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Abstract Clustering algorithms can be applied to seis-
mic catalogs to automatically classify earthquakes upon
the similarity of their attributes, in order to extract in-
formation on seismicity processes and faulting patterns
out of large seismic datasets. We describe here a Python
open-source software for density-based clustering of
seismicity named seiscloud, based on the pyrocko li-
brary for seismology. Seiscloud is a tool to dig data out
of large local, regional, or global seismic catalogs and to
automatically recognize seismicity clusters, character-
ized by similar features, such as epicentral or hypocen-
tral locations, origin times, focal mechanisms, or mo-
ment tensors. Alternatively, the code can rely on user-
provided distance matrices to identify clusters of events
sharing indirect features, such as similar waveforms.
The code can either process local seismic catalogs or
download selected subsets of seismic catalogs,
accessing different global seismicity catalog providers,
perform the seismic clustering over different steps in a
flexible, easily adaptable approach, and provide results
in form of declustered seismic catalogs and a number of

illustrative figures. Here, the algorithm usage is ex-
plained and discussed through an application to North-
ern Chile seismicity.

Keywords Seismicity . Clustering . Location .Moment
tensor

1 Introduction

In recent years, the global densification of seismic sta-
tions, the growing interest in microseismicity monitor-
ing, with the deployment of dense local networks to
identify natural and anthropogenic microseismicity,
and the implementation of powerful and unsupervised
algorithms to scan large seismic datasets have allowed
seismologists to detect, locate, and characterize increas-
ingly weak (micro)earthquakes. As a consequence, seis-
mic catalogs, reporting the most relevant earthquake
parameters, are also becoming increasingly large. While
large datasets could potentially provide more accurate
insights into local, regional, and global seismic process-
es, digging the most relevant information out of large
catalogs becomes challenging due to their growing size.
Clustering algorithms are useful tools to automatically
identify families of similar items out of large datasets:
applied to seismicity, they can be used to detect earth-
quakes with similar features, such as hypocentral loca-
tions, origin times, magnitudes, or focal mechanisms.
Such type of seismicity classification is important to
support seismic monitoring programs and seismicity
interpretation studies. For example, the application of a
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temporal seismicity clustering, aimed at the identifica-
tion of seismicity bursts occurring within short time
frames, can be used to identify seismic sequences and
swarms or, in the frame of monitoring issues, to early
detect anomalous seismicity rates, potentially revealing
stress or pore pressure transients, anticipating larger
earthquakes (e.g., in the presence of foreshock activity)
or volcanic unrests (e.g., if the seismicity is the result of
magma/fluid propagation).

Seismicity clustering has been extensively used in the
past years, mostly in the frame of single studies, for a
variety of purposes, with a quite broad literature. Here,
selected works are cited with the aim to provide an
overview of the broad range of potential approaches
and applications. Spatial clustering, either based on the
spatial distribution of epicenters, hypocenters, and/or
centroids, is probably the most simple and used ap-
proach. Aiming at identifying confined seismogenic
regions, their shape, orientation and extent, spatial clus-
tering methods have been used to compare cluster ge-
ometries with potentially active faults (Ansari et al.
2009), to image complex fault networks (Ouillon and
Sournette 2011), to reconstruct earthquake ruptures over
multiple fault segments (Cesca et al. 2017) and in the
frame of seismicity forecasting (Lippiello et al. 2012).
Schoenball and Ellsworth (2018) used a density-based
spatial clustering approach to identify induced seismic-
ity clusters and active faults and to track the evolution of
the moment release over individual faults. A compara-
tive approach, discussing the results of different spatial
clustering techniques applied to a common seismogenic
region, was provided by Konstantaras et al. (2012).

Temporal and spatio-temporal clustering has been
used in first order to identify aftershocks and to decluster
seismic catalogs, to investigate the temporal evolution
of seismicity and the earthquake recurrence times over
different time periods and depth intervals (e.g., Kagan
and Knopoff 1976; Reasenberg 1985, Frohlich 1987;
Kagan and Jackson 1991), for spatio-temporal cluster
identification (Schaefer et al. 2017), to discuss statistical
models for triggered seismicity (Hainzl et al. 2000;
Sornette and Werner 2005), to identify earthquake se-
quences in regions with relevant swarm activity (Jacobs
et al. 2013), and to detect and image growing fractures
(Maghsoudi et al. 2014).

