
1.  Introduction
Quantifying the stress state and deformation around magma or mush bodies is a necessary step toward construct-
ing a conceptual model that can describe the evolution of magmatic plumbing systems. The stress state of 
the host rock is of particular interest because stress is a key variable for most physical transport mechanisms 
of magma (e.g., Segall,  2010). Such mechanisms include buoyant rising in a viscous matrix (e.g., Lister & 
Kerr, 1991; Petford, 1996; Rubin, 1993; Weinberg & Schmeling, 1992), hydraulic fracturing in an elasto-plastic 
matrix (i.e., diking) or self localizing porous flow due to decompaction and compaction waves (e.g., Connolly 
& Podladchikov, 2007; Katz, 2008; Keller et al., 2013; Sleep, 1974). Moreover, surface deformation and seis-
micity are one of the few real-time indicators of changes in the magmatic plumbing system, both of which are 
strongly related to the stress state (e.g., Pritchard & Simons, 2004; Reuber et al., 2018; Segall, 2010, 2019; Spang 
et al., 2021; Walter & Motagh, 2014).

Abstract  Studies of host rock deformation around magmatic intrusions usually focus on the development 
of stresses directly related to the intrusion process. This is done either by considering an inflating region 
that represents the intruding body, or by considering multiphase deformation. Thermal processes, especially 
volume changes caused by thermal expansion are typically ignored. We show that thermal stresses around 
upper crustal magma bodies are likely to be significant and sufficient to create an extensive fracture network 
around the magma body by brittle yielding. At the same time, cooling induces decompression within the 
intrusion, which can promote the appearance of a volatile phase. Volatile phases and the development of a 
fracture network around the inclusion may thus be the processes that control magmatic-hydrothermal alteration 
around intrusions. This suggests that thermal stresses likely play an important role in the development of 
magmatic systems. To quantify the magnitude of thermal stresses around cooling intrusions, we present a 
fully compressible 2D visco-elasto-plastic thermo-mechanical numerical model. We utilize a finite difference 
staggered grid discretization and a graphics processing unit based pseudo-transient solver. First, we present 
purely thermo-elastic solutions, then we include the effects of viscous relaxation and plastic yielding. The 
dominant deformation mechanism in our models is determined in a self-consistent manner, by taking into 
account stress, pressure, and temperature conditions. Using experimentally determined flow laws, the resulting 
thermal stresses can be comparable to or even exceed the confining pressure. This suggests that thermal stresses 
alone could result in the development of a fracture network around magmatic bodies.

Plain Language Summary  Quantifying the stresses that magma bodies exert on the surrounding 
rocks is an important part of understanding mechanical processes that control the evolution of magmatic 
systems and volcanic eruptions. Previous analytical or numerical models typically describe the mechanical 
response to changes in magma volume due to intrusion or extraction of magma. However, volume changes 
related to thermal expansion/contraction around a cooling magma body are often neglected. Here, we develop 
a new software which runs on modern graphics processing unit machines, to quantity the effect of this process. 
The results show that stresses due to thermal expansion/contraction are significant, and often large enough 
to fracture the rocks nearby the magma body. Such fracture networks may form permeable pathways for the 
magma or for fluids such as water and CO2, thus influencing the evolution of magmatic and hydrothermal 
systems. Finally we show that cooling and shrinking of magma bodies causes significant decompression which 
can influence the chemical evolution of the magma during crystallization and devolatilization.
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Studies of host rock deformation around magma chambers usually focus on stresses directly related to magma 
transport (such as dyke or sill emplacement). The customary approach is to prescribe the magma body as an over- 
or underpressured volume, representing an inflating or deflating region within the crust. There are analytical 
solutions that describe the displacement or stress field for different intrusion geometries in a purely elastic host 
rock (Fialko et al., 2001; Kiyoo, 1958; McTigue, 1987; Yang et al., 1988). However, if large volume changes are 
considered, equivalent of more than several MPa pressure difference, a few km below the surface, brittle failure 
becomes increasingly likely due to the small confining pressure. In this case, a purely elastic rheology is no 
longer applicable and the quantification of the stress state and tensile or dilational shear failure is of particular 
importance. This is because fractures or dikes propagating from the inclusion might reach the surface, resulting 
in an eruption or in the appearance of fumaroles. To investigate stresses and deformation in a visco-elasto-plastic 
host rock, several studies applied thermo-mechanical numerical modeling. Some utilize a visco-elastic rheol-
ogy to quantify stresses and determine the onset of failure (e.g., Gregg et al., 2012; Head et al., 2022; Novoa 
et  al.,  2019; Zhan & Gregg,  2019) and others utilize an elasto-plastic or visco-elasto-plastic rheology (e.g., 
Gerbault et al., 2012, 2018; Novoa et al., 2022; Souche et al., 2019). However, thermal processes, especially 
volume changes due to thermal expansion are rarely considered. Studies which do consider volume change due to 
thermal expansion are limited to a purely elastic rheology, neglecting viscous or plastic deformation of the host 
rock (e.g., Furuya, 2005; Kohsmann & Mitchell, 1986; Wang & Aoki, 2019).

To first order, thermal stresses can be estimated by taking the mechanical equation of state (e.g., Turcotte & 
Schubert, 2014)

d𝜌𝜌

𝜌𝜌
= −𝛼𝛼d𝑇𝑇 + 𝛽𝛽d𝑃𝑃 𝑃� (1)

where the scalar values of pressure and density change are related to the trace of the stress and strain rate tensors 
P = −σkk/3 and 𝐴𝐴 d𝜌𝜌∕𝜌𝜌 = −𝜀̇𝜀𝑘𝑘𝑘𝑘d𝑡𝑡 (repeated indices imply summation). Assuming an isochoric process (i.e., constant 
volume) and expressing dP

0 ≈ −𝛼𝛼d𝑇𝑇 + 𝛽𝛽d𝑃𝑃 → d𝑃𝑃 ≈
𝛼𝛼

𝛽𝛽
d𝑇𝑇 𝑇� (2)

This shows that thermal pressurization is linearly proportional to the temperature change with the ratio of the 
thermal expansion coefficient and the compressibility being the factor of proportionality. The ratio of the thermal 
expansion coefficient and the compressibility in intact rocks is typically on the order of 1 MPa K −1. Considering 
that the temperature difference between rapidly injected magma bodies and their host rocks can easily reach 
several hundred degrees we can estimate that thermal pressure change can reach several hundred MPa. Moreover, 
in case of partially molten rocks, the volume change of melting/crystallization should be considered as well, 
implying even larger pressure changes. Based on these simple estimates, thermal pressurization can potentially 
exceed a near-lithostatic background pressure, potentially reaching the brittle yield stress in the host rock or 
significantly impacting the pressure-temperature (P-T) conditions in the magma body. Therefore, it appears feasi-
ble that thermal expansion related stresses can generate significant pressure and stress anomalies, that might even 
lead to thermal cracking around rapidly emplaced, cooling upper crustal magma bodies.

Our aim in this paper is to quantify stresses and deformation generated by thermal expansion/contraction around 
cooling magma or mush chambers in a visco-elasto-viscoplastic host rock. To do so, we have developed a new 
numerical code that can be used to quantify volume changes due to elastic compressibility, thermal expansion, 
and plastic dilation in a thermodynamically consistent manner. Besides that, the plasticity model we use consid-
ers both shear and tensile failure. Since we focus on isolating and quantifying the effects of thermal stresses 
around magma or mush chambers, we exclude other processes from our models. Hence we consider single phase 
flow (i.e., no phase separation), constant material parameters that are typical of intact granites, no background 
tectonic stresses. Also, we assume a pre-existing magma body (i.e., we do not model the emplacement mecha-
nism), where the magma body has an initially elevated temperature (and thus lower viscosity and density), but 
otherwise is identical to the host rock. We carry out 2D plane strain thermo-mechanical simulations applied to a 
magma chamber with a horizontally prolate ellipsoidal geometry. We are using rheological models of increasing 
complexity to show the difference between a purely elastic, a visco-elastic or a visco-elasto-plastic rheology. 
Furthermore, we compare the influence of thermal stresses and visco-elasto-plastic relaxation (without thermal 
expansion) on the stress evolution around cooling magma chambers. Finally, we discuss the potential roles that 
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thermal stresses and thermal cracking might have on the evolution of magmatic plumbing systems and on the 
evolution of magmatic-hydrothermal systems around plutonic bodies. Our results highlight the importance of 
considering thermal stresses to quantify deformation and fracturing around magma chambers, when time scales 
over a thousand years are considered.

2.  Mathematical Formulation and Numerical Model
2.1.  Governing System of Equations

We assume slow (i.e., negligible inertial forces), compressible, single velocity (i.e., multiple phases may be pres-
ent, but phase separation is excluded), visco-elasto-viscoplastic deformation. The governing system of equations 
in 3D is

1

𝜌𝜌

d𝜌𝜌

d𝑡𝑡
= −

𝜕𝜕𝜕𝜕𝑘𝑘

𝜕𝜕𝜕𝜕𝑘𝑘

� (3)

0 =
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝑗𝑗

+ 𝜌𝜌𝜌𝜌𝑖𝑖� (4)

𝜌𝜌𝜌𝜌𝑃𝑃
d𝑇𝑇

d𝑡𝑡
= 𝛼𝛼𝛼𝛼

d𝑃𝑃

d𝑡𝑡
+

𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

(

𝜆𝜆
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

)

+ 𝜎𝜎𝑖𝑖𝑖𝑖

(

𝜀̇𝜀𝑖𝑖𝑖𝑖 − 𝜀̇𝜀el

𝑖𝑖𝑖𝑖

)

+𝑄𝑄𝑟𝑟� (5)

𝜕𝜕𝜕𝜕𝑘𝑘

𝜕𝜕𝜕𝜕𝑘𝑘

= 𝛼𝛼
d𝑇𝑇

d𝑡𝑡
− 𝛽𝛽

d𝑃𝑃

d𝑡𝑡
+ 𝜀̇𝜀

vol,pl

𝑘𝑘𝑘𝑘� (6)

𝜀̇𝜀dev
𝑖𝑖𝑖𝑖 =

𝜏𝜏𝑖𝑖𝑖𝑖

2𝜂𝜂
(

𝜀̇𝜀
dev,vis

II
, 𝑇𝑇

)
+

1

2𝜇𝜇

d𝜏𝜏𝑖𝑖𝑖𝑖

d𝑡𝑡
+ 𝜀̇𝜀

dev,pl

𝑖𝑖𝑖𝑖
,� (7)

where Equations 3–5 have been derived from the conservation of mass, momentum, and energy respectively. 
Equations 6 and 7 are constitutive relationships between volumetric and symmetric-deviatoric components of 
stress and strain rate tensors (Schubert et al., 2001). Indices ijk correspond to coordinate axes 1, 2, and 3 and 

repeated indices imply summation (Einstein notation). The strain rate tensor 𝐴𝐴

(

𝜀̇𝜀𝑖𝑖𝑖𝑖 =
𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑗𝑗

)

 can be decomposed into 

a volumetric part 𝐴𝐴

(

𝜀̇𝜀vol
ij

=
𝛿𝛿𝑖𝑖𝑖𝑖

3

𝜕𝜕𝜕𝜕𝑘𝑘

𝜕𝜕𝜕𝜕𝑘𝑘

)

 and a symmetric-deviatoric part 𝐴𝐴

(

𝜀̇𝜀dev
ij

= 0.5

(

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑗𝑗
+

𝜕𝜕𝜕𝜕𝑗𝑗

𝜕𝜕𝜕𝜕𝑖𝑖

)

−
𝛿𝛿𝑖𝑖𝑖𝑖

3

𝜕𝜕𝜕𝜕𝑘𝑘

𝜕𝜕𝜕𝜕𝑘𝑘

)

 . Our rheolog-
ical model features a viscous, an elastic and a viscoplastic element in a Maxwell-type coupling for shear defor-
mation and a thermo-elastic, and a viscoplastic element in a Maxwell-type coupling for volumetric deformation 
(Figure 1, see Table 1 for parameters). This formulation accounts for processes such as compressibility, thermal 
expansion, plastic dilation, force balance, adiabatic heating, heat conduction, heat production due to dissipative 
deformation and radioactive heating, in a thermodynamically self-consistent way (for detailed derivation see 
Appendix A). It is worth noting that the interplay between the aforementioned processes results in a non-linear 
behavior which is further enhanced by the non-linear visco-elasto-viscoplastic rheology of the host rocks.

