
1.  Introduction
Geodetic observations by the Global Navigation Satellite Systems (GNSS) show that the Alpine mountains 
are uplifting while their forelands to the north and south are subsiding (Figure  1, Serpelloni et  al.,  2022; 
Sternai et al., 2014). Vertical uplift also varies along strike, with higher rates in the Western and Central Alps 
(∼2–2.5 mm/yr) than in the Eastern Alps, similar to inferred erosion and exhumation rates (Fox et al., 2015). 
Horizontal velocities from GNSS show ∼2 mm/yr convergence between Adria and Europe in the Eastern Alps, 
being related to the counter-clockwise rotation of the Adria microplate with respect to Eurasia, while convergence 
is only minor, if not absent, in the Western Alps (Serpelloni et al., 2016). Seismicity is restricted to upper-crustal 
depths in the Alps compared to whole crustal seismicity in their forelands (Figure 1). Earthquakes below Moho 
(>40 km) occur only to the south, beneath the Northern Apennines. A combination of surface and/or mantle 
processes have been proposed to explain these observations, including: (a) isostatic response to the latest deglaci-
ation, (b) long-term erosion, (c) crustal shortening, (d) delamination of the European lithosphere, (e) detachment 
of the Western Alpine slab, and, (f) mantle flow in the asthenosphere (Fox et al., 2015; Mey et al., 2016; Sternai 
et al., 2014). Quantifying the relative contribution of these processes to the present-day surface deformation is 
essential to understand the coupling between surface and mantle processes and the evolution of this complex 
orogen.

Mey et al. (2016) proposed that ∼90% of rock uplift in the Alps could be due to crustal rebound following the 
Last Glacial Maximum, while mantle processes exert only a local influence (e.g., Rhone Valley and Eastern 
Alps). Recently, Sternai et al.  (2019) critically revisited this hypothesis. They demonstrated how deglaciation 
and erosion account for a relatively larger proportion of uplift in the Eastern Alps (30%–60%) than in the Central 
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and Western Alps (20%–30%), and attributed the remaining uplift to other tectonic processes. This speculative 
contribution from tectonic processes stems from uncertainties in the upper-mantle (i.e., lithospheric mantle and 
asthenosphere) architecture. A thicker crust beneath the Alps with intermediate average densities has been shown 
to correlate with observed surface uplift (Spooner et  al.,  2019a). Beneath the Alps, upper-crustal seismicity 
(Cattaneo et al., 1999; Eva et al., 2015; Singer et al., 2014) occurs within a weaker orogenic lithosphere, while 
weaker crustal domains are found preferentially around the stronger Adriatic microplate in the southern foreland 
(Marotta & Splendore, 2014; Spooner et al., 2022; Willingshofer & Cloetingh, 2003). In the northern forelands, 
the entirety of crustal seismicity (Deichmann, 1992; Singer et al., 2014) is also bound to weaker crustal areas, 
which underwent extensive thinning beneath the Upper Rhine Graben.

These correlations indicate the importance of lithospheric architecture in the localization of surface deformation 
within the Alpine region. However, the causality of these correlations remains subject to a proper quantification 
of the active driving forces. Forces within the Alpine lithosphere arise from horizontal plate motions, potential 
energy gradients due to present-day topography and lateral variations in density, and variations in surface load-
ing. Negative buoyancy from subducted lithospheric slabs within a weaker asthenosphere can generate flow 
and, therefore, stresses within and along the base of the lithosphere. Hence, to quantify these forces and under-
stand their contribution to the present-day surface deformation, it is crucial to determine the present-day 3-D 
upper-mantle architecture.

Seismic tomography provides information to unravel the architecture of the upper-mantle. However, interpre-
tation of these models is non-unique (e.g., Foulger et al., 2013). For example, a recent interpretation of P-wave 
travel time tomography (Handy et al., 2021; Paffrath et al., 2021) suggests presence of an European slab detached 
below the Western and Eastern Alps being locally attached to the lithosphere in the western Central Alps. In 
contrast, a surface-wave dispersion tomography model (El-Sharkawy et al., 2020) is consistent with slabs attached 
below most of the Central Alps. Kästle et al. (2020) compared all available regional high-resolution body-wave 
tomography models and concluded that slabs below the Alps differ significantly in their shapes and lengths. 
Such differences in the tomography interpretation arise from the choice of the reference model adopted, and the 