Focal mechanism clustering aims at the separation of
families of earthquakes presenting different rupture
styles and orientations. Mostly based on the pioneering
work by Kagan (1991), who introduced a commonly

accepted definition for the similarity of double-couple
(DC) earthquake focal mechanisms, through the angle
which bears his name. Focal mechanism-based cluster-
ing algorithms have been used to identify different fam-
ilies of mining-induced (Cesca et al. 2014) and natural
earthquakes in different seismotectonic contexts (Cesca
et al. 2016, 2017; Custódio et al. 2016) as well as their
temporal evolution in response to anthropogenic and
earthquake-induced stress perturbations.

Waveform-based clustering approaches are nowa-
days the most in vogue. The formulation basically links
the earthquake similarity to the similarity among earth-
quakes’ direct observations, in the form of single or
multiple recorded waveforms (Maurer and Deichmann
1995; Cattaneo et al. 1999; Moriya et al. 2003;Wehling-
Benatelli et al. 2013; Cesca et al. 2020). The observation
of similar waveforms for different earthquakes implies a
similarity among their location, depth, and focal mech-
anism. In this sense, waveform-based clustering ap-
proaches are more strict than the previously formulated
ones, and identified clusters are composed by very
similar events, such as earthquake repeaters (see
Uchida and Bürgmann 2019 for a review). Following
the opposite formulation, so-called waveform template
approaches use the recorded waveforms or waveform
features of pre-identified earthquakes to search for sim-
ilar, weaker signals within continuous data streams (e.g.,
Yoon et al. 2015).

An open question remains how to combine clustering
results based on different earthquake parameters. In
Custódio et al. (2016), independent clustering based
on hypocentral location and focal mechanisms have
been used to reconstruct a complex pattern of faulting
in a region of diffused seismicity. An alternative
approach, aiming at combining different metrics into a
common framework, has been formulated by Lasocki
(2014) and tested on a mining-induced dataset (Lizurek
and Lasocki 2014). Joint information on location, time,
and magnitude of earthquakes have been used by
Zaliapin et al. (2008) to formulate an approach to iden-
tify aftershocks, and later by Zaliapin and Ben Zion
(2013) to detected earthquake clusters in California.

This paper describes the seiscloud software,
implementing a density-based clustering approach for
seismicity. The algorithm has a flexible implementation,
with several different metrics available, offering to clus-
ter seismicity upon the similarity of the spatial, tempo-
ral, or focal mechanism earthquake parameters, or to use
user-defined metrics by providing distance matrices.
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Seiscloud can process own seismic catalogs, with dif-
ferent extent of available information (including, when
available additional information such as magnitude, fo-
cal mechanism or full moment tensors), or download
seismic catalogs from open global datasets. Seismicity
clustering results can be easily visualized, through the
generation of a number of illustrative figures. The soft-
ware is implemented in Python3, open source, it uses
and requires the installation of the pyrocko libraries and
it is available through an open git platform (https://git.
pyrocko.org/cesca/seiscloud).

2 Density-based clustering for seismicity

Density-based clustering algorithms scan the dataset to
be clustered, searching for densely populated regions. If
the items density overcomes a user-defined threshold, a
cluster is identified, and its edges will be defined where
the item density drops below the given threshold. In
terms of seismicity, the concept is most easily explained
considering the spatial distribution of earthquake hypo-
centers as a metric. Within seismogenic volumes, e.g., at
plate boundaries, the density of seismic foci is typically
high, whereas this decreases with distance from the plate
boundary. Therefore, one or more seismicity clusters
can be found there, as the conditions are easily met to
have a sufficient number of neighboring hypocenters.

