − xt

k
||| .∕𝝈c

] . (13)

The RES is the ratio between the mean absolute devia-
tion of the ensemble members from their mean and the
mean absolute deviation of the best estimate from the
truth, both of which are scaled by the respective clima-
tological standard deviations. The possible values of the
RES are ∈ [0,∞]. The RES is expected to be around 1
throughout the entire filtering process if the ensemble
statistics are a good representation of the uncertainties
in the analysis.

These error measures can also be applied to measure
the filtering skill and the forecast quality for the different
waves by using the wave amplitude distributions calcu-
lated from the eigenmode projections as state vectors.

4 RESULTS

In this section, we present the results of our series of
identical twin experiments with the skeleton model. In
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Section 4.1, we first investigate the impact of the differ-
ent constraints in the QPEns on the filtering skill and
forecast quality for the MJO and tropical waves in a real-
istic observational setup. As we find in particular a benefit
from the total energy constraint, we compare the QPEns
further with the total energy constraint to the stochastic
EnKF in different observational setups in Section 4.2. For
observations that are less exploited in the EnKF, we show
an enhanced positive impact of the constraint. Finally,
the QPEns with total energy constraint is tested in a
setting with increased non-Gaussianity in the climato-
logical convective activity distribution in Section 4.3. In
this case, the new algorithm is able to prevent the fil-
ter divergence observed for the EnKF. Thus, we are able
to show the robustness and even enhanced importance
of our results in the presence of more extreme convec-
tive activity caused by, for example, increased sea-surface
temperatures.

4.1 Impact of the different constraints
in a realistic observational setup

In our first study, we examine the filtering skill of the
QPEns with the different constraints in comparison with
the stochastic EnKF. In analogy to Chen and Majda (2016),
only the zonal wind and the convective activity are adopted
as observational variables, since they are widely used to
track the MJO in practice (Wheeler and Hendon, 2004).

Experimental design

In contrast to Chen and Majda (2016), in which the convec-
tive activity a is fully observed in space with no additional
observational noise, we use sparse observations in space
and time, which are generated by adding independent ran-
dom noise to the truth (see Section 3.1). Specifically, we
select a spacing of every fourth grid point, which corre-
sponds to a distance of approximately 2,500 km, and every
fourth time step, which means every 6.64 hr, equally for
all observations. To obtain statistically significant results,
we run 50 experiments with 50 different truths taken from
subsequent time spans of model simulation. Each of these
experiments is run over a simulation time of 2 years, con-
taining 1 year of DA followed by 1 year of free forecast.
In the individual experiments, we compare the stochastic
EnKF and the QPEns with each of its possible four con-
straints (see Section 3.2.2), now using the same truth and
observations for each of these five DA setups. The initial
ensemble is the same throughout all experiments.

We evaluate the above experiments for the time
evolution of the error statistics in the different QPEns

configurations with respect to the stochastic EnKF. There-
fore, we use the following procedure.

Step 1. Calculate the RMSEs and the pattern correlations
over time for the state variables and waves in all
experiments and all DA configurations.

Step 2. For each QPEns configuration, take the difference
in RMSE and pattern correlation from the EnKF,
that is, subtract the EnKF reference value for each
of the 50 experiments individually.

Step 3. Calculate the means and 95% confidence intervals
of the above differences from the 50 experiments.
For the confidence intervals, we assumed Gaus-
sian distributions such that they are equal to the
standard deviation multiplied by 1.96.

Results

The results of this study are presented in Figure 3. They
show that both the moist static energy constraint (“ME
con”) and the dry mass constraint (“DM con”) mainly
impact only the filtering of the potential temperature 𝜃 and
their positive impact is, moreover, decreasing over time.
Furthermore, including only the constraint of positivity
in the convective activity (“a pos con”) even has a nega-
tive influence on the filtering and forecast skill. On the
other hand, there is a significant statistical benefit from
the total energy constraint (“TE con”) during both the
DA and the free forecast period for all model variables
(u, 𝜃, q, a) and also the waves. One interesting finding is
that the positive impact of the constrained filter on the
waves (especially the MJO, dry, and moist Rossby waves)
becomes more significant during the forecast period. Dur-
ing DA, the EnKF and QPEns produce similar RMSEs,
since the same observations are used to constrain the state
and the propagation steps are too short for significant error
growth. However, during the free forecast, initial small
error differences amplify, in particular due to the nonlin-
ear nature of the model. Thus, the benefit of the physically
more accurate analysis produced by the QPEns becomes
evident.

