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Abstract

Regional assessments of the wind erosion risk are rare and vary due to the methods

used and the available data to be included. The adaptation of existing methods has

the advantage that the results can be compared directly. We adopted an already suc-

cessfully applied methodology (ILSWE—applied in East Africa), to investigate the spa-

tiotemporal variability of the wind erosion risk between 2005 and 2019 in Southern

Africa. The approach integrates climatic variables, a vegetation index, and soil proper-

ties to describe the potential impact of wind erosion at the landscape scale. The

annual and seasonal variability is determined by the vegetation cover, whereas

droughts and strong El Niño events had only regional effects. We estimated that

8.3% of the study area experiences a moderate to elevated wind erosion risk over

the 15-year period with annual and inter-annual fluctuations showing a slight upward

trend. In general, the desert and drylands in the west have the highest proportion of

risk areas, the moist forests in the east are characterized by a very low risk of wind

erosion, while the grasslands, shrublands, and croplands in the interior most likely

react to changes of climatic conditions. The validation process is based on a compari-

son with the estimated frequency of dust storms derived from the aerosol optical

depth and angstrom exponent and revealed an overall accuracy of 65%. The results

of this study identify regions and yearly periods prone to wind erosion to prioritize

for further analysis and conservation policies for mitigation and adaptation strategies.

K E YWORD S

environmental modelling, geographic information systems, ILSWE model, remote sensing,
temporal variability, wind erosion

1 | INTRODUCTION

In the 21st century, soil erosion is globally one of the most serious

natural hazards, which challenges the environment, agricultural pro-

ductivity, and thus food security (Montanarella et al., 2016;

Montgomery, 2007). In arid and semi-arid regions wind erosion

accounts for 46% of total land degradation (Zheng, 2009). Wind ero-

sion is also a threat to Southern Africa favored by dry climates and

seasonal droughts, affecting natural and anthropogenic-influenced

sensitive biomes (Huang et al., 2016; Zhao et al., 2021). Against a

backdrop of increasing population in the area and regional food pro-

duction already reaching its natural limits, wind erosion-induced

declines in soil fertility will put further pressure on crop production

and ecosystem services and drive up economic costs (Department of

Environmental Affairs, 2014; Kirui & Mirzabaev, 2014; Kotze &

Rose, 2015). Additional anthropogenic drivers such as deforestation,
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overgrazing, monocultures, large fields, and generally poor soil man-

agement can accelerate the process of wind erosion (UNEP, 2015;

Webb et al., 2020). The vulnerability of soils to erosion by wind is

affected by certain primary soil characteristics like grain size distribu-

tion, lime and carbon content, affecting secondary soil characteristics

such as aggregate stability, soil surface crusting and roughness, or

moisture levels (Funk et al., 2008; Shao, 2008; Wiesmeier

et al., 2012). Additional dynamic factors are vegetation cover (VC) and

climatic variability (Shao, 2008).

Studies have shown that emitted dust contains the finest and

most valuable parts of soil, such as the silt and clay fraction and soil

organic carbon (Funk et al., 2008; Ravi et al., 2011; Sterk et al., 1996).

Soil organic carbon content of eroded dust can spike up to 17-times

from its original source (Nerger et al., 2017). With wind erosion occur-

ring in regions with a low net primary production, the loss of soil

organic carbon can be considered an irrecoverable loss to soil quality

(Chappell et al., 2016; Yan et al., 2005). Global dust emissions are esti-

mated at 2000 Mt, of which 1500 Mt are deposited on land and

500 Mt in the oceans (Shao et al., 2011). While positive off-site

effects are ocean and land fertilization, the loss of nutrients and

organic matter increases the vulnerability of the source areas. If ero-

sion rates exceed the rate of soil formation, it can push ecosystems to

a state of decay (D'Odorico et al., 2013; Obalum et al., 2012; Zabel

et al., 2014). The future prospect of climate change puts further pres-

sure on regions prone to wind erosion, leading to a decrease in VC

and biomass production (Munson et al., 2011; Ravi et al., 2010).

In the 1930s, Dust Bowl events in the Great Plains region of the

United States triggered the development of empirical wind erosion

models (Tatarko et al., 2013). Continuous efforts led to the wind ero-

sion equation (WEQ), the first empirical model, based on wind tunnel

experiments and field measurements, integrating different factors, for

assessing annual soil loss (Woodruff & Siddoway, 1965). The revised

WEQ (RWEQ) replaced WEQ as a tool to estimate erosion (Fryrear

et al., 2001) and has been extensively tested and found to be in good

agreement with on-field measurements (Buschiazzo & Zobeck, 2008).

One of the more recent wind erosion models is a pan-European

assessment, utilizing the most influential parameters that affect the

potential of wind erosion on landscapes (Borrelli et al., 2016). This

approach, the index of land susceptibility to wind erosion (ILSWE), has

been adopted and modified by Fenta et al. (2020) for the East African

region, with a high resolution of 100 m cell size and a validated accu-

racy of around 70%.

Research related to soil degradation in Southern Africa has been

mainly focused on water erosion at the plot or watershed scale

(Le Roux et al., 2008, 2007; Weinzierl et al., 2016). While there are

studies on dust emissions in the South African Free State, information

on a regional scale is rather lacking (Eckardt et al., 2020; Wiggs &

Holmes, 2011). In general, focusing on one area alone does not pro-

vide a comprehensive view of the process of wind erosion in the

Southern African region. This situation calls for a qualitative approach

to map out areas most susceptible to wind erosion to narrow the

knowledge gap and generate a basis for further studies.

In this study, the aim is to outline the general land susceptibility

to wind erosion in the region of Southern Africa with the approved

modeling approach ILSWE by integration of high-resolution remote

sensing data and spatial analysis tools in a geographic information sys-

tem (GIS). The specific goals are as follows:

1. To identify and highlight risk areas.

2. To analyze the annual spatial patterns, over a period of 15 years,

to estimate a prospective trend.

3. To relate results to major types of land cover and predominant ter-

restrial ecoregions in the global warming context.

The results can give an impact on future erosion control manage-

ment policies and land use scenarios. It will also provide environmen-

tal researchers with a basis for small-scale studies on the effects of

wind erosion in the Southern African region.

