
1.  Introduction
The adequate parameterization of solute transport in natural, inherently heterogeneous formations has been the 
subject of intensive research in hydrogeology and environmental engineering over the last four decades. Classi-
cal Fickian macrodispersion concepts, parameterizing the effects of unresolved spatial variability on field-scale 
transport by a diffusion-type macrodispersion term with constant coefficients, can neither reproduce the evolu-
tion of solute spreading over shorter distances and travel times nor can it predict long tailing observed in field 
investigations (e.g., Adams & Gelhar, 1992; Haggerty et al., 2001; Kang et al., 2015). First-order perturbative 
approaches, typically assuming second-order stationary multi-Gaussian log-hydraulic conductivity (ln K) fields 
and uniform-in-the-mean hydraulic gradients, are good in predicting second-central spatial moments of solute 
plumes as long as the variance of ln K remains small (Gelhar & Axness, 1983; Dagan, 1984; Dentz et al., 2000; 
Fiori, 2001; Neuman et al., 1987, among others). These techniques have been transferred to the prediction of 
temporal moments of solute plumes passing observation planes (e.g., Cvetkovic et al., 1992, 1996; Shapiro & 
Cvetkovic, 1988). The perturbative approaches are not only limited to small variances of ln K, but also fall short 
of predicting full spatial concentration profiles or breakthrough curves without additional assumptions, because 
they exclusively target concentration moments. Conversely, they offer a rigorous framework to relate properties 
of the formation and the mean flow field to metrics of solute spreading.

Alternative parameterizations of field-scale solute transport in heterogeneous formations include (a) the frac-
tional advection-dispersion equation, involving non-integer spatial and/or temporal derivatives (e.g., Benson 
et  al.,  2000), (b) multi-continuum approaches, assuming overlapping continua with different mobility (e.g., 
Ahmadi et  al.,  1998; Cherblanc et  al.,  2003; Haggerty & Gorelick,  1995; Li et  al.,  2011), (c) Time-Domain 
Random Walk (TDRW) models, parameterizing uncorrelated travel-time distributions between observation planes 
(e.g., Cvetkovic et  al., 2014), and (d) Continous-Time Random-Walk (CTRW) formulations, in which spatial 
random walks are combined with random waiting-time distributions (e.g., Berkowitz et al., 2006; Berkowitz & 
Scher, 1997), see also the review by Noetinger et al. (2016). Despite success reports on fitting these models to 
observed breakthrough curves, it remains a challenge to derive the coefficients appearing in these parameteriza-
tions from properties of the formation and large-scale boundary conditions.
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A key assumption of standard TDRW and CTRW formulations is that individual random-walk steps are uncor-
related. Le Borgne et al. (2008) introduced a variant of TDRW or CTRW, in which transition times, or particle 
velocities, between fixed observation planes are modeled as first-order Markov processes. We refer to this model 
in the following as Spatial Markov Model (Sherman et al., 2021) because the transition time and velocity of 
particles evolve with spatial distance instead of time. In essence, the slowness (i.e., the inverse velocity, e.g., 
Gotovac et al., 2009) of a solute particle, and thus the time increment from one observation plane to the next, is 
considered a first-order Markov process, in which the current time increment is conditioned on the preceding one. 
The approach requires either a transition matrix, that is, a discrete joint distribution of two consecutive stepsizes 
(Le Borgne et al., 2008), or a parametric model serving the same purpose. Massoudieh et al. (2017) compared 
joint distributions with three different (log-normal, truncated power-law, and Levy) marginal distributions and 
a Gaussian copula to describe the statistical dependence. The latter implies that a normal-score transforma-
tion of the marginal distributions lead to a bivariate normal distribution. Morales et al. (2017) used a bivariate 
log-normal distribution of particle speeds with a Gaussian copula to model pore-scale particle motion from 
particle tracking data in a three-dimensional porous medium. Dentz et al. (2020) used the skewed log-normal 
distribution with a Gaussian copula. Restricting to a bivariate log-normal distribution, however, does not only 
agree fairly well with numerically obtained velocity distributions in multi-Gaussian log-conductivity fields (e.g., 
Englert et al., 2006; Nowak et al., 2008), but also has convenient properties outlined in Appendix A. The present 
study analyzes properties of CTRW and TDRW based on a Spatial Markov Model using the bivariate log-normal 
distribution in order to predict travel-time-based solute dispersion.

Dentz et  al.  (2016) and Morales et  al.  (2017) proposed explicit analytical Markov models for the evolution 
of particle speeds and thus travel time increments for purely advective transport that have been employed to 
predict large-scale transport in highly heterogeneous porous and fractured media (Comolli et al., 2019; Hyman & 
Dentz, 2021; Puyguiraud et al., 2019). Spatial Markov Models naturally generate the evolution of solute spread-
ing. Because random-walk simulations of the spatial Markov process are computationally very efficient, full 
breakthrough curves can easily be generated by following a sufficiently large ensemble of particles. Recently, 
Sherman et al. (2021) reviewed the original development, applications and extensions of the approach.

Like in many preceding studies, we will neglect local dispersion in the present analysis. Upon this restriction, the 
Lagrangian velocity of a single particle at a given point is identical to the corresponding Eulerian velocity at that 
point. Local dispersion is known to affect longitudinal ensemble dispersion only to a small extent (e.g., Dagan 
& Fiori, 1997). This is different for effective dispersion of plumes related to a point injection, for which Spatial 
Markov Models have not been developed.

The present contribution takes a closer look onto Spatial Markov Models characterized by bivariate log-normal 
distributions of successive travel-time steps. In particular, we derive analytical expressions of the mean arrival 
time and travel-time based ensemble dispersion for flux- and volume-weighted injections. We also analyze how 
well the approach compares to numerical simulations of advective transport in 3-D heterogeneous domains with 
isotropic correlation structure of the log-hydraulic conductivity field, attempting to relate the coefficients of the 
Spatial Markov Model to parameters describing the variability of the log-conductivity field.

2.  Theory
2.1.  Spatial Markov Process

In CTRW or TDRW approaches, the movement of a particle is described in spatial increments of Δx in the direc-
tion of mean flow by the following updating rule (Le Borgne et al., 2008):

𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 + Δ𝑥𝑥𝑥� (1)

𝜏𝜏𝑖𝑖+1 = 𝜏𝜏𝑖𝑖 + 𝛼𝛼𝑖𝑖Δ𝑥𝑥𝑥� (2)

in which αi = α(xi) is the slowness, that is, the inverse particle velocity u(xi) in the direction of mean flow, expe-
rienced by the particle at location xi:

𝛼𝛼 (𝑥𝑥𝑖𝑖) =
1

𝑢𝑢 (𝑥𝑥𝑖𝑖)
,� (3)
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The effective particle velocity in direction x is 𝐴𝐴 𝐴𝐴 (𝑥𝑥𝑖𝑖) = ‖𝐯𝐯 (𝑥𝑥𝑖𝑖) ‖2∕𝜒𝜒 , where 
v(xi) is the true velocity vector of the particle, the overline denotes aver-
aging over the path segment, and χ is the advective tortuosity (Puyguiraud 
et  al.,  2019). Figure  1 illustrates the principle. In cases in which the 
path-velocity component in direction x is locally negative, the approach 
considers the time until first arrival at an observation plane. By this, u is 
always positive. In Section 3, we discuss how we estimate the tortuosity of a 
velocity field without following individual trajetories.