2.2.  Numerical Implementation

Here, we present a 2D implementation of Equations  3–7, assuming plane strain conditions (i.e., component 
3 of velocity is zero, and component 3 of all gradients are zero). The system of non-linear equations (Equa-
tion 1–5) is discretized on a regular Cartesian staggered grid using finite differences. The problem is solved by 
a pseudo-transient iteration or relaxation scheme (Räss et al., 2022; Versteeg & Malalasekra, 2007). Our imple-
mentation is a natural extension of the methods presented by Duretz et al. (2019) and Kiss et al. (2019) to resolve 
thermo-mechanical coupling for incompressible, purely viscous materials. However, we consider a non-linear 
visco-elasto-viscoplastic rheology, which is why we introduce new internal variables (i.e., stresses are split into 
trial stresses and viscoplastic stress corrections). We chose P tr, vi and T as the primary variables, and as a result 
Equations 4–6 are recasted in the following form:

𝜕𝜕𝜕𝜕 tr

𝜕𝜕𝜕𝜕
= −

𝜕𝜕𝜕𝜕𝑘𝑘

𝜕𝜕𝜕𝜕𝑘𝑘

+ 𝛼𝛼
d𝑇𝑇

d𝑡𝑡
+ 𝛽𝛽

𝑃𝑃 tr − 𝑃𝑃 old

d𝑡𝑡
� (8)
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𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕
= −

𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝑗𝑗

− 𝜌𝜌𝜌𝜌𝑖𝑖 +

(

1 −
𝜉𝜉

𝑛𝑛𝑖𝑖

)

(

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕

)it−1

� (9)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −𝜌𝜌𝜌𝜌𝑃𝑃

d𝑇𝑇

d𝑡𝑡
+ 𝛼𝛼𝛼𝛼

d𝑃𝑃

d𝑡𝑡
+

𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

(

𝜆𝜆
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

)

+ 𝜎𝜎𝑖𝑖𝑖𝑖

(

𝜀̇𝜀𝑖𝑖𝑖𝑖 − 𝜀̇𝜀el

𝑖𝑖𝑖𝑖

)

+𝑄𝑄𝑟𝑟,� (10)

where 𝐴𝐴
𝜕𝜕

𝜕𝜕𝜕𝜕
 are derivatives with respect to pseudo time ω, and are integrated in an explicit, forward Euler manner. 

The 𝐴𝐴
𝜕𝜕

𝜕𝜕𝜕𝜕
 terms can also be regarded as residuals of the conservation equations, decreasing during the iteration 

cycle. Superscript  it−1 denotes values from the previous iteration and  old denotes a fully converged value from 
the previous time step accounting for semi-Lagrangian advection. Therefore the total time derivates denote 
d�
d�
(���) =

� it−1(���)−�old(��� − ���d�)
d�

 . According to the small strain formulation, we neglect the rotational terms in the 
time derivative of the stress tensor. The last term on the right hand side of Equation 9 is introduced to dampen oscil-
lations of the momentum residuals and hence accelerate convergence. In addition, viscosity, stress, and density are 
updated in an iterative manner as:

𝜌𝜌 = 𝜌𝜌old
exp

(

−
𝜕𝜕𝜕𝜕𝑘𝑘

𝜕𝜕𝜕𝜕𝑘𝑘

d𝑡𝑡

)

� (11)

𝜂𝜂 = exp

(

(1 − 𝜈𝜈) ln
(

𝜂𝜂it−1
)

+ 𝜈𝜈 ln

(

𝐴𝐴
−
1

𝑛𝑛
(

𝜀̇𝜀
dev,vis

II

)

1

𝑛𝑛
−1

exp

(

𝐸𝐸

𝑛𝑛𝑛𝑛𝑛𝑛

)

) )

� (12)

𝜀̇𝜀dev

𝑖𝑖𝑖𝑖 =
1

2

(

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑗𝑗

+
𝜕𝜕𝜕𝜕𝑗𝑗

𝜕𝜕𝜕𝜕𝑖𝑖

)

−
𝛿𝛿𝑖𝑖𝑖𝑖

3

𝜕𝜕𝜕𝜕𝑘𝑘

𝜕𝜕𝜕𝜕𝑘𝑘

� (13)

𝜏𝜏 tr

𝑖𝑖𝑖𝑖 = 2𝜂𝜂ve𝜀̇𝜀
dev,ve

𝑖𝑖𝑖𝑖
= 2

(

1

𝜂𝜂
+

1

𝜇𝜇d𝑡𝑡

)−1
(

𝜀̇𝜀dev

𝑖𝑖𝑖𝑖 +
𝜏𝜏old

𝑖𝑖𝑖𝑖

2𝜇𝜇d𝑡𝑡

)

� (14)

Figure 1.  Schematic representation of our rheological model. We consider (a) visco-elasto-viscoplasticity for shear deformation, and (b) elasto-viscoplasticity for 
volumetric deformation.
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Table 1 
List of Physical Fields, Rheological Parameters, Numerical Parameters, and Mathematical Notations Used in the 
Manuscript

Quantity Symbol Units (SI)

Spatial coordinates xi m

Time T s

Density Ρ kg m −3

Velocity vi m s −1

Symmetric total stress tensor σij Pa

Pressure (−σkk/3) P Pa

Symmetric deviatoric stress tensor (σij + δijP) τij Pa

Total, deviatoric, volumetric strain rate tensor 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖𝑖𝑖 , 𝐴𝐴 𝐴𝐴𝐴dev

𝑖𝑖𝑖𝑖
 , 𝐴𝐴 𝐴𝐴𝐴vol

𝑖𝑖𝑖𝑖
s −1

Viscous, elastic, plastic strain rate tensor 𝐴𝐴 𝐴𝐴𝐴vis

𝑖𝑖𝑖𝑖
 , 𝐴𝐴 𝐴𝐴𝐴el

𝑖𝑖𝑖𝑖
 , 𝐴𝐴 𝐴𝐴𝐴

pl

𝑖𝑖𝑖𝑖
s −1

Gravitational acceleration gi m s −2

Isobaric specific heat capacity CP J K −1 kg −1

Temperature T K

Volumetric thermal expansion coefficient α K −1

Isothermal compressibility β Pa −1

Thermal conductivity λ W m −1 K −1

Rate of volumetric radiogenic heat production Qr W m −3

Viscosity η Pa s

Stress exponent n –

Pre-exponential factor A Pa −n s −1

Activation energy E J mol −1

Universal gas constant R J mol −1 K −1

Shear modulus μ Pa

Cohesion and tensile strength C, σT Pa

Friction and dilation angle φ, ψ °

Plastic yield function and flow potential F, Q Pa

Plastic multiplier (positive) 𝐴𝐴 𝜆̇𝜆pl  s −1

Viscoplastic relaxation time trel s

Duvaut-Lions factor Χ –

Pressure and stress at corners 1 and 2 of the yield 𝐴𝐴 𝐴𝐴C1
, 𝜏𝜏C1

, 𝑃𝑃C2
, 𝜏𝜏C2

  Pa

Trial pressure and trial stress 𝐴𝐴 𝐴𝐴 tr, 𝜏𝜏 tr

II
  Pa

Effective visco-elastic viscosity (Equation 14) η ve Pa s

Effective visco-elastic strain rate (Equation 14) 𝐴𝐴 𝐴𝐴𝐴
dev,ve

𝑖𝑖𝑖𝑖
  s −1

Time step Dt s

Number of grid points in i ni –

Pseudo time ω s

Damping parameter ξ –

Relaxation factor ν –

Kronecker delta δij –

Square root of second invariant of Mij 𝐴𝐴

(

√

0.5𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑗𝑗𝑗𝑗

)

MII [Mij]
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𝜏𝜏𝑖𝑖𝑖𝑖 = 𝜏𝜏 tr
𝑖𝑖𝑖𝑖

(

1 −
2𝜂𝜂ve

𝜏𝜏 tr
II

𝜀̇𝜀
dev,pl

II

(

𝑃𝑃 tr, 𝜏𝜏 tr
II

)

)

� (15)

𝑃𝑃 = 𝑃𝑃 tr
+

d𝑡𝑡

𝛽𝛽
𝜀̇𝜀

vol,pl

𝑘𝑘𝑘𝑘

(

𝑃𝑃 tr, 𝜏𝜏 tr
II

)

� (16)

𝜀̇𝜀
dev,vis

II
=

𝜏𝜏II

2𝜂𝜂
.� (17)

To improve convergence and robustness, we employ a logarithmic relaxation scheme on the effective viscosity. 
In our staggered grid discretization the non-diagonal components of τij, 𝐴𝐴 𝐴𝐴 tr

𝑖𝑖𝑖𝑖
 and 𝐴𝐴 𝐴𝐴𝐴

dev,ve

𝑖𝑖𝑖𝑖
 are located in the vertices. 

Therefore the effective viscosity η ve is calculated not only at cell centers, but also at the vertices, using interpo-
lated values of 𝐴𝐴 𝐴𝐴𝐴

dev,vis

II
 and T. To add the plastic correction to the non-diagonal components of τij, interpolated 

values of 𝐴𝐴 𝐴𝐴 tr

II
 , 𝐴𝐴 𝐴𝐴𝐴tr

II
 and η ve calculated at the vertices are used.

For each physical time step Equations 8–17 are iterated until the residuals (left hand side) of Equations 8–10 
reach a given tolerance value (respectively set to 10 −17 s −1, 10 3 Pa/dy and 10 −3 K/dt in infinity norm). In addi-
tion to checking for convergence of the momentum Equation 9, we check the residuals of the additive strain rate 
decomposition (Equation 7) as well. This ensures that a solution of the local nonlinear problem has been found. 
At this point, a fully implicit solution, equivalent to backward Euler time discretization, is achieved and all 
non-linearities are converged.

2.3.  Viscoplastic Return Mapping

The importance of viscoplastic regularization in geodynamic applications has been extensively discussed by de 
Borst and Duretz (2020) and Duretz et al. (2020). In essence, a viscoplastic formulation alleviates the problems 
associated with rate-independent plasticity (i.e., mesh dependence) and improves convergence. The implementa-
tion presented by Duretz et al. (2020) is based on the formulation of Perzyna (1966), where viscoplastic regulari-
zation is achieved by a priori fixing a viscosity value (Figure 1, ηvpl). This kind of regularization is straightforward 
to implement for a linear yield function. However, we consider a piece-wise linear yield function (F) and flow 
potential (Q) to account for volumetric plastic strains. We have found that the equivalent formulation of Duvaut 
and Lions (1972) is more straightforward, when a characteristic relaxation time (instead of viscosity) is fixed 
a priori (Simo et al., 1988). Besides its simplicity, this implementation has the benefit of producing a uniform 
overstress (as a function of the distance from the yield along the return map) for all segments of a non-linear yield 
function.