2 | STUDY AREA

The investigated area covers the southern part of the African conti-

nent and includes seven countries: Namibia, Botswana, Zimbabwe,

Mozambique, Eswatini, South Africa, and Lesotho comprising 3.9 mil-

lion km2 (Figure 1). About 11% or 433,619 km2 of the area is under

agricultural use. Southern Africa, as a terrestrial ecoregion, is domi-

nated by savannas occupying 45% of its area, followed by desert and

xeric shrublands with 35% coverage, respectively. While the western

dry regions are poor in vegetation, the Cape and southern coastal

areas have rich flora, ranging from small shrubs to Mediterranean

woodlands. Moist broadleaf forests and mangroves characterize the

humid east (Figure 1) (Burgess et al., 2004). The western regions are

dominated by sandy soils, while the eastern regions are characterized

by loamy soils (Figure 2).

The mean annual precipitation ranges between 5 mm on the

west coast up to 1950 mm in the eastern regions with high

inter-annual variability (Fauchereau et al., 2003) (Figure 3). The mean

annual temperature is around 17�C, ranging from more than 40�C in

the desert regions of Namibia and Botswana to �20�C in the

high-altitude regions around Lesotho and Zimbabwe (Hijmans

et al., 2005).

Observed trends in annual average near-surface temperature in

Southern Africa, based on CRUTEM4v data, show a significant posi-

tive anomaly in comparison to the long-term average of 1961–1990,

with the 2000s being the warmest decade (Engelbrecht et al., 2015;

Osborn & Jones, 2014). This trend is more prevalent in minimum tem-

perature, resulting in a limited diurnal temperature range (New

et al., 2006). The El Niño-Southern Oscillation also affects Southern

Africa and is generally associated with lower-than-normal rainfall,

while strong events coincide with high drought severity (Philippon

et al., 2012).

The region-wide average wind speed is 3.5–6.5 m s�1 reaching its

highest in the mountainous country of Lesotho and the southern

coastal area of South Africa and its lowest at the coast of

Mozambique (Figure 3). The general wind direction is east, while

westerly winds dominate on the southern coast in the summer

months (Rienecker et al., 2011).
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3 | MATERIALS AND METHODS

3.1 | Index of land susceptibility to wind erosion

The complexity of the wind erosion processes demands integration of

a variety of physical parameters, which impede an adequate upscaling

of plot-sized models (Funk & Reuter, 2006). Plot-sized models can

have a demand for extensive data to meet requirements, which poses

difficulties even on a local scale. It is necessary to reduce the parame-

ters to the essentials, while adhering to well-established conditions

for wind erosion, for a regional scale assessment (Böhner &

Köthe, 2003). Therefore, macroscale-sized models are limited by the

availability of spatially and temporally uniform datasets and call for

modification and incorporation of varying data sources, measurement

intervals, and periodicity. The approach in this study, the ILSWE

(Borrelli et al., 2016) and its adaptation by Fenta et al. (2020) use

static and dynamic erosion parameters. It inherits the basic three rules

that wind erosion occurs when wind speed exceeds a threshold, the

soil surface is susceptible and there is little to no vegetation

(Tsoar, 1994). The factors used in the GIS analysis are divided into five

categories to characterize the factorial and combined sensitivity to

wind erosion: climatic erosivity (CE), wind-erodible fraction (EF), soil

crust (SC), VC, and surface roughness (SR). To create a uniform rela-

tionship, the contributing factors were divided into a value range from

0 to 1 using the fuzzy logic approach. Fuzzy logic was introduced by

Zadeh (1965) as a more realistic depiction of a range of metrics, in

contrast to classic Boolean logic, distinguishing between false and true

(McBratney & Odeh, 1997). The analysis was carried out, using ArcGIS

(ArcMap 10.8.1, ESRI Inc., CA, USA), describing the established direct

relationships between each individual erosivity factor to the rate of

F IGURE 1 (a) Main biomes of
Southern Africa comprising countries of
the study area. Localized by numbers:
(1) Namibia, (2) Botswana, (3) Zimbabwe,
(4) Mozambique, (5) Eswatini,
(6) South Africa, and (7) Lesotho (modified
after Olson et al., 2001) and (b) land cover
classification of the study area (ESA CCI).
[Colour figure can be viewed at

wileyonlinelibrary.com]
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wind erosion by fuzzy membership functions (Huete et al., 2002;

Klik, 2004; USDA, 2002; Wever, 2012). The applied functions were as

follows

1. Linear for CE, EF, and SC.

2. Exponential equivalent for VC.

3. Inverse logarithmic for SR.

Thus, a sensitivity assessment layer was produced for every fac-

tor separately to compute a summary map by multiplying each factor

after Fenta et al. (2020):

ILSWE¼CE� EF� SC� VC� SR ð1Þ

In the final step, the result was classified into five categories from

very low to very high sensitivity by applying the Jenks–Caspall-

algorithm. This classification method seeks to reduce the variance

within classes and maximizes the variance between classes (Jenks &

Caspall, 1971). The ILSWE was calculated for the 15-year period of

2005 to 2019, as well as each individual year. Furthermore, a seasonal

index was created to highlight the most vulnerable periods throughout

the year. Finally, an aerosol optical depth-based validation method

was applied. The methodological structure is presented in Figure 4.

3.2 | Data sources

The datasets used for the GIS analysis and its validation are derived

from the following sources (Table 1):

1. Wind speed, precipitation, and potential evapotranspiration are

derived from TerraClimate, a monthly temporal climatic dataset

F IGURE 2 Soil texture classes of the
study area after the United States
Department of Agriculture (USDA)
classification. [Colour figure can be
viewed at wileyonlinelibrary.com]

F IGURE 3 (a) Total annual rainfall and (b) mean wind speed over the study area between 2005 and 2019. [Colour figure can be viewed at
wileyonlinelibrary.com]
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with a 4 km resolution. TerraClimate uses an aided interpolation

method, combining high-spatial resolution climatological normals

from the WorldClim dataset (Fick & Hijmans, 2017) with other

coarser datasets like the Climate Research Unit (Harris et al., 2014)

and the Japanese 55-year reanalysis (Kobayashi et al., 2015). Tech-

nical details on the methodical background and the station-based

ground truth validation are given in Abatzoglou et al. (2018).

2. Sand, silt, clay, and organic matter content are taken from the lat-

est release from the ISRIC SoilGrids database. SoilGrids is a global,

digital soil mapping system, producing a collection of soil property

maps at 250 m resolution using global soil profile information and

machine learning (de Sousa et al., 2020). Calcium carbonate con-

tent is derived from the Harmonized World Soil Database at 1 km

resolution (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012).

3. VC is derived from the fraction of green VC product from Coperni-

cus Global Land Service for the period of 2005 to 2019. The 1 km

grid-sized maps are generated from 10-day observations and made

available as a mean 120-day value product.