The effective particle speed ui in direction x is expressed by a first-order 
Markov process, denoted spatial Markov process. This implies that in subse-
quent CTRW/TDRW steps, the slowness αi+1 is drawn from the conditional 
distribution pi+1,i(α|α′) where α′ is the value of αi in the previous step. The 
conditional distribution satisfies the Chapman-Kolmogorov equation:

𝑝𝑝𝑖𝑖𝑖𝑖𝑖
(
𝛼𝛼|𝛼𝛼′

)
=

∞

∫
0

𝑝𝑝𝑖𝑖𝑖𝑖𝑖
(
𝛼𝛼|𝛼𝛼′′

)
𝑝𝑝𝑘𝑘𝑘𝑘𝑘

(
𝛼𝛼
′′|𝛼𝛼′

)
𝑑𝑑𝑑𝑑

′′� (4)

for i > k > j. The joint distribution of αi and αj is given by pi,j(α, α′) = pi,j(α|α′)pj(α′), where pj(α′) is the distribu-
tion of slowness after j steps. From this, we obtain the evolution of the distribution pi(α) with increasing number 
of steps, or equivalently with increasing spatial distance, from an initial distribution p0(α):

𝑝𝑝𝑖𝑖(𝛼𝛼) =

∞

∫
0

𝑝𝑝𝑖𝑖𝑖0
(
𝛼𝛼|𝛼𝛼′

)
𝑝𝑝0

(
𝛼𝛼
′
)
𝑑𝑑𝑑𝑑

′
.� (5)

At a sufficiently large travel distance for transport in a stationary velocity field, typically much larger than the 
correlation length of the ln K-field, pi(α) converges toward the asymptotic distribution p∞(α). That is, if the initial 
distribution p0(α) equals the asymptotic distribution p∞(α), the distribution pi(α) of particle slowness remains 
p∞(α) in all steps. If the initial distribution p0(α) ≠ p∞(α), then pi(α) evolves toward p∞(α) according to Equation 5.

The distribution pi(α) is related to the distribution 𝐴𝐴 𝐴𝐴𝑢𝑢
𝑖𝑖
(𝑢𝑢) of particle velocities at step i through 𝐴𝐴 𝐴𝐴𝑖𝑖(𝛼𝛼) = 𝑝𝑝𝑢𝑢

𝑖𝑖
(1∕𝛼𝛼)∕𝛼𝛼2 

because α = 1/u. The asymptotic distribution of flow velocities is denoted by pf(u) such that p∞(α) = pf(1/α)/α 2. 
As the fluid flux arranges itself to be concentrated in high-velocity regions, the distribution pf(u) is given by the 
flux-weighted (effective) Eulerian velocity distribution (Dentz et al., 2016):

𝑝𝑝𝑓𝑓 (𝑢𝑢) =
𝑢𝑢

𝜇𝜇𝑣𝑣𝑣𝑣𝑣

𝑝𝑝𝑣𝑣(𝑢𝑢),� (6)

where pv(u) denotes the (effective) Eulerian velocity distribution and μv,u its mean. The subscript f refers to 
flux-weighting. The subscript v refers to the fact that the Eulerian velocity distribution is obtained by volumetric 
sampling. From these considerations, we see that the mean slowness in this asymptotic limit is μα = 1/μv,u.

We consider here two injection modes: flux- and volume-weighted. For a flux-weighted injection, the initial 
velocity distribution equals the asymptotic distribution pf(u). This implies that the distribution pi(α) of αi equals 
the asymptotic distribution p∞(α). For the volume-weighted injection, the initial velocity distribution equals the 
Eulerian distribution pv(u). In this case, the initial distribution p0(α) of α0 is not stationary, and the slowness 
statistics pi(α) evolve according to Equation 4 as outlined above.

In the following, we normalize the effective velocity u, slowness α, distance x, and time t with the mean Eulerian 
velocity μv,u, and a characteristic length of the formation, which we set to the integral scale λlnK of log-hydraulic 
conductivity variations within that formation:

𝑢𝑢∗ =
𝑢𝑢

𝜇𝜇𝑣𝑣𝑣𝑣𝑣

, 𝛼𝛼∗ = 𝛼𝛼𝛼𝛼𝑣𝑣𝑣𝑣𝑣, 𝑥𝑥∗ =
𝑥𝑥

𝜆𝜆ln𝐾𝐾

, 𝑡𝑡∗ =
𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣𝑣

𝜆𝜆ln𝐾𝐾

,� (7)

in which properties with an asterisk are dimensionless. For simplicity of notation, we drop the asterisks in the 
following. Upon this normalization, the mean asymptotic slowness equals one, μα = 1.

Figure 1.  Illustration of particle trajectories. While the true trajectories 
are tortuous with path length Δsi over segment i, the Spatial Markov Model 
considers only the distance Δx in the longitudinal direction. The effective 
velocity u is given by dividing the velocity along the path by the ratio 
χ = Δs/ Δx.

∆x

∆s
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2.2.  Bivariate Log-Normal Distribution

2.2.1.  Velocities

Many theoretical and numerical studies assume a log-normal distribution of hydraulic conductivity. As the local 
Eulerian velocity is the hydraulic conductivity times the local hydraulic gradient divided by the porosity, devi-
ations of the Eulerian velocity distribution from the log-normal case result from the interactions between the 
log-conductivity variations and hydraulic-gradient variations. These deviations have been found small in numeri-
cal studies (e.g., Dentz et al., 2020; Englert et al., 2006; Nowak et al., 2008). We thus make the conceptual choice 
that the effective Eulerian velocity distribution is log-normal:

𝑝𝑝𝑣𝑣(𝑢𝑢) =
1

𝑢𝑢

√

2𝜋𝜋𝜋𝜋2

ln𝑢𝑢

exp

(

−
(ln𝑢𝑢 − 𝜇𝜇𝑣𝑣𝑣ln𝑢𝑢)

2

2𝜎𝜎2

ln𝑢𝑢

)

,� (8)

where μv, lnu and 𝐴𝐴 𝐴𝐴2

ln𝑢𝑢
 are the mean and variance of the log-Eulerian velocity. Then the mean and variance of the 

non-logarithmic Eulerian velocity are given by:

𝜇𝜇𝑣𝑣𝑣𝑣𝑣 = exp

(

𝜇𝜇𝑣𝑣𝑣ln𝑢𝑢 +
𝜎𝜎2

ln𝑢𝑢

2

)

= 1,� (9)