Our plastic yield function is a piece-wise linear combination of a Drucker-Prager (FDP), a tensile (mode-1, FM1) 
and a pressure limiter yield (FPL), considering only the dependence on the first- (i.e., mean stress σm = −P) and 
second stress invariants (τII). The composite yield function (Figure 2) is formulated as

𝐹𝐹 = max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐹𝐹DP = 𝜏𝜏II − 𝑃𝑃 sin𝜑𝜑 − 𝐶𝐶 cos𝜑𝜑

𝐹𝐹M1 = 𝜏𝜏II − 𝑃𝑃 − 𝜎𝜎T

𝐹𝐹PL = −𝑃𝑃 − (𝜎𝜎T − 𝛿𝛿𝛿𝛿T)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

= 0.� (18)

According to the rate-independent non-associated plastic flow rule,

𝜀̇𝜀
pl∗

𝑖𝑖𝑖𝑖
= 𝜆̇𝜆pl 𝜕𝜕𝜕𝜕(𝑃𝑃 𝑃 𝑃𝑃II)

𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

= 𝜆̇𝜆pl

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

+
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕II

𝜕𝜕𝜕𝜕II

𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

)

= 𝜆̇𝜆pl

(

−
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝛿𝛿𝑖𝑖𝑖𝑖

3
+

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕II

𝜏𝜏𝑖𝑖𝑖𝑖

2𝜏𝜏II

)

� (19)

where the two terms on the right hand side represent the volumetric and the deviatoric components of the plastic 
strain rate tensor. Viscoplastic regularization is achieved by scaling rate-independent plastic strain rates with the 
ratio of time increment and a relaxation time (denoted by χ)

𝜀̇𝜀
pl

𝑖𝑖𝑖𝑖
=

d𝑡𝑡

d𝑡𝑡 + 𝑡𝑡rel

𝜀̇𝜀
pl∗

𝑖𝑖𝑖𝑖
= 𝜒𝜒 𝜒𝜒𝜒

pl∗

𝑖𝑖𝑖𝑖
.� (20)
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Our composite yield function exhibits two corners, one of them 𝐴𝐴
(

𝑃𝑃C1
, 𝜏𝜏C1

)

 is at the intersection of the pres-
sure limiter and tensile yield segments and the other one 𝐴𝐴

(

𝑃𝑃C2
, 𝜏𝜏C2

)

 is at the intersection of the tensile and 
the Drucker-Prager yield segments. We use a typical non-associated flow potential (Q) with dilation for the 
Drucker-Prager yield and associated flow potentials for the tensile and the pressure limiter yield stress. However, 
considering only the potential functions corresponding to the linear segments (Figure 2, regions I, III, and V) 
is insufficient, and potential functions must be created for the corner regions too (Figure 2, regions II and IV). 
For linear yield functions and the applied plastic potential functions, the plastic multiplier 𝐴𝐴

(

𝜆̇𝜆pl
)

 and hence the 

plastic strain rates 𝐴𝐴

(

𝜀̇𝜀
dev,pl

II
, 𝜀̇𝜀

vol,pl

kk

)

 can be expressed analytically, in a closed form, as described in the following 
pseudo-algorithm.

Figure 2.  An example of a piece-wise linear combination of a Drucker-Prager (FDP), a tensile (mode-1, FM1) and pressure 
limiter yield (FPL), considering dependence only on the first- (i.e., mean stress 𝐴𝐴 𝐴𝐴tr

m = −𝑃𝑃 tr ) and second trial stress invariants 
𝐴𝐴

(

𝜏𝜏 tr

II

)

 . The region where trial stresses violate the yield is indicated by the contoured area. This area is divided into five 
domains, where different plastic flow potentials are defined, corresponding to the three linear segments and the two corner 
regions. Return mapping in the 𝐴𝐴 𝐴𝐴 tr − 𝜏𝜏 tr

II
 plane happens orthogonally to the colored contours. However, the angle of return 

mapping and the domain boundaries shift as a function of the ratio of η ve and dt/β as shown for a ratio of 1 in panel (a) and for 
a ratio of 3 in panel (b). In this figure QI is enlarged for better visibility, as it would be barely visible otherwise.
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The Drucker-Prager and tensile yield functions and the corresponding plastic potentials are often used for geody-
namic applications in an identical form (e.g., Duretz et al., 2021; Rozhko et al., 2007). The corner domains and 
the corresponding plastic potential are defined according to Drucker's postulate (Drucker, 1952). As we use a 
strain rate driven formulation, we avoid any potential issues arising from the non-unique total stress to plastic 
strain rate relationship in the corner domain (Ottosen & Ristinmaa, 1996).

3.  Reference Configuration
All simulations presented here are two dimensional, plane strain, applied to a prolate ellipsoidal magma body 
with its long axis perpendicular to the 2D cross section. Regarding the initial temperature field, we explore two 
end-member cases. In the first case the magma chamber is represented as a sharp temperature anomaly and in 
the second case the magma/mush chamber is represented as a smooth temperature anomaly (Figures 3a and 3b, 
respectively). The first end-member with the sharp temperature anomaly could represent a rapidly formed magma 
body that did not have sufficient time to cool. On the other hand, the second end-member is representative of a 
long lived magmatic system. Our reference models are based on a 10.5 (sharp anomaly) and 17 wide (smooth 
anomaly) and 10.5 km deep model domain, with a flat initial topography and 2 km of sticky air (low density, low 
viscosity layer) on top. We use a free surface boundary condition on top and fixed free slip conditions on the other 
boundaries. The used model configuration ensures that boundary effects are small (Figure S1 in Supporting Infor-
mation S1). We apply a constant 20°C in the sticky air layer and a constant 450°C at the bottom boundary. The 
side boundaries are insulating (i.e., zero heat flux). The initial, background temperature field is the equilibrium 
geotherm, resulting from the boundary conditions, a constant thermal conductivity (3 W m −1 K −1) and a constant 
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radiogenic heat production rate (10 −6 W/m 3). The magmatic intrusion is implemented as a circular high temper-
ature (750°C) domain, with a radius of 1.5  km and center at 5  km depth. A corresponding (in 3D) prolate 
ellipsoid with the semi minor axes of 1.5 km and aspect ratio of 1:4 has a volume of ca. 57 km 3. Such magma 
volumes are in agreement with the estimated volumes of individual intrusions in the Torres del Paine intrusion 
complex (Leuthold et al., 2012). The initial stress field and the corresponding density field are calculated using 
a (temporally) isothermal, purely viscous Stokes solution. Buoyancy stresses in this configuration are negligible 
(∼0.2 MPa), hence the resulting stress field is nearly lithostatic. The input parameters and material parameters 
are defined as listed in Table 2, unless specifically stated otherwise.

4.  Results
4.1.  The Purely Thermoelastic Case

As a reference, we present results from a model that considers a purely elastic rheology. We consider our refer-
ence configuration (Figure 3a) with constant parameters of α = 3 × 10 −5 K −1, β = 10 −11 Pa −1, and μ = 6 × 10 10 Pa 
(giving a Poisson's ratio of 0.25), which are typical values for intact granite. The general behavior of the system 
is illustrated in Figure 4. One can observe that the temperature change is largest at the contact of the magma 
body and its host, and it gradually decays with increasing distance from the thermal anomaly. As a result of 
thermal expansion/contraction, pressure changes are observed that are linearly proportional to the temperature 
change. However, due to the non-zero volumetric deformation, the magnitude of thermal pressurization is about 
half of what is expected based on the isochoric assumption. Unlike thermal pressurization that can be positive 
or negative, the second stress invariant is proportional to the absolute value of temperature change. For a purely 
thermoelastic case, the factor of proportionality is largely time independent due to the lack of stress relaxation 
mechanisms. Finally, total displacements in our models due to thermal expansion and contraction do not exceed a 
few meters at any point in time over the course of the entire simulation time of over 300 kyr. As a result detecting 
such processes using real time monitoring of surface deformation above a magma chamber is challenging.

4.2.  Viscous Relaxation of Thermal Stresses

To illustrate the effects of viscous relaxation, we initially considered a constant viscosity and we carried out 
simulations with the same material properties as in the purely thermoelastic case. In this case, the constant 
viscosity is included in the rheological model. The results indicate that viscous relaxation has little effect initially. 
However, a further increase of thermal stresses leads to the gradual decrease of the magnitude of deviatoric 

Figure 3.  The initial and boundary conditions for our reference configuration with a sharp (a) and a smooth thermal boundary (b), where qx is the horizontal conductive 
heat flux. For both cases, the initial stress field is near lithostatic. Since the overall size of the smooth thermal anomaly is larger, we increased the model width for 
configuration (b) to minimize boundary effects (Figure S1 in Supporting Information S1).



Journal of Geophysical Research: Solid Earth

KISS ET AL.

10.1029/2022JB025341

10 of 25

stresses (Figure 5). Consequently, thermal stresses are not sustainable indefinitely, unlike in the purely thermo-
elastic case. The timescale of viscous relaxation is shorter for smaller values of viscosity in agreement to the 
Maxwell viscoelastic timescale. For example, considering a typical lithospheric viscosity of 10 23 Pa s, one can 
expect relatively insignificant viscous relaxation during the first 25 kyr. However, even if one considers a viscos-
ity of 10 21 Pa s, which is unrealistically small for most upper crustal rheologies, thermal stresses can reach several 
hundred MPa, which can be sustained for about a thousand years.

In the previous simulations, we considered cases with constant viscosity in the entire model domain. However, 
the viscosity of magmas is significantly lower than that of the host rock. To account for the possible effects of low 
magma viscosity, we carried out simulations where the viscosity of the host rock was kept constant but the viscos-
ity inside the initial magma body was set to 10 20 Pa s (the viscosity of magmas is much lower, but due to numer-
ical reasons we must limit the maximum viscosity contrast in our model). The models show that the decreased 
viscosity results in a rapid relaxation of deviatoric stresses within the magma body (Figure 6). Hence  the total 
pressure drop inside the magma body undergoes rapid spatial homogenization instead of following the pattern of 
total temperature change. Nevertheless, the decreased viscosity in the initial magma body has negligible effects 
on the stress relaxation in the host rock.

4.3.  Thermal Stresses With a Realistic Visco-Elasto-Viscoplastic Upper Crustal Rheology

As discussed in the previous section, considering typical crustal or even asthenospheric viscosities, thermal 
stresses can reach several hundred MPa and can be sustained for thousands or tens of thousands of years. Such 
stress levels in a relatively shallow, upper crustal setting likely exceed the brittle yield stress. Therefore, we 

Table 2 
List of Reference Parameters

Input parameter Symbol Quantity Units (SI)

Model (a) dimensions Lx, Ly (10.5, 12.5) × 10 3 m

Model (b) dimensions Lx, Ly (17.0, 12.5) × 10 3 m

Maximum coordinate on the vertical axis ymax 2 × 10 3 m

Top and bottom temperature Ttop, Tbot 20, 450 °C

Intrusion temperature Tint 750 °C

Gravitational acceleration |g| 9.81 m s −2

Isobaric specific heat capacity CP 1,050 J K −1 k g −1

Volumetric thermal expansion coefficient α 3 × 10 −5 K −1

Isothermal compressibility β 10 –11 Pa −1

Reference density (P = 0 Pa, T = 0°C) ρref 2,650 kg m −3

Thermal conductivity λ 3 W m −1 K −1

Volumetric radiogenic heat production Qr 10 –6 W m −3

Stress exponent n 3.5 –

Pre-exponential factor A 1.67 × 10 −24 Pa −3.5 s −1

Activation energy E 1.87 × 10 5 J mol −1

Universal gas constant R 8.3145 J mol −1 K −1

Shear modulus μ 6 × 10 10 Pa

Cohesion (random field) C (15 ± 3) × 10 6 Pa

Ratio of cohesion and tensile strength C/σT 2 –

Friction angle φ 30 °

Dilation angle Ψ 15 °

Duvaut-Lions factor Χ 0.5 –

Note. Model (a) and (b) refers to Figures 3a and 3b, respectively. All material parameters are representative for intact granites, 
and the flow laws parameters are from Carter and Tsenn (1987).
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carried out simulations featuring a visco-elasto-viscoplastic rheology. In these simulations, we used a combi-
nation of a Drucker-Prager and a tensile yield, as explained in Section 2.3. Unlike in the previous subsection 
where we used constant viscosity, we here used a temperature dependent, power-law flow law of Westerly granite 

Figure 4.  Results of a purely thermoelastic simulation after 3.87 kyr, using α = 3 × 10 −5 K −1, β = 10 −11 Pa −1, and μ = 6 × 10 10 Pa (Poisson's ratio of 0.25), which are 
typical values for an intact granite. Panels (a–d) show the spatial distribution of total temperature change with respect to the initial state, total pressure change, second 
invariant of the deviatoric stress tensor and velocity magnitudes with directions, respectively. Panel (e) shows a scatter plot of the second invariant of the deviatoric 
stress tensor in each grid point as a function of pressure, colored according to the total temperature change. The data points are aligned along two linear clusters, 
showing that cooling model domains suffer decompression and heating model domains suffer compression locally. Panel (f) shows that total pressure change linearly 
depends on the total temperature change and there is little deviation from this trend as the system evolves in time. The purple line indicates the estimated total pressure 
change based on the isochoric limit of the equation of state. The smaller slope of the data is caused by volume changes that are not negligible when a realistic shear 
modulus (or Poisson's ratio) is considered.

