
1. Introduction
Mid-ocean ridges (MOR) are formed by the separation and spreading of divergent tectonic plates, accompanied 
by mantle upwelling and the formation of new oceanic lithosphere. Seismicity at MORs is generally confined 
within a narrow band with a few tens of kilometers width (Searle, 2013). Spatial distribution and focal mech-
anisms reflect the ridge segmentation, with normal faulting earthquakes along spreading center segments and 
strike-slips along transform faults (Rundquist & Sobolev, 2002); focal mechanisms for globally observed earth-
quakes are consistent with the tectonic stresses due to the plate kinematics (Isacks et al., 1968; Searle, 2013; 
Sykes, 1967; Weidner & Aki, 1973). Smaller earthquakes (M < 3) display a larger variety of mechanisms (Meier 
et al., 2021), including thrust components (Parnell-Turner et al., 2017).

Dike intrusions at MOR represent a fundamental process in the formation of new oceanic crust (Dziak 
et  al.,  2006), which is often accompanied by swarm-like seismicity (Ágústsdóttir et  al.,  2016,  2019; Keir 
et al., 2009; Sigmundsson et al., 2015; Wright et al., 2012). Swarms are seismic sequences lasting days to months 
(Benoit & McNutt, 1996; Chen & Shearer, 2011; Hill, 1977; Llenos & Van der Elst, 2019), with clustered spatial 
locations and most moment release occurring delayed after the swarm onset (Chen & Shearer, 2011; Passarelli, 
Rivalta, et al., 2018; Roland & McGuire, 2009). Earthquake swarms are observed at divergent plate bounda-
ries, including along MORs (Bergman & Solomon, 1990; Dziak et al., 1995; Ruch et al., 2021; Sykes, 1970). 
Magmatic driven swarms at MORs are rarely reported or studied, mostly because of detection challenges at their 
remote locations (Dziak et al., 2006). It is often debated whether swarms in extensional domains are controlled 
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by magmatism or tectonics (Bergman & Solomon, 1990; Ruch et al., 2021; 
Schlindwein, 2012). An early recompilation of swarms at the Mid-Atlantic 
Ridge suggested that most of them could be explained by tectonic extensional 
stresses, but did not rule out a magmatic origin (Bergman & Solomon, 1990). 
Most of those swarms, however, neither affected large regions, not exceeding 
20 km along the ridge and 15 km across it, nor displayed a clear migration, 
which is common for magmatic intrusions (e.g., Ágústsdóttir et  al.,  2016; 
Cesca et al., 2020; Dziak et al., 1995; Passarelli, Heryandoko, et al., 2018; 
Rivalta et  al.,  2015). Conversely, the analysis of later swarm episodes in 
extensional tectonic domains rather suggested magma dike intrusions as the 
driver (Dziak et al., 2006, 2007, 2012; Ruch et al., 2021; Schlindwein, 2012).

Local magma intrusions at the Mid-Atlantic Ridge have been hypothesized 
based on seismicity, hydroacoustic, and biological observations (Dziak 
et  al.,  2006; Giusti et  al.,  2018; Goslin et  al.,  2012; Simao et  al.,  2010), 
but with considerably lower magnitudes (Goslin et  al.,  2012; Simao 
et al., 2010). Magma-driven swarms have also been inferred at other MORs 
(Dziak et al., 2006, 2007, 2012; C. Müller & Jokat, 2000; Radha Krishna & 
Arora, 1998; Tolstoy et al., 2001), but also rarely reaching high magnitudes. 
Swarms with a comparable moment are reported at the Gakkel Ridge (C. 
Müller & Jokat, 2000; Tolstoy et al., 2001), during diking episodes at the East 
African Rift (Wauthier et al., 2016) and adjacent to the 2021 Fagradalsfjall 
dike intrusion, Iceland (Sigmundsson et al., 2022).

Earthquake swarms at ultraslow spreading ridges were found to occur at 
centers of magmatism, initiated by magma intrusions (Schlindwein, 2012). 
Similarly, many seismic swarms in the Afar triangle, along the Red Sea and 
Gulf of Aden ridges and the Afar rift, have been associated with rifting, intru-
sive episodes, sometimes leading to submarine volcanic eruptions (e.g., Ruch 
et al., 2021). Magmatic intrusions have also triggered large swarms in exten-
sional tectonic domains, as for the 2022 Bransfield Strait, Antarctica, swarm, 
with ∼85,000 earthquakes (Cesca et al., 2022).