𝜎𝜎
2
𝑣𝑣𝑣𝑣𝑣 =

(
exp

(
𝜎𝜎
2

ln𝑢𝑢

)
− 1

)
exp

(
2𝜇𝜇𝑣𝑣𝑣ln𝑢𝑢 + 𝜎𝜎

2

ln𝑢𝑢

)
= exp

(
𝜎𝜎
2

ln𝑢𝑢

)
− 1.� (10)

Note that Equation 9 implies that 𝐴𝐴 𝐴𝐴𝑣𝑣𝑣ln𝑢𝑢 = −𝜎𝜎2

ln𝑢𝑢
∕2 . Conversely, the moments of the log-Eulerian velocity can be 

expressed in terms of the mean μv,u and variance 𝐴𝐴 𝐴𝐴2
𝑣𝑣𝑣𝑣𝑣 of the non-logarithmic Eulerian velocity by (e.g., Zerovnik 

et al., 2013):

𝜇𝜇𝑣𝑣𝑣ln𝑢𝑢 = ln

⎛
⎜
⎜
⎜
⎝

𝜇𝜇2
𝑣𝑣𝑣𝑣𝑣

√

𝜎𝜎2
𝑣𝑣𝑣𝑣𝑣 + 𝜇𝜇2

𝑣𝑣𝑣𝑣𝑣

⎞
⎟
⎟
⎟
⎠

= ln

⎛
⎜
⎜
⎜
⎝

1
√

𝜎𝜎2
𝑣𝑣𝑣𝑣𝑣 + 1

⎞
⎟
⎟
⎟
⎠

,� (11)

𝜎𝜎
2

ln𝑢𝑢
= ln

(
𝜎𝜎2
𝑣𝑣𝑣𝑣𝑣

𝜇𝜇2
𝑣𝑣𝑣𝑣𝑣

+ 1

)

= ln
(
𝜎𝜎
2
𝑣𝑣𝑣𝑣𝑣 + 1

)
.� (12)

As outlined in Appendix A, the fact that pv(u) is log-normal implies that the flux-weighted velocity distribution 
pf(u) is also log-normal with:

𝜇𝜇𝑓𝑓𝑓ln𝑢𝑢 = 𝜇𝜇𝑣𝑣𝑣ln𝑢𝑢 + 𝜎𝜎
2

ln𝑢𝑢
=

𝜎𝜎2

ln𝑢𝑢

2
= −𝜇𝜇𝑣𝑣𝑣ln𝑢𝑢.� (13)

The mean and variance μf,u and 𝐴𝐴 𝐴𝐴2

𝑓𝑓𝑓𝑓𝑓
 of the flux-weighted velocity distribution pf(u) are then given by (e.g., 

Zerovnik et al., 2013):

𝜇𝜇𝑓𝑓𝑓𝑓𝑓 = exp

(

𝜇𝜇𝑓𝑓𝑓ln𝑢𝑢 +
𝜎𝜎2

ln𝑢𝑢

2

)

= exp
(
𝜎𝜎
2

ln𝑢𝑢

)
,� (14)

𝜎𝜎
2

𝑓𝑓𝑓𝑓𝑓
=
(
exp

(
𝜎𝜎
2

ln𝑢𝑢

)
− 1

)
exp

(
2𝜇𝜇𝑓𝑓𝑓ln𝑢𝑢 + 𝜎𝜎

2

ln𝑢𝑢

)
=
(
exp

(
𝜎𝜎
2

ln𝑢𝑢

)
− 1

)
exp

(
2𝜎𝜎

2

ln𝑢𝑢

)
.� (15)

In the asymptotic limit, we assume that the joint distribution 𝐴𝐴 𝐴𝐴𝑢𝑢
𝑖𝑖𝑖𝑖𝑖
(𝑢𝑢𝑢 𝑢𝑢′) of Lagrangian velocities ui  =  u and 

uj = u′ in steps i and j, respectively, is the bivariate log-normal distribution (e.g., Zerovnik et al., 2013) with the 
flux-weighted velocity distribution pf(u) as the marginal distribution of both ui and uj:

𝑝𝑝𝑢𝑢
𝑖𝑖𝑖𝑖𝑖
(𝑢𝑢𝑢 𝑢𝑢′) =

1

2𝜋𝜋𝜋𝜋𝜋𝜋′𝜎𝜎2
ln𝑢𝑢

√
1−𝑟𝑟2

𝑖𝑖𝑖𝑖𝑖

⋅

exp

⎛
⎜
⎜
⎜
⎝

−
1

2𝜎𝜎2
ln𝑢𝑢

[
ln𝑢𝑢 − 𝜇𝜇𝑓𝑓𝑓ln𝑢𝑢, ln𝑢𝑢

′ − 𝜇𝜇𝑓𝑓𝑓ln𝑢𝑢

] ⎡
⎢
⎢
⎣

1 𝑟𝑟𝑖𝑖𝑖𝑖𝑖

𝑟𝑟𝑖𝑖𝑖𝑖𝑖 1

⎤
⎥
⎥
⎦

−1

⎡
⎢
⎢
⎣

ln𝑢𝑢 − 𝜇𝜇𝑓𝑓𝑓ln𝑢𝑢

ln𝑢𝑢′ − 𝜇𝜇𝑓𝑓𝑓ln𝑢𝑢

⎤
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎠

,

� (16)
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where ri,j denotes the correlation coefficient between steps i and j, and square brackets, [⋅], denote vectors and 
matrices. The use of a bivariate log-normal distribution for the particle velocities is equivalent to representing 
the series of log-velocities by an Ornstein-Uhlenbeck process as done in Morales et al. (2017), which follows 
Gaussian statistics. According to the Doob theorem (Doob, 1942), any stationary Gaussian process is necessarily 
an Ornstein-Uhlenbeck process, which motivates the use of the bivariate log-normal distribution here.

Consistently, the conditional distribution 𝐴𝐴 𝐴𝐴𝑢𝑢
𝑖𝑖𝑖𝑖𝑖
(𝑢𝑢|𝑢𝑢′) of the velocity ui = u of a single particle in step i, given that 

its velocity in step j is uj = u′, equals the conditional log-normal distribution:

𝑝𝑝
𝑢𝑢

𝑖𝑖𝑖𝑖𝑖

(
𝑢𝑢|𝑢𝑢′

)
=

1

𝑢𝑢

√

2𝜋𝜋𝜋𝜋2

ln𝑢𝑢

(
1 − 𝑟𝑟2

𝑖𝑖𝑖𝑖𝑖

)
exp

(

−
(ln𝑢𝑢 − 𝜇𝜇𝑓𝑓𝑓ln𝑢𝑢 − (ln𝑢𝑢′ − 𝜇𝜇𝑓𝑓𝑓ln𝑢𝑢) 𝑟𝑟𝑖𝑖𝑖𝑖𝑖)

2

2𝜎𝜎2

ln𝑢𝑢

(
1 − 𝑟𝑟2

𝑖𝑖𝑖𝑖𝑖

)

)

,� (17)

The Chapman-Kolmogorov Equation 4 requires that ri,j = ri,krk,j is independent of k. This implies that 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖𝑖 = 𝑟𝑟
𝑖𝑖−𝑗𝑗