4. The CCI Land Cover map was acquired from the European Space

Agency. It is a high-resolution land cover map at 300 m grid size

F IGURE 4 Workflow of methodological steps to calculate the index of land susceptibility to wind erosion and its validation process.

TABLE 1 Data sources with scale and time period.

Source Dataset Scale Period/date

TerraClimate Wind speed 4 � 4 km2 Monthly mean for 2005–2019

Precipitation

Potential evaporation (PET)

ISRIC SoilGrids Database Sand content 250 � 250 m2 Latest release of 2020

Silt content

Clay content

Organic matter content (OM)

Harmonized World Soil Database (HWSD) Calcium carbonate content 1 � 1 km2 2012

Copernicus Global Land Service (CGLS) Fraction of green vegetation 1 � 1 km2 120-day value for 2005–2019

The European Space Agency (ESA) Climate Change Initiative (CCI) 300 � 300 m2 Annual for 2005–2019

Land cover

Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) Aerosol optical depth 0.5� � 0.5� Daily values for 2005–2010

Angstrom exponent

KESTEL ET AL. 2949



based on Sentinel-2A observations as an annual product. The

cloud-free reflectance composites were pre-processed with two

classification algorithms: supervised Random Forest and unsuper-

vised Machine Learning. Both approaches were then combined to

generate the best outcome for a land cover class. For comparing

wind erosion risk to the predominant land cover classification, rele-

vant subdivision classes were combined into shrubs cover, grass-

land, cropland, sparse vegetation, and bare areas classes.

5. Daily aerosol optical depth (AOD) and angstrom exponent

(AE) data are derived from SeaWiFS satellite SEASTAR with a reso-

lution of 0.5� for the period of 2005–2010.

Every dataset was resampled to a 100 � 100 m2 resolution in a

UTM-based reference system, resulting in a pixel size of 1 ha. The

ArcGIS resampling tool using the nearest neighbour method showed

the best results. The downscaling was based on an upscaled grid of

the land cover dataset used in the modeling process. The scale of

100 m, as a typical field unit, is suitable for comparison with other

studies and thus meets the requirements for land use management.

3.3 | Climatic erosivity

The CE factor determines the average rate at which surface soil parti-

cles move relative to moisture content and average wind speed

(Skidmore, 1986). We used a proposed model from Chepil et al.

(1962) as a revised version by FAO (1979). It is best suited for arid

regions, as the CE factor depends only on the wind speed when the

rainfall amount approaches zero, while it is zero when the rainfall is

equal to the potential evapotranspiration (Skidmore, 1986):

CE¼1=100
Xi¼12

i¼1

u3i
PETi�Pi
PETi

� �
�di ð2Þ

Where: ui is the average monthly wind speed (m s�1) at 2 m height,

PETi is the monthly potential evapotranspiration (mm), Pi is the

monthly precipitation (mm), and di represents the total number of days

in month i.

3.4 | Wind-erodible fraction

The EF describes the susceptibility of a bare soil surface to wind-

generated shear force due to its soil properties (Colazo &

Buschiazzo, 2010). To determine the erodibility of soils, Chepil (1941)

sieved samples into erodible and non-erodible fractions. Subsequent

wind tunnel experiments showed that particles larger than 0.84 mm

were stable under test conditions and considered non-erodible. The

EF of soil is characterized by the portion of erodible aggregates of the

top 25 mm of topsoil, with organic carbon and clay contents repre-

senting the main factors toward increasing aggregate stability by bind-

ing single particles (Fryrear, 1980; Skidmore & Layton, 1992). The

calculation of the EF factor includes basic physical and chemical soil

properties:

EF¼29:09þ0:31Saþ0:17Siþ0:33 Sa
Cl�2:59OM�0:95CaCO3

100
ð3Þ

Where: Sa is the sand content with a cutoff range from 5.5% to

93.6%, Si is the silt content with a cutoff range from 0.5% to 69.5%,

Cl is the clay content with a cutoff range from 1.2% to 53%, OM is

the organic matter content with a cutoff range from 0.18% to 4.79%,

and CaCO3 as the calcium carbonate content with an upper cutoff at

25.2% (Fryrear et al., 1994). The equation has not been verified for

values outside of these ranges, thus the cutoffs were used if the data-

sets exceeded the validation limits (Fryrear et al., 1998).

3.5 | Soil crust

As most studies agree on the reductive effect of SCs on wind erosion

(Belnap, 2003; Eldridge & Leys, 2003; Zhang et al., 2006), the SC fac-

tor is included in ILSWE, based on the regressed abrasion coefficient

on clay and organic matter content (Fryrear et al., 1998):

SC¼ 1

1þ0:0066 Clð Þ2þ0:021 OMð Þ2
ð4Þ

Where: Cl is the clay content with a cutoff range from 5% to 39.3%

and OM is the organic matter content with a cutoff range from 0.32%

to 4.74%. The limits of Equation (4) derive from wind tunnel tests on

the resistance of soil aggregates and crusts to windblown sand

(Hagen et al., 1992).

3.6 | Vegetation cover

The VC factor, as the ratio of vertically projected vegetation to the full

extent of the area to be examined, can be expressed with the use of

the fraction of VC (FCover), derived from the leaf area index and other

canopy structural variables. Daily top of canopy reflectance is con-

verted into estimates and in a second step filtered and smoothed by

various inputs to distinguish between bare soil and the presence of

vegetation (Verger et al., 2019).

3.7 | Surface roughness

Surface roughness refers to natural and man-made vertical irregulari-

ties of the earth's surface that decrease wind speed close to the

ground in an inverse logarithmic relation (Sozzi et al., 1998). There-

fore, SR elements affect near-surface aerodynamics and thus contrib-

ute to the reduction of aeolian transport. Since SR maps are not

commonly available, it is possible to use land cover classes for an

2950 KESTEL ET AL.



estimation. We calculated the SR factor, by comparing annual 300 m

gridded land cover maps with suggested roughness length values from

Hansen (1993) (Table S11) and other sources (Floors et al., 2018;

Markert et al., 2019).

3.8 | Validation by recognition of dust storms

Since long-term ground measurements of wind erosion data are not

available, we used the SeaWiFS product's global daily AOD and AE to

identify persistent dust sources derived from an estimate of the fre-

quency of dust storms. After Ginoux et al. (2010), we calculated the

estimation of dust storm frequency as the number of days with

AOD > 0.25 and AE < 0.5. The annual mean frequency of dust storms

was then ranked into five classes, similar to the wind erosion risk

assessment map, by applying the Caspall-and-Jenks algorithm. An

overlay analysis between the 15-year average wind erosion risk

assessment and the 6-year mean annual frequency of dust storms, as

a proxy for dust sources, was generated for an overall validation accu-

racy of our results.