The following arguments have been previously used to support the 
magmatic origin of seismicity at slow spreading ridges and divergent plate 
boundaries: seismicity at volcanic centers and/or at segments with large 
magmatic accretion, swarm-like seismicity patterns (Schlindwein,  2012; 
Shuler & Nettles,  2012), repeated swarm episodes in the same region 
(Schlindwein,  2012), seismicity migration (Bergman & Solomon,  1990; 
Rundquist & Sobolev, 2002; Shuler & Nettles, 2012), seismicity elongated 
along the ridge axis (Bergman & Solomon, 1990), clustered normal faulting 
earthquakes (Shuler & Nettles, 2012), and seafloor or geodetic evidence for 

volcanic vents and/or magma flows (Ruch et al., 2021). The type and geometry of focal mechanisms can also 
be used to discuss the origin of seismicity. Normal faulting focal mechanisms are both favored by magmatic or 
tectonic drivers (Cesca et al., 2022; Passarelli et al., 2015; Passarelli, Rivalta, et al., 2018). Strike-slip mecha-
nisms with rupture planes oblique to the ridge axis, instead, can be triggered at the tip of migrating dikes and 
provide evidence for a magmatic driver (Hill, 1977; Passarelli et al., 2015). Finally, thrust mechanisms have been 
rarely reported in extensional domains (Ruch et al., 2021; Wolfe et al., 2012) and require a strong perturbation of 
the background, tectonic stress.

According to global catalogs, the seismic swarm (Figure 1) started on 26 September 2022, with a sharp seis-
micity increase, continuing with lower rates until early December 2022 (Figure  1c). The largest earthquakes 
occurred days after the unrest onset, confirming swarm-like seismicity. The seismicity is shallow and clustering 
along a slow spreading segment of the North Mid-Atlantic Ridge, at the Southern end of the Reykjanes Ridge 
and North of the Charlie-Gibbs Fracture Zone (Figure 1a). The spreading rate in the region is 95–125 mm/yr 
(Le Pichon, 1968; R. D. Müller et al., 2008). The global catalog in this region (Figure 1b) is more complete since 

Figure 1. (a) Seismicity distribution at the swarm region, Mid-Atlantic-Ridge 
(see star location in the top right inset). Yellow circles indicate seismicity 
between 1958 and 2022, red circles swarm seismicity since mid August 2022. 
The seismic catalog is taken from the International Seismological Center, and 
bathymetry from Global Multi-Resolution Topography (Ryan et al., 2009), 
with white lines showing the plate boundaries (Bird, 2003). (b, c) Temporal 
evolution of the seismicity (b) before and (c) during the swarm episode, 
reporting average seismicity rates.



Geophysical Research Letters

CESCA ET AL.

10.1029/2023GL102782

3 of 10

1996. The local background seismicity in the time period 1996–2022 (mb > 3.5) is ∼12.6 evs/yr, with a cumula-
tive moment release per year and km rift axis of ∼2.9 10 18 Nm/ykm, and a peak magnitude Mw 5.6 (International 
Seismological Centre, 2022). The 2022 swarm (Figure 1c) is outstanding both in terms of its rate (∼3,024 evs/
yr), moment release (∼8.5·10 21 Nm/ykm) and maximum magnitude (Mw 5.9).

Here we rely on seismic data at regional (500–1,000 km) to teleseismic distances (here up to 2,500 km), including 
the NOA seismic array, Norway (Norsar, 1971), to relocate the seismicity and infer moment tensors with a good 
azimuthal coverage (Figure S1 in Supporting Information S1). This helps to assess the spatiotemporal evolution 
of seismicity, track the magma dike migration and unravel seismogenic processes at the MOR.