0
 , in 

which r0 is the correlation coefficient of a single transition. We can associate r0, which depends on the step-size 
Δx of a single transition, to the integral scale λlnu of ln u(x), which is independent of the discretization:

𝑟𝑟0 = exp

(

−
Δ𝑥𝑥

𝜆𝜆ln𝑢𝑢

)

.� (18)

Note that the joint distribution of Equation 16 is formulated for the asymptotic limit at which the velocity distri-
bution of all particles does not change anymore upon transitions, whereas the conditional distribution 𝐴𝐴 𝐴𝐴𝑢𝑢

𝑖𝑖𝑖𝑖𝑖
(𝑢𝑢|𝑢𝑢′) 

of Equation 17 does not require a particular distribution of the particle velocity at the preceding step j. However, 
Equation 17 and 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖𝑖 = 𝑟𝑟

𝑖𝑖−𝑗𝑗

0
 guarantee that, after many transitions, the Lagrangian velocity distribution approaches 

the asymptotic distribution pf(u), regardless of the initial distribution. This is evident as ri,j converges toward zero 
for i ≫ j, so that 𝐴𝐴 𝐴𝐴𝑢𝑢

𝑖𝑖𝑖𝑖𝑖
(𝑢𝑢|𝑢𝑢′) becomes independent of u′ and converges toward pf(u).

2.2.2.  Slowness

As the slowness is the inverse of the particle velocity, its asymptotic distribution p∞(α) is also log-normally 
distributed, where the mean and variance μlnα and 𝐴𝐴 𝐴𝐴2

ln𝛼𝛼
 are given by.

𝜇𝜇ln𝛼𝛼 = −𝜇𝜇𝑓𝑓𝑓ln𝑢𝑢 = −
𝜎𝜎2

ln𝑢𝑢

2
= 𝜇𝜇𝑣𝑣𝑣ln𝑢𝑢,� (19)

𝜎𝜎
2

ln𝛼𝛼
= 𝜎𝜎

2

ln𝑢𝑢
.� (20)

This property of the log-normal distribution implies that the asymptotic distribution p∞(α) of the normalized 
slowness is identical to the volume-weighted Eulerian velocity distribution. The mean and variance of p∞(α) are 
then given by:

𝜇𝜇𝛼𝛼 = 1,� (21)

𝜎𝜎
2
𝛼𝛼 = 𝜎𝜎

2
𝑣𝑣𝑣𝑣𝑣,� (22)

and the conditional distribution of the slowness is given by:

𝑝𝑝𝑖𝑖𝑖𝑖𝑖
(
𝛼𝛼|𝛼𝛼′

)
=

1

𝛼𝛼

√

2𝜋𝜋𝜋𝜋2

ln𝑢𝑢

(
1 − 𝑟𝑟

2(𝑖𝑖−𝑗𝑗)

0

)
exp

(

−

(
ln𝛼𝛼 − 𝜇𝜇𝑓𝑓𝑓ln𝑢𝑢 − (ln𝛼𝛼′ − 𝜇𝜇𝑓𝑓𝑓ln𝑢𝑢) 𝑟𝑟

𝑖𝑖−𝑗𝑗

0

)2

2𝜎𝜎2

ln𝑢𝑢
(1 − 𝑟𝑟2(𝑖𝑖−𝑗𝑗))

)

,� (23)

As outlined above, for a flux-weighted injection, the initial distribution p0(α) of slowness equals its asymptotic 
distribution p∞(α). For a uniform injection into the volume, by contrast, the initial distribution p0(α) is log-normal 
with:

𝜇𝜇0,ln𝛼𝛼 = −𝜇𝜇𝑣𝑣𝑣ln𝑢𝑢,� (24)
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𝜎𝜎
2

0,ln𝛼𝛼
= 𝜎𝜎

2

ln𝑢𝑢
.� (25)

That is, in case of a volume-weighted injection the initial distribution of the slowness is identical to the 
flux-weighted Eulerian velocity distribution. Again a property of the log-normal distribution.

2.2.2.1.  Mean

The mean slowness is defined by:

⟨𝛼𝛼𝑖𝑖⟩ =

∞

∫
0

𝛼𝛼𝛼𝛼𝑖𝑖(𝛼𝛼)𝑑𝑑𝑑𝑑𝑑� (26)

where pi(α) is given by Equation 5. The angular brackets, 〈⋅〉, denote the average over all particles. In case of a 
flux-weighted injection, the initial distribution p0(α) equals the asymptotic distribution p∞(α), and so does pi(α) 
in all steps i. Under this condition, the mean slowness 〈αi〉 is unity in all steps. If the initial distribution is also 
log-normal with identical variance of the log-slowness, namely 𝐴𝐴 𝐴𝐴2

ln𝑢𝑢
 , but different mean 𝐴𝐴 𝐴𝐴ln𝛼𝛼0

 , then pi(α) is also 
log-normal, with the same variance 𝐴𝐴 𝐴𝐴2

ln𝑢𝑢
 and the following mean 𝐴𝐴 𝐴𝐴ln𝛼𝛼𝑖𝑖

 of ln αi:

𝜇𝜇ln𝛼𝛼𝑖𝑖
= 𝜇𝜇𝑣𝑣𝑣ln𝑢𝑢 +

(
𝜇𝜇ln𝛼𝛼0

− 𝜇𝜇𝑣𝑣𝑣ln𝑢𝑢

)
𝑟𝑟
𝑖𝑖

0
.� (27)

The mean slowness is then given by:

⟨𝛼𝛼𝑖𝑖⟩ = exp

(

𝜇𝜇ln𝛼𝛼𝑖𝑖
+

𝜎𝜎2

ln𝑢𝑢

2

)

.� (28)

2.2.2.2.  Covariance

The covariance Cij of slowness at steps i and j is defined in terms of the marginal distribution pj(α) of αj and the 
conditional probability pij(α|α′) as:

𝐶𝐶𝑖𝑖𝑖𝑖 =

∞

∫
0

∞

∫
0

(𝛼𝛼 − ⟨𝛼𝛼𝑖𝑖⟩)
(
𝛼𝛼
′
− ⟨𝛼𝛼𝑗𝑗⟩

)
𝑝𝑝𝑖𝑖𝑖𝑖

(
𝛼𝛼|𝛼𝛼′

)
𝑝𝑝𝑗𝑗

(
𝛼𝛼
′
)
𝑑𝑑𝑑𝑑

′
𝑑𝑑𝑑𝑑𝑑� (29)

where i > j. If pj(α) is log-normally distributed with the same log-variance 𝐴𝐴 𝐴𝐴2

ln𝑢𝑢
 as the asymptotic distribution, Cij 

is given by (e.g., Zerovnik et al., 2013):