In summary, the results of this study clearly indicate
a benefit when including the total energy constraint. It
should be noted that the total energy constraint captures
a nonlinear relationship between the model variables that
automatically includes the constraint of convective activ-
ity to positive values, due to the natural logarithm of
a involved (see Equation 6). The results presented here
therefore do not imply that the positivity constraint is not
important, but rather that using it alone is not a suitable
strategy. Instead, it should be combined with some means
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F I G U R E 3 Means and 95% Gaussian confidence intervals of the changes in RMSEs and pattern correlations when using the different
constraints. These are calculated by subtracting the reference value of the stochastic EnKF from those of the QPEns configurations. The
statistics are calculated from 50 experiments with different truths and observations, but using the same truth and observations for each of the
setups in each individual experiment. The results show 1 year of DA and 1 year of free forecast, where in the DA observations of u and a are
assimilated at every fourth grid point and time step. “ME con”, “TE con”, “DM con”, and “a pos con” stand for the moist static energy
constraint, total energy constraint, dry mass constraint, and constraint of positivity in convective activity, respectively [Colour figure can be
viewed at wileyonlinelibrary.com]

to respect non-Gaussian moments in the PDF shape of
convective activity, as is done via the total energy rela-
tionship. Moreover, it should be stated that our results do
not mean that every single DA experiment benefits from
the total energy constraint. There is a finite probability
of unlucky runs, which can be observed when looking at
the 50 individual experiments used to calculate the above
statistics (not shown here). However, the statistical influ-
ence is significantly positive.

4.2 Comparison of the QPEns with total
energy constraint with the stochastic EnKF
in different observational setups

Since we have illustrated a significant statistical benefit
from the total energy constraint in the experiments in
Section 4.1, in this second study we concentrate on a com-
parison between the QPEns with total energy constraint
and the stochastic EnKF when observing the different
model variables. With this, we are able to show the depen-
dence of the degree of benefit on the observational setup
and draw conclusions about the impact of total energy
conservation on the use of specific observations.

Experimental design

In analogy to Section 4.1, we again run 50 experiments for
1 year of DA followed by 1 year of free forecast. Also, we
again use different subsequent truth simulations for the
individual experiments, but take the same truth and same
observations for the QPEns and stochastic EnKF when
comparing the different setups within one experiment. In
contrast to Section 4.1, these setups are now only com-
paring the QPEns with total energy constraint and the
stochastic EnKF, but with four different sets of observa-
tions. These observations are again taken at every fourth
grid point and time step, but contain only subsets of one
physical variable, that is, u, 𝜃, q, or a, respectively. From
the 50 experiments, we again calculate the means and 95%
Gaussian confidence intervals for the RMSEs and pattern
correlations during the DA and forecast stages for each
observational setup in each experiment. However, we do
not calculate the differences between the error measures
in the QPEns and the EnKF over time, but average the
RMSE and pattern correlation over the last half year of
DA and the first half year of the free forecast for both
filters separately.

