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Abstract

Amphibian populations are declining worldwide at alarming rates. Among the large variety of contributing stressors,
chemical pollutants like pesticides have been identified as a major factor for this decline. Besides direct effects on aquatic
and terrestrial amphibian stages, sublethal effects like impairments in reproduction can affect a population. Therefore, we
investigated the reproductive capacity of common toads (Bufo bufo) in the pesticide-intensive viticultural landscape of
Palatinate in Southwest Germany along a pesticide gradient. In a semi-field study, we captured reproductively active
common toad pairs of five breeding ponds with different pesticide contamination level and kept them in a net cage until
spawning. Toads from more contaminated ponds showed an increased fecundity (more eggs) but decreased fertilization rates
(fewer hatching tadpoles) as well as lower survival rates and reduced size in Gosner stage 25, suggesting that the higher
exposed populations suffer from long-term reproductive impairments. In combination with acute toxicity effects, the
detected sublethal effects, which are mostly not addressed in the ecological risk assessment of pesticides, pose a serious

threat on amphibian populations in agricultural landscapes.
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Introduction

The latest IUCN reports suggest that 41% of all amphibian
species are threatened (IUCN 2020). Besides habitat mod-
ification and destruction, intensive agriculture including the
exposure to chemical pollutants like pesticides is one of the
major factors for the global amphibian decline (Collins and
Storfer 2003; Stuart et al. 2004). Several studies investi-
gating the impact of intensive agriculture on amphibians
determined adverse effects on egg and tadpole health
(Babini et al. 2018), adult body condition, and morphology
(Bionda et al. 2018; Hegde et al. 2019; Zhelev et al. 2017).
One reason for these effects can be the exposure of
amphibians to pesticides, with which they can come into
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contact during their whole life cycle. They can be exposed
during the breeding phase and larval development in their
aquatic habitats due to spray-drift (Crossland et al. 1982),
run-off (Edwards et al. 1980) and drainages (Brown and van
Beinum 2009). Post-metamorphic, terrestrial juvenile and
adult amphibians can take up pesticides e.g., from con-
taminated soil (Storrs Méndez et al. 2009) during migration
through the agricultural landscape (Leeb et al. 2020b;
Lenhardt et al. 2013). Despite this chronic, biphasic expo-
sure, the effects of chemical pollutants on amphibian
declines is not well understood (Grant et al. 2016). Most
ecotoxicological laboratory studies on amphibians focus on
acute effects of pesticides that lead to direct mortality in
aquatic or, more rarely studied, terrestrial life stages (e.g.,
Briihl et al. 2013; Relyea 2004, 2005). Besides these acute
effects, chronic and sublethal effects due to impaired
reproduction may also result in amphibian population
declines. Thus, there is not only a potential for rapid but
also long-term amphibian declines, either due to impairment
of adult breeding or deficient development of a progeny
(Hayes et al. 2010b).

On the one hand, sublethal effects on reproduction
can occur due to direct systemic toxicity. Effects on mole-
cular biomarkers like acetylcholine esterase activities
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(Hegde et al. 2019) and hematological parameters (Zhelev
et al. 2018) as well as genotoxic and mutagenic effects
(Gongalves et al. 2019) may have an impact on the repro-
ductive capacity and thus on amphibian populations. More-
over, resources for the production of eggs may be limited and
reproduction reduced due to resources required for pesticide
detoxification processes as shown for the woodlouse Por-
cellio scaber (Jones and Hopkin 1998). Pesticides may also
indirectly affect amphibian reproduction by interfering with
their food supply (Sanchez-Bayo and Wyckhuys 2019) or
affecting their behavior and thus disturbing their habitat use
(Leeb et al. 2020a), predation (Adams et al. 2020), mating
behavior (Schwendiman and Propper 2012) and population
connectivity (Lenhardt et al. 2017).

On the other hand, pesticides can also directly act on the
hormonal pathways of developmental processes as endo-
crine disrupting chemicals (EDCs), which alter the normal
functioning of the endocrine system leading to impaired
reproduction mechanisms such as infertility or intersex
(Ujhegyi and Bokony 2020). EDCs have been found in
amphibian breeding sites in agricultural landscapes. Békony
et al. (2018) detected 41 EDCs across amphibian ponds in
the agricultural landscape of Hungary. Miiller