4 | RESULTS

4.1 | Long-term wind erosion risk

Figure 5 summarizes the results of the period from 2005 to 2019 and

shows the 15-year average of the wind erosion risk assessment. It has

been derived with Equation (1) and subdivided into five classes. There

is a clear west–east gradient, whose pattern correlates mainly with

those of mean precipitation and wind speed. Around 91.7% of the

area was classified with a very low to low susceptibility, while 5.7%

show a medium risk and 2.5% a high to very high risk of wind erosion

over that period. The areas most prone to wind erosion are located on

the west coast of Namibia in the Namib Desert, with susceptible areas

scattered around the western part of South Africa and Botswana,

mainly the Kalahari basin. Impact factors, besides strong westerly

winds, are sandy soils and sparse vegetation. The east of Southern

Africa shows very low risk, largely due to high vegetation coverage by

forests and permanent grass landscapes, as well as the presence of

high precipitation throughout the year (Table S1).

As expected, elevated risk areas are only located in the desert

and the Mediterranean shrubland biomes, in the case of the latter,

caused by the high wind speeds near the coast. While there are areas

in the savanna that are affected by wind erosion, the majority of its

extent has a very low susceptibility and risk areas are situated around

the border zones to more arid regions. The modelling results show no

significant wind erosion risk in the montane grasslands and flooded

grassland areas, with mangroves and lakes exclusively representing

the low-risk classes, hence the latter was excluded from the support-

ing tables (Table S2).

In comparison with land cover classes, the modeling outcome dis-

plays that the 15-year mean annual wind erosion risk of cropland is

very low to low. The reasoning is the long-term averaging time, which

averages out times after harvest or fallow periods. Similarly, the

shrubland and grassland classification display only a very low to low

F IGURE 5 Susceptibility to wind erosion in Southern Africa as 15-year average. [Colour figure can be viewed at wileyonlinelibrary.com]
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susceptibility to wind erosion, with grassland indicating a slightly ele-

vated medium risk. On the other hand, the bare and sparse Vegetation

classes represent around 95% (9.1 million ha) of the high to very high-

risk areas, covering about 7.8% of the investigated region (Table S12).

In context, only 0.3% of shrubland is affected by high susceptibility to

wind erosion, representing an area of 0.4 million hectares (Table S6).

4.2 | Annual variability of the wind erosion risk

Figure 6 illustrates the annual variability of the wind erosion risk clas-

ses from 2005 to 2019. The results show a noticeable fluctuation

between the classes with a slight upward trend of low to very high-

risk areas, while the very low-class decrease cumulative to the other

classes (Table S10). The annual average highlights 2007, 2013, 2015,

and 2019, as years with an elevated wind erosion risk (Table S1,

Figure S1).

The higher temporal resolution shows significantly more differen-

tiation of the wind erosion risk depending on the biomes. While there

is no significant deviation between the annual and 15-year mean for

the forest, montane grassland classes, the savanna biome is subject to

strong annual fluctuations. There is an area increase for the medium

risk class up to 22 times in 2013 and 17 times in 2007, respectively.

In addition, areas of increased risk become apparent in the exceptional

years mentioned above. This trend solidifies when considering the

flooded grassland and Mediterranean shrubland zones. Both ecore-

gions correlate in trends with the other classes, while the Mediterra-

nean shrubland biome, situated on the southern coast of South Africa,

depicts a major increase in wind erosion risk in 2017, compared to the

15-year average. As expected, the modeling results show a similar

outcome across years for the desert zones compared to the 15-year

mean, being the only class with a significant proportion in areas with a

very high wind erosion susceptibility (Table S2).

When comparing the land cover classes with the annual wind ero-

sion risk assessment, a trend emerges across all classes that highlight

the climatically exceptional years 2007, 2011, 2013, 2015, 2019, and

with restrictions, 2017. The cropland classification shows an increased

medium risk in several years with a clear upward trend until 2017,

whereby high and very high-risk areas are not deviating from the

mean value, apart from 2017. The shrubland and grassland classifica-

tions show very little standard deviation of the low-risk categories

from the 15-year mean, while the areas at considerable risk of wind

erosion fluctuate strongly over the years. All annual modeled risk clas-

ses within the bare and sparse vegetation zones do not deviate signifi-

cantly from the long-term mean (Table S6).

4.3 | Seasonal variability of the wind erosion risk

The inter-annual modeling of land susceptibility to wind erosion has

been divided into three seasons, ranging from January to April (Sea1),

May to August (Sea2), and September to December (Sea3), as the

120-day VC factor from CGLS does not allow a finer temporal resolu-

tion. There is a clear subdivision of the three time periods across

years, with Sea1 having the lowest overall wind erosion risk, Sea2

having the highest proportion of medium to high-risk areas, and Sea3

being closest to the 15-year average in all area extent categories

(Figure 7). Sea1 shows the greatest deviations in the very low and

F IGURE 6 Annual variability of the wind erosion risk classified between 2005 and 2019. [Colour figure can be viewed at
wileyonlinelibrary.com]
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medium classes over the years, with the years 2006, 2011, and 2017

standing out with the generally lowest risk of erosion within the

4-month periods. Overall, Sea2 has the highest wind erosion risk in

the years up to the onset of a downward trend in 2015, with the

2013 season having the most extended share of risk areas. Sea3 is

very consistent in the distribution of risk classes over the years, with

2007, 2010, and 2012 being noticeable outliers (Table S1). Although

having the overall lowest proportions in high and very high-risk areas,

the medium class takes up to 10% (40,000 km2) of the total area,

stretching far into the east of the Kalahari basin, Botswana

(Figures S2–S4).

The breakdown of the results by biomes shows even more clearly

the vulnerability of soils for wind erosion during the period from May

to August. Both the flooded grassland and especially the savanna

biome are subject to staggering increases of medium and elevated

wind erosion risk in Sea2 compared to the annual means, with 2013

standing out. The results for the desert ecoregion illustrate a moder-

ate to elevated susceptibility to wind erosion covering up to a maxi-

mum of 58% (779,311 km2) of the biome extent, with the very low

classification going as low as 5.7% (77,089 km2) in 2013. It is worth

noting that the risk areas account for 20.4% of the total study area

during this specific time period. The forest and montane grassland

biomes show no significant difference within the three seasons. Sea1

has the highest share of elevated risk areas for the Mediterranean

shrubland region over the years. As it solely covers the southern tip of

Africa, with the rainy season shifted toward the mid of the year, it

results in Sea2 having the overall lowest susceptibility of soils to wind

erosion and being very consistent in its results with no outlier years

(Tables S3–S5).