http://wileyonlinelibrary.com
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F I G U R E 4 Means and 95% confidence intervals of the RMSEs and pattern correlations averaged over the last half year of DA and the
first half year of free forecast, comparing the QPEns with total energy constraint and the stochastic EnKF for different variable observations.
The statistics are calculated from 50 experiments with different truths and observations, but using the same truth for each of the
observational setups and the same observations for the QPEns and the stochastic EnKF in each individual experiment. Each experiment
includes 1 year of DA and 1 year of free forecast, with observations at every fourth grid point and time step. The upper confidence interval of
the pattern correlation partly reaches values larger than 1, since the statistical distribution is not fully symmetric, but the confidence interval
is calculated based on a Gaussian assumption [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 5 Hovmöller
diagrams of the MJO wave
activity in the truth and
ensemble means of the
stochastic EnKF and the
QPEns with total energy
constraint in the experiment
with stronger non-Gaussianity
in convective activity.
Horizontal black lines:
transition from filtering to
forecast [Colour figure can be
viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 6 RMSE, pattern correlation in the ensemble mean of convective activity, relative ensemble spread (RES), and mean
skewness in the ensemble of convective activity, conservation properties and mass in the ensemble during the experiment with strong
non-Gaussianity for the stochastic EnKF and the QPEns with total energy constraint. Horizontal black lines: perfect RMSE/pattern
correlation and relative ensemble spread, mean climatological skewness in convective activity (0.3406); vertical black lines: transition from
filtering to forecast. The yellow line (QPEns result) is beneath the (horizontal) black line (truth) in the middle right plot (total energy), since
the total energy is constrained to the truth in the QPEns. The dry mass and moist static energy can become negative (top and bottom right
plots), since these are defined as deviations from equilibrium [Colour figure can be viewed at wileyonlinelibrary.com]

Results

Again, the results in Figure 4 clearly indicate the sta-
tistically positive impact of the total energy constraint
throughout all observational setups and all variables, as
well as all waves. The mean error measures are improved
on average and the confidence intervals are narrower, indi-
cating a better and more reliable filtering and forecast skill.
Moreover, the results show that the stochastic EnKF per-
forms worst with observations of potential temperature,
which is also known to be the variable with the smallest
MJO signal in the skeleton model (Majda and Stechmann,
2011), and best with observations of u or a as used in
Section 4.1. In contrast, the QPEns improves the state
estimates most significantly during both the DA and the
forecast period if 𝜃 or q are observed, such that a filter-
ing skill comparable to filtering with u or a observations is
achieved.

Therefore, we arrive at two important conclusions.
First, the total energy constraint can possibly help to
improve DA when using the current operational set
of observations for the MJO, that is, the zonal wind
and the convection activity. Second, an even more sig-
nificant benefit can possibly be seen when trying to
include the observations of other variables that are not
used so far, especially the potential temperature and the
moisture.

4.3 A stronger non-Gaussian test case
for the QPEns with total energy constraint

In order to further explore the potential of the QPEns with
total energy constraint, we study its robustness against the
stochastic EnKF in an experiment that involves stronger
climatological non-Gaussianity in the convective activity.

http://wileyonlinelibrary.com
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F I G U R E 7 Hovmöller
diagrams of the MJO wave activity
in the truth and ensemble means
of the stochastic EnKF and the
QPEns with total energy constraint
in the experiment with standard
non-Gaussianity (parameters as in
Table 1) in convective activity.
Horizontal black lines: transition
from filtering to forecast [Colour
figure can be viewed at
wileyonlinelibrary.com]

Specifically, we alter the default model setup by increas-
ing the background warm-pool parameter from 0.6 to 0.75
(cf. Table 1). This is slightly different from the current cli-
mate, but it is a potential expected situation in the presence
of the acceleration of climate change. Such a modification
increases the possibility for smaller values of convective
activity and enhances its climatological skewness from a
mean value of 0.3251 to 0.3406. Consequently, the error
due to the rudimentary treatment of non-Gaussianity in
our stochastic EnKF, that is, by setting negative values of
convective activity in the analysis ensemble back closely
above zero, is amplified. The ability of the QPEns to han-
dle non-Gaussian situations can therefore be tested more
easily.

Experimental design

In this experiment, we again adopt the observational setup
from Section 4.1, that is, we observe u and a with sparse
observations at every fourth grid point and time step.
Since the adjustment of the model parameters alters the
model climatology, we retune the localization and infla-
tion parameters as described in the Appendix. The new
localization radius and the new constant inflation factor

are both found to be 1; the adaptive inflation stays unaf-
fected.