Among the many different clustering techniques, we
rely here on DBSCAN (Ester et al. 1996), as one of the
most used density-based clustering algorithms. The per-
formance of DBSCAN is controlled by two parameters
controlling the density threshold: one defines the mini-
mum number of neighboring items (Nmin) and one the
maximum acceptable distance (ε). The condition to
create a cluster is that there exist an item i and at least
Nmin other items j with a distance di,j < ε. In this case, a
cluster is formed. Item i is then defined as core item,
while items j are defined as density-reachable items
from the core item i. Each of the density-reachable items
is then investigated to check if it also lies in a densely
populated region: if they have a sufficient number of
neighbors, they are also core items, while if they lie in
lower density regions, they are referred as edge items.
Both core and edge items will be assigned to a cluster.
Besides core and edge items, we also have isolated
items, which are neither located in densely populated
regions, nor are density-reachable from a core item:
isolated items are basically located in low density

regions and will not be assigned to any cluster. Figure 1
illustrates the difference among core, density-reachable,
and isolated items (earthquakes) with a simple, spatial
clustering seismicity application.

This procedure illustrates some of the specific fea-
tures of DBSCAN and, in general, of density-based
clustering methods. First of all, the result of the cluster-
ing is not dependent on the items sorting, as this does
not affect the identification of core, edge, and isolated
items. Second, the handling of isolated items implies the
recognition of the concept of outliers: basically, the
clustering algorithm does not force all items to be clus-
tered, and items which do not respect the clustering
conditions are simply treated as outliers, or unclustered
items. Another important aspect, with relevant implica-
tions for seismicity clustering, is related to the concept
of density-reachability: if item b is reachable from item
a, and item c is reachable from item b, this means that c
is density-reachable from item a and they will pertain to
a common cluster. However, items a and c are not
necessarily similar among them. Using again the spatial
distribution of hypocentral location as example, two far
distant earthquakes may be allocated in a common clus-
ter if there is a highly active seismogenic region which
connects the hypocenters of the two earthquakes. Fur-
thermore, the dense region path connecting two items
can have a very peculiar or curved shape; thus, spatially
clustered earthquakes do not necessarily map a single,
planar fault, but could also concatenate earthquakes
distributed along adjacent fault segments and/or com-
plex fault systems, if these are well connected. The
choice of the density parameters Nmin and ε controls
the result of the clustering procedure. While this could
be seen as a method drawback, the flexible definition of
the two parameters has the advantage to allow the user
for different grade of clustering resolution, which can
extract and highlight information with a variable accu-
racy (Cesca et al. 2014). Figure 2 shows different results
of seismicity clustering obtained for a common seismic
catalog, when selecting two different setups of the clus-
tering parameters. Basically, the selection of the Nmin
and ε parameters controls the number, size, and hetero-
geneity of the resolved clusters, as well as the fraction of
unclustered items. Increasing Nmin will require a larger
number of neighbors: this tends to increase the size of
the resolved clusters and generally to reduce their num-
ber, as small clusters are either merged or lost. The
parameter ε controls the similarity constraint: reducing
its value typically forces the clusters to be more
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homogeneous (i.e. composed of very similar items),
while increasing it will allow for more heterogeneous
clusters. Consequently, the choice of ε will also affect
the number and size of the clusters: for a commonNmin,
small ε values typically lead to identify a larger number
of smaller, more homogeneous clusters, and large ε
values to less, larger, heterogeneous clusters. Another
parameter to take into account is the number of the
unclustered items, i.e., those items which do not

correspond to any cluster: the fraction of unclustered
events typically increases by reducing ε, because fewer
item pairs will fulfill the smaller distance constraint, and
by increasing Nmin, because fewer clusters will fulfill
the larger cluster size constraint.

It is difficult to provide a single, general hint on how
to select the DBSCAN parameters, as clustering algo-
rithms could be used for different purposes and the same
algorithm, applied with different setups to a common

Fig. 1 Core (light blue circles), edges (dark blue circles), and
isolated (gray circles) hypocenters as obtained applying the
seiscloud algorithm for a spatial clustering application (Nmin =
20, ε = 0.05) to seismicity in Northern Chile (based on the Global

CMT seismic catalog for the time period January 1, 1989–January
1, 2019 with the following spatial constraints: latitudes − 25° to −
18° N, longitudes − 73° to 67° East, depths from 0 to 170 km)
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dataset, could dig out different information. The choice
of the parameters will thus need to necessarily take into
account the seismicity features to resolve. Reducing as
possible the number of unclustered events is often a
desired feature, as the clustering results will be repre-
sentative for the vast majority of the considered earth-
quakes. This result, favored by lower Nmin and higher ε
values, may specifically benefit those applications
which aim at recognizing general, first order seismicity
patterns from a seismic catalog. On the contrary, if the
goal is the detection of small homogeneous features, the
choice should be driven to the resolution of small,
compact clusters, by reducing Nmin and ε values.