2. Materials and Methods
2.1. Template Matching

Template matching helps the detection of weak earthquakes with similar locations and focal mechanisms as the 
templates (Gibbons & Ringdal, 2006; Peng & Zhao, 2009). Here template matching is used to identify the unrest 
onset. We rely on vertical raw signals recorded at the NORSAR arrays NOA (Figure S1 in Supporting Informa-
tion S1) (Norsar, 1971), with high Signal-to-Noise ratios (Bungum et al., 1971). We process continuous data 
between 15 August and 15 December 2022. Records were visually inspected: noisy records of stations NBO00, 
NBO02, and NC205 were removed and swapped polarities corrected for (NAO05 and NB203). Raw velocity 
records were filtered in the frequency band 0.01–0.05 Hz, traces of different stations aligned based on the maxi-
mum correlation coefficient (CC) coefficient of the largest earthquake and stacked thereafter. Thereby uncor-
related noise was further reduced. We used two template events, representing the two prevailing types of focal 
mechanisms by their strongest events: the 26 September 2022, 09:59:57 UTC normal faulting and the 29 Septem-
ber 2022, 15:32:32 UTC thrust earthquake. Full template waveforms were extracted for a time window of 866 s, 
starting 100 s before the P phase and ending 500 s after the S phase (Figures S2 and S3 in Supporting Informa-
tion S1). The waveform similarity was retrieved from the normalized cross CC (Gibbons & Ringdal, 2006). The 
CC is derived as the sum of signal amplitudes within a gliding window with the same length as the template wave-
form. The normalization is performed using the square root of the summed squared amplitudes of the template 
and the signal waveform. The detection threshold was set to a CC coefficient of 0.6, giving 174 earthquake detec-
tions with magnitudes down to 4.2. A lower CC of 0.5 resulted in an increased number of detections outside the 
study area. Results for different CC thresholds are illustrated in Figure S4 in Supporting Information S1.

2.2. Moment Tensor Inversion and Classification

Full and deviatoric moment tensor inversions are performed using Grond (Heimann et al., 2018), for 81 events 
exceeding Mw 4.5, providing robust solutions for a subset of 77 earthquakes (Data Sets S2 and S3). Figures S5 and 
S6 in Supporting Information S1 provide examples of waveform fits and moment tensor inversion results. Since 
both results using the two moment tensor constraints are similar, in terms of magnitude, depth, and geometry of 
the double couple components, we only discuss full moment tensor solutions. We fit full waveform displacement 
(vertical and transversal components) from broadband seismic stations located at less than 2,500 km epicentral 
distance (Figure S1 in Supporting Information  S1). Synthetic seismograms are computed assuming a global 
mantle model with an average oceanic crust (Cesca et al., 2021). A bandpass in the range 0.015–0.040 Hz is 
applied to data and synthetics; the fit is estimated using an L1-norm. All seismic traces have been visually 
inspected, and a few traces removed in presence of noise or gaps. We set up Grond to perform 60,000 iterations. 
We assume an impulsive source time function and invert for the following parameters: centroid time, location and 
depth and 6 MT components. We repeat the inversion using all data, to obtain a so-called “best” solution, and 
for 100 bootstrap chains, where data are weighted differently, in order to estimate a “mean” solution and source 
parameter uncertainties. The resulting MT catalog (full MT mean solutions, Figure S7 in Supporting Informa-
tion S1) was classified using Seiscloud (Cesca, 2020), with the Kagan angle (Kagan, 1991, 1992) as metric for 
the MT similarity (Figure S8 in Supporting Information S1). Seiscloud implements DBSCAN (Ester et al., 1996), 
a density based clustering algorithm, and its result depends on two parameters (Nmin, ε). We choose Nmin = 3 
and ε = 0.2 (i.e., forming a cluster whenever for one earthquake there at least 3 other neighboring events with a 
normalized Kagan angle of 0.2, or Kagan angle of 24°), to reduce the number of unclassified MT solutions and 
ensure that only few clusters are found.
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2.3. Centroid Relocation

Relative relocation is important to improve the spatial resolution of seis-
mic sequences. We used the GrowClust3D.jl relocation method (Trugman 
et al., 2017, 2023), which implements a cluster based relocation scheme based 
on relative time shifts between arrival times of events with similar waveforms 
and similar mechanisms. Relative time-shifts are obtained from a moving 
cross-correlation between vertical signals of two events recorded at the same 
station filtered in the frequency band 0.015–0.040 Hz. Sixteen events were 
not relocated due to their remote location off the ridge axis. Also low-quality 
time shift measurements caused by low SNRs of the waveforms prevented 
from their relocation. Lag times corresponding to the highest CC value and 
event-to-station azimuths for several stations are then used to fit a sinusoi-
dal curve. The offset time of the curve is subtracted from the lag times and 
yields relative measurements. The method requires a high waveform similar-
ity among the different events and clustered initial locations. Time shifts are 
converted into distance and azimuths using pre-calculated travel times based 
on a 1D velocity model; the required ray tracing was performed using a ground 
model with oceanic crust (Cesca et al., 2021). We preprocessed the data to 
improve accuracy and reliability of the waveform clustering based relocation, 
such as flipping the signals of the few thrust events due to the high anticor-
relation between most signals (Figure S9 in Supporting Information S1). We 
relocated 61 events of the original catalog using a set of 151,528 time shift 
measurements with associated normalized CC coefficients larger than 0.75 
(Figure S10 in Supporting Information S1). The measurements were derived 
from broadband stations with epicentral distances smaller than 2,500 km.