Comparing the inter-annual modeling results with the distribution

of the land cover classification it mainly highlights the most extensive

regions, namely the shrubland and grassland classes. Both illustrate

the highest proportion of medium to elevated land susceptibility to

wind erosion from May to August, while fluctuating throughout the

other two seasons. The bare and sparse vegetation classifications do

not deviate significantly between the three seasons, while having the

highest area percentage of medium to elevated risk within the classes.

Since the vegetation in these land cover types changes only slightly

over the course of the year, the temporal limitation of the data to a

seasonal modelling approach has less influence on the result, when

adding up the medium to a very high subdivision. Nearly all cropland

areas have a very low or slight risk of wind erosion during all seasons,

although there is an increase of medium risk during May to August

pointing out the typical harvest period with a lower VC

(Tables S7–S9).

5 | DISCUSSION

Our approach follows the validated model ILSWE that has been modi-

fied by Fenta et al. (2020) for application in East Africa, a region cli-

matically similar to our study area. We adopted the validation

methodology and compared the spatial and temporal derived wind

erosion risk with the frequency of dust storms observed by satellites

in that area. We got an overall accuracy of 65% for our study area

(Table 2, Figure 8). The very low (80%) class has the highest validation

accuracy, followed by the very high (40%) and low (38%) risk classifi-

cation. Natural and anthropogenic fires occurred during the period of

F IGURE 7 Seasonal variability of the wind erosion risk between 2005 and 2019 (Sea1: January–April; Sea2: May–August; and Sea3:
September–December). [Colour figure can be viewed at wileyonlinelibrary.com]
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the validation data and were falsely detected as dust sources

(NASA, 2022). Corresponding time periods have been removed to

prevent distortion of the spatial distribution of dust sources. As it was

not possible to remove wildfire impact completely without affecting

the actual classification of dust sources, the results can be considered

satisfactory and are in line with other works (Fenta et al., 2016, 2020).

Zhao et al. (2021) investigated the impacts of climate change on

wind erosion in Southern Africa by implementing the RWEQ to con-

duct an average wind erosion modulus for each year of the period

1991–2015, to perform a trend analysis. The fluctuation of the wind

erosion dynamics from 2005 to 2015 are in good agreement with our

annual modeled outcome. Our results in 2013 and 2015 show a simi-

lar expansion of risk areas compared to the extraordinary increase of

2007, which is not apparent in the same magnitude in the study of

Zhao et al. (2021). Both model approaches use a similar methodology,

but with different data sets. One reason for the deviations from 2010

onward could be the sharp drop in average wind speed that Zhao

et al. (2021) determined over their investigation period, which is not

in the order of magnitude of our TerraClimate product data series.

In recent years, several studies have been published on dust emis-

sions and their sources in Southern Africa, with a specific focus on the

Namib Desert (Dansie et al., 2017; Eckardt et al., 2020; Vickery

et al., 2013; von Holdt et al., 2017). Accordingly, the main dust plume

sources are situated in the Namib Desert and its coastal river catch-

ments, the Kalahari pan belt, and the Botswana central pan. The spa-

tial distribution of elevated risk areas of our results of the 15-year

TABLE 2 Error matrix: agreement of area in % between 15-year mean ILSWE and estimate for frequency of dust storms averaged between
2005 and 2010.

ILSWE

Frequency of dust storms

Very low Low Medium High Very high

Very low 53,8 11,7 1,4 0,2 0,0

Low 12,8 9,2 1,6 0,3 0,6

Medium 1,1 2,2 1,2 0,3 0,4

High 0,3 0,7 0,8 0,6 0,3

Very high 0,0 0,0 0,2 0,1 0,2

Overall accuracy 65%

F IGURE 8 Estimate of mean annual frequency of dust storms derived from SeaWiFS daily data of aerosol optical depth (AOD) and angstrom
exponent (AE) for the period between 2005 and 2010. [Colour figure can be viewed at wileyonlinelibrary.com]
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mean wind erosion risk assessment are mainly distributed around the

Namib Desert and its borders, while the inter-annual results indicate

the Kalahari basin as a seasonal risk area.

In general, studies on wind erosion in Southern Africa are scarce.

The increase of studies on erosion and dust generation in the region

in recent years shows that the problem is being recognized and get-

ting scientific attention. The processes of wind erosion vary consider-

ably in their spatial and temporal distribution so large-scale studies

can only give an approximate picture of the processes (Funk

et al., 2004; Siegmund et al., 2018). While the spatial resolution can

still be chosen relatively high even for larger areas in a GIS, the data

availability sets limitations for the temporal resolution. Our wind ero-

sion risk assessment follows an increasing temporal resolution of the

period from 2005 to 2019, from the 15-year average to the annual

and finally seasonal variability. The temporal variability is character-

ized by the dynamics of the climatic and vegetation factors. The

graphical representations of said factors undermine the importance of

vegetative ground cover to control wind erosion (Figures S5 and S9).

While the influence of the climatic factor is mainly apparent on the

southern coast, a region with less tropical influence and therefore

characterized by greater climatic variance (Grieser et al., 2006), the

patterns of wind erosion risk classes are directly dependent on the

spatial distribution of the fractional vegetation index. These results

are further reinforced if one considers the variability of the grassland

and cropland classification, which in years with low vegetative cover

led to a drastic increase in the medium and elevated risk classes. The

grasslands cover most of the inland and are considered prone to irre-

versible degradation (Ravi et al., 2010). Southern African agricultural

areas are susceptible to crop failures in climatically unfavourable

years, such as maize cultivation, due to the dependency on monocul-

tures and lack of crop diversification (FAO, 2021).