Two additional, important considerations should be
done on the choice of the DBSCAN parameters. First, it
is worth noting thatNmin has a direct dependency on the
size of the seismic catalog. Let us consider a steady
seismogenic region, with similar seismicity rate, spatial
distribution, or focal mechanisms over time. Then, the
size of the seismic catalog would linearly increase with
the duration of the considered time period: in these
conditions, applying the seismic clustering with com-
mon DBSCAN parameters will provide different results
if we analyze, e.g., 1 or 10 years of data. This implies
that the choice of the Nmin value should be chosen
according to the size of the catalog, eventually as a ratio
of the seismic catalog size; in the previous conditions,
we should increase by a factor N the value of Nmin,
when we process a catalog N times larger. As for the
choice of ε, this should be done taking into account the
distance uncertainty, which depends on the uncertainty
of seismic source parameters. If the location (or the focal
mechanism) accuracy is poor, very high similarity
among hypocentral locations (or very low Kagan angle
among the focal mechanisms) should be avoided. Sim-
ilarly, if seismic data are noisy, a high waveform simi-
larity should not be required, because even for perfect
repeaters, their theoretically highly similar waveforms
will be noise contaminated and their correlation coeffi-
cient well below 1.0. In conclusion, ε should be chosen
well above the limit imposed by the average distance
uncertainty.

3 Metrics

In seiscloud, the DBSCAN implementation relies on
normalized distance values in the range (0, 1), with
distance 0 meaning equal items, and distance 1 denoting

very different items (see later discussion). Dealing with
seismicity, different metrics are proposed to assess the
similarity or dissimilarity of earthquakes. Each of these
metrics is then normalized to account values in the
interval (0.0, 1.0). For some metrics, where the distance
is defined over a finite interval, the normalization is
unique, for example, when using the waveform correla-
tion as a measure of earthquake similarity, a cross-
correlation equal to 1.0 and − 1.0 (perfectly correlating
and anti-correlating waveforms) will map into normal-
ized distances of 0.0 and 1.0, respectively. In other
cases, where a maximal distance cannot be defined
(for example, when considering the spatial or time dif-
ference among two earthquakes), we will assign the
maximal normalized distance 1.0 to all spatial or tem-
poral differences, which are equal or larger than a given
threshold (e.g., default thresholds are 1000 km for spa-
tial distances and 365 days for the temporal distance).

Considering that most seismological studies rely on a
point source approximation, neglecting the spatial and
temporal finiteness of the earthquake rupture and only
considering a spatial location (hypocenter or centroid)
and time (origin or centroid time), the basic spatio-
temporal description of an earthquake source is typically
given by 4 parameters only: latitude, longitude, depth,
and time. These are the basic earthquake attributes listed
in any seismic catalog, from local applications to a
global scale. In these conditions, spatial metrics, i.e.,
estimating the Euclidean distance among hypocenters
or epicenters (in the case the earthquake depth is un-
available or unreliable) are obvious candidates to define
a distance among two earthquakes. Similarly, the inter-
event time, i.e., the absolute time among origin times,
will describe the temporal similarity of two earthquakes.
As discussed before, neither of these spatial and tempo-
ral metrics is defined in the interval (0, 1), nor can they
be uniquely normalized. However, considering global
applications as the largest potential targets for spatial
clustering, and the duration of historical records in seis-
mic catalogs for temporal clustering, we define 1000 km
as the maximum distance of interest among two earth-
quakes and 1 year as the maximum inter-event time
(these values can be easily modified, as described in
the seiscloud manual). Thus spatial and temporal dis-
tances are divided by these normalization coefficients
and any value exceeding 1.0 is then replaced by the
maximum normalized distance (1.0).