2.4. Hypocentral Depth Estimation From Teleseismic Depth Phases

We model the hypocentral depth of the largest three earthquakes (Mw 5.7, 
5.8, and 6.0) of the swarm based on the delay of depth phases, pP and sP, at 

teleseismic distances, using the Abedeto tool (https://github.com/HerrMuellerluedenscheid/abedeto). Synthetic 
seismograms account for the moment tensor retrieved in this study, a global model for wave propagation (AK135, 
Kennett et al., 1995) and local models at the source and receiver sites (according to the CRUST 2.0 database, 
Bassin et al., 2000). Observed seismograms are stacked to improve the signal-to-noise (SNR) ratio. The stack is 
performed separately for each event and for each array. We performed the depth analysis for 6 different arrays 
(BCA, BMA, GERES, ILAR, IMAR, YKA, Table S1 in Supporting Information S1), except for a single earth-
quake where signal-to-noise ration was too low at one array, with different azimuths and epicentral distances. 
Comparing observations and synthetics for different depths allows us to estimate the centroid depth (Figure S11 
in Supporting Information S1).

3. Results
We obtain 77 robust MT solutions (Figures S5 and S6 in Supporting Information S1, Data Sets S2 and S3). The large 
majority (71 solutions) can be clustered into two main families (Figures S7 and S8 in Supporting Information S1, one 
characterized by NS normal faulting focal mechanisms (60 earthquakes), and one by NS thrust mechanisms (11). Six 
remnant MTs remain unclassified (Figure S8 in Supporting Information S1). Full MT (Data Set S2) solutions show 
a clear pattern for non double couple components, with almost all normal faulting events associated with positive 
isotropic components, and thrust events with negative ones (Figure S7 in Supporting Information S1). Combining 
earthquake relocation (Data Set S1) and MT inversion shows that, while normal faulting earthquakes align N-S 
along the ridge axis, over ∼60 km, thrust mechanisms are located ∼20–30 km off the axis, both to the East and 
West (Figure 2). The average horizontal relocation uncertainty is 1.3 km (Figure S10 in Supporting Information S1).

Source depths are shallow, with centroid depths spreading ∼7 ± 3 km with an average uncertainty of ∼4 km, 
according to the MT inversion, and a depth estimate of 2.0 and 3.5–4.0 km for the largest normal faulting (Mw 5.7) 
and thrust earthquakes (Mw 5.8 and 6.0), respectively, according to deep phase modeling for largest earthquakes 

Figure 2. Location of 61 earthquakes after relative relocation and 
corresponding full moment tensors. Only earthquakes with available clustering 
are shown. Red and blue color indicate the two moment tensor clusters 
(overlapping focal spheres for the two clusters are shown in the top right inset), 
and light to dark color indicate the temporal evolution of seismicity. Only 
events with successful inversion, relocation, and clustering are shown.

https://github.com/HerrMuellerluedenscheid/abedeto
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(Figure S11 and Table S1 in Supporting Information S1). For each single earthquake, all results for different 
arrays provide consistent depth estimates. The highest reported magnitude is Mw 6.01 ± 0.05, to date the larg-
est ever reported in the swarm region. Although normal faulting earthquakes are much more abundant, thrust 
earthquakes are larger. The overall cumulative moment release, M0, of the swarm is 4.05 10 18 Nm (equivalent to 
Mw 6.4), and almost equally released by normal (M0 = 1.72·10 18 Nm, Mw 6.1) and thrust (M0 = 2.33·10 18 Nm, 
Mw 6.2) earthquakes. The temporal evolution of the two families (Figure 3), in change, is different and almost 
complementary: normal faulting earthquakes are strongly predominant in the first phase, lasting ∼3 days from 26 
September to 29 September, while thrust mechanisms are absent in the first days (the first thrust event is found on 
29 September) and become predominant in the second phase, mostly from October on. As for the spatiotemporal 
evolution of seismicity, normal faulting earthquakes clearly migrate unilaterally from North to South along axis 
(Figure 3), over ∼60 km (Figure 2), with a small gap at ∼53.7°N. The gap roughly corresponds to the latitude 
of the first thrust earthquakes, while later thrust earthquakes are found slightly northward, with a small lateral 
migration in the opposite direction (i.e., from South to North).