Figure 5.  Evolution of the maximum of the second invariant of the deviatoric stress as a function of time for different 
viscosities (the time axis is quadratic). The solid lines indicate results of models with a homogeneous viscosity. The dashed 
lines indicate results where the magma body is represented by a weak inclusion (η = 10 20 Pa s) and the viscosity of the host 
rock is indicated by the color. The results show that the relaxation of thermal stresses is primarily controlled by the viscosity 
of the host rock, where the relaxation time scale is decreasing with decreasing viscosity. The black line indicates results that 
are essentially purely thermoelastic with virtually no stress relaxation.



Journal of Geophysical Research: Solid Earth

KISS ET AL.

10.1029/2022JB025341

12 of 25

(Carter & Tsenn, 1987). The results show that thermal stresses are indeed sufficient to trigger plastic failure 
around the upper half of the magma body, with the extent of plastic deformation being more prominent at shal-
lower depths (Figure 7, Movie S1). Moreover, after the magma body has cooled sufficiently, plastic failure occurs 
within the magma body as well. This is explained by the fact that viscosity has an Arrhenius type temperature 
dependence and the plastic yield is pressure dependent. Therefore, in high temperature regions viscous relaxation 
dominates whereas plastic relaxation dominates in low temperature regions. Pressure has a secondary effect as 
low confining pressure promotes plastic deformation. In the regions with viscous relaxation, deviatoric stresses 
vanish at a characteristic time scale (Figures 5 and 7h). In the regions where plastic deformation dominates, 
stresses exceeding the plastic yield are relaxed back to the yield shortly after the loading ceases. As a result, stress 
and pressure variations that do not exceed the plastic yield can be preserved long after the equilibration of the 
temperature field (Figures 7g and 7h). Ultimately, the magnitude of pressure change and deviatoric stresses are 
limited by the plastic yield stress. In this particular case, deviatoric stresses of 200 MPa can be reached initially 
in the host rock, due to the initial increase of pressure and hence yield strength. Following this, the host rock 
cools after its initial heating phase and thermal pressurization is reversed, decreasing the confining pressure and 
the yield strength. As a result, the maximum stress levels gradually decrease to around 80–100 MPa. Notably, 
after sufficient cooling and crystallization, as a result of thermal contraction and the related decompression of the 
magma body, shear  and tensile failure can occur inside the intrusion (Figure 8).

Despite the relatively dynamic nature of such systems in terms of pressure and stress evolution, the finite strain 
and total displacements are rather small, hardly observable on the macro scale. Nevertheless elastic bending of 
the crust near the surface can result in tensile failure albeit under small values of finite strain.

4.4.  Sensitivity to the Size and Ellipticity of the Magma Body

In order to assess the sensitivity to the size and ellipticity of the magma body, we carried out nine simulations 
with different initial geometries of the magma bodies. We defined the geometry using the following equation:

(

𝑥𝑥 − 𝑥𝑥c

𝑟𝑟𝑥𝑥

)2

+

(

𝑦𝑦 − 𝑦𝑦c

𝑟𝑟𝑦𝑦

)2

= 1,� (21)

Figure 6.  Snapshots of (a) total temperature change, (b) pressure change, and (c) the resulting thermal stresses considering a uniform viscosity of 10 23 Pa s. Panels 
(d–f) show total temperature and pressure change and the resulting thermal stresses considering a viscosity of 10 23 Pa s in the host rock and 10 20 Pa s in the initially 
hotter magma body. The low viscosity in the magma body results in quick relaxation of stresses and in homogenization of pressure change inside the magma body. 
However, as stresses in the host rock are relaxed much slower, the magma body is subjected to significant depressurization.
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where the center of the ellipse is at xc = 0, yc = −5 km, and the semi axes are varied independently as 0.5, 1.0, and 
1.5 km. The first order effects of thermal stresses are displayed for various intrusion geometries in Figure 9. The 
results show that the size of the fractured volume around the intrusion is proportional to the size of the intrusion, 
and the shape of the fractured zone is similar to the shape of the magma body.

4.5.  Multiple Pulses in a Magma/Mush Chamber

Magmatic systems are generally thought to evolve incrementally, as a result of several smaller pulses of magma 
that are emplaced as dikes or sills in a mushy reservoir (e.g., Cashman et al., 2017; Christopher et al., 2015; 
Putirka, 2017). In order to test whether our general findings holds in this case as well, we carried out a simulation 
featuring several magmatic pulses. The magmatic pulses are introduced as instantaneous heat pulses while mass 
transfer and the resulting stressing of the host rock are ignored. The temperature field is set to a uniform 750°C 

Figure 7.  Simulation with a cooling visco-elasto-viscoplastic intrusion, after 25 kyr: (a) Temperature and pressure fields, (b) pressure change compared to the initial 
P field, (c) stress-pressure plot for each grid point in the model (colored dots) which is overlain by the plastic yield function (solid black line), (d) stress field, (e) 
instantaneous volumetric plastic strain rates, and (f) accumulated plastic volumetric strain, analogous to porosity. Panels (g–i) respectively show the pressure and 
temperature fields, the stress field and the accumulated plastic volumetric strain 397 kyr after emplacement. The fine black circles indicate the intrusion, represented by 
an initial temperature perturbation.
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inside the new intrusion while all other fields are kept unchanged. Although such treatment of intrusion events is 
not physically consistent, our model results still provide a valuable insight on how thermal stresses are affected if 
a complex temperature and stress/deformation history is considered.

Unlike the previous simulations where we used a sharp thermal perturbation as an initial condition, we here use 
a relatively smooth thermal perturbation (Figure 10a), representing a hot mushy zone around a liquid-dominated 
magma chamber. Then, new elliptic intrusions are added after 2, 5,000, and 10,000 years, respectively (e.g., de 
Saint Blanquat et al., 2011; Zhan et al., 2012). We slightly vary the location of the recurrent heat pulses as it 
has been suggested by geodetic observations (e.g., Delgado, 2021). All other input parameters are identical to 
those of the reference model. The most important result is that significant thermal stresses develop around the 
new intrusions only where the temperature difference compared to the surrounding volume is sufficiently large 
(Figures 10b and 10c, Movie S2). Although the individual pulses may cause localized small scale thermal stresses 
and deformation, the overall evolution is mostly controlled by the cooling and contraction of the entire thermal 
anomaly as a whole (Figure 10c). Because of that, the final state of volumetric plastic strain is similar to that of 
the reference model apart from some minor perturbations (Figure 10d). This implies that for natural magmatic 
systems, it is the accumulated thermal anomaly of many pulses i.e., of key importance for the development of 
thermal stresses.

4.6.  Sensitivity to Stress History and Comparing Thermal Stresses to Stresses Induced by Melt Intrusion

In this section, we estimate the sensitivity of our results to the stress history. We use our reference configuration 
with the diffuse temperature anomaly (Figure 3b) and with a compressibility of 2.1 × 10 −11 Pa −1. As a reference, 
we first model the evolution of thermal stresses in this model by letting it cool. A notable difference compared to 
the previous simulations is that due to the initially smooth temperature field the temperature evolution and hence 
the build up of thermal stresses is slower. Furthermore, the evolution of the system is dominated by cooling and 
hence contraction in this case. As a result the maximum magnitude of stresses is lower, on the order of 70 MPa. 
Despite the lower level of stresses, thermal cracking still takes place, although with smaller intensity in the vicin-
ity of the magma body.

To quantify the sensitivity to stress history we compare these reference results with results of simulations includ-
ing an initial pressurization of the magma chamber (Figure  11). In the beginning we pressurize the magma 
chamber by modeling the gradual injection of additional magma, introducing a source term in the mass balance 
equation. We do not model the transport mechanism, instead we restrict ourselves in quantifying the stress evolu-
tion due to the injection in a mechanically confined volume. We stop the injection after a maximum pressure 
change (compared to the initial pressure) of 25, 50, and 75 MPa is reached. In our configuration, non of these 
injection events result in fractures that connect the magma body with the surface. As the injection stops the pres-
sure in the middle of the magma body starts to drop until a quasi-steady state is reached at about 70 MPa below 
the starting value (Figure 11d). The initial pressurization has little influence on the value of this quasi-steady state 
pressure, apart from an increase in the time needed to reach it.

Figure 8.  The total (i.e., visco-elasto-plastic) deviatoric strain rate field (a) and the dominant deformation mechanisms (b) 
25 kyr after emplacement of the model shown in Figure 7.
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In order to see the effect of thermoelastic stresses, we have repeated the same simulations, using identical parame-
ters, but we disabled the effects of thermal expansion/contraction in the mechanical problem formulation. In these 
simulations, we see the effects of visco-elasto-plastic relaxation after the initial pressurization stops. However, 
the pressure in the center quickly reaches a steady-state value that is larger than the initial value (Figure 11d). 
Comparing these results with the fully coupled results shows that on short timescales (<1 kyr) visco-elasto-plas-
tic deformation dominates the stress evolution, but thermal expansion and contraction become increasingly 
important at longer timescales.

5.  Discussion
5.1.  Limitations Due To Simplifying Assumptions

We have presented results from numerical simulations that show the effects of thermo-elastic strains on the 
stress evolution of cooling magmatic bodies. In our treatment, we have neglected processes that are potentially 

Figure 9.  The cumulative volumetric plastic strain for nine different initial intrusion geometries, 250 kyr after emplacement. Other than the inclusion geometry, all 
parameters are identical to that from Figure 7.
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important to quantify thermal stresses and the development of fracture networks or dikes around cooling magma 
bodies. On one hand, our simplifications constitute a step forward toward a more complete formulation. On the 
other hand, these simplifying assumptions are useful, because they allow us to isolate the effects of thermal 
expansion/contraction from other processes.

Most notably, we have focused on a single-phase formulation and did not include a percolating fluid or magma 
phase, which could reduce the effective confining pressure and hence promote localized plastic failure, by chan-
nelized porous flow (e.g., Katz, 2008; Keller et al., 2013; Schmeling et al., 2019). Another assumption we made 
was to neglect the volume change and latent heat of melting and crystallization, and used uniform thermodynamic 
parameters. By making the first assumption (i.e., single-phase flow), we decreased the likelihood of failure and 
the magnitude of plastic strain. In addition by considering uniform thermo-elastic properties, we underestimate 
the total volume change. Consequently, the results presented in this paper should be treated as a lower bound 
on  the extent of fracturing around cooling magma bodies.

5.2.  The Role of Thermal Stresses During the Evolution of Magmatic Plumbing Systems

Based on our model results, we can asses that thermal stresses likely cause a pressure change on the order of 
100 potentially reaching 200 MPa. Such stress levels are comparable to the value of background pressure in the 
upper crust, at about 5 km depth. These pressure anomalies are accompanied by deviatoric stress anomalies of a 

Figure 10.  The effect of multiple heat pulses on thermally induced stresses. (a) Shows the initial pressure and temperature fields. (b, c) Shows the stresses shortly after 
the emplacement of the first and second intrusion, respectively. (d) Shows the final state of plastic volumetric strain. The fine black curves in panels (b–d) indicate the 
three heat pulses.
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similar magnitude. The magnitude of these stress anomalies is limited by the yield strength, while their duration 
is controlled by viscous relaxation. For magmatic bodies that are occurring at slightly deeper levels, the yield 
strength is higher due to the higher confining pressure, and therefore larger pressure and stress anomalies may 
develop. However, due to the downward increasing temperature, the temperature difference between a magma 
body and its host rock is decreasing with depth. The reducing temperature difference results in a decreasing ther-
mal pressurization after a certain depth level is exceeded. The magnitude and the distribution of thermal stresses 
is controlled by characteristic scales of temperature change due to heat conduction. Accordingly, the affected 
volume increases over time. Based on our simulations, thermal stresses start to dominate overall after about 
5–10 kyr, while stress changes on shorter time scales are likely related to magma transport. On the time scale of 
activity of magmatic plumbing systems, thermal stresses may play a significant role.