Definition of metrics in the space of double couple
(DC) focal mechanisms and moment tensor (MT)
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representations of the earthquake source have been pro-
posed by Kagan (1991, 1992), Willemann (1993), and
Tape and Tape (2012). In seiscloud, the Kagan angle
(normalized by its maximum value of 120°), which is

defined as the rotation angle to transform the DC focal
mechanism of one earthquake into the one of the second
earthquake, is used as a metric to assess the similarity
among focal mechanism pairs. As for moment tensors,

Fig. 2 Different spatial clustering results are obtained from the
same catalog (Global CMT, latitudes 18–25° S, longitudes 73–65°
W, depths 0–170 km, time span January 1, 1989–January 1, 2019)
using different Nmin and ε parameters. The setup with Nmin = 20
and ε = 0.05 identifies four large and less homogeneous clusters
(top, panel showing the map of clusters (a) and panel showing the

similarity matrix sorted after clustering (b), blue colors denoting
similar hypocentral locations, with unclustered and four clusters
identified by red lines). The setup with Nmin = 10 and ε = 0.02
identifies many small and very homogeneous clusters (bottom,
panel showing the map of clusters (c) and panel showing the
similarity matrix sorted after clustering (d))
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following the metrics recompilation and discussion in
Cesca et al. (2014), seiscloud offers a number of nor-
malized metrics based on the moment tensor compo-
nents, with variable fixed and flexible weighting; the
adoption of flexible weighting, in particular, is sug-
gested for cases where the resolution of the moment
tensor components is not homogeneous, e.g., in the case
of very shallow earthquakes inverted using low frequen-
cy surface waves (Bukchin et al. 2010; Valentine and
Trampert 2012). Figure 3 illustrates the difference
among clustering results from the same dataset, when
clustering upon different metrics, either based on cen-
troid location, centroid time, or DC focal mechanism.

The proposed metrics are used to compute distance
matrices, which are square matrices of the size of the
seismic catalog, listing the value of the distance among
each pair of earthquakes (i, j). Distance matrices have 0
values on the diagonal, where each event is compared
with itself (note that this notation differs from the one
adopted by similarity matrices, which are also often
used in seismology, where the highest similarity on the
matrix diagonal is filled by 1 values, corresponding to
the highest correlation), and are symmetric, requiring
that distances are invariant upon the earthquake sorting,
d(i,j) = d(j,i). Note that this condition has some implica-
tions for the temporal metrics, which requires absolute
differential times lacking any information on the tem-
poral order among two earthquakes, and, potentially, for
other user-defined metrics. In fact, besides using inter-
nally defined metrics, users can simply supply own
distance matrices, obtained by considering any wished
(normalized) measure of the similarity among two
earthquakes.

4 Sample application: seismicity at the northern
Chile subduction

The seiscloud software is implemented in Python3 and
makes use of a number of standard libraries, including
numpy (Oliphant 2006). Additionally, it requires the
previous installation of the pyrocko Python library for
seismology (Heimann et al. 2017), for seismic source
and seismic catalog handling, and GMT version 5
(Wessel et al. 2013), for plotting issues. The seiscloud
software is open source and can be downloaded via git
at https://git.pyrocko.org/cesca/seiscloud, where
additional information and a technical manual are also
available.

As an example of application, we will consider the
northern Chile subduction region, in the volume con-
fined within latitude − 25° N and − 18° N, longitude −
72° E, and − 67° E and depths between 0 and 700 km.
We consider 30 years of data from 1 January 1989 until
1 January 2019 and a broad magnitude range between
Mw magnitude 4 and 10. During this time period, the
region hosted a number of large Mw> 7.5 earthquakes
and seismic sequences in Antofagasta (Mw 8.0, 1995;
Ruegg et al. 1996; Delouis et al. 1997; Sobiesiak 2000),
Tarapaca (Mw 7.8, 2005; Delouis and Legrand 2007),
Tocopilla (Mw 7.7, 2007; Delouis et al. 2009; Peyrat
et al. 2010; Schurr et al. 2012), and Iquique (Mw 8.2 and
Mw 7.7 largest aftershock, 2014; Schurr et al. 2014;
Ruiz et al. 2014; Kato et al. 2016; Cesca et al. 2016).