The experiment is run with 1 year of DA and 1 year
of free forecast for both the QPEns with total energy con-
straint and the stochastic EnKF, using the same truth and
the same set of observations. For comparison, the exper-
iment is repeated with the standard model settings (i.e.,
the background warm-pool parameter being 0.6) and the
original localization and inflation parameters as used in
Sections 4.1 and 4.2. In contrast to Section 4.1, this time
only one single run is performed for each configuration,
since this experiment is not intended to give statistical
insight into the benefits of the total energy constraint, but
to reveal its underlying mechanism.

Results

The results are presented in Figures 5,6 and Figures 7,8 for
the stronger non-Gaussian and the standard setup, respec-
tively. Figures 5 and 7 show the Hovmöller diagrams of
the true MJO and the analysis ensemble means, that is,
best estimates, of the stochastic EnKF and the QPEns with
total energy constraint. Figures 6 and 8 show the RMSEs
and pattern correlations, the relative ensemble spread, the

http://wileyonlinelibrary.com
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F I G U R E 8 RMSE, pattern correlation in the ensemble mean of convective activity, relative ensemble spread (RES), and mean
skewness in the ensemble of convective activity, conservation properties and mass in the ensemble during the experiment with standard
non-Gaussianity (parameters as in Table 1) for the stochastic EnKF and the QPEns with total energy constraint. Horizontal black lines:
perfect RMSE/pattern correlation and relative ensemble spread, mean climatological skewness in convective activity (0.3251); vertical black
lines: transition from filtering to forecast. The yellow line (QPEns result) is beneath the (horizontal) black line (truth) in the middle right plot
(total energy), since the total energy is constrained to the truth in the QPEns. The dry mass and moist static energy can become negative (top
and bottom right plots), since these are defined as deviations from equilibrium [Colour figure can be viewed at wileyonlinelibrary.com]

mean skewness in the convective activity ensemble distri-
bution, and the evolution of the conservation properties in
the ensemble over time.

According to the error measures (top left in Figures 6
and 8), it is obvious that the QPEns with total energy con-
straint performs better in both experiments. However, in
the experiment with the standard setup (Figures 7 and 8),
the stochastic EnKF also converges (top left in Figure 8)
and the wave amplitude pattern is recovered overall (mid-
dle column in Figure 7). Despite being worse than the
QPEns, the ensemble spread and skewness in the EnKF
stay within reasonable ranges (middle and bottom left in
Figure 8). The moist static energy and dry mass fluctuate
in comparable amounts for both filtering algorithms, while
the total energy is conserved in the constrained QPEns and
fluctuates only in the EnKF (right plots in Figure 8).

The situation becomes very different in the stronger
non-Gaussian test case (Figures 5 and 6). Here, the
stochastic EnKF diverges (top left in Figure 6), which

leads to a strong increase in the MJO amplitude, especially
towards the end of the filtering period and the beginning of
the forecast before the MJO wave activity degrades (mid-
dle column in Figure 5). This divergence is connected to an
unrealistic increase in relative ensemble spread and skew-
ness (middle and bottom left in Figure 6) and the conser-
vation properties are also significantly affected (right plots
in Figure 6). In contrast, the QPEns with total energy con-
straint keeps a filtering and forecast quality comparable
with the one in the standard settings experiment.

The mechanism behind the divergence of the stochas-
tic EnKF is illustrated further in Figure 9. It shows the
analysis ensembles, analysis ensemble means, and truth of
the convective activity for both DA algorithms at different
time instants in the stronger non-Gaussian test experi-
ment. In particular, it can be observed (in the upper row)
that small convective activity values, which arise from
the setting of negative values in the EnKF back to values
closely above zero, arise at more and more grid points and

http://wileyonlinelibrary.com
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F I G U R E 9 Truth, ensemble mean/analysis, and individual ensemble members in the stochastic EnKF and the QPEns with total
energy constraint at different time instants during the experiment with stronger non-Gaussianity in the climatological PDF of convective
activity [Colour figure can be viewed at wileyonlinelibrary.com]

ensemble members with increasing filtering time. This
accumulation is specifically sustained, since small convec-
tive activity hardly evolves in the model due to the nonlin-
ear oscillator relationship in Equation 2d. The consequen-
tial misestimation of the PDF shape is a self-amplifying
effect, since the related decrease in Gaussianity makes the
problem less and less suitable for a Gaussianity-based filter
algorithm and thus leads to further errors in the estimated
PDF. The result is an unreasonable ensemble inflation.