Figure 3. Moment magnitude from moment tensor inversion ((a) Phase 1, time period 26 September 07:00–29 September 
2022, 15:30 and (b) Phase 2, time period 29 September 2022, 15:30–10 December 2022, 00:00, dashed vertical lines marking 
start and end of each phase) and corresponding (c, d) cumulative scalar moment, (e, f) latitude, and (g, h) depth from 
relocation as a function of time. Dashed horizontal lines in panels (e, f) mark the dike start in the North and potential dike 
ends in the south, with dike lengths of ∼40 and ∼60 km. Red color corresponds to normal faulting earthquakes, blue to thrust 
earthquakes. Earthquakes with unclassified focal mechanisms are in gray. The minimum dike extent and its potential maximal 
length are marked by solid and striped purple vertical bars, respectively.
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4. Discussion
Resolving active processes at submarine ridges is difficult. Most of the current knowledge on the mechanics of 
magmatic rifting has been inferred by rifting observations on land (Ágústsdóttir et al., 2016; Wright et al., 2012). 
At Krafla, Iceland, for example, during the Krafla volcanic fires episode (1975–1984) ∼20 dikes formed (Buck 
et al., 2006; Einarsson & Bransdóttir, 1980). The first, and longest dike intrusion, in December 1975, affected a 
∼80 km segment of the spreading center, comparable in size with the current observation at the North Atlantic 
ridge.

Swarm episodes are widespread at MOR, occurring sporadically in time and space. Resolving active processes 
at submarine ridges is difficult (Wright et al., 2012). MOR swarms typically show moderate magnitudes, well 
below the detection threshold of global catalogs (Bergman & Solomon, 1990; Schlindwein, 2012). The 2022 
swarm at the North Mid-Atlantic Ridge presents different peculiarities. At a local scale, it is outstanding in terms 
of maximum magnitude and released moment rate (Figure 1). It affected a segment of ∼40–60 km length, which 
was activated over ∼3 days, starting on September 26, ∼07:00 UTC, involving a similar segment length and 
comparable duration as the 2010 rifting episode in the western Gulf of Aden (Shuler & Nettles, 2012). Another 
very unusual aspect concerns the reported focal mechanisms. Thrust mechanisms are rarely reported at MOR 
(Ruch et al., 2021), where such failure type is incompatible with the dominant extensional stresses. The observa-
tion of large off rift thrust earthquakes during the 2022 is quite unique, likely requiring specific conditions. First, 
the stress perturbation produced by the intrusion needs to be large enough, which seems to be the case for the 
2022 intrusion, considering the exceptional triggered seismicity. Next, it also need the presence of pre-existing 
weaken regions and faults, where thrust faulting can occur. This is valid for cases where parallel rifts and dike 
intrusions are present.