𝐶𝐶𝑖𝑖𝑖𝑖 = exp
(
𝜇𝜇ln𝛼𝛼𝑖𝑖

+ 𝜇𝜇ln𝛼𝛼𝑗𝑗
+ 𝜎𝜎

2

ln𝑢𝑢

) (
exp

(
𝜎𝜎
2

ln𝑢𝑢
𝑟𝑟
𝑖𝑖−𝑗𝑗

0

)
− 1

)
.� (30)

where 𝐴𝐴 𝐴𝐴ln𝛼𝛼𝑖𝑖
 is the mean of ln αi. Under stationary conditions 𝐴𝐴 𝐴𝐴ln𝛼𝛼𝑖𝑖

= 𝜇𝜇ln𝛼𝛼𝑗𝑗
= −𝜎𝜎2

ln𝑢𝑢
∕2 . In this case, the covariance 

function reduces to:

𝐶𝐶𝑖𝑖𝑖𝑖 = exp
(
𝜎𝜎
2

ln𝑢𝑢
𝑟𝑟
𝑖𝑖−𝑗𝑗

0

)
− 1.� (31)

2.3.  Mean Travel Time and Travel-Time Based Ensemble Dispersion

We derive here expressions for the mean and variance of travel time, and the travel-time based ensemble disper-
sion coefficient. We consider flux- and volume-weighted injection modes, with μ0, lnα = μv, lnu and μ0, lnα = −μv, lnu, 
respectively. In both cases the variance of log-slowness equals 𝐴𝐴 𝐴𝐴2

ln𝑢𝑢
 .

The mean and variance of travel time after n steps are defined by:

𝜇𝜇𝜏𝜏𝑛𝑛
=

𝑛𝑛−1∑

𝑖𝑖=0

Δ𝑥𝑥⟨𝛼𝛼𝑖𝑖⟩,� (32)
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𝜎𝜎
2
𝜏𝜏𝑛𝑛
=

𝑛𝑛−1∑

𝑖𝑖=0

Δ𝑥𝑥

𝑛𝑛−1∑

𝑗𝑗=0

Δ𝑥𝑥⟨(𝛼𝛼𝑖𝑖 − ⟨𝛼𝛼𝑖𝑖⟩) (𝛼𝛼𝑗𝑗 − ⟨𝛼𝛼𝑗𝑗⟩)⟩ = 2

𝑛𝑛−1∑

𝑖𝑖=0

Δ𝑥𝑥

𝑖𝑖∑

𝑗𝑗=0

Δ𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 .� (33)

In order to evaluate these expressions, we perform the continuum limit Δx → 0 and n → ∞ such that xn = nΔx → 
x is finite. In this limit we obtain:

𝜇𝜇𝜏𝜏 (𝑥𝑥) =

𝑥𝑥

∫
0

𝜇𝜇𝛼𝛼

(
𝑥𝑥
′
)
𝑑𝑑𝑑𝑑

′
,� (34)

where we set 𝐴𝐴 𝐴𝐴𝜏𝜏𝑛𝑛
→ 𝜇𝜇𝜏𝜏 (𝑥𝑥) and 〈αi〉 → μα(x). In the continuum limit, the variance of the travel time is given by:

𝜎𝜎
2
𝜏𝜏 (𝑥𝑥) = 2

𝑥𝑥

∫
0

𝑥𝑥′

∫
0

𝐶𝐶
(
𝑥𝑥
′
, 𝑥𝑥

′′
)
𝑑𝑑𝑑𝑑

′′
𝑑𝑑𝑑𝑑

′
,� (35)

where we set Cij → C(x′, x′′). Furthermore, we set 𝐴𝐴 𝐴𝐴𝑖𝑖
0
→ exp (−𝑥𝑥∕𝜆𝜆ln𝑢𝑢) , where we used the definition of Equa-

tion 18. Equations 34 and 35 were formulated by Shapiro and Cvetkovic (1988) and have been analyzed using 
first-order analytical expressions of the Eulerian velocity (e.g., Cvetkovic et al., 1992; Gotovac et al., 2009) and 
non-linear extensions thereof (Cvetkovic et al., 1996) in the past. The difference between these results and our 
analysis is that we assume the log-slowness to be bivariate normal distributed with exponential covariance func-
tion instead of relying on first-order results of the Eulerian, non-logarithmic velocity.

The travel-time based ensemble dispersion coefficient D(x) is defined by:

𝐷𝐷(𝑥𝑥) ≡ 1

2

𝑑𝑑𝑑𝑑2
𝜏𝜏 (𝑥𝑥)

𝑑𝑑𝑑𝑑

(
𝑑𝑑𝑑𝑑𝜏𝜏 (𝑥𝑥)

𝑑𝑑𝑑𝑑

)−3

.� (36)

Using Equations 34 and 35 we obtain:

𝐷𝐷(𝑥𝑥) =
1

𝜇𝜇3
𝛼𝛼(𝑥𝑥)

𝑥𝑥

∫
0

𝐶𝐶
(
𝑥𝑥𝑥 𝑥𝑥

′′
)
𝑑𝑑𝑑𝑑

′′
.� (37)

2.3.1.  Flux-Weighted Injection

We consider the case that solute particles are introduced proportional to the volume flux at locations with longi-
tudinal coordinate x0 = 0. Under this condition, μα(x) = 1 and the covariance is given by the continuum limit of 
Equation 31 as:

𝐶𝐶
(
𝑥𝑥𝑥 𝑥𝑥

′
)
= 𝐶𝐶

(
𝑥𝑥 − 𝑥𝑥

′
) ≡ exp

(
𝜎𝜎
2

ln𝑢𝑢
exp

(
−
(
𝑥𝑥 − 𝑥𝑥

′
)
∕𝜆𝜆ln𝑢𝑢

))
− 1.� (38)

Thus, we obtain from Equations 34 and 37:

𝜇𝜇𝜏𝜏 (𝑥𝑥) = 𝑥𝑥𝑥� (39)

𝐷𝐷(𝑥𝑥) =

𝑥𝑥

∫
0

(
exp

(
𝜎𝜎
2

ln𝑢𝑢
exp

(
−𝑥𝑥

′
∕𝜆𝜆ln𝑢𝑢

))
− 1

)
𝑑𝑑𝑑𝑑

′
.� (40)

Performing the integration in Equation 37 gives for D(x):

𝐷𝐷(𝑥𝑥) = 𝜆𝜆ln𝑢𝑢

((

Ei
(
𝜎𝜎
2

ln𝑢𝑢

)
− Ei

(

𝜎𝜎
2

ln𝑢𝑢
exp

(

−
𝑥𝑥

𝜆𝜆ln𝑢𝑢

))

−
𝑥𝑥

𝜆𝜆ln𝑢𝑢

))

,� (41)

with the exponential integral 𝐴𝐴 Ei(𝑧𝑧) = ∫ 𝑧𝑧
−∞

exp(𝜁𝜁 )

𝜁𝜁
𝑑𝑑𝑑𝑑 .