Thermal stresses perturb the background stress field. As dykes and sills are directed by the principal stress 
trajectories, thermal stresses may play a significant role in the orientation and location of new intrusions (e.g., 
Maccaferri et al., 2011).

Besides, the direct influence thermally induced stress perturbations can result in thermal cracking and in the 
formation of a fracture network around the magmatic body. Some of these fractures may develop into dykes as 
new pulses of magma arrive from a deeper source, presenting a potential to control the evolution of the plumbing 
system.

Despite the relatively large values of stress perturbations, the resulting strains and displacements are rather minor 
compared to what can be observed by field mapping or by monitoring active surface deformation. To demonstrate 
this point we traced a chain of passive markers that were originally located horizontally at 3,200 m depth. The 
maximum displacement is −7 m directly above the center of the magmatic body. The displacement magnitudes 
gradually diminish as the distance to the center of the magmatic body increases. By tracing a similar marker chain 

Figure 11.  Pressure and temperature fields (a), deviatoric stresses (b), and plastic volumetric strain (c) using our reference model setup with a diffused initial 
temperature anomaly (Figure 3b). Although the model domain in wider, in panels (a–c) we zoom in to the same view as in previous figures. In panel (d) the pressure 
evolution in the center of the magma body (0, −5 km) is compared for different magnitudes of initial pressurization. The results of no initial pressurization (ΔPinj = 0) 
are the same as those displayed in panels (a–c). Furthermore, results of fully coupled thermo-mechanical simulations (solid lines) including thermal expansion and 
contraction are compared with results of simulations without thermal expansion and contraction (dashed lines).
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at the surface, we see less than 5 m displacement that takes place over more than 300 kyr, resulting in negligible 
deformation over observational timescales.

5.3.  The Manifestation of Thermal Cracking in the Field

Our model results suggest that thermal expansion and contraction have a significant effect on the stress state of a 
magma body and of its host rock. Stresses induced by thermal expansion and contraction are sufficient to trigger 
brittle failure around cooling magma bodies in a shallow, upper crustal setting. However, our models are based on 
continuum mechanics and a continuum theory of plasticity therefore we cannot resolve individual fractures and 
their characteristics cannot be directly obtained. Nevertheless, the plastic strain which results from our model can 
be interpreted as proxy for fracture density and also as a proxy for porosity if volumetric plastic deformation is 
considered. Accordingly, plastic volumetric strain is rather small (less than 0.6%) and it is not strongly localized. 
Using simple estimates, that would approximately translate into a single 20 cm wide dike or into 1,000 2 mm wide 
joints in every 41 m of host rock (which is the grid spacing used). Consequently, plastic deformation predicted 
by our models may manifest on the field as a few prominent dykes or veins, or as a set of numerous fine joints, 
similar to exfoliation joints in granites or columnar joints in basalts, or some combinations of the two.

5.4.  Thermal Cracking During the Development of Magmatic-Hydrothermal Systems

Based on the model results, we hypothesize that thermal stresses might play a considerable role during the devel-
opment of magmatic-hydrothermal systems.

First, thermal cracking results in the development of fractures and joints around a cooling magma body. The 
volume affected by thermal cracking can extend several km away from the original magma-host contact, mostly 
above the magma body. This fractured volume can act as a permeable fluid pathway, which might enable or 
enhance the development of hydrothermal circulation around the magma body and chemical exchange between 
the fluids and the magma (e.g., Ruz-Ginouves et al., 2021). Moreover, as the magma body cools and crystallizes, 
fractures or joints may form inside the original magma volume, which can enable fluid circulation inside the 
crystallizing, but still relatively warm, plutonic body. The presence of such conditions might be necessary (but 
not sufficient) for segregation processes to take place and to leach metals from the fresh igneous rock, and thus 
presents a potential source of mineralization.

Second, due to thermal contraction in a relatively well confined and closed system, cooling magma bodies 
undergo decompression even when the magma body remains essentially stationary (Figure 12). This is of poten-
tial importance as the solubility of volatiles in melts is primarily a function of pressure. To illustrate this, we used 
the water solubility models from Volatilecalc, presented by Newman and Lowenstern (2002) for rhyolitic melts 
(Figure 12). Therefore, if such a plutonic body has sufficient amounts of volatiles and it undergoes decompression 
due to cooling, volatiles might be expelled from the melt and appear as a free phase. Thus, thermal contraction 
induced decompression might introduce an additional fluid source for the magmatic-hydrothermal system.

6.  Conclusions
We presented a numerical method that is suitable to quantify stress evolution related to thermal expansion/
contraction in an upper-crustal setting with visco-elasto-viscoplastic rheologies including both shear and tensile 
failure.

Our results demonstrate that thermal stresses around upper crustal magma bodies are significant as stress anom-
alies can reach or even exceed the background lithostatic pressure. Pressure anomalies are proportional to the 
temperature change, but viscous or plastic relaxation might limit their magnitude or duration. The host rock 
nearby the magma body experiences significant pressurization upon heating. At the same time, cooling and ther-
mal contraction causes significant decompression in the magma body.

Moreover, thermal stresses are likely sufficient to create an extensive fracture network around an upper crustal 
intrusion by brittle failure. The exact depth where brittle failure may occur is dependent on the rheology of the 
rock and on the depth of the magma body.

Over the scale of several to 100  kyr, thermal stresses might contribute to the development of the magmatic 
plumbing system as pressure perturbations and the developing fracture network might influence the location 
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of new intrusions. Furthermore, we speculate that the appearance of a volatile phase and the development 
of a fracture network around the magmatic bodies has the potential to one of the main processes that control 
magmatic-hydrothermal alteration around magmatic bodies. Hence, thermal stresses may play an important role 
during ore mineralization or post-volcanic activity as well.

Appendix A:  Thermodynamic Admissibility of the Governing Equations
In this appendix we show the thermodynamic admissibility and consistency of the governing equations, based 
on classical irreversible thermodynamics (e.g., De Groot & Mazur, 2013; Müller & Müller, 2009), which has 
previously also been used in a geodynamic context to demonstrate the thermodynamic admissibility of two phase 
flow formulations (Yarushina & Podladchikov, 2015). For the description of recoverable and dissipative bulk and 
shear deformation we follow Landau and Lifshitz (2013). We assume single velocity deformation in isotropic, 
visco-elasto-plastic, compressible materials with constant chemical composition.

A1.  Local Thermodynamic Equilibrium

We use the local thermodynamic equilibrium (LTE) assumption to relate equilibrium thermodynamic relation-
ships to continuum mechanics. In essence, the LTE states that equilibrium thermodynamic relationships are 
applicable locally and instantaneously, even if the system is not in global equilibrium (e.g., there are pressure or 
temperature gradients). This can be utilized to formulate a relationship between the increment of specific total 
energy (dE) and the sum of the increments of heat (TdS), kinetic energy, potential energy, elastic strain energy, 
and nuclear energy (radiogenic heating):

d𝐸𝐸 = 𝑇𝑇 d𝑆𝑆 + d(0.5𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖) − 𝑔𝑔𝑖𝑖𝑣𝑣𝑖𝑖d𝑡𝑡 +
𝜎𝜎𝑖𝑖𝑖𝑖 𝜀̇𝜀

el

𝑖𝑖𝑖𝑖

𝜌𝜌
d𝑡𝑡 −

𝑄𝑄r

𝜌𝜌
d𝑡𝑡𝑡� (A1)

Here, elastic strain rate denotes all recoverable deformation, including thermal expansion or contraction. 
We consider an isotropic, Maxwell visco-elasto-viscoplastic rheology, which implies an additive strain rate 
decomposition and uniform stress on each rheological element. In the limit of purely hydrostatic conditions 
and entirely recoverable volumetric deformation, the elastic strain energy equals −Pdρ −1 (e.g., Landau & 
Lifshitz, 2013; Müller & Müller, 2009).

Figure 12.  (a) Shows the P-T evolution of three points in our reference model (in the center, 500 above and 500 m below). The solid lines show the P-T evolution based 
on a fully compressible thermo-mechanical model and the dashed lines show P-T evolution in purely thermal or incompressible models (isobaric). The black contours 
show water solubility in rhyolitic melts, based on Volatilecalc (Newman & Lowenstern, 2002). (b) Shows the time evolution of water solubility in a closed system due 
to thermal contraction induced decompression (legend is the same as in panel (a)).
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A2.  Local Balance Equations

The local balance equations of mass, linear momentum, energy, and entropy in a Lagrangian form are given as 
follows:

𝜌𝜌
d𝜌𝜌−1

d𝑡𝑡
−

𝜕𝜕𝜕𝜕𝑗𝑗

𝜕𝜕𝜕𝜕𝑗𝑗

= 0� (A2)

𝜌𝜌
d𝑣𝑣𝑖𝑖

d𝑡𝑡
+

𝜕𝜕𝜕𝜕
𝑝𝑝

𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝑗𝑗

= 0� (A3)

𝜌𝜌
d𝐸𝐸

d𝑡𝑡
+

𝜕𝜕𝜕𝜕𝐸𝐸
𝑗𝑗

𝜕𝜕𝜕𝜕𝑗𝑗

= 0� (A4)

𝜌𝜌
d𝑆𝑆

d𝑡𝑡
+

𝜕𝜕𝜕𝜕𝑆𝑆
𝑗𝑗

𝜕𝜕𝜕𝜕𝑗𝑗

= 𝑄𝑄𝑆𝑆 ≥ 0,� (A5)

where ρ −1, E and S are respectively specific volume, specific total energy, and specific entropy. 𝐴𝐴 𝐴𝐴
𝑝𝑝

𝑖𝑖𝑖𝑖
, 𝑞𝑞𝐸𝐸

𝑗𝑗
 and 𝐴𝐴 𝐴𝐴𝑆𝑆

𝑗𝑗
 , 

are respectively the non-advective specific momentum, specific energy, and specific entropy fluxes, defined as

𝑞𝑞
𝑝𝑝

𝑖𝑖𝑖𝑖
= −𝜎𝜎𝑖𝑖𝑖𝑖 − 𝛿𝛿𝑖𝑖𝑖𝑖

∫

𝑥𝑥𝑗𝑗

0

𝜌𝜌𝜌𝜌𝑖𝑖d𝑥𝑥𝑗𝑗� (A6)

𝑞𝑞𝐸𝐸𝑗𝑗 = 𝑇𝑇 𝑇𝑇𝑆𝑆𝑗𝑗 − 𝑣𝑣𝑖𝑖𝜎𝜎𝑖𝑖𝑖𝑖� (A7)

𝑞𝑞𝑆𝑆𝑗𝑗 = −
𝜆𝜆

𝑇𝑇

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

.� (A8)

Thermodynamic admissibility is ensured if the source of specific entropy, QS, is non-negative, which we will 
demonstrate in the following sections.