A main question is whether the swarm had a magmatic or a tectonic origin. Several of the swarm features 
point at a magmatic origin. A first argument is given by the elongated spatial distribution (Figure  2) of 
the epicenters (Bergman & Solomon, 1990). Our results show that the seismicity is distributed symmetri-
cally, relative to the ridge axis. This finding offers a second argument for a magmatic driver, as it has been 
suggested that magmatism-related seismicity is typically centered symmetrically at segment centers, whereas 
more tectonically driven seismic sequences are located to either side of the rift valley toward segment ends 
(Escartín et al., 2008; Simao et al., 2010). Other, strong arguments lie in the swarm-like characteristic of the 
seismic sequence and the spatiotemporal migration of the seismicity (Goslin et al., 2012; Schlindwein, 2012; 
Simao et al., 2010), and most specifically of normal faulting earthquakes (Shuler & Nettles, 2012), which 
propagate from North to South (Figure  3). While the northern initiation of the dike at ∼54.1°N is well 
constrained by the first epicenters, its southern extent may vary between 53.5° and 53.7°N, depending if we 
consider the entire seismicity or the most dense and thrust earthquakes as a marker for the end of the dike 
migration. Accordingly, we estimated a dike length of 40–60 km (Figure 3). We estimate an average velocity 
of ∼0.1–0.3 m/s during Phase 1, which is consistent with migration velocities of seismicity for magma driven 
swarms in similar tectonic environments: 0.1 m/s at the Bransfield Strait (estimated after Cesca et al., 2022), 
0.3  ±  0.1  m/s (Dziak et  al.,  1995) and not exceeding 0.5  m/s at Krafla (Einarsson & Bransdóttir,  1980). 
Ágústsdóttir et  al.  (2016) found migration rates of 0.1–1.3 m/s for the 2014 Bárðarbunga-Holuhraun dike 
intrusion, Iceland. Finally, a last argument is given by the occurrence of thrust mechanism earthquakes off 
the ridge axis, mostly in correspondence to a sub-segment with lower normal faulting activity. Analog exper-
iments (Trippanera et al., 2015) showed that thrust mechanisms may be triggered on the side of a magmatic 
dike, if the dike thickness is large enough and the resulting compressive stress is able to overcome the back-
ground tectonic stress.

We hypothesize a scenario able to explain all observed seismicity patterns, sketched in Figure 4, where we iden-
tify two distinct phases. In the first phase, a crustal magma intrusion starts at ∼54.1°N, a location marked by the 
first earthquakes of the swarm; in the ∼EW extensional domain, this leads to the formation of a vertical dike, 
opening in the EW direction, where the confining stress is smallest, and propagating along the NS direction. 
The dike propagates unilaterally to the South over ∼3 days. This first phase is accompanied by normal faulting 
earthquakes above the dike (Cesca et al., 2022; Passarelli et al., 2015). A spatial gap of the normal faulting seis-
micity at ∼ 53.7°Lat N suggests that the dike migration stops there, and only few sparse earthquakes are observed 
southward.
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The end of the dike propagation marks the beginning of the second phase. A reason for the dike stop could 
be the presence of a warmer region, eventually a former spreading center, or a structural or geometrical 
anomaly of the rift valley, where the dike is inhibited to further propagate and can thicken. This hypothesis 
would also explain why the first thrust mechanisms are observed at this range of latitudes: the increased dike 
thickness would produce here a stronger stress perturbation, which locally overcomes the background stress 
and favors the occurrence of thrust mechanisms on pre-existing structures, parallel to the ridge axis. The fact 
that a few further thrust earthquakes occur later slightly northward could be explained by the combined effect 
of the stress perturbation introduced by the dike itself and the Coulomb stress transferred by the first thrust 
earthquakes.

An alternative model for thrust earthquakes could involve the failure of outward dipping faulting on top of a 
depleting shallow reservoir, similar as observed during the first stage of calderas formation (Acocella, 2007; 
Levy et al., 2018). There are a few observations which make such a scenario less likely. First, the distance 
among the thrust earthquakes located West and East of the ridge, which could mark the reservoir sides, is in the 
order of ∼30 km, which would imply an exceptionally large caldera diameter. Next, this model hardly explains 
the geometry of the seismicity: the dike starts at ∼54.1°N, arguably in the vicinity of a feeding reservoir, but 
this location is inconsistent with the one of thrust earthquakes (∼53.8°N), which would mark the forming 
caldera.

Given our interpretation that normal faulting events occur at shallow depths above a vertical dike, we use 
empirical relations to link the cumulative moment of triggered normal faulting seismicity to the volume 
of magma intruded (White & McCausland,  2016); this relation was derived based on a broad data set of 
volcano-tectonic earthquakes preceding eruptions and may only provide a first order estimate. We estimate a 
magma volume of ∼0.53 km 3, which is comparable to recent intrusion at the rifting-to-spreading Bransfield 
Strait Basin (Cesca et al., 2022). However, the moment is released differently by the two earthquake families: 
the thrust family counts 11 earthquakes only, but has relatively high magnitudes, given the intruded magma 
volume.