In the limits of x → 0 and x → ∞, we obtain:

lim
𝑥𝑥→0

𝐷𝐷(𝑥𝑥) = 𝑥𝑥
(
exp

(
𝜎𝜎
2

ln𝑢𝑢

)
− 1

)
= 𝑥𝑥𝑥𝑥

2
𝑣𝑣𝑣𝑣𝑣,� (42)
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�∞ = lim
�→∞

�(�) =
(

Ei
(

�2
ln�

)

− ln
(

�2
ln�

)

− �
)

�ln�

=

(

∑∞
�=1

�2�
ln�

��!

)

�ln� ≈

(

�2
ln� +

�4
ln�

4
+

�6
ln�

18
+

�8
ln�

96

)

�ln�,
� (43)

where γ ≈ 0.57722 is the Euler-Mascheroni constant. Note that this non-linear 
expression of ensemble dispersion differs from the non-linear extension of 
first-order results presented by Cvetkovic et al. (1996). For small values of 

𝐴𝐴 𝐴𝐴2

ln𝑢𝑢
 , Equation 41 approaches the first-order result at the limits x → 0 and 

x  →  ∞.

Figure 2 shows a comparison of numerical results for the evolution of the 
dimensionless dispersion coefficient applying the Spatial Markov Model 
with one million particles injected into the flux and Equation 41, confirming 
the validity of the analytical expression. Note that, while the calculations are 
performed in dimensionless form, we explicitly report the normalizations of 
the corresponding dimensional terms in the axis labels and captions in this 
and the following figures to increase the comprehensibility of the plots with-
out reading the entire article.

2.3.2.  Volume-Weighted Injection

In case of a volume-weighted injection, the initial distribution p0(α) = pf(u) of the slowness of particles differs 
from the asymptotic distribution p∞(α) = pv(u). Both p0(α) and p∞(α) are log-normally distributed. They have 
the same variance 𝐴𝐴 𝐴𝐴2

ln𝑢𝑢
 but different mean values of log-slowness, namely μf, lnu and μv, lnu, respectively. Thus, the 

evolution of the mean slowness is given in the continuum limit of Equation 28 as:

𝜇𝜇𝛼𝛼(𝑥𝑥) = exp

(

𝜎𝜎
2

ln𝑢𝑢
exp

(

−
𝑥𝑥

𝜆𝜆ln𝑢𝑢

))

,� (44)

where we have used that μlnα(0) = μf, lnu and Equation 13. Using this expression in the definition of the mean travel 
time, Equation 34, and performing the integration gives:

𝜇𝜇𝜏𝜏 (𝑥𝑥) = 𝜆𝜆ln𝑢𝑢

(

Ei
(
𝜎𝜎
2

ln𝑢𝑢

)
− Ei

(

𝜎𝜎
2

ln𝑢𝑢
exp

(

−
𝑥𝑥

𝜆𝜆ln𝑢𝑢

)))

.� (45)

In order to determine the ensemble dispersion coefficient according to Equation 37, we consider the continuum 
limit of the covariance function defined by Equation 30:

�
(

�, �′) = exp
(

�ln�(�) + �ln�
(

�′) + �2
ln�

) (

exp
(

�2
ln�exp

(

−
(

� − �′) ∕�ln�
))

− 1
)

,� (46)

where we have set 𝐴𝐴 𝐴𝐴ln𝛼𝛼𝑖𝑖
→ 𝜇𝜇ln𝛼𝛼(𝑥𝑥) , and Equation 18 for r0. The mean μlnα(x) of the log-slownes is given by the 

continuum limit of Equation 27 as:

𝜇𝜇ln𝛼𝛼(𝑥𝑥) = 𝜎𝜎
2

ln𝑢𝑢

(

exp (−𝑥𝑥∕𝜆𝜆ln𝑢𝑢) −
1

2

)

,� (47)

where we have used that μlnα(0) = μf, lnu and Equation 13. Substituting Equation 47 into Equation 46 gives:

�
(

�, �′) = exp
(

�2
ln�

(

exp (−�∕�ln�) + exp
(

−�′∕�ln�
))) (

exp
(

�2
ln�exp

(

−
(

� − �′) ∕�ln�
))

− 1
)

.� (48)

The dispersion coefficient defined by Equation 37 is now given by:

�(�) =

�

∫
0
exp

(

�2
ln� (exp (−�∕�ln�) + exp (−�′∕�ln�))

) (

exp
(

�2
ln�exp (−(� − �′) ∕�ln�)

)

− 1
)

��′

exp
(

3�2
ln�exp

(

− �
�ln�

)) .� (49)

Figure 2.  Travel-time-based dimensionless dispersion coefficient for injection 
into the flux. Comparison between numerical simulation of a Spatial Markov 
Model and Equation 41. 𝐴𝐴 𝐴𝐴2

ln𝑢𝑢
= 1.6 , λlnu = 1.875λlnK, Δx = 0.1λlnK, number of 

particles: 10 6.
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To the best of our knowledge, the integral in the nominator does not have a closed-form solution, so that it needs 
to be evaluated numerically.

At short distances, x → 0, we obtain for the mean travel time from Equation 45:

lim
𝑥𝑥→0

𝜇𝜇𝜏𝜏 (𝑥𝑥) = exp
(
𝜎𝜎
2

ln𝑢𝑢

)
𝑥𝑥 = 𝜇𝜇𝑓𝑓𝑓𝑓𝑓𝑥𝑥𝑥� (50)

In the same limit, we obtain for the dispersion coefficient D(x):

lim
𝑥𝑥→0

𝐷𝐷(𝑥𝑥) =
(
1 − exp

(
−𝜎𝜎

2

ln𝑢𝑢

))
𝑥𝑥𝑥� (51)

Figure 3 shows a comparison of numerical results for the evolution of the dimensionless Lagrangian velocity (i.e., 
the inverse slowness), and dispersion coefficient applying the Spatial Markov Model with one million particles 
injected into the volume and the numerical integration of Equation 49. In contrast to the case with injection 
into the flux, there is a tiny offset in the evolution of the mean Lagrangian velocity between the numerical and 
analytical results, which can be attributed to the explicit-Euler type of integration applied to the evolution of μlnα 
when performing the discrete Spatial Markov Model, in contrast to the exact integration in the analytical result 
underlying Equation 45. Similarly, we observe tiny differences in the evolution of the dispersion coefficient.

3.  Comparison to 3-D Particle-Tracking Simulations in Isotropic Heterogeneous 
Media
We test the validity of the Spatial Markov Model assuming a bivariate log-normal distribution of travel-time 
increments for advective solute transport in flow fields resulting from auto-correlated heterogeneous 
hydraulic-conductivity fields. Toward this end, we perform flow and particle-tracking simulations in 3-D periodic 
domains with isotropic, exponential covariance functions of the scalar log-hydraulic conductivity using multiple 
random realizations of the log-conductivity field. The domain has dimensions (L × W × H) of 40 × 20 × 20 
integral scales λlnK of ln K-variations. The spatial discretization of the periodic fields is 0.1λlnK in all directions. 
The fields are generated by the spectral approach of Dietrich and Newsam (1993). We simulate groundwater flow 
by a cell-centered Finite Volume method, applying periodic boundary conditions with differences in the mean 
hydraulic head at opposing faces such that the mean specific-discharge is exactly oriented in the longitudinal 
x-direction. We solve the resulting systems of linear equations by the preconditioned conjugate gradient method 
with algebraic multigrid preconditioning (e.g., Stüben,  2001), implemented in the HSL-MI20 library (Boyle 
et al., 2007). As the theoretical analysis is based on dimensionless distances, times, and velocities, the integral 
scale λlnK of the ln K-fields is set to unity, and the velocity-fields in the numerical simulations are scaled such that 
the mean velocity is unity, too.