A3.  Solving for QS

To relate this LTE to the balance equations, we express the LTE (Equation A1) using increments with respect to 
time and multiply it by ρ:

𝜌𝜌
d𝐸𝐸

d𝑡𝑡
= 𝑇𝑇 𝑇𝑇

d𝑆𝑆

d𝑡𝑡
+ 𝑣𝑣𝑖𝑖𝜌𝜌

d𝑣𝑣𝑖𝑖

d𝑡𝑡
− 𝜌𝜌𝜌𝜌𝑖𝑖𝑣𝑣𝑖𝑖 + 𝜎𝜎𝑖𝑖𝑖𝑖 𝜀̇𝜀

el

𝑖𝑖𝑖𝑖 −𝑄𝑄r .� (A9)

Note that we have applied the chain rule to simplify the kinetic energy term (second term on the right hand side). 
Then we substitute Equations A6–A8 into Equation A9 to replace the time derivatives

−
𝜕𝜕𝜕𝜕𝐸𝐸

𝑗𝑗

𝜕𝜕𝜕𝜕𝑗𝑗

= −𝑇𝑇
𝜕𝜕𝜕𝜕𝑆𝑆

𝑗𝑗

𝜕𝜕𝜕𝜕𝑗𝑗

+ 𝑇𝑇𝑇𝑇𝑆𝑆 − 𝑣𝑣𝑖𝑖
𝜕𝜕𝜕𝜕

𝑝𝑝

𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝑗𝑗

− 𝜌𝜌𝜌𝜌𝑖𝑖𝑣𝑣𝑖𝑖 + 𝜎𝜎𝑖𝑖𝑖𝑖 𝜀̇𝜀
el

𝑖𝑖𝑖𝑖 −𝑄𝑄r ,� (A10)

and solve for TQS

𝑇𝑇𝑇𝑇𝑆𝑆 = −
𝜕𝜕𝜕𝜕𝐸𝐸

𝑗𝑗

𝜕𝜕𝜕𝜕𝑗𝑗

+ 𝑇𝑇
𝜕𝜕𝜕𝜕𝑆𝑆

𝑗𝑗

𝜕𝜕𝜕𝜕𝑗𝑗

+ 𝑣𝑣𝑖𝑖
𝜕𝜕𝜕𝜕

𝑝𝑝

𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝑗𝑗

+ 𝜌𝜌𝜌𝜌𝑖𝑖𝑣𝑣𝑖𝑖 − 𝜎𝜎𝑖𝑖𝑖𝑖 𝜀̇𝜀
el

𝑖𝑖𝑖𝑖 +𝑄𝑄r .� (A11)

After substituting the momentum flux (Equation A6) into the third term on the right hand side and using the sum 
rule, the potential energy cancels out

𝑇𝑇𝑇𝑇𝑆𝑆 = −
𝜕𝜕𝜕𝜕𝐸𝐸

𝑗𝑗

𝜕𝜕𝜕𝜕𝑗𝑗

+ 𝑇𝑇
𝜕𝜕𝜕𝜕𝑆𝑆

𝑗𝑗

𝜕𝜕𝜕𝜕𝑗𝑗

− 𝑣𝑣𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝑗𝑗

− 𝜎𝜎𝑖𝑖𝑖𝑖 𝜀̇𝜀
el

𝑖𝑖𝑖𝑖 +𝑄𝑄r .� (A12)

Now substituting the energy flux (Equation A7) into the first term on the right hand side, using the difference and 
the product rules, the following terms remain
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𝑇𝑇𝑇𝑇𝑆𝑆 = −𝑞𝑞𝑆𝑆𝑗𝑗
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

+ 𝜎𝜎𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑗𝑗

− 𝜎𝜎𝑖𝑖𝑖𝑖 𝜀̇𝜀
el

𝑖𝑖𝑖𝑖 +𝑄𝑄r .� (A13)

Finally, substituting the entropy flux (Equation A8) in the right hand side and simplifying yields

𝑇𝑇𝑇𝑇𝑆𝑆 =
𝜆𝜆

𝑇𝑇

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

+ 𝜎𝜎𝑖𝑖𝑖𝑖

(

𝜀̇𝜀𝑖𝑖𝑖𝑖 − 𝜀̇𝜀el

𝑖𝑖𝑖𝑖

)

+𝑄𝑄r .� (A14)

A4.  Demonstrating the Non-Negativity of QS

Non-negativity of entropy production (Equation  A14) is guaranteed if all terms on the right hand side are 
non-negative (T [K] is non-negative). It is easy to see that dissipation due to heat conduction and radioactive 
heating, the first and the third term on the right hand side, respectively, are guaranteed to be non-negative for any 
non-negative λ and Qr. Showing the non-negativity of the second term on the right hand side (dissipative work), 
however, requires to explore the rheological models.

The strain rate (or velocity gradient) tensor can be expressed as a sum of its volumetric, symmetric-deviatoric, 
and antisymmetric parts

𝜕𝜕𝜕𝜕𝑖𝑖
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𝜕𝜕𝜕𝜕𝑘𝑘
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⏟⏟⏟

𝜀̇𝜀vol
𝑖𝑖𝑖𝑖

+
1
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𝑖𝑖𝑖𝑖
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� (A15)

while the stress tensor is symmetric (e.g., Landau & Lifshitz, 2013) and can be decomposed into a volumetric 
(hydrostatic) and a deviatoric part

𝜎𝜎𝑖𝑖𝑖𝑖 = −𝛿𝛿𝑖𝑖𝑖𝑖𝑃𝑃 + 𝜏𝜏𝑖𝑖𝑖𝑖 ,� (A16)

where 𝐴𝐴 𝐴𝐴 = −
𝜎𝜎𝑘𝑘𝑘𝑘

3
 is thermodynamic pressure.

Our rheological model for shear deformation is based on the Maxwell (serial) coupling of a viscous an elastic 
and a viscoplastic element. The rheological model for volumetric deformation consist of an elastic element, that 
represents the pressure-volume-temperature equation of state in an incremental form, in a Maxwell coupling with 
a viscoplastic element. The relationships between stresses and strain rates, broken down for deviatoric-symmetric 
and volumetric parts, are:

𝜀̇𝜀dev
𝑖𝑖𝑖𝑖 =

𝜏𝜏𝑖𝑖𝑖𝑖

2𝜂𝜂
⏟⏟⏟

𝜀̇𝜀
dev,vis
𝑖𝑖𝑖𝑖

+
1

2𝜇𝜇

d𝜏𝜏𝑖𝑖𝑖𝑖

d𝑡𝑡
⏟⏟⏟

𝜀̇𝜀
dev,el
𝑖𝑖𝑖𝑖

+
𝜒𝜒𝜆̇𝜆𝜆𝜆𝑖𝑖𝑖𝑖

2𝜏𝜏II

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕II
⏟⏞⏞⏟⏞⏞⏟

𝜀̇𝜀
dev,pl

𝑖𝑖𝑖𝑖

� (A17)

𝜀̇𝜀vol
𝑖𝑖𝑖𝑖 =

𝛿𝛿𝑖𝑖𝑖𝑖

3
𝛼𝛼
d𝑇𝑇

d𝑡𝑡
−

𝛿𝛿𝑖𝑖𝑖𝑖

3
𝛽𝛽
d𝑃𝑃

d𝑡𝑡
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜀̇𝜀
vol,el
𝑖𝑖𝑖𝑖

−
𝛿𝛿𝑖𝑖𝑖𝑖

3
𝜒𝜒𝜆̇𝜆

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝜀̇𝜀
vol,pl

𝑖𝑖𝑖𝑖

.

� (A18)

Considering that for any two second order tensors,

𝑀𝑀vol
𝑖𝑖𝑖𝑖 𝑁𝑁dev

𝑖𝑖𝑖𝑖 = 𝑀𝑀
sym

𝑖𝑖𝑖𝑖
𝑁𝑁

asym

𝑖𝑖𝑖𝑖
= 0,� (A19)

therefore

𝜎𝜎𝑖𝑖𝑖𝑖

(

𝜀̇𝜀𝑖𝑖𝑖𝑖 − 𝜀̇𝜀el
𝑖𝑖𝑖𝑖

)

= 𝜏𝜏𝑖𝑖𝑖𝑖 𝜀̇𝜀
dev,vis

𝑖𝑖𝑖𝑖
+ 𝜏𝜏𝑖𝑖𝑖𝑖 𝜀̇𝜀

dev,pl

𝑖𝑖𝑖𝑖
− 𝑃𝑃 𝑃𝑃𝑃

vol,pl

𝑘𝑘𝑘𝑘
.� (A20)

After substituting the stress-strain rate relationships from Equations A17, A18, and A20 becomes

𝜎𝜎𝑖𝑖𝑖𝑖

(

𝜀̇𝜀𝑖𝑖𝑖𝑖 − 𝜀̇𝜀el

𝑖𝑖𝑖𝑖

)

=
𝜏𝜏2

II

𝜂𝜂
+ 𝜒𝜒𝜆̇𝜆

(

𝜏𝜏II

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕II

+ 𝑃𝑃
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

.� (A21)
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For any positive η, viscous dissipation is non-negative, and plastic dissipation is zero if the yield is not reached 
(since 𝐴𝐴 𝜆̇𝜆 = 0 ). Moreover, if a rate-independent plasticity model is admissible (χ = 1), the same plasticity model 
with Duvaut-Lions regularization must be admissible too (since 0 < χ ≤ 1). To show the general admissibility, 
we demonstrate the admissibility of each of the five plasticity models in the rate-independent limit, that were 
introduced in Section 2.3.

Plastic dissipation for the pressure limiter yield (domain I) after substituting derivatives of QI and expressing P 
from FPL = 0 is

𝜎𝜎𝑖𝑖𝑖𝑖 𝜀̇𝜀
pl∗

𝑖𝑖𝑖𝑖
= 𝜆̇𝜆(𝜎𝜎T − 𝛿𝛿𝛿𝛿T),� (A22)

which is non-negative as long as (σT − δσT ≥ 0) since 𝐴𝐴 𝜆̇𝜆 is never negative.

Plastic dissipation for the tensile yield (domain III) after substituting derivatives of QIII and expressing P from 
FM1 = 0 is

𝜎𝜎𝑖𝑖𝑖𝑖 𝜀̇𝜀
pl∗

𝑖𝑖𝑖𝑖
= 𝜆̇𝜆𝜆𝜆T,� (A23)

which is non-negative as long as (σT ≥ 0).

Plastic dissipation for the Drucker-Prager yield (domain V) after substituting derivatives of QV is

𝜎𝜎𝑖𝑖𝑖𝑖 𝜀̇𝜀
pl∗

𝑖𝑖𝑖𝑖
= 𝜆̇𝜆(𝜏𝜏II − 𝑃𝑃 sin𝜓𝜓).� (A24)

It can be shown that τII − P sin ψ ≥ 0 by taking FDP = τII − P sin φ − C cos φ = 0. Since τII and C cos φ are both 
positive, τII − P sin ψ ≥ 0 as long as 0 ≤ ψ ≤ φ, because the sinus function strictly monotonically increases from 
0° to 90°.

The plasticity model for the corner regions (II and IV) can be generalized, as the only difference is the 
pressure-stress coordinates of the corners P = PC and τII = τC. Plastic dissipation after substituting derivatives of 
QII and substituting P = PC and τII = τC is

𝜎𝜎𝑖𝑖𝑖𝑖 𝜀̇𝜀
pl∗

𝑖𝑖𝑖𝑖
= 𝜆̇𝜆

𝜏𝜏C
𝜏𝜏tr

II
−𝜏𝜏C

𝜂𝜂ve
− 𝑃𝑃C

−𝑃𝑃 tr−𝑃𝑃C

𝛽𝛽−1d𝑡𝑡

√

(

𝜏𝜏tr
II
−𝜏𝜏C2

𝜂𝜂ve

)2

+

(

−𝑃𝑃 tr+𝑃𝑃C2

𝛽𝛽−1d𝑡𝑡

)2

,� (A25)

which is guaranteed to be non-negative if the numerator is non-negative. The numerator can be reformulated as

𝜏𝜏C𝜏𝜏
tr

II
− 𝜏𝜏2

C
− 𝑃𝑃C

𝜂𝜂ve

𝛽𝛽−1d𝑡𝑡

(

−𝑃𝑃 tr
− 𝑃𝑃C

)

.� (A26)

Any trial stresses in the corner regions can be expressed in the following form,

𝜏𝜏 tr

II
= Υ

𝜂𝜂ve

𝛽𝛽−1d𝑡𝑡

(

−𝑃𝑃 tr
− 𝑃𝑃C

)

+ 𝜏𝜏C,� (A27)

where 0 ≤ ϒ ≤ 1 for the first corner and 𝐴𝐴 1 ≤ Υ ≤
1

sin𝜓𝜓
 for the second. Substituting Equation A27 into the numer-

ator Equation A26 and simplifying results in

Υ𝜏𝜏C − 𝑃𝑃C,� (A28)

which is guaranteed to be non-negative for PC ≤ 0 (first corner, domain II) and for any τC ≥ PC if ϒ ≥ 1 (second 
corner, domain IV).

A5.  The System of Governing Equations in Their Final Form

The governing equations used in the manuscript (Equations 3–7) are all based on the balance laws (Equations A2–
A5), fluxes (Equations A6–A8) and constitutive relations (Equations A17–A18).