Our results for the seasonal wind erosion risk assessment are

more differentiated than our annual outcomes (Table S1). The general

trend shows a slight downward trend of medium to elevated risk clas-

ses, with Sea1 being more in line with the annual trend, Sea2 and with

a lesser degree Sea3 representing the general trend, while having a

larger extent of elevated risk classes respectively. The seasonal

modeling outcome moderately represents the rainy, dry, and greening

seasons, while the VC has a stronger influence on the results than the

CE factor (Figures S6–S8 and S10–S12). Figure 9 shows the linear

relationship of the CE factor toward the ILSWE results, while the VC

factor has an overall higher impact with three distinct point clouds,

representing the seasonal modeling outcome. Consequently, our

results show that the period with the highest risk of wind erosion for

agriculture is from January to August and the lowest protective effect

of grassland is apparent from May to August. With rather low R2

values for the annual and seasonal risk class trends, apart from the dry

season between May and August, a future trend prediction on the

wind erosion risk is associated with a high level of uncertainty

(Table S10). A reason could be the variability and limitations of the

fractional vegetation index. While climate data is readily available on a

monthly basis, it is challenging to generate consistent, continuous

vegetation data. In regions in and around the tropics clouding will pro-

duce noise and faulty surface reflectance (Hmimina et al., 2013). For

our study region, the use of a 120-day composite vegetation index

was necessary to provide at least one value per pixel, restricting the

results to a seasonal index. Additionally, the fractional vegetation rep-

resents healthy leaf green, without fully considering the protective

effect of dried and leafless vegetation (Chappell et al., 2018). This par-

ticularly affects the savanna landscapes with a natural dry cycle

(Chidumayo, 2001). The SR factor ensures a certain consistency of the

results, but overestimation of the wind erosion risk in dynamic dry-

lands cannot be ruled out. In-depth trend analysis would require a

more robust vegetation index as an input parameter, as well as

dynamic estimates of SR, preferably with higher spatiotemporal

resolution.

F IGURE 9 Comparison of the seasonal mean fuzzy values of ILSWE and the CEF and VCF. [Colour figure can be viewed at
wileyonlinelibrary.com]
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Past and recent studies show evidence, that droughts have

become more intense and widespread in the region of Southern Africa

(Fauchereau et al., 2003; Masih et al., 2014). Precipitation, or rather

its absence, is the main driver of drought occurrence, however the

inclusion of heat waves in drought projection is getting increasing

attention, which will become more relevant in the context of climate

change (Abiodun et al., 2012; Vicente-Serrano et al., 2011). Tempera-

ture is only indirectly represented in this study by potential evapo-

transpiration but has an impact on wind erosion too. Higher

temperatures and low rainfall can result in limited vegetation growth,

dry out soils and inhibit aggregation of particles, which increases the

vulnerability of susceptible soils to wind erosion (Sharratt et al., 2013).

There is evidence of a drastic increase in surface temperature on the

African continent, on the order of twice the global temperature

increase (Engelbrecht et al., 2015; Jones et al., 2012). Combined with

an observed decrease in rainfall and a lengthening of the dry season

since the late 60s, future drought scenarios anticipate significant pres-

sures on the primarily rain-fed agricultural systems (Fauchereau

et al., 2003; MacKellar et al., 2014; Niang et al., 2014). Our results

show the highest share of medium and elevated risk classes in the

years of 2007, 2013, 2015, and 2019, years when droughts and heat-

waves afflicted large parts of Southern Africa (Nnopuechi, 2021).

Apart from 2013, these were years with moderate to strong El Niño

events, negatively affecting rainfall over the western part of Southern

Africa and furthering high temperatures over long periods (Blamey

et al., 2018; Pomposi et al., 2018). In 2017, the subdivided outcome

for the Mediterranean shrubland zone shows the highest share of risk

classes, the year with the most devastating drought in the last

100 years around the Cape of Africa (Pascale et al., 2020). Thegrass-

lands and cropland classification, being the most vulnerable to climatic

influences, show the largest extent of medium to elevated risk areas

in drought years (Table S6). These results are consistent with reported

crop failures and the frequency of high fire danger days, resulting in

bushfires in grasslands (Andela & van der Werf, 2014; Guimarães

Nobre et al., 2019; Verschuur et al., 2021).

Given the overall trend of warming and decreasing average

annual rainfall, wind erosion could become a more serious threat in

the future. With limited resources and increasing population growth,

pressures on agricultural systems may intensify, necessitating further

conservation practices like the implementation of shelterbelts and

agroforestry systems (Sheppard et al., 2020).

6 | CONCLUSIONS

The joint assessment of wind erosion for natural and anthropogenic-

influenced areas makes it difficult to evaluate the effects on ecosys-

tems. The very high risk in deserts associated with large amounts of

erosion has to be evaluated differently than the often much lower

dust emissions emitted from cropland, but leading to irreversible soil

degradation. Agricultural areas are generally not threatened to a great

degree in our results, but the extent of moderate and elevated wind

erosion risk substantially rose in years of droughts. In addition, the

temporal resolution of our modeling results is not sufficient to fully

evaluate the wind erosion risk of highly dynamic agricultural systems

and therefore demands further investigation. The dynamics of the

annual and seasonal wind erosion risk were mainly influenced by the

VC, with the CE factor having a regional impact. Under the consider-

ation of a general warming trend, with a decrease in annual rainfall in

the context of a changing climate, wind erosion could become a more

problematic phenomenon in the future, demanding conservation poli-

cies for mitigation and adaptation. While our results identify hotspots

of wind erosion, effective land management practices for controlling

wind erosion are likely to vary locally and may include shelterbelts,

revegetation, and similar sustainable measures to increase soil cover,

biological diversity, and minimum soil disturbance. Field-based studies

are therefore required for high-resolution mapping of target areas to

develop individual adaptation strategies.

ACKNOWLEDGMENTS

This research was funded by the German Federal Ministry of Educa-

tion and Research (BMBF), as part of the project “Agroforestry in

Southern Africa – new pathways of innovative land use systems under

a changing climate” (ASAP), grant number 01LL1803B. Open Access

funding enabled and organized by Projekt DEAL.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available.

The meteorological data is available at http://www.climatologylab.org/

terraclimate (last access: 29 April 2021); the soil property data sets are

available at https://www.isric.org (last access: 27 January 2021) and

http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/

harmonized-world-soil-database-v12 (last access: 14 December

2020); the fractional vegetation cover product is available at https://

land.copernicus.eu/global/products/fcover (last access: 30 July 2021);

the CCI Land Cover is available at https://www.esa-landcover-cci.org/

(last access: 04 September 2022); the unedited shapefile for the ter-

restrial ecoregions is available at: https://databasin.org (last access:

04 December 2020); and the daily aerosol optical depth and angstrom

exponent data is available at: https://giovanni.gsfc.nasa.gov/giovanni/

(last access: 12 March 2022).

ORCID

Florian Kestel https://orcid.org/0000-0002-1464-5075

REFERENCES

Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018).