Figure 3.  Travel-time-based dimensionless Lagrangian velocity and dispersion coefficient for injection into the volume. 
Comparison between numerical simulation of a Spatial Markov Model and Equations 45 and 49. 𝐴𝐴 𝐴𝐴2

ln𝑢𝑢
= 1.6 , λlnu = 1.875λlnK, 

Δx = 0.1λlnK, number of particles: 10 6.
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Particles are subsequently introduced at all cell-interfaces perpendicular to the x-direction in 50 starting planes with 
distance 0.8λlnK to each other, resulting in 2 × 10 6 particles per realization. They are tracked by the semi-analytical 
approach of Pollock (1988), until they have passed 20 integral scales in the x-direction. For flux-weighted injec-
tion, the travel times of a particle observed at regular distances of 0.1λlnK are weighted by the velocity of that 
particle at the injection point when computing metrics of travel-time distributions. The open-source code for 
flow and transport is written in Matlab (Cirpka, 2022), performing the flow simulations on the central processing 
unit, and particle tracking on the graphic processing unit (see also Hansen et al., 2018). In total we consider 50 
realizations each for 𝐴𝐴 𝐴𝐴2

ln𝐾𝐾
-values of 0.1, 0.3, 0.6, 1, 2, 3, 4, and 5.

As outlined in Section 2.1, the effective velocity u(x) at location x is not the longitudinal local velocity compo-
nent vx, because the latter may occasionally have negative values in simulations with high variances of ln K. 
Instead it is defined as the absolute velocity scaled by the advective tortuosity, 𝐴𝐴 ‖𝐯𝐯‖2∕𝜒𝜒 . The advective tortuosity 
compares the average length of streamlines to the linear distance between the starting and end point of trajecto-
ries (Ghanbarian et al., 2013; Koponen et al., 1996). In the average over all streamlines, it is exactly given by the 
ratio of the mean absolute velocity and the mean longitudinal velocity component (Comolli et al., 2019; Koponen 
et al., 1996):

𝜒𝜒 =
𝜇𝜇‖𝐯𝐯‖2

𝜇𝜇𝑣𝑣𝑥𝑥

= 𝜇𝜇‖𝐯𝐯‖2� (52)

We compute this property from the numerical Eulerian velocity field, in which the average is performed over 
all cell centers of the numerical grid. We then scale the local absolute velocity at the cell centers with the same 
tortuosity χ everywhere to obtain the effective velocity u(x). The log-effective velocity fields ln u(x) are periodic 
and their covariance function can easily be evaluated by spectral analysis. Integral scales are reported in the 
direction of mean flow.

Figure  4 shows the empirical variance and integral scale of the log-effective velocity as a function of 𝐴𝐴 𝐴𝐴2

ln𝐾𝐾
 . 

The boxplots describe the distributions over the 50 realizations by their median, interquartile range, range, and 
outliers. For 3-D isotropic media, linear stochastic theory predicts for small values of 𝐴𝐴 𝐴𝐴2

ln𝐾𝐾
 (e.g., Dagan, 1989; 

Gelhar, 1993):

𝜎𝜎
2

ln𝑢𝑢
= 𝜎𝜎

2
𝑢𝑢

8

15
𝜎𝜎
2

ln𝐾𝐾
.� (53)

which holds in this form because the velocity is normalized by μv,u. The numerical results show an excellent 
agreement with this expression.

Figure 4.  Variance and integral scale of the log-effective velocity, and tortuosity of the flow fields in 3-D periodic domains with isotropic exponential covariance 
function of log-hydraulic conductivity. Whisker boxes: results of 50 realizations obtained with Finite-Volume simulations; lines: linear trends as explained in the 
legends.
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The velocity integral scale λu for small values of 𝐴𝐴 𝐴𝐴2

ln𝐾𝐾
 can also be predicted 

from linear stochastic theory because the dimensionless asymptotic longitu-
dinal effective dispersion coefficient D∞ is (Gelhar & Axness, 1983):

𝐷𝐷∞ = 𝜎𝜎
2
𝑢𝑢𝜆𝜆𝑢𝑢 = 𝜎𝜎

2

ln𝐾𝐾
,� (54)

in which the dimensional dispersion coefficient is scaled with μv,uλlnK. The 
combination of Equations 53 and 54 leads to:

𝜆𝜆𝑢𝑢 =
15

8
𝜆𝜆ln𝐾𝐾.� (55)

At small variances 𝐴𝐴 𝐴𝐴2

ln𝐾𝐾
 , the integral scale of u and ln u are approximately the 

same, λlnu ≈ λu. Figure 4b shows the empirical integral scales of ln u from 
the 3-D numerical simulations by the boxplots. They show large variations 
among the realizations, their averages are well described by the first-order 
result, but show a slight decrease with increasing 𝐴𝐴 𝐴𝐴2

ln𝐾𝐾
 . Figure 4b also includes 

the empirical relationship:

𝜆𝜆ln𝑢𝑢 = 𝜆𝜆ln𝐾𝐾

(
15

8
− 0.025𝜎𝜎

2

ln𝐾𝐾

)

� (56)

which is obtained by fitting the analytical expressions for D(x) to the simula-
tion data (see below).

Figure 4c shows the tortuosity χ as a function of 𝐴𝐴 𝐴𝐴2

ln𝐾𝐾
 . Linear perturbation 

theory gives:

𝜒𝜒 = 1 +
𝜎𝜎2

ln𝐾𝐾

15
,� (57)

which is slightly underestimated by the numerical data (slope of 0.059 rather than 0.067). The small difference 
may be explained by the numerical method of evaluating χ.

Figure  5 shows a comparison between distance-dependent dimensionless ensemble dispersion coefficients 
obtained by the numerical models for flux-weighted injection of the particles and predictions by the Spatial 
Markov Model according to Equation  41 assuming a volume-weighted variance of log-normalized velocity 

𝐴𝐴 𝐴𝐴2

ln𝑢𝑢
=

8

15
𝜎𝜎2

ln𝐾𝐾
 . The shaded areas represent the 90% and 50% confidence intervals over 50 realizations, and the 

dots the ensemble means. The large markers at x = 20λlnK denote the average values of the numerical results over 
the last 10 integral scales. The different line patterns indicate predictions by Equation 41 using different integral 
scales λlnu of log-velocity. Assuming a constant integral scale 𝐴𝐴 𝐴𝐴ln𝑢𝑢 =

15

8
𝜆𝜆ln𝐾𝐾 (dashed lines), which is in agreement 

with linear theory at the limit of 𝐴𝐴 𝐴𝐴2

ln𝐾𝐾
→ 0 , overestimates ensemble dispersion in cases of large log-conductivity 

variances. Taking the empirical findings of λlnu from the numerical results shown in Figure 4b (dash-dotted lines) 
underestimated ensemble dispersion. A good agreement is found with the empirical correction of λlnu by Equa-
tion 56, indicated in Figure 5 by solid lines.