Seiscloud can be called alone or with a suffix –help to
show a basic command help. Typically the seiscloud call
is accompanied by one of the following subcommands:
example, init, matrix, cluster, and plot, to perform the
different steps of the clustering procedure. All calls with
subcommands can be accompanied by a suffix –help, to
provide a basic help on the subcommand usage, and/or
with the suffix –force to force some file/directory
overwrite.

As a first step, a seiscloud configuration file has to be
created. The command:

seiscloud example
provides a first example of configuration file

(seiscloud.example.config). The configuration file de-
fines the spatial, temporal, and magnitude targets. Be-
sides processing a local seismic catalog, seiscloud al-
lows for the query of open global catalogs, such as the
one provided by Global CMT (Dziewonski et al. 1981;
Ekström et al. 2012), which is used for this example and
contains 604 events for the selected spatial, temporal,
and magnitude intervals. The seiscloud configuration
file should also list the basic clustering configuration,
including the chosen metric and the values of the clus-
tering parameters Nmin and ε. Since the Global CMT
catalog provides information on the moment tensor, we
apply here a moment tensor-based metrics, namely the
Kagan angle among DC components. DBSCAN param-
eters are fixed to Nmin = 20 and ε = 0.1, which implies
that a cluster will be created whenever for one target
earthquake, there are at least 20 other events with a DC
mechanism sufficiently similar to the DC of the target
one; the similarity threshold ε of 0.1 corresponds to a
Kagan angle of 12°. The used seiscloud configuration
file is hereafter called seiscloud.example.config, using
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for simplicity the name which is automatically
generated.

Running the command:
seiscloud init seiscloud.example.config
creates a project directory, including copies of the

catalog and configuration files.
The computation of a similarity matrix is performed

with the command:
seiscloud matrix seiscloud.example.config
where a suffix –view opens a graphical window to

visualize the distance matrix and a suffix –savefig saves

a copy of the distance matrix plot in the project directo-
ry. The palette is blue to white, for highest to lowest
earthquake similarity, respectively. Note that the dis-
tance matrix computation depends on the metric but
not on the clustering parameters Nmin and ε.

Once the distance matrix is computed, the density-
based clustering can be performed with the command:

seiscloud cluster seiscloud.example.config
which result now depends on the choice of Nmin and

ε. This step can be repeatedly run, changing the cluster-
ing parameters, with no need to recompute the distance

Fig. 3 Comparison of clustering using spatial (left), temporal
(center), and focal mechanism (right) metrics for a common cata-
log (Global CMT, latitudes 18–25° S, longitudes 73–65° W,
depths 0–170 km, time January 1, 1989–January 1, 2019). The
spatial clustering was performed with Nmin = 20 and ε = 0.05 (at
least 20 earthquakes within 50 km), the temporal clustering with
Nmin = 10 and ε = 0.02 (at least 10 earthquakes within 7.3 days),
and the double couple focal mechanism clustering with Nmin = 25
and ε = 0.1 (at least 25 earthquakes with Kagan angle below 12°).
a, b, c plots show hypocentral locations in map view; d, e, and f,
the time evolution of magnitudes; and g, h, i, the distribution of
DC principle axes (pressure, tension, and null axis). Colors

correspond to clusters identified in each approach (red and blue
for the two largest clusters, other colors, when present, for smaller
clusters, and black for unclustered events). The spatial clustering
identifies four clusters: two shallow ones, detecting the Iquique
(blue) and Antofagasta and Tocopilla (purple) sequences, and two
with intermediate depth (red, green) seismicity. The temporal
clustering identifies the largest sequences in the region: Iquique
2014 (red), Tocopilla 2007 (blue), and Antofagasta 1995 (green).
The focal mechanism clustering identifies two main families:
thrust parallel to the plate margin at shallow depths (blue) and
normal faulting with the same orientation at intermediate depths
(red)
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matrix. Also the cluster subcommand supports the op-
tions –view and –savefig, analogous to the previous
step, but now showing the distance matrices before
and after the clustering (with earthquakes sorted by
cluster, Fig. 4). The command creates a subdirectory
clustering_results and stores there clustered seismic
catalogs.