TerraClimate, a high-resolution global dataset of monthly climate and

climatic water balance from 1958–2015. Scientific Data, 5, 12. https://
doi.org/10.1038/sdata.2017.191

Abiodun, B. J., Adeyewa, Z. D., Oguntunde, P. G., Salami, A. T., &

Ajayi, V. O. (2012). Modeling the impacts of reforestation on future cli-

mate in West Africa. Theoretical and Applied Climatology, 110, 77–96.
https://doi.org/10.1007/s00704-012-0614-1

2956 KESTEL ET AL.

http://www.climatologylab.org/terraclimate
http://www.climatologylab.org/terraclimate
https://www.isric.org
http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12
http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12
https://land.copernicus.eu/global/products/fcover
https://land.copernicus.eu/global/products/fcover
https://www.esa-landcover-cci.org/%20
https://databasin.org
https://giovanni.gsfc.nasa.gov/giovanni/
https://orcid.org/0000-0002-1464-5075
https://orcid.org/0000-0002-1464-5075
https://doi.org/10.1038/sdata.2017.191
https://doi.org/10.1038/sdata.2017.191
https://doi.org/10.1007/s00704-012-0614-1


Andela, N., & van der Werf, G. R. (2014). Recent trends in African fires

driven by cropland expansion and El Niño to La Niña transition. Nature

Climate Change, 4, 791–795. https://doi.org/10.1038/nclimate2313

Belnap, J. (2003). Biological soil crusts and wind erosion. In J. Belnap &

O. L. Lange (Eds.), Biological soil crusts: Structure, function, and manage-

ment, ecological studies (pp. 339–347). Springer.
Blamey, R. C., Kolusu, S. R., Mahlalela, P., Todd, M. C., & Reason, C. J. C.

(2018). The role of regional circulation features in regulating El Niño

climate impacts over southern Africa: A comparison of the 2015/2016

drought with previous events. International Journal of Climatology, 38,

4276–4295. https://doi.org/10.1002/joc.5668
Böhner, J., & Köthe, R. (2003). Soil regionalization and process modelling:

Instruments for soil protection [Bodenregionalisierung und Prozess-

modellierung: Instrumente für den Bodenschutz]. Petermanns Geogra-

phische Mitteilungen, 147, 72–82. https://doi.org/10.

1007/978-3-642-56475-8_25

Borrelli, P., Panagos, P., Ballabio, C., Lugato, E., Weynants, M., &

Montanarella, L. (2016). Towards a pan-European assessment of land

susceptibility to wind erosion. Land Degradation & Development, 27,

1093–1105. https://doi.org/10.1002/ldr.2318
Burgess, N., World Wildlife Fund, W., D'Amico Hales, J., Underwood, E.,

Dinerstein, E., Olson, D., Itoua, I., Schipper, J., Ricketts, T., &

Newman, K. (2004). Terrestrial ecoregions of Africa and Madagascar: A

conservation assessment. Island Press.

Buschiazzo, D., & Zobeck, T. (2008). Validation of WEQ, RWEQ and WEPS

wind erosion for different arable land management systems in the

Argentinean pampas. Earth Surface Processes and Landforms, 33, 1839–
1850. https://doi.org/10.1002/esp.1738

Chappell, A., Baldock, J., & Sanderman, J. (2016). The global significance of

omitting soil erosion from soil organic carbon cycling schemes. Nature

Climate Change, 6, 187–191. https://doi.org/10.1038/nclimate2829

Chappell, A., Webb, N. P., Guerschman, J. P., Thomas, D. T., Mata, G.,

Handcock, R. N., Leys, J. F., & Butler, H. J. (2018). Improving ground

cover monitoring for wind erosion assessment using MODIS BRDF

parameters, remote Sens. Environment, 204, 756–768. https://doi.org/
10.1016/j.rse.2017.09.026

Chepil, W. S. (1941). Relation of wind erosion to the dry aggregate struc-

ture of a soil. Science in Agriculture, 21, 488–507. https://doi.org/10.
4141/sa-1941-0029

Chepil, W. S., Siddoway, F. H., & Armbrust, D. V. (1962). Climatic factor for

estimating wind erodibility of Fram fields. Journal of Soil and Water

Conservation, 17, 162–165.
Chidumayo, E. N. (2001). Climate and phenology of savanna vegetation in

southern Africa. Journal of Vegetation Science, 12(3), 347–354. https://
doi.org/10.2307/3236848

Colazo, J. C., & Buschiazzo, D. E. (2010). Soil dry aggregate stability and

wind erodible fraction in a semiarid environment of Argentina. Geo-

derma, 159, 228–236. https://doi.org/10.1016/j.geoderma.2010.

07.016

Dansie, A. P., Wiggs, G. F. S., Thomas, D. S. G., & Washington, R. (2017).

Measurements of windblown dust characteristics and ocean fertiliza-

tion potential: The ephemeral river valleys of Namibia. Aeolian

Research, 29, 30–41. https://doi.org/10.1016/j.aeolia.2017.08.002
de Sousa, L. M., Poggio, L., Batjes, N. H., Heuvelink, G. B. M., Kempen, B.,

Riberio, E., & Rossiter, D. (2020). SoilGrids 2.0: Producing quality-

assessed soil information for the globe. Soil Discussion, 7, 1–37.
https://doi.org/10.5194/soil-2020-65

Department of Environmental Affairs. (2014). Long-term adaptation sce-

narios flagship research Programme (LTAS) for South Africa: Climate

change adaptation: Perspectives for the southern African development

community (SADC), Department of Environmental Affairs, Pretoria,

South Africa.

D'Odorico, P., Bhattachan, A., Davis, K. F., Ravi, S., & Runyan, C. W.

(2013). Global desertification: Drivers and feedbacks. Advances in

Water Resources, 51, 326–344. https://doi.org/10.1016/j.advwatres.

2012.01.013

Eckardt, F. D., Bekiswa, S., Von Holdt, J. R., Jack, C., Kuhn, N. J.,

Mogane, F., Murray, J. E., Ndara, N., & Palmer, A. R. (2020).

South Africa's agricultural dust sources and events from MSG SEVIRI.

Aeolian Research, 47, 12. https://doi.org/10.1016/j.aeolia.2020.