4.  Discussion and Conclusions
Spatial Markov Models provide an upscaled framework to describe solute transport in heterogeneous formations. 
Upon choosing the bivariate log-normal distribution as the joint distribution of slowness in two subsequent 
spatial transitions, the rules for propagating particles in the longitudinal direction are fully characterized by the 
mean Eulerian velocity of the flow field, by the variance, and by the integral scale of the log-Lagrangian velocity. 
Together with a choice of the injection mode, the parameterization can capture short- and large-distance mean 
travel times of particles and their variance.

The bivariate log-normal distribution considered here is a conceptual choice rather than the closed-form derivation 
from a particular model of hydraulic-conductivity fluctuations. Likewise, the first-order Markovian assumption 
of velocity transitions is the conceptual simplification of more complicated velocity covariance functions derived 

Figure 5.  Dimensionless ensemble dispersion coefficient D according to 
Equation 36 as function of dimensionless distance. Comparison between 
3-D ensemble-averaged particle-tracking simulations with injection into 
the flux (light shading: 90% confidence interval; dark shading: interquartile 
range; dots: mean over 50 realizations; markers: average value over the 
last 10 integral scales) and analytical results according to Equation 41 
with 𝐴𝐴 𝐴𝐴2

ln𝑢𝑢
=

8

15
𝜎𝜎2

ln𝐾𝐾
 (lines). Dashed line: 𝐴𝐴 𝐴𝐴ln𝑢𝑢 =

15

8
𝜆𝜆ln𝐾𝐾 ; dash-dotted line: 

λlnu according to the numerical findings shown in Figure 4B; solid line:  
𝐴𝐴 𝐴𝐴ln𝑢𝑢 =

(
15

8
− 0.025𝜎𝜎2

ln𝐾𝐾

)

𝜆𝜆ln𝐾𝐾 .
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in first order for second-order stationary log-conductivity fields (e.g., Russo, 1995, for 3-D fields). In as much, 
it cannot be expected that the model analyzed here can predict the exact shape by which the ensemble-dispersion 
coefficient evolves from the short- to the large-distance limit, but the agreement between the Spatial Markov 
Model and the numerical simulations is excellent.

In the limit of 𝐴𝐴 𝐴𝐴2

ln𝐾𝐾
→ 0 , first-order perturbation approaches yield exact expressions of solute spreading in flow 

fields with uniform mean hydraulic gradient and second-order stationary log-conductivity field. Our expressions 
for the variance and integral scale of log-velocity are chosen such that the results of the Spatial Markov Model are 
in agreement with linear theory in the low-variance limit. In contrast to linear theory, however, they extend also 
to cases with high velocity variance. Even when using expressions for ln u-statistics that directly relate to results 
of first-order theory, namely 𝐴𝐴 𝐴𝐴2

ln𝑢𝑢
=

8

15
𝜎𝜎2

ln𝐾𝐾
 and 𝐴𝐴 𝐴𝐴ln𝑢𝑢 =

15

8
𝜆𝜆ln𝐾𝐾 for the case of isotropic heterogeneity, the estimate 

of the asymptotic ensemble dispersion coefficient is only about 10%–15% off at 𝐴𝐴 𝐴𝐴2

ln𝐾𝐾
= 5 , whereas linear theory 

misses the correct value by a factor of about two. Our numerical results indicate that Equation 20 for the variance 
of log-velocity provides a robust estimate over the entire range of 𝐴𝐴 𝐴𝐴2

ln𝐾𝐾
-values considered, whereas the first-order 

expression for the integral scale requires a small correction at high values of 𝐴𝐴 𝐴𝐴2

ln𝐾𝐾
 , given by the empirical Equa-

tion 56. With these results, we obtain a clear relationship between metrics of the log-conductivity statistics and 
the coefficients of the Spatial Markov Model, at least for the case of second-order stationary log-conductivity 
fields with isotropic covariance function.

In this study, we have exclusively considered ensemble dispersion for the case of advective transport. The 
Spatial Markov Model can also be applied to large-scale solute transport affected by local dispersion (Le Borgne 
et  al.,  2008). Toward this end both the marginal distribution of the travel-time increments and the statistical 
dependence of two subsequent increments must be modified from the strictly advective case. Going beyond 
predicting  ensemble-averaged travel times of solute particles, by contrast, requires extra efforts. The approach, 
as discussed here, does not provide two-particle statistics needed to predict effective dispersion (e.g., Fiori 
& Dagan,  2000) or full statistical distributions of concentration (e.g., Fiorotto & Caroni,  2002; Fiorotto & 
Caroni, 2003). Approaches of extending Spatial Markov Models to account for mixing have been discussed by 
Sherman et al. (2021), but are beyond the scope of the present study.

Appendix A:  Flux-Weighted Probability-Density Function of Log-Normal Distributed 
Velocity
We start with the definition of the flux-weighted distribution pf(u) of velocity and derive the following:

�� (�) =
�
��,�

��(�) = 1
√

2��2
ln�

exp

(

−
(ln� − ��,ln�)2

2�2
ln�

)

= 1
√

2��2
ln�

exp

(

−
(ln� + ��,ln�)2 − 4��,ln�ln�

2�2
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)

= 1
√

2��2
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−
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(

4��,ln�ln�
2�2

ln�

)

.

� (A1)

We now use 𝐴𝐴 𝐴𝐴𝑣𝑣𝑣ln𝑢𝑢 = −
1

2
𝜎𝜎2

ln𝑢𝑢
 , resulting from μv,u = 1, in the second exponential expression, yielding:

�� (�) =
1

√

2��2
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−
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)

,
� (A2)

which confirms that the flux-weighted distribution pf(u) is log-normal with log-mean μf, lnu  =  −μv, lnu and 
log-variance 𝐴𝐴 𝐴𝐴2

ln𝑢𝑢
 , which is identical in the flux- and volume-weighted cases.
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As the slowness is the inverse velocity, this identity implies that the flux-weighted slowness has the identi-
cal distribution as the volume-weighted velocity, and the volume-weighted slowness that of the flux-weighted 
velocity.

Data Availability Statement
The self-written Matlab codes are available at https://doi.org/10.5281/zenodo.6554308 under the international 
Creative Commons license CC-BY-NC 4.0. The HSL-MI20 algebraic multigrid (AMG) preconditioner used 
to solve the system of equations resulting from discretizing the flow equation is taken from the HSL library, a 
collection of Fortran codes for large-scale scientific computation (http://www.hsl.rl.ac.uk/catalogue/hsl_mi20.
html).
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