Finally, the command:
seiscloud plot seiscloud.example.config
creates a subdirectory clustering_plots and saves

there 11 illustrative plots. Some of these are shown in
the following figures for the sample application. A
first plot shows the distance matrices (Fig. 4) before
(i.e., with earthquakes sorted in chronological order)
and after the clustering (where events are sorted upon
their cluster). Three plots are dedicated to the spatial
distribution of seismicity: one shows the epicentral
distribution colored according to the type of cluster-
ing items (i.e., core, edge, and isolated earthquakes),
one colored according to the clusters and one includ-
ing focal mechanisms (when available) and colored
according to the cluster, (Fig. 5). Two plots describe
the temporal evolution of seismicity (magnitude and

depth as function of time, Fig. 6). The geometry of
DC focal mechanism is illustrated by a plot of the
distribution of their principle axis(Fig. 7), one with
the median mechanisms for each cluster (Custódio
et al. 2016) and one of a triangle diagram represen-
tation (after Frohlich 1992), which illustrates the
dominance of strike-slip, normal, and thrust faulting
components. Non-DC components of full MT solu-
tions are shown with a Hudson plot (Hudson et al.
1989), which is helpful to appreciate the sign and
contribution of isotropic and compensated linear vec-
tor (CLVD) components against the DC component.
Finally, one last plot describes the results of the
clustering in the frame of a normalized time-space
distance plot (after Zaliapin et al. 2008). Focal sphere
and dots referring to single events in all these plots
(with the exception of the map with the type of
clustering items) are colored according to the clus-
tering: unclustered events are plotted in black, events
in single clusters are colored, sorted by the cluster
size (by default, as in this work, the largest cluster is
plotted in red, then blue, green, dark violet, gold,
dark orange, and so on, further details are provided

Fig. 4 Similarity matrices obtained using the example configura-
tion file (Global CMT, latitudes − 25° to − 21° N, longitudes − 72°
to − 67° E, depths 0 to 700 km, time January 1, 1989–January 1,
2019,) before (left) and after (right) clustering. Blue denotes the
highest similarity, white lowest similarity. Dashed red lines on the

similarity matrix after clustering helps to visualize the different
clusters: in this application, the first 244 events are not clustered,
the following first cluster has 187 events, and the second and last
cluster has 173 events
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in the seiscloud manual online, https://git.pyrocko.
org/cesca/seiscloud/src/master/gx/seiscloud_manual.
pdf).

5 Discussion and conclusions

This work describes a Python-based software, seiscloud,
for the clustering and visualization of seismic catalogs.

The algorithm can process local catalogs, including as
minimum information epicentral locations and origin
time. When available, additional information, such as
depth, magnitude, focal mechanism, and/or moment
tensor, can be included and can be used for seismicity
clustering. Alternatively, seiscloud can access remote
databases to download seismic catalogs for a selected
region, allowing for filtering the time, location, depth,
and magnitude intervals. The clustering procedure,

Fig. 5 Clustering results showing the spatial distribution of epi-
centers and focal mechanisms. The largest cluster (red) is com-
posed by similarly oriented thrust mechanisms, associated to the
Chilean subduction. The second cluster (blue) is composed of

intermediate depth normal faulting events, typical of the deeper
segment of the subduction between 70 and 350 km depth.
Unclustered events (black) are characterized by a variety of differ-
ent focal mechanisms
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Fig. 6 Clustering results showing the temporal evolution of seis-
micity in form of magnitude versus time (a) and depth versus time
(b). Largest earthquakes often occur as thrust mechanisms at
shallow depth, with the exception of the 2005 Tarapaca earth-
quake, which is deeper and normal faulting. The temporal

evolution highlights the major seismic sequences accompanying
large thrust subduction earthquakes: Antofagasta (1995), Tocopilla
(2007), and Iquique (2014). Events are plotted with the same color
scale as in Fig. 5
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based on the implementation of the DBSCAN cluster-
ing, can be performed to consider the similarity of
locations, times, focal mechanisms, or moment tensors,
using a number of predefined metrics. Alternatively,
users can provide own similarity matrices, based on
different analyses, such as waveform correlation.