It is important to mention that a divergence compa-
rable with that of the stochastic EnKF is found in the
stronger non-Gaussian test case when using the QPEns
with any other constraints, that is, the moist static energy
constraint, positivity constraint, mass constraint, or any
combinations of these. The corresponding experiments are
not shown here, but highlight the fact that it is specif-
ically the total energy constraint that can prevent filter
divergence in stronger non-Gaussian situations.

5 DISCUSSION
AND CONCLUSIONS

In this article, we test a QPEns with different physical con-
straints against its underlying stochastic EnKF in identical
twin experiments with the skeleton model. In a realis-
tic observational setup, in particular, the constraint to the
total energy in the truth, which is conserved throughout
the model’s nature run, has a significant positive impact on
the overall filtering and forecast skill. Interestingly, even if
for some waves the statistical error from the truth remains
approximately the same as in the stochastic EnKF during

the DA stage, their prediction benefits remarkably from
the improved initial state. The physically more accurate
analysis mitigates the error growth in the free forecast,
which is determined particularly by the nonlinear model
dynamics. Moreover, we investigate further the QPEns
with total energy constraint in combination with differ-
ent observational setups and show that it has the potential
to strongly increase the benefit from observations that are
less useful in the stochastic EnKF. Lastly, we use a test case
with increased climatological non-Gaussianity in convec-
tive activity to demonstrate that, under certain circum-
stances, the QPEns can even prevent filter divergence that
occurs in the stochastic EnKF. The nonlinear total energy
relationship, which automatically includes the positivity
of convective activity, is particularly useful to reproduce
non-Gaussian moments in the PDF estimates.

Our findings highlight the potential of the QPEns to
outperform DA algorithms that are based on Gaussian
assumptions, especially in non-Gaussian situations. This
is in line with earlier works on the QPEns as by Janjić et al.
(2014), Zeng et al. (2017), and Ruckstuhl and Janjić (2018).
Nevertheless, the interpretation of the results here can go
beyond that, since the skeleton model is considered to rep-
resent a realistic approximation of some main large-scale
MJO dynamics. Knowledge about the relevance of the
total energy constraint for DA in this idealized model can
thus serve as a first hint for possible important real-world
large-scale relationships. At least, it underlines the need to
go beyond Gaussianity-based filtering when aiming for an
improved DA for intraseasonal forecasts in the Tropics.

Nevertheless, it should be noted that the skeleton
model in the version used for our study is much less
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complex than fully developed subseasonal to seasonal
numerical weather prediction (NWP) models. The skele-
ton model, by its design, focuses on the characterization of
planetary-scale dynamics, whereas mesoscale details are
highly simplified or parameterized. Thus, it is only suit-
able for simulating large-scale MJO features. Moreover, it
is worthwhile to note that our study is based on identical
twin experiments instead of comparisons with real-world
observations. The predictability in this setup is unrealisti-
cally high for small errors in the initial conditions, which
is directly understandable from the deterministic nature of
the model version we use. The study thus cannot be com-
pared with results from other MJO predictability studies
that investigate operational forecasts based on GCMs, such
as those by Vitart (2017) or Wang et al. (2019). Rather, all
results presented should be interpreted as relative bene-
fits of the QPEns with respect to its underlying stochastic
EnKF in our simplified setup and not as absolute measures
for the real-world MJO prediction skill.