100637

Eldridge, D. J., & Leys, J. F. (2003). Exploring some relationships between

biological soil crusts, soil aggregation and wind erosion. Journal of Arid

Environments, 53, 457–466. https://doi.org/10.1006/jare.2002.1068
Engelbrecht, F., Adegoke, J., Bopape, M.-J., Naidoo, M., Garland, R.,

Thatcher, M., McGregor, J., Katzfey, J., Werner, M., Ichoku, C., &

Gatebe, C. (2015). Projections of rapidly rising surface temperatures

over Africa under low mitigation. Environmental Research Letters, 10,

16. https://doi.org/10.1088/1748-9326/10/8/085004

FAO. (1979). A provisional methodology for soil degradation

assessment Food and Agriculture Organization of the United Nations.

FAO. (2021). The impact of disasters and crises on agriculture and food

security: 2021. FAO, Rome, Italy. https://doi.org/10.4060/cb3673en

FAO/IIASA/ISRIC/ISSCAS/JR. (2012). Harmonized World Soil Database

(version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria. http://

www.fao.org/3/aq361e/aq361e.pdf

Fauchereau, N., Trzaska, S., Rouault, M., & Richard, Y. (2003). Rainfall vari-

ability and changes in southern Africa during the 20th century in the

global warming context. Natural Hazards, 29, 139–154. https://doi.
org/10.1023/A:1023630924100

Fenta, A. A., Tsunekawa, A., Haregeweyn, N., Poesen, J., Tsubo, M.,

Borrelli, P., Panagos, P., Vanmaercke, M., Broeckx, J., Yasuda, H.,

Kawai, T., & Kurosaki, Y. (2020). Land susceptibility to water and wind

erosion risks in the East Africa region. Science of the Total Environment,

703, 20. https://doi.org/10.1016/j.scitotenv.2019.135016

Fenta, A. A., Yasuda, H., Shimizu, K., Haregeweyn, N., & Negussie, A.

(2016). Dynamics of soil erosion as influenced by watershed manage-

ment practices: A case study of the Agula watershed in the semi-arid

highlands of northern Ethiopia. Environmental Management, 58, 889–
905. https://doi.org/10.1007/s00267-016-0757-4

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolu-

tion climate surfaces for global land areas. International Journal of Cli-

matology, 37, 4302–4315. https://doi.org/10.1002/joc.5086
Floors, R., Enevoldsen, P., Davis, N., Arnqvist, J., & Dellwick, E. (2018).

From lidar scans to roughness maps for wind resource modelling in

forested areas. Wind Energy Science, 3, 353–370. https://doi.org/10.
5194/wes-3-353-2018

Fryrear, D. W. (1980). Tillage influences monthly wind erodibility of dryland

sandy soils. pp. 153–163. In Crop Production with Conservation in the

80s. Conference Proceedings, Chicago, IL. 1-2 Dec. American Society

of Agricultural Engieneers, pp. 7–81.
Fryrear, D. W., Chen, W., & Lester, C. (2001). Revised wind erosion equa-

tion. Annals of Arid Zone, 40, 265–279.
Fryrear, D. W., Krammes, C. A., Williamson, D. L., & Zobeck, T. M. (1994).

Computing the wind erodible fraction of soils. Journal of Soil and Water

Conservation, 49, 183–188.
Fryrear, D. W., Saleh, A., Bilbro, J. D., Schromberg, H. M., Stout, J. E., &

Zobeck, T. M. (1998). Revised wind erosion equation. USDA Technical

Bulletins No 1.

Funk, R., & Reuter, H. I. (2006). Wind Erosion. In Soil erosion in Europe

(pp. 563–582). John Wiley & Sons, Ltd.

Funk, R., Reuter, H. I., Hoffmann, C., Engel, W., & Öttl, D. (2008). Effect of

moisture on fine dust emission from tillage operations on agricultural

soils. Earth Surface Processes and Landforms, 33, 1851–1863. https://
doi.org/10.1002/esp.1737

Funk, R., Skidmore, E. L., & Hagen, L. J. (2004). Comparison of wind ero-

sion measurements in Germany with simulated soil losses by WEPS.

Environ. Model. Softw. Modelling of Wind Erosion and Aeolian Processes,

19, 177–183. https://doi.org/10.1016/S1364-8152(03)00120-8
Ginoux, P., Garbuzov, D., & Hsu, N. C. (2010). Identification of anthropo-

genic and natural dust sources using moderate resolution imaging

spectroradiometer (MODIS) deep blue level 2 data. Journal of

KESTEL ET AL. 2957

https://doi.org/10.1038/nclimate2313
https://doi.org/10.1002/joc.5668
https://doi.org/10.1007/978-3-642-56475-8_25
https://doi.org/10.1007/978-3-642-56475-8_25
https://doi.org/10.1002/ldr.2318
https://doi.org/10.1002/esp.1738
https://doi.org/10.1038/nclimate2829
https://doi.org/10.1016/j.rse.2017.09.026
https://doi.org/10.1016/j.rse.2017.09.026
https://doi.org/10.4141/sa-1941-0029
https://doi.org/10.4141/sa-1941-0029
https://doi.org/10.2307/3236848
https://doi.org/10.2307/3236848
https://doi.org/10.1016/j.geoderma.2010.07.016
https://doi.org/10.1016/j.geoderma.2010.07.016
https://doi.org/10.1016/j.aeolia.2017.08.002
https://doi.org/10.5194/soil-2020-65
https://doi.org/10.1016/j.advwatres.2012.01.013
https://doi.org/10.1016/j.advwatres.2012.01.013
https://doi.org/10.1016/j.aeolia.2020.100637
https://doi.org/10.1016/j.aeolia.2020.100637
https://doi.org/10.1006/jare.2002.1068
https://doi.org/10.1088/1748-9326/10/8/085004
https://doi.org/10.4060/cb3673en
http://www.fao.org/3/aq361e/aq361e.pdf
http://www.fao.org/3/aq361e/aq361e.pdf
https://doi.org/10.1023/A:1023630924100
https://doi.org/10.1023/A:1023630924100
https://doi.org/10.1016/j.scitotenv.2019.135016
https://doi.org/10.1007/s00267-016-0757-4
https://doi.org/10.1002/joc.5086
https://doi.org/10.5194/wes-3-353-2018
https://doi.org/10.5194/wes-3-353-2018
https://doi.org/10.1002/esp.1737
https://doi.org/10.1002/esp.1737
https://doi.org/10.1016/S1364-8152(03)00120-8


Geophysical Research – Atmospheres, 115, 10. https://doi.org/10.

1029/2009JD012398

Grieser, J., Gommes, R., & Bernardi, M. (2006). New LocClim - the local cli-

mate estimator of FAO. Geophysical Research Abstracts, 8, 2.
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