Figure 4. Idealized sketch of the prevailing processes within the different phases recognized by seismicity. Phase I is 
characterized by shallow magma flow and dike migration along the rift valley from North to South with a stress perturbation 
near the rift valley causing shallow normal faulting above the dike. In the later phase II the dike stops propagating along the 
rift valley and thickens instead. This causes a stress state favoring the activation of old faults on the flanks of the ridge with 
large thrust earthquakes.
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5. Conclusions
This study targets a large swarm at a remote location along the North Atlantic Mid-Ocean Ridge. Beside the 
remoteness of the study region and the lack of local seafloor installation, we could reconstruct the evolution of 
seismicity by the analysis of regional, teleseismic and array data and the application of waveform based tech-
niques. The analysis has also been possible thanks to the outstanding large involved magnitudes, reaching Mw 
6.0, as the seismic swarm substantially exceeded previous seismicity in the focal region both in terms of rates and 
moment release. Beside the unusual size of the seismicity, another intriguing feature of the 2022 swarm is the 
presence of thrust mechanisms, which are unusual at a mid-ocean ridge. While in the first phase normal faulting 
earthquakes are predominant, in the second phase, from the end of September onward, thrust mechanisms appear 
and become more frequent. Indeed, largest magnitude earthquakes occurred with a thrust mechanism and off the 
ridge axes.

Unilateral migration, elongated spatial pattern of the epicenters and presence of both normal and thrust focal 
mechanisms suggest a magmatic driven swarm. Our model to explain the seismological observations includes 
two phases. In the first one, starting on 26 September 2022, at ∼07:00 UTC, the dike intrudes and propagates 
unilaterally southward ∼60 km, triggering shallow normal faulting earthquakes above the intrusion. We hypoth-
esize that, in the second phase the dike stops and thickens at its Southern segment. Seismicity accompanying the 
second phase is mostly characterized by off-ridge thrust earthquakes, which are triggered by a compressive stress 
transient induced by the thicker dike. We estimated the volume of the magmatic intrusion as ∼0.53 km 3. The 2022 
unrest provides evidence for sporadic spreading accompanied by large swarm episodes and earthquakes with both 
normal and thrust faulting focal mechanisms controlled by magma intrusions at the Mid-Atlantic Ridge.

Data Availability Statement
All seismic data used in this study (Figure S1 in Supporting Information S1 shows the distribution of seismic 
stations and arrays used) are open and accessible via the Incorporated Research Institutions for Seismology (IRIS) 
Data Management Center (https://service.iris.edu/), GEOFON (GEO-ForschungsNetz) (https://geofon.gfz-pots-
dam.de/waveform/webservices/), ORFEUS EIDA (Observatories and Research Facilities for European Seismol-
ogy - European Integrated Data Archive) (http://www.orfeus-eu.org/data/eida/webservices), and NORSAR (the 
Norwegian National Data Center) (https://www.norsar.no). We used broadband data from the seismic networks 
C8 (Canadian Seismic Research Network), CN (Canadian National Seismograph Network) (Natural Resources 
Canada, 1975), DK (Danish Seismological Network), EI (Irish National Seismic Network, INSN) (Dublin Insti-
tute for Advanced Studies, 1993), G (French Global Network of Seismological Broadband Stations, GEOSCOPE) 
(Institut de physique du globe de Paris (IPGP) and École et Observatoire des Sciences de la Terre de Strasbourg 
(EOST),  1982), GB (Great Britain Seismograph Network), GE (GEOFON) (GEOFON Data Centre,  1993), 
II (Global Seismograph Network - IRIS/IDA, GSN) (Scripps Institution of Oceanography, 1986), IU (Global 
Seismograph Network (GSN - IRIS/USGS), GSN) (Albuquerque Seismological Laboratory/USGS, 2014), PM 
(Portuguese National Seismic Network) (Instituto Português do Mar e da Atmosfera, I.P., 2006), and array data 
from BCA (Beaver Creek Array, Alaska, USA), BMA (Burnt Mountain Array, Alaska, USA), GERES (GERESS 
Array Beam, Bayern, Germany), ILAR (ILAR Array Beam, Eilson, AK, USA), IMAR (Indian Mountain Array, 
Alaska, USA), NOA (NORSAR) (Norsar,  1971), YKA (Yellowknife Array Beam, Canada). Bathymetry was 
downloaded from GMRT (Ryan et al., 2009). A list of networks used, and their references are listed in Support-
ing Information S1. Software used is open source, and either available at the repositories cited in the manuscript 
or available upon request to the authors. Data Sets S1, S2, and S3 are openly available (https://doi.org/10.5281/
zenodo.8089070).
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