In line with this, future work includes testing the
total energy constrained QPEns with more sophisticated
setups in order to verify the significance of our results for
advances in tropical DA. A natural next step is to proceed
with the available extended versions of the skeleton model,
i.e., with additional stochasticity or a refined meridional
or vertical structure (see Thual et al., 2014; 2015; Thual
and Majda, 2016). However, besides this, the proposed
DA algorithm should also be tested on other MJO models,
for example, the MJO moisture mode theory (Sobel and
Maloney, 2012; 2013) and the model in Stechmann and
Hottovy (2017). Using a more detailed model, the total
energy constrained QPEns could then also be tested with
real observational data projected on the model basis as
shown for the stochastic skeleton model in Ogrosky and
Stechmann (2015). However, for such extended investiga-
tions it will also be necessary to refine the DA system, for
example, for the inclusion of a model error estimation. The
ultimate goal is to understand the role of the constrained
DA for MJO forecasts by testing it in a series of setups with
increasing degrees of freedom, that is, approaching a full
NWP system.

In addition, another important direction is to explore
the operational applicability of the QPEns algorithm. The
main challenges here are the increased computational
demand and the necessity to estimate the constraint’s
value without knowing the true atmospheric state. With
respect to the computational speed, there are two aspects
to consider: first the ensemble size, since the minimiza-
tion is done for each ensemble member, and second the
number and type, that is, linearity or nonlinearity, of
the constraints, which determine the complexity of the
minimizations. In practice, one would not use standard
Matlab routines, but a minimization algorithm tailored

to the high-dimensional system. Such algorithms are cur-
rently under development. For example, Janjić et al. (2021)
reduced the computational cost of a QPEns to a third
of its original cost by exploiting the fact that the posi-
tivity constraint and mass constraint are disjoint, which
allows for the use of projection algorithms. They showed
how to modify the conjugate gradient minimization to
achieve faster, but accurate results. Moreover, Ruckstuhl
et al. (2021) found that it is possible to improve the com-
putational speed of a QPEns with the use of neural net-
works and Ruckstuhl and Janjić (2018) showed that a
QPEns can outperform the EnKF even for small ensem-
ble sizes. In short, the QPEns algorithm could be used
in operational practice with careful consideration of the
ensemble size and minimization algorithm. For the total
energy constrained QPEns in particular, a first reduction
of computational expense without significant accuracy
loss can be achieved by a linearization of the nonlinear
total energy relationship around the current background
value in each update step (see Gleiter, 2021). This more-
over enables an even less expensive implementation as
pseudo-observation, which in addition allows us to quan-
tify the uncertainty in the constraint.

Finally, the current study can also be extended beyond
its focus on the MJO and related tropical waves, specifi-
cally to other MJO-related weather and climate phenom-
ena. One particular interesting topic is to investigate the
total energy constrained QPEns when applied to coupled
MJO–ENSO models, which were developed recently by
Thual et al. (2018) and Yang et al. (2021). These models
involve an ocean contribution in addition to a modifica-
tion of the skeleton model as the atmospheric compo-
nent. A coupling of a robust DA routine for the skele-
ton model, which is based on our results, can thus serve
to examine the influence of the MJO DA on forecasting
ENSO.
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Janjić, T., McLaughlin, D., Cohn, S.E. and Verlaan, M. (2014)
Conservation of mass and preservation of positivity with
ensemble-type Kalman filter algorithms. Monthly Weather
Review, 142, 755–773.
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Ruckstuhl, Y., Janjić, T. and Rasp, S. (2021) Training a convolutional
neural network to conserve mass in data assimilation. Nonlinear
Processes in Geophysics, 28, 111–119.

https://orcid.org/0000-0001-7807-3048
https://orcid.org/0000-0001-7807-3048
https://orcid.org/0000-0002-8837-0879
https://orcid.org/0000-0002-8837-0879


1054 GLEITER et al.
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APPENDIX A. INFLATION AND LOCALIZA-
TION

The localization aims to alleviate erroneous corre-
lations in the background-error covariance matrix Pb

k
that is used to calculate the Kalman gain. We use a
covariance localization, in which we Schur-multiply Pb

k
with a positive semidefinite matrix containing entries ∈
[0, 1] before each DA update. This localization matrix
 is constructed as the sum of climatology-based and
distance-depending damping contributions. The former
approximately represents the typical bivariate correla-
tion strengths and is constructed by the following steps
from the covariance matrix of 12,200 (100 years, every
three days) climatological samples starting after 10 years of
model spin-up:
• transformation of all matrix entries to their absolute

values;
• eigenvalue decomposition of the matrix and construc-

tion of a similar positive semidefinite matrix from all
eigenvectors to eigenvalues ≥ 0;

• adding the absolute value of the smallest negative
matrix entry to all entries;

• scaling all entries with the standard deviations of the
variables concerned.