Equation 3 can be obtained from the conservation of mass (Equation A2) using the chain rule.
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Equation 4 can be obtained by substituting the momentum flux (Equation A6) into the momentum balance Equa-
tion A3 and using the sum rule.

Next, we substitute the entropy flux (Equation A8) and the entropy source (Equation A14) in the entropy balance 
Equation A5 and multiplying it by T

𝜌𝜌𝜌𝜌
d𝑆𝑆

d𝑡𝑡
= 𝑇𝑇

𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

(

𝜆𝜆

𝑇𝑇

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

)

+
𝜆𝜆

𝑇𝑇

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

+ 𝜎𝜎𝑖𝑖𝑖𝑖

(

𝜀̇𝜀𝑖𝑖𝑖𝑖 − 𝜀̇𝜀el

𝑖𝑖𝑖𝑖

)

+𝑄𝑄r .� (A29)

The divergence of the flux and the conductive dissipation (first and second terms on the right hand side) can be 
merged, using the product rule,

𝜌𝜌𝜌𝜌
d𝑆𝑆

d𝑡𝑡
=

𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

(

𝜆𝜆
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

)

+ 𝜎𝜎𝑖𝑖𝑖𝑖

(

𝜀̇𝜀𝑖𝑖𝑖𝑖 − 𝜀̇𝜀el

𝑖𝑖𝑖𝑖

)

+𝑄𝑄r .� (A30)

The same equation can be obtained by substituting the LTE (Equation A9) and the fluxes (Equation A7) into the 
conservation of energy (Equation A4).

So far, we have three equations and six unknowns (ρ, vi, S, P, τij, T). In order to close the system of equations, we 
first formulate entropy increments as a function P and T

d𝑆𝑆 =

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

𝑃𝑃

d𝑇𝑇 +

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

𝑇𝑇

d𝑃𝑃 𝑃� (A31)

The definitions of CP, α, and a Maxwell relationship can be used to express the coefficients of dT and dP gives

d𝑆𝑆

d𝑡𝑡
=

𝐶𝐶𝑃𝑃

𝑇𝑇

d𝑇𝑇

d𝑡𝑡
−

𝛼𝛼

𝜌𝜌

d𝑃𝑃

d𝑡𝑡
,� (A32)

which substituted back in Equation A30 results in

𝜌𝜌𝜌𝜌𝑃𝑃
d𝑇𝑇

d𝑡𝑡
= 𝛼𝛼𝛼𝛼

d𝑃𝑃

d𝑡𝑡
+

𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

(

𝜆𝜆
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

)

+ 𝜎𝜎𝑖𝑖𝑖𝑖

(

𝜀̇𝜀𝑖𝑖𝑖𝑖 − 𝜀̇𝜀el

𝑖𝑖𝑖𝑖

)

+𝑄𝑄r ,� (A33)

which is identical to Equation 5. By expressing entropy as function of pressure and temperature we thus reduced the 
number of unknowns to 5 and by including the constitutive relationships for bulk and shear rheology (Equations 6 
and 7) we obtain a closed system of equations, that is both thermodynamically admissible and self-consistent.

Data Availability Statement
We have developed a julia code to solve the governing equations. The full source code to reproduce the refer-
ence simulation (Figure  7) is available under https://zenodo.org/record/6958273 (https://doi.org/10.5281/
zenodo.6958273). The other simulations can be reproduced by modifying the reference case with the parameters 
described in the manuscript.

References
Carter, N. L., & Tsenn, M. C. (1987). Flow properties of continental lithosphere. Tectonophysics, 136(1–2), 27–63. https://doi.

org/10.1016/0040-1951(87)90333-7
Cashman, K. V., Sparks, R. S. J., & Blundy, J. D. (2017). Vertically extensive and unstable magmatic systems: A unified view of igneous 

processes. Science, 355(6331), eaag3055. https://doi.org/10.1126/science.aag3055
Christopher, T., Blundy, J., Cashman, K., Cole, P., Edmonds, M., Smith, P., et al. (2015). Crustal-scale degassing due to magma system destabili-

zation and magma-gas decoupling at Soufrière Hills Volcano, Montserrat. Geochemistry, Geophysics, Geosystems, 16(9), 2797–2811. https://
doi.org/10.1002/2015gc005791

Connolly, J., & Podladchikov, Y. Y. (2007). Decompaction weakening and channeling instability in ductile porous media: Implications for asthe-
nospheric melt segregation. Journal of Geophysical Research, 112(B10), B10205. https://doi.org/10.1029/2005JB004213

de Borst, R., & Duretz, T. (2020). On viscoplastic regularisation of strain-softening rocks and soils. International Journal for Numerical and 
Analytical Methods in Geomechanics, 44(6), 890–903. https://doi.org/10.1002/nag.3046

De Groot, S. R., & Mazur, P. (2013). Non-equilibrium thermodynamics. Courier Corporation.
Delgado, F. (2021). Rhyolitic volcano dynamics in the Southern Andes: Contributions from 17 years of InSAR observations at Cordón Caulle 

volcano from 2003 to 2020. Journal of South American Earth Sciences, 106, 102841. https://doi.org/10.1016/j.jsames.2020.102841
de Saint Blanquat, M., Horsman, E., Habert, G., Morgan, S., Vanderhaeghe, O., Law, R., & Tikoff, B. (2011). Multiscale magmatic cyclicity, 

duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophysics, 500(1), 
20–33. (Emplacement of magma pulses and growth of magma bodies). https://doi.org/10.1016/j.tecto.2009.12.009

Acknowledgments
This study was funded by the European 
Research Council through Consolida-
tor Grant 771143 (MAGMA) awarded 
to BJPK. We are grateful to Thibault 
Duretz, Ludovic Raess, and Anton Popov 
for providing valuable insights on the 
implementation of viscoplasticity and on 
the use of the ParallelStencil.jl package. 
We are thankful for the constructive 
feedback of the associate editor, of Muriel 
Gerbault, and of two anonymous review-
ers. Open Access funding enabled and 
organized by Projekt DEAL.

https://zenodo.org/record/6958273
https://doi.org/10.5281/zenodo.6958273
https://doi.org/10.5281/zenodo.6958273
https://doi.org/10.1016/0040-1951(87)90333-7
https://doi.org/10.1016/0040-1951(87)90333-7
https://doi.org/10.1126/science.aag3055
https://doi.org/10.1002/2015gc005791
https://doi.org/10.1002/2015gc005791
https://doi.org/10.1029/2005JB004213
https://doi.org/10.1002/nag.3046
https://doi.org/10.1016/j.jsames.2020.102841
https://doi.org/10.1016/j.tecto.2009.12.009


Journal of Geophysical Research: Solid Earth

KISS ET AL.

10.1029/2022JB025341

24 of 25

Drucker, D. C. (1952). A more fundamental approach to plastic stress strain relations. In Plasticity: Proceedings of the second symposium on 
naval structural mechanics, (pp. 487–491).

Duretz, T., de Borst, R., & Yamato, P. (2021). Modeling lithospheric deformation using a compressible visco-elasto-viscoplastic rheology and 
the effective viscosity approach. Geochemistry, Geophysics, Geosystems, 22(8), e2021GC009675. https://doi.org/10.1029/2021GC009675

Duretz, T., de Borst, R., Yamato, P., & Le Pourhiet, L. (2020). Toward robust and predictive geodynamic modeling: The way forward in frictional 
plasticity. Geophysical Research Letters, 47(5), e2019GL086027. https://doi.org/10.1029/2019gl086027

Duretz, T., Räss, L., Podladchikov, Y., & Schmalholz, S. (2019). Resolving thermomechanical coupling in two and three dimensions: Sponta-
neous strain localization owing to shear heating. Geophysical Journal International, 216(1), 365–379. https://doi.org/10.1093/gji/ggy434

Duvaut, G., & Lions, J.-L. (1972). Les inéquations en mécanique et en physiques. In Travaux et recherches mathématiques (Vol. 21). Dunod.
Fialko, Y., Khazan, Y., & Simons, M. (2001). Deformation due to a pressurized horizontal circular crack in an elastic half-space, with applications 

to volcano geodesy. Geophysical Journal International, 146(1), 181–190. https://doi.org/10.1046/j.1365-246x.2001.00452.x
Furuya, M. (2005). Quasi-static thermoelastic deformation in an elastic half-space: Theory and application to InSAR observations at Izu-Oshima 

volcano, Japan. Geophysical Journal International, 161(1), 230–242. https://doi.org/10.1111/j.1365-246x.2005.02610.x
Gerbault, M., Cappa, F., & Hassani, R. (2012). Elasto-plastic and hydromechanical models of failure around an infinitely long magma chamber. 

Geochemistry, Geophysics, Geosystems, 13(3), Q03009. https://doi.org/10.1029/2011GC003917
Gerbault, M., Hassani, R., Novoa Lizama, C., & Souche, A. (2018). Three-dimensional failure patterns around an inflating magmatic chamber. 

Geochemistry, Geophysics, Geosystems, 19(3), 749–771. https://doi.org/10.1002/2017gc007174
Gregg, P., De Silva, S., Grosfils, E., & Parmigiani, J. (2012). Catastrophic caldera-forming eruptions: Thermomechanics and implications for 

eruption triggering and maximum caldera dimensions on Earth. Journal of Volcanology and Geothermal Research, 241, 1–12. https://doi.
org/10.1016/j.jvolgeores.2012.06.009

Head, M., Hickey, J., Thompson, J., Gottsmann, J., & Fournier, N. (2022). Rheological controls on magma reservoir failure in a thermo-viscoelastic 
crust. Journal of Geophysical Research: Solid Earth, 127(7), e2021JB023439. https://doi.org/10.1029/2021jb023439

Katz, R. F. (2008). Magma dynamics with the enthalpy method: Benchmark solutions and magmatic focusing at mid-ocean ridges. Journal of 
Petrology, 49(12), 2099–2121. https://doi.org/10.1093/petrology/egn058

Keller, T., May, D. A., & Kaus, B. J. (2013). Numerical modelling of magma dynamics coupled to tectonic deformation of lithosphere and crust. 
Geophysical Journal International, 195(3), 1406–1442. https://doi.org/10.1093/gji/ggt306

Kiss, D., Podladchikov, Y., Duretz, T., & Schmalholz, S. M. (2019). Spontaneous generation of ductile shear zones by thermal softening: Local-
ization criterion, 1D to 3D modelling and application to the lithosphere. Earth and Planetary Science Letters, 519, 284–296. https://doi.
org/10.1016/j.epsl.2019.05.026

Kiyoo, M. (1958). Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them. Earthquake 
Research Institute, 36, 99–134.