Figure 1.  Topography map showing surface uplift (solid lines) and seismicity (circles), scaled by magnitude (MLv: 0.4–4.9) 
and color-coded by depth, taken from the AlpArray Research Seismiciy-Catalog (Bagagli et al., 2022) in the Alps and 
surrounding regions. Vertical velocities from Global Navigation Satellite Systems measurements (Sternai et al., 2019) are 
interpolated and contoured at a 0.5 mm/yr interval; white contours represent uplift, and red represents subsidence. Note that 
the 0 mm/yr contour is plotted in red.
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relative velocity contrasts used to define velocity anomalies. Recent developments in the field of mineral physics 
and availability of updated laboratory-derived pressure and temperature-dependent elastic properties can help to 
infer seismic velocities in terms of temperature and/or composition, thus providing a quantitative way to interpret 
tomography models (e.g., Cammarano et al., 2003; Goes et al., 2000; Priestley & McKenzie, 2006).

In this work, we use these additional constraints to determine present-day upper-mantle architecture of the 
Alps and their forelands from available tomography models. We convert these models to temperature models 
to objectively determine topography of the Lithosphere-Asthenosphere Boundary (LAB) and geometry of slabs 
in the asthenosphere. These models are then used to compute the contribution to present-day deformation from 
buoyancy forces arising from the input configuration to add physical constraints to present-day upper-mantle 
architecture.

2.  Methods and Data
2.1.  Crust

The thickness of the crustal layers in the Alps and surrounding regions is integrated from a 3-D crustal model by 
Spooner et al. (2019a). In our study, we extend the model laterally to reduce potential boundary effects for the later 
geodynamic modeling stage by complementing it with EuCrust-07 model (Tesauro et al., 2008), Figures 2a–2c.

2.2.  Upper-Mantle

Shear-wave velocities (Vs) are more sensitive to variations in temperature than variations in composition (Kumar 
et al., 2020; Priestley & McKenzie, 2006). Thus, we use Vs tomography to map the temperature distribution 
in the mantle. We rely on four Vs tomography models, viz. CSEM (Fichtner et al., 2013, 2018), EU60 (Zhu 
et al., 2015), MeRe2020 (El-Sharkawy et al., 2020), and SL2013 (Schaeffer & Lebedev, 2013). To account for 
varying spatial resolutions of these models, we interpolated them to a common grid size of 20 × 20 km horizon-
tally and 5 km in-depth, from 50 to 300 km depth.

Conversion of seismic velocities to temperatures is highly non-linear because of the pressure and temperature 
dependence of elastic moduli, anelasticity, and/or the presence of partial melts (Figure S1 in Supporting Informa-
tion S1). To overcome this non-linearity, we pre-compute anharmonic Vs from stable phase and mineral assem-
blages at upper-mantle pressure and temperature conditions. Stable phase and mineral assemblages are derived 
using a Gibbs free-energy minimization algorithm (Connolly,  2005,  2009). We use the augmented-modified 
version of Holland and Powell, 1998 thermodynamic database (Afonso et al., 2008; Afonso & Zlotnik, 2011) 
and depleted-mid-oceanic-ridge-basalt-mantle (DMM, Workman & Hart, 2005) as bulk composition. Pressure 
and temperature-dependent anharmonic Vs are corrected for anelasticity and effects of partial melts using the 
parameters derived from laboratory experiments on olivine polycrystalline rocks (Jackson & Faul, 2010) and 
empirical relations for dry-peridotite solidus and liquidus (Afonso et al., 2016; Hammond & Humphreys, 2000; 
Hirschmann, 2000; Winter 2010), respectively (Text S1 in Supporting Information S1).