The distance-dependent damping for the second con-
tribution to the localization matrix is calculated accord-
ing to a fifth-order compactly supported Gaspari–Cohn
function (see Gaspari and Cohn, 1999). The ratio of its



GLEITER et al. 1055

F I G U R E A1 Left: climatology-based localization matrix calculated from 12,200 (100 years, every three days) samples from a nature
run starting after 10 years of model spin-up; right: calibration of the distance-dependent localization for 50 ensemble members, vertical line
at the adopted value of 0.5. The y-axis shows the mean relative error in 1,000 localized covariance matrices, each calculated from a different
50-member subset of the climatological 12,200 member ensemble, with respect to the full climatological covariance matrix. The error
calculation is performed for different localization radii; the climatology-based localization is applied throughout [Colour figure can be viewed
at wileyonlinelibrary.com]

T A B L E A1 Manually tuned constant inflation factors (additional to the adaptive inflation) for the
observational setups used in this article

Observations
Constant inflation
factor

u every fourth grid point and time step 1.0001

𝜃 every fourth grid point and time step 1.0008

q every fourth grid point and time step 1.0005

a every fourth grid point and time step 0.9998

u and a every fourth grid point and time step 1.0001

corresponding Gaussian’s standard deviation to the whole
zonal model domain (i.e., 40,000 km) is further referred
to as the localization radius. That is, a localization radius
of 0.5 means that covariances of variables with a dis-
tance of 20,000 km are approximately dampened by a
factor 1∕e. To determine the best localization radius for
our ensemble size of 50 members, we test a number
of different localization radii in combination with the
climatology-based localization. We therefore apply the
localization on covariance matrices calculated from 1000
different subsets of 50 members from the climatological
12,200 member ensemble. Thereafter, we calculated the
mean relative error in the localized covariance matrix

entries with respect to the full climatological covariance
matrix. From this, we derive a suitable localization radius
of 0.5 (cf. Figure A1).

The inflation aims to increase the underestimated error
covariance artificially and is applied as a second mea-
sure in combination with localization. To set up an infla-
tion routine, in a first step, the localization is assumed
to be perfect. Then, an adaptive inflation factor is cal-
culated, which rescales the ensemble such that the trace
of its analysis-error covariance Pa

kens meets the theoret-
ically expected variance in the analysis-error covariance
Pa

kth that is retrieved from an exact (not ensemble-based)
Kalman filter update with the localized background-error
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covariance. This factor (𝛽k+1, since applied to the back-
ground in the next assimilation step) is calculated as

𝛽k+1 =

√
tr(Pa

kth)
tr(Pa

kens)

=

√√√√√ tr
(◦Pb

k − [◦Pb
k]H

T
k

(
Hk[◦Pb

k]H
T
k + Rk

)−1 Hk[◦Pb
k]
)

tr
(
Pa

k

) . (A1)

In our setup, we observe a large benefit from this
adaptive inflation routine; however, one should note that
this procedure is only applicable in a simplified model
setting due to its computational demand, and also is
not robust with respect to changes in the localization
technique. Such remaining errors, that is, imperfections in
the localization and other neglected error sources that con-
tribute to the ensemble collapse, are likely the reason that

we find a further improvement in the maintenance of a
reasonable ensemble spread when we apply an additional

heuristically tuned constant inflation factor. This factor
is dependent on the observational setup and its values
for the experiments in this article are listed in Table A1.
All inflation is applied to the background ensemble, such
that the destruction of potential nonlinear constraints
in the analysis is avoided and the occurrence of nega-
tive convective activity values in the analysis ensemble is
reduced.