Kohsmann, J. J., & Mitchell, B. J. (1986). Transient thermoelastic stresses produced by a buried cylindrical intrusion. Journal of Volcanology and 
Geothermal Research, 27(3–4), 323–348. https://doi.org/10.1016/0377-0273(86)90019-3

Landau, L. D., & Lifshitz, E. M. (2013). Fluid mechanics: Landau and Lifshitz: Course of theoretical physics (Vol. 6). Elsevier.
Leuthold, J., Müntener, O., Baumgartner, L. P., Putlitz, B., Ovtcharova, M., & Schaltegger, U. (2012). Time resolved construction of a bimodal 

laccolith (Torres del Paine, Patagonia). Earth and Planetary Science Letters, 325, 85–92. https://doi.org/10.1016/j.epsl.2012.01.032
Lister, J. R., & Kerr, R. C. (1991). Fluid-mechanical models of crack propagation and their application to magma transport in dykes. Journal of 

Geophysical Research, 96(B6), 10049–10077. https://doi.org/10.1029/91JB00600
Maccaferri, F., Bonafede, M., & Rivalta, E. (2011). A quantitative study of the mechanisms governing dike propagation, dike arrest and sill forma-

tion. Journal of Volcanology and Geothermal Research, 208(1–2), 39–50. https://doi.org/10.1016/j.jvolgeores.2011.09.001
McTigue, D. (1987). Elastic stress and deformation near a finite spherical magma body: Resolution of the point source paradox. Journal of 

Geophysical Research, 92(B12), 12931–12940. https://doi.org/10.1029/jb092ib12p12931
Müller, I., & Müller, W. H. (2009). Fundamentals of thermodynamics and applications: With historical annotations and many citations from 

Avogadro to Zermelo. Springer Science & Business Media.
Newman, S., & Lowenstern, J. B. (2002). Volatilecalc: A silicate melt–H2O–CO2 solution model written in visual basic for excel. Computers & 

Geosciences, 28(5), 597–604. https://doi.org/10.1016/s0098-3004(01)00081-4
Novoa, C., Gerbault, M., Remy, D., Cembrano, J., Lara, L., Ruz-Ginouves, J., et al. (2022). The 2011 Cordón Caulle eruption triggered by slip on 

the Liquiñe-Ofqui fault system. Earth and Planetary Science Letters, 583, 117386. https://doi.org/10.1016/j.epsl.2022.117386
Novoa, C., Remy, D., Gerbault, M., Baez, J., Tassara, A., Cordova, L., et al. (2019). Viscoelastic relaxation: A mechanism to explain the decennial 

large surface displacements at the Laguna del Maule silicic volcanic complex. Earth and Planetary Science Letters, 521, 46–59. https://doi.
org/10.1016/j.epsl.2019.06.005

Ottosen, N. S., & Ristinmaa, M. (1996). Corners in plasticity—Koiter's theory revisited. International Journal of Solids and Structures, 33(25), 
3697–3721. https://doi.org/10.1016/0020-7683(95)00207-3

Perzyna, P. (1966). Fundamental problems in viscoplasticity. In Advances in Applied Mechanics (Vol. 9, pp. 243–377). Elsevier.
Petford, N. (1996). Dykes or diapirs? Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1–2), 105–114. https://

doi.org/10.1017/S0263593300006520
Pritchard, M., & Simons, M. (2004). An InSAR-based survey of volcanic deformation in the central Andes. Geochemistry, Geophysics, Geosys-

tems, 5(2), Q02002. https://doi.org/10.1029/2003gc000610
Putirka, K. D. (2017). Down the crater: Where magmas are stored and why they erupt. Elements, 13(1), 11–16. https://doi.org/10.2113/

gselements.13.1.11
Räss, L., Utkin, I., Duretz, T., Omlin, S., & Podladchikov, Y. Y. (2022). Assessing the robustness and scalability of the accelerated pseudo-transient 

method towards exascale computing. Geoscientific Model Development Discussions, 1–46.
Reuber, G. S., Kaus, B. J., Popov, A. A., & Baumann, T. S. (2018). Unraveling the physics of the Yellowstone magmatic system using geodynamic 

simulations. Frontiers of Earth Science, 6, 117. https://doi.org/10.3389/feart.2018.00117
Rozhko, A., Podladchikov, Y., & Renard, F. (2007). Failure patterns caused by localized rise in pore-fluid overpressure and effective strength of 

rocks. Geophysical Research Letters, 34(22), L22304. https://doi.org/10.1029/2007gl031696
Rubin, A. M. (1993). Dikes vs. diapirs in viscoelastic rock. Earth and Planetary Science Letters, 117(3), 653–670. https://doi.

org/10.1016/0012-821X(93)90109-M
Ruz-Ginouves, J., Gerbault, M., Cembrano, J., Iturrieta, P., Sáez Leiva, F., Novoa, C., & Hassani, R. (2021). The interplay of a fault zone and a 

volcanic reservoir from 3D elasto-plastic models: Rheological conditions for mutual trigger based on a field case from the Andean Southern 
Volcanic Zone. Journal of Volcanology and Geothermal Research, 418, 107317. https://doi.org/10.1016/j.jvolgeores.2021.107317

https://doi.org/10.1029/2021GC009675
https://doi.org/10.1029/2019gl086027
https://doi.org/10.1093/gji/ggy434
https://doi.org/10.1046/j.1365-246x.2001.00452.x
https://doi.org/10.1111/j.1365-246x.2005.02610.x
https://doi.org/10.1029/2011GC003917
https://doi.org/10.1002/2017gc007174
https://doi.org/10.1016/j.jvolgeores.2012.06.009
https://doi.org/10.1016/j.jvolgeores.2012.06.009
https://doi.org/10.1029/2021jb023439
https://doi.org/10.1093/petrology/egn058
https://doi.org/10.1093/gji/ggt306
https://doi.org/10.1016/j.epsl.2019.05.026
https://doi.org/10.1016/j.epsl.2019.05.026
https://doi.org/10.1016/0377-0273(86)90019-3
https://doi.org/10.1016/j.epsl.2012.01.032
https://doi.org/10.1029/91JB00600
https://doi.org/10.1016/j.jvolgeores.2011.09.001
https://doi.org/10.1029/jb092ib12p12931
https://doi.org/10.1016/s0098-3004(01)00081-4
https://doi.org/10.1016/j.epsl.2022.117386
https://doi.org/10.1016/j.epsl.2019.06.005
https://doi.org/10.1016/j.epsl.2019.06.005
https://doi.org/10.1016/0020-7683(95)00207-3
https://doi.org/10.1017/S0263593300006520
https://doi.org/10.1017/S0263593300006520
https://doi.org/10.1029/2003gc000610
https://doi.org/10.2113/gselements.13.1.11
https://doi.org/10.2113/gselements.13.1.11
https://doi.org/10.3389/feart.2018.00117
https://doi.org/10.1029/2007gl031696
https://doi.org/10.1016/0012-821X(93)90109-M
https://doi.org/10.1016/0012-821X(93)90109-M
https://doi.org/10.1016/j.jvolgeores.2021.107317


Journal of Geophysical Research: Solid Earth

KISS ET AL.

10.1029/2022JB025341

25 of 25

Schmeling, H., Marquart, G., Weinberg, R., & Wallner, H. (2019). Modelling melting and melt segregation by two-phase flow: New insights into 
the dynamics of magmatic systems in the continental crust. Geophysical Journal International, 217(1), 422–450. https://doi.org/10.1093/gji/
ggz029

Schubert, G., Turcotte, D. L., & Olson, P. (2001). Mantle convection in the earth and planets. Cambridge University Press.
Segall, P. (2010). Earthquake and volcano deformation. In Earthquake and volcano deformation. Princeton University Press. https://doi.

org/10.1515/9781400833856
Segall, P. (2019). Magma chambers: What we can, and cannot, learn from volcano geodesy. Philosophical Transactions of the Royal Society A: 

Mathematical, Physical & Engineering Sciences, 377(2139), 20180158. https://doi.org/10.1098/rsta.2018.0158
Simo, J., Kennedy, J., & Govindjee, S. (1988). Non-smooth multisurface plasticity and viscoplasticity. loading/unloading conditions and numer-

ical algorithms. International Journal for Numerical Methods in Engineering, 26(10), 2161–2185. https://doi.org/10.1002/nme.1620261003
Sleep, N. H. (1974). Segregation of magma from a mostly crystalline mush. Geological Society of America Bulletin, 85(8), 1225–1232. https://

doi.org/10.1130/0016-7606(1974)85<1225:somfam>2.0.co;2
Souche, A., Galland, O., Haug, Ø. T., & Dabrowski, M. (2019). Impact of host rock heterogeneity on failure around pressurized conduits: Impli-

cations for finger-shaped magmatic intrusions. Tectonophysics, 765, 52–63. https://doi.org/10.1016/j.tecto.2019.05.016
Spang, A., Baumann, T. S., & Kaus, B. J. (2021). A multiphysics approach to constrain the dynamics of the Altiplano-Puna magmatic system. 

Journal of Geophysical Research: Solid Earth, 126(7), e2021JB021725. https://doi.org/10.1029/2021jb021725
Turcotte, D., & Schubert, G. (2014). Geodynamics. Cambridge University Press.
Versteeg, H., & Malalasekra, W. (2007). An introduction to computational fluid dynamics: The finite volume method (2nd ed.). Pearson.
Walter, T. R., & Motagh, M. (2014). Deflation and inflation of a large magma body beneath Uturuncu volcano, Bolivia? Insights from InSAR 

data, surface lineaments and stress modelling. Geophysical Journal International, 198(1), 462–473. https://doi.org/10.1093/gji/ggu080
Wang, X., & Aoki, Y. (2019). Posteruptive thermoelastic deflation of intruded magma in Usu volcano, Japan, 1992–2017. Journal of Geophysical 

Research: Solid Earth, 124(1), 335–357. https://doi.org/10.1029/2018jb016729
Weinberg, R. F., & Schmeling, H. (1992). Polydiapirs: Multiwavelength gravity structures. Journal of Structural Geology, 14(4), 425–436. 

https://doi.org/10.1016/0191-8141(92)90103-4
Yang, X.-M., Davis, P. M., & Dieterich, J. H. (1988). Deformation from inflation of a dipping finite prolate spheroid in an elastic half-space as a 

model for volcanic stressing. Journal of Geophysical Research, 93(B5), 4249–4257. https://doi.org/10.1029/jb093ib05p04249
Yarushina, V. M., & Podladchikov, Y. Y. (2015). (De) compaction of porous viscoelastoplastic media: Model formulation. Journal of Geophysical 

Research: Solid Earth, 120(6), 4146–4170. https://doi.org/10.1002/2014jb011258
Zhan, Y., & Gregg, P. (2019). How accurately can we model magma reservoir failure with uncertainties in host rock rheology? Journal of 

Geophysical Research: Solid Earth, 124(8), 8030–8042. https://doi.org/10.1029/2019jb018178
Zhan, Y., Gregg, P. M., Le Mével, H., Miller, C. A., & Cardona, C. (2012). Integrating reservoir dynamics, crustal stress, and geophysical 

observations of the Laguna del Maule magmatic system by fem models and data assimilation. Journal of Geophysical Research, 124(12), 
13547–13562. https://doi.org/10.1029/2019JB018681

https://doi.org/10.1093/gji/ggz029
https://doi.org/10.1093/gji/ggz029
https://doi.org/10.1515/9781400833856
https://doi.org/10.1515/9781400833856
https://doi.org/10.1098/rsta.2018.0158
https://doi.org/10.1002/nme.1620261003
https://doi.org/10.1130/0016-7606(1974)85%3C1225:somfam%3E2.0.co;2
https://doi.org/10.1130/0016-7606(1974)85%3C1225:somfam%3E2.0.co;2
https://doi.org/10.1016/j.tecto.2019.05.016
https://doi.org/10.1029/2021jb021725
https://doi.org/10.1093/gji/ggu080
https://doi.org/10.1029/2018jb016729
https://doi.org/10.1016/0191-8141(92)90103-4
https://doi.org/10.1029/jb093ib05p04249
https://doi.org/10.1002/2014jb011258
https://doi.org/10.1029/2019jb018178
https://doi.org/10.1029/2019JB018681

	Decompression and Fracturing Caused by Magmatically Induced Thermal Stresses
	Abstract
	Plain Language Summary
	1. Introduction
	2. Mathematical Formulation and Numerical Model
	2.1. Governing System of Equations
	2.2. Numerical Implementation
	2.3. Viscoplastic Return Mapping

	3. Reference Configuration
	4. Results
	4.1. The Purely Thermoelastic Case
	4.2. Viscous Relaxation of Thermal Stresses
	4.3. Thermal Stresses With a Realistic Visco-Elasto-Viscoplastic Upper Crustal Rheology
	4.4. Sensitivity to the Size and Ellipticity of the Magma Body
	4.5. Multiple Pulses in a Magma/Mush Chamber
	4.6. Sensitivity to Stress History and Comparing Thermal Stresses to Stresses Induced by Melt Intrusion

	5. Discussion
	5.1. Limitations Due To Simplifying Assumptions
	5.2. The Role of Thermal Stresses During the Evolution of Magmatic Plumbing Systems
	5.3. The Manifestation of Thermal Cracking in the Field
	5.4. Thermal Cracking During the Development of Magmatic-Hydrothermal Systems

	6. Conclusions
	Appendix A: Thermodynamic Admissibility of the Governing Equations
	A1. Local Thermodynamic Equilibrium
	A2. Local Balance Equations
	A3. Solving for QS
	A4. Demonstrating the Non-Negativity of QS
	A5. The System of Governing Equations in Their Final Form
	Data Availability Statement
	References