The absolute Vs values from the tomography models are then projected onto the pre-computed look-up table of 
Vs using a lithostatic pressure profile derived from a thermo-chemical equivalent model of ak135 (Kennett & 
Engdahl, 1991; Kumar et al., 2020), thus providing a 3-D distribution of temperature in the upper-mantle. We use 
a thermal definition of the LAB with a threshold temperature of 1300°C as characteristic for the solidus of perid-
otite intersecting an average geotherm (Hirschmann, 2000). We use the 1300°C isotherm to differentiate between 
lithospheric mantle, slabs, and asthenosphere. Regions corresponding to temperatures >1300°C are defined as 
ambient asthenosphere. To distinguish between the lithospheric mantle and subducted slabs in the asthenosphere, 
we opted for a cut-off depth of 200 km; that is, if the 1300°C isotherm lies above (below) this depth, then the 
portion of the mantle that is colder than 1300°C is taken as lithospheric mantle (subducted slabs). The choice 
of this reference depth is justified by the observation that the Phanerozoic European lithosphere (LAB depth 
∼120 km, Griffin et al., 2009) can be as thick as 200 km beneath the Alps (Artemieva, 2019) and the minimum of 
the reported slab break-off depths in analog and numerical experiments (Fernández-García et al., 2019).

2.3.  Buoyancy-Driven Dynamic Flow

To compute the deformation in response to the first-order internal thermomechanical configuration, we solve the 
conservation of momentum and mass equations to calculate stresses, velocities, and topography using LaMEM 
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(Text S2 in Supporting Information S1). The modeling domain is a 3-D Cartesian box with 96 × 96 × 128 grid 
points giving a resolution of ∼13 km in E-W, ∼17 km in N-S, and ∼3 km along depth. Thicknesses of the crustal 
layers with respect to the digital elevation model, ETOPO1 (Amante & Eakins, 2009), are used such that the 
initial internal free-surface (Crameri et al., 2012; Kaus et al., 2010) is flat at 0 km. We consider a first-order 
rheological structure where the lithosphere (i.e., sediments, upper-crust, lower-crust and lithospheric mantle) and 
slabs are stronger than the asthenosphere (Table 1). Slabs are considered to be 70 kg/m 3 denser than the astheno-
sphere (Table 1). We also test the sensitivity of results to variations in viscosity and density contrasts between the 
lithospheric mantle, slabs, and asthenosphere (Text S4 in Supporting Information S1). To investigate the dynamic 
effects of the internal buoyancy related to the upper-mantle configuration, we allow all models to obtain isostatic 
balance until a quasi-isostatic equilibrium is achieved (∼0.27 Ma, Figure S2 in Supporting Information S1) and 
a return flow is fully established without significantly deforming the slabs from their initial geometry (Figures 2 
and 3).

Figure 2.  Depth of the (a) sediments, (b) upper-crust, and (c) lower-crust. The white box in each panel marks the extent of the gravity-constrained 3-D crustal model, 
and the green box shows the extent of the region modeled in this study. Geometries of the slabs (d–f) and Lithosphere-Asthenosphere Boundary depths (g–i) for the 
statistical ensemble of tomography models. Color-coded dashed contours in panels (d–f) delineate the slabs at 180, 220, and 260 km depths.
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3.  Results
3.1.  Upper-Mantle Architecture

The geometry and depth extent of the slabs from each tomography model 
share similarities in the Northern Apennines but differ significantly in the 
Alps (Figure S4 in Supporting Information  S1). All regional tomography 
models (CSEM, EU60 and MeRe2020) depict an attached slab in the North-
ern Apennines with varying volume and position. In SL2013, a shallow slab 
is present from beneath the Northern Apennines to the Alps in north. EU60 
indicates an attached slab all along the Eastern Alps, which is connected to 
attached slabs in the Western Alps and Northern Apennines. CSEM displays 
an attached slab at the Western and Central Alps transition, similar to the 
interpretation of a recent P-wave tomography model (Handy et  al.,  2021). 
MeRe2020 shows a locally attached slab to the lithosphere in the Central 
Alps.

Layer/Phase Density (kg/m 3) Viscosity (Pa.s)

Sticky-air 1 10 18

Sediments 2,450 10 22

Upper-crust 2,750

Lower-crust 2,950

Lithospheric mantle 3,370

Slabs 3,370

Asthenosphere 3,300 10 20

Note. Densities in the crust are according to Spooner et al. (2019a). Density 
and viscosities in the lithosphere, slabs, and asthenosphere are according to 
Boonma et al. (2019), Mey et al. (2016), Sternai et al. (2019), and Spooner 
et al. (2022).

Table 1 
Physical Properties of the Layers in the Dynamic Models

Figure 3.  Modeled topography for (a) mean-std, (b) mean, and (c) mean+std models. Seismicity color-coded for depth is same as in Figure 1. Vertical velocities at 
10 km depth for (d) mean-std, (e) mean, and (f) mean+std models with Global Navigation Satellite Systems measurements plotted with circles. Horizontal flow in the 
asthenosphere at a depth of 220 km for (g) mean-std, (h) mean, and (i) mean+std models are plotted as green lines scaled by velocity magnitude. Shear-wave splitting 
measurements scaled by the delay time are plotted with black bars (Hein et al., 2021). White lines in the last three panels indicate the contour of the slabs at 220 km 
depth.
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Differences in slab geometries stem from the fact that the tomography models have varying resolution, and 
magnitudes and spatial distributions of Vs (Figure S5 in Supporting Information S1). Consequently, converted 
temperatures differ, making it challenging to define a unique architecture of the LAB and slabs (Figures S4 and 
S5 in Supporting Information S1). Further, different methods, data and regularizations used in the inversion cause 
model-specific uncertainties. To objectively address such differences in the tomography models, we cluster them 
into a statistical ensemble, thereby assuming that these models sample a range of possible solutions though with 
a variable resolution. The statistical ensemble corresponds to the mean and standard deviation (std) of Vs from 
all tomography models at each grid point. The mean of Vs is clustered into a model (mean model hereafter), 
whereas Vs corresponding to the 67% confidence interval are clustered into two additional models (mean-std 
and mean+std hereafter). The mean-std model represents an end-member scenario featuring no slabs beneath 
the Alps and Northern Apennines (Figure 2d). The mean+std model is an end-member at the opposite spectrum 
where slabs are attached to the overlying lithosphere below the Alps and Northern Apennines (Figure 2f). In the 
mean model, a slab is only attached to the overlying lithosphere beneath the Northern Apennines (Figure 2e).

Each model also shows a varying LAB depth (Figures 2g–2i). All models show a thin lithosphere (∼60–80 km) 
in the Ligurian Sea and Pannonian Basin. The mean-std model results in a thinner lithosphere in the Alps and 
Northern Apennines. In the mean and mean+std models, LAB depth is controlled by the presence of the slabs. 
Therefore, the mean+std model results in the thickest lithosphere beneath the Alps, Po Basin, and Northern 
Apennines, where slabs are envisaged as attached to the lithosphere (Figure 2i). The presence of a thinner litho-
sphere in the northern forelands compared to the orogenic lithosphere in the Alps is a common feature of both the 
mean and mean+std models. In the following, we present results of the geodynamic simulations for the statistical 
ensemble models. Simulations have also been carried out for the individual tomography models for comparison 
(Text S3 in Supporting Information S1).

3.2.  Topography

In the absence of far-field tectonic forces, modeled topography is a function of the crust and lithosphere thickness 
and geometry of the slabs, attached to or detached from the orogenic lithosphere. For the mean-std model, where 
no slabs are attached to the lithosphere, and the lithosphere is overly thin, the modeled topography reflects resolved 
crustal thickness variations (Figures 2c and 3a). It results in a negative topography along the present-day coast-
line in the Ligurian Sea and a positive topography in the Alps (∼3–4 km), higher than in the northern forelands 
and Pannonian Basin. Along strike variations in crustal thickness in the Alps are also reflected in the modeled 
topography, being lower above the thinner crust in the Western Alps than in the Central and Eastern Alps. In the 
Northern Apennines, the model displays topography of similar magnitudes as in the Alps, which is inconsistent 
with observations (Figure 1). The negative residual topography along the Alps and Northern Apennines for the 
mean-std model is indicative that crustal isostasy alone is not enough to explain the observed topography (Figure 
S8 in Supporting Information S1). Despite similar magnitudes of crustal thickness beneath the Adriatic Sea and 
northern forelands (Figure 2c), the mean-std model produces positive topography all along  the Northern Apen-
nines to Dinarides. The mean model features a lower topography in the Alps compared to the mean-std, still higher 
than that obtained in both forelands (Figure 3b). The lower topography in the Northern Apennines and Po Basin 
than the one obtained from the mean-std model can be explained by an attached slab in the Northern Apennines, 
which effectively pulls down the overlying lithosphere (Figure S3a in Supporting Information S1). This gravita-
tional effect is enhanced in the mean+std model (Figure 3c and Figure S3b in Supporting Information S1) and it 
does not produce any elevation gradient between the Alps and their forelands. Relatively high topography in the 
Adriatic Sea persists in the mean+std model, though of lower magnitudes due to a thicker lithosphere (Figure 2i).

3.3.  Surface Vertical Velocities

Geometries of the slabs also affect modeled vertical velocities. The mean-std model produces uplift in the Alps 
and subsidence in the northern and southern forelands (Figure 3d). Subsidence in the Po Basin is limited by 
uplift in the Northern Apennines. In contrast, in the mean model, subsidence in the Po Basin continues to the 
south into the Northern Apennines consistent with the observations (Figure 3e and Figure S3c in Supporting 
Information S1). The mean model also produces higher uplift in the Central Alps compared to the Western and 
Eastern Alps. The mean+std model, where slabs are attached all along the Alps and Northern Apennines, cannot 
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reproduce the observed uplift in the Alps. Attached slabs to the thicker lithosphere lead instead to overall subsid-
ence in the Po Basin, which continues to the north into southern half of the Alps and to south into the Northern 
Apennines (Figure 3f and Figure S3d in Supporting Information S1).

3.4.  Mantle Flow

Horizontal flow in the asthenosphere also shows differences in pattern and magnitude for the three scenarios 
(Figures 3g–3i). The mean-std model shows a less vigorous mantle flow than the mean and mean+std models 
due to the absence of slabs. In the mean model, we observe a rotation in mantle flow around the Western Alps 
due to a return flow generated by the attached slab in the Northern Apennines. This is consistent with shear-wave 
splitting (SKS) measurements that also show a rotation of the fast axis around the Western Alps (Figure  3, 
Barruol et al., 2011; Hein et al., 2021). In the mean+std model, such a rotation is hindered by the presence of an 
attached slab beneath the Alps. In the Central and Eastern Alps, the mean model displays an orogen-subparallel 
flow, which is not as coherent as observed in SKS measurements. However, the mean model does reproduce the 
rotation in mantle flow at the transition from the Eastern Alps toward the Pannonian Basin, as observed in SKS 
measurements.

4.  Discussion and Summary
4.1.  Upper-Mantle Architecture

Active subduction of an attached oceanic lithosphere is manifested in deep seismicity delineating the classi-
cal Benioff-Wadati zone. If the subducting lithosphere is tearing or breaking-off, it might show a concentra-
tion of intermediate-depth seismicity. Such a process is thought to be occurring in the Vrancea zone in the 
SE-Carpathians, where we observe a concentration of intermediate-depth seismicity and a positive seismic 
velocity anomaly (Wenzel et al., 2002). In Southern Iberia, a slab beneath the Betics mountains is also consid-
ered to be tearing/detaching, leading to the observed seismicity clustering (e.g., Heit et  al.,  2017; Mancilla 
et al., 2015). The preferred model for the slabs beneath the Alps portrays a detached slab in the Western Alps 
(El-Sharkawy et al., 2020; Handy et al., 2021; Kästle et al., 2020; Lippitsch et al., 2003). In the Eastern Alps, 
the majority of models agree with a detached slab; however, there is an ongoing discussion on its maximum 
depth, dip and association, whether Adriatic or European (Handy et al., 2021; Lippitsch et al., 2003). In the 
western Central Alps, a recent publication (Handy et al., 2021) indicated the possible presence of an attached 
slab to depths >300  km, in contrast to the conclusions by Lippitsch et  al.  (2003). Lower-crustal seismicity 
in the European crust to north of the Central Alps is interpreted to be driven by transfer of stresses to the 
northern forelands from a retreating European slab after slab break-off (Kissling & Schlunegger, 2018; Singer 
et al., 2014) or by the presence of high-pressure fluids in the lower-crust (Deichmann, 1992). Additionally, the 
absence of lower-crustal and intermediate-depth seismicity in the Alps could be related to detached slabs all 
along the Alps as represented by the mean and mean-std models or by slow convergence in the Alps (Dal Zilio 
et al., 2018). An attached slab beneath the Central Alps implies seismic deformation at lower-crustal depths 
or even at upper-mantle depths. Seismicity in the Alps is shown to be effectively bounded by 450°C isotherm 
within the upper-crust (Spooner et al., 2020). These observations suggest a detached slabs model, which can 
explain only upper-crustal seismicity beneath the Alps. However, the modeled lower topography in the Western 
Alps would require additional variations in the present-day load along the Alps to either increase topography in 
the Western Alps or decrease it in the Central and Eastern Alps, for example, mean+std model. Alternatively, 
rebound from recent slab break-off could have uplifted/uplifting the Western Alps and moved them out of 
isostatic equilibrium. High erosion rates in this domain compared to the Eastern Alps can be then interpreted as 
consequence of a system still achieving isostatic equilibrium (Fox et al., 2015). We can, therefore, not rule out 
this working hypothesis with our study.

An attached shallow slab in the Northern Apennines is a robust feature in all regional tomography models. Our 
results suggest that such a configuration is also required to reproduce the present-day observed lower topography 
and widespread subsidence rates in the Po Basin and Northern Apennines compared to the Alps (Figure 1 and 
Figure S8 in Supporting Information S1). An attached slab is also consistent with the observed mantle seismicity 
(e.g., Chiarabba et al., 2005), with earthquakes occurring at depths where we would otherwise expect rocks to 
behave aseismically.
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4.2.  Geodynamic Implications

None of the models, in the statistical ensemble or individual tomography models, can reconcile the 
counter-clockwise rotation of Adria with respect to Eurasia; in all cases, surface motion resembles a pattern 
typical of a dense lithosphere sinking into a surrounding buoyant asthenosphere (Text S4 and Figures S9–S13 
in Supporting Information  S1). Although our models reproduce the first-order observations in the Alps and 
its foreland regions, modeled topography does not match observations in the Adriatic Sea. A possible reason 
for this mismatch stems from a lack of constraints on the configuration and nature of the crust in this region. 
It is also possible that the present-day deformation in the Adriatic Sea is influenced significantly by a far-field 
Mediterranean-scale mantle flow not included in this study (Faccenna & Becker, 2010; Faccenna et al., 2014).

Our models also fail in reproducing the coherent orogen parallel flow in the asthenosphere, inferred as a proxy 
in the SKS measurements. These discrepancies demand attention to which additional factors could influence this 
behavior. Return flow from neighboring slabs in the Mediterranean could provide an alternative (e.g., Kiraly 
et al., 2021). Our models are spatially limited to the Alps and Northern Apennines, and therefore we could not 
quantify to which degree the present-day mantle flow in the Alps can be affected by such a Mediterranean-scale 
return flow from the Aegean subduction in the east and W-E directed mantle flow from the west (Faccenna & 
Becker, 2010).

We finally note that despite modeled vertical velocities in the Alps being of a similar order of magnitudes as 
for available observations, we could not fully reproduce the details of their along-strike variability, which likely 
results from a heterogeneous load distribution from long-term erosion, ice-sheet thickness variations, and litho-
spheric loads. Further work is therefore required to quantify the relative contribution from surface processes and 
their coupling to the active tectonic processes investigated in this study within higher resolution models.

Data Availability Statement
The crustal models used can be downloaded from Spooner et  al.,  (2019b) (https://doi.org/10.5880/
GFZ.4.5.2019.004) and Tesauro et al. (2008) (https://gfzpublic.gfz-potsdam.de/pubman/item/item_238001). Seis-
mic tomography models can be downloaded from http://ds.iris.edu/ds/products/emc-earthmodels/. LaMEM is an 
open-source code and can be downloaded from https://doi.org/10.5281/zenodo.7071571 or https://bitbucket.org/
bkaus/lamem/src/master/. Code used for converting seismic velocities to temperatures can be downloaded from 
https://doi.org/10.5281/zenodo.6538257 or https://github.com/ajay6763/V2RhoT_gibbs.git. Post-processing 
and plotting of the results was done using ParaView (Ahrens et al., 2005) (https://www.paraview.org/), GMT5 
(Wessel et al., 2013), Matplotlib (Hunter, 2007), and Inkscape (https://inkscape.org/). Scientific color maps from 
Crameri (2021) were used for visualization.
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