While clustering tools have been proposed and used
in the past, only few are freely available (e.g., CLUS-
TER2000, Reasenberg 1985; FMC, Álvarez-Gómez
2019) and typically limited to few metrics. Most of the
studies dealing with seismicity clustering approaches,
including those implementing density-based algorithms,
are not accompanied by open dedicated software. In this
context, a major improvement introduced by seiscloud
is its support of many different metrics, which are not
limited to consider the earthquake location, time and
magnitude. A second, substantial advantage of seiscloud
lies in the combination of the clustering routines with
visualization scripts, which are automatically generating
high quality, helpful figures, useful for the better under-
standing and visualization of the clustering results and
supporting results interpretation.

By providing multiple measures of the earthquake
similarity, seiscloud can also support the future devel-
opment and testing of multi-dimensional clustering ap-
proaches, where the similarity among different earth-
quake attributes may be considered. This type of analy-
sis remains to date at a relatively early stage, with few
tested approaches (e.g., Zaliapin et al. 2008; Lasocki
2014; Custódio et al. 2016), but could be supported in
the future in the frame of automated, unsupervised

processing able to handle big datasets. One approach
for multi-dimensional clustering can be based on the
implementation of single, joint metrics, simultaneously
accounting for the similarity of different parameters.
This approach can already be implemented by seiscloud,
provided a proper distance matrix is given. Currently
proposed approaches (e.g., Lasocki 2014) rely on the
distribution of source parameter values to define metrics
in multi-parameters spaces. While this approach offers a
simple metric definition, a drawback could be that the
distance between two earthquakes does not only depend
on their source parameters, but also on the parameter
distributions of the catalog. In this way, extending the
catalog to broader times or to broader regions could
change the distance value for the same earthquake pair.
Another problem is that such implementation neglects
the different uncertainties on different parameters. The
second approach, tested, e.g., by Custódio et al. (2016)
to define seismic clusters in the Western Mediterranean
and Atlantic, requires the parallel clustering using dif-
ferent earthquake attributes, and the a posteriori combi-
nation of independent clustering results for single attri-
butes. While the single clustering procedures can be
performed with seiscloud, their integration needs to be
performed separately.

Seiscloud can be used to explore and visualize large
seismic catalogs and for a variety of applications, such
as the prompt identification of anomalous seismicity,
with localized hypocenters, or earthquake swarms, to
map active fault geometry and to reconstruct complex
faulting by mapping regions with similar locations and

Fig. 7 Clustering results showing the distribution of pressure (P),
tension (T), and null (B) axis of the deviatoric moment tensor
solutions. The difference among thrust (red) and normal (blue)

faulting is here visualized by the rotation of pressure and tension
axis, while the null axis remains approximately parallel to the plate
margin. Events are plotted with the same color scale as in Fig. 5
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focal mechanisms, and to track microseismicity patterns
induced by anthropogenic operations, such as fluid in-
jection, mining or water reservoir operations. Prelimi-
nary versions of the algorithms were applied in the last
years for different studies in tectonic, volcanic, and
induced seismicity environments, illustrating a number
of potential applications: identification of spatial clus-
ters at diffuse plate margins (Custódio et al. 2016),
reconstruction of complex rupture faults from after-
shock distributions (Cesca et al. 2017), detection and
growth of fractures in mining regions upon fluid injec-
tion (López-Comino et al. 2017) and thermal perturba-
tions (Maghsoudi et al. 2014), identification and char-
acterization of clusters of earthquakes with similar focal
mechanisms for tectonic (Cesca et al. 2016; Custódio
et al. 2016) and anthropogenic (Cesca et al. 2014)
seismicity, and also identification of seismic sources
radiating similar seismic signals at volcanoes (Gaete
et al. 2019; Cesca et al. 2020). Seiscloud is open source
and can be found a t h t t p s : / / g i t . p y r o cko .
org/cesca/seiscloud, where additional technical
information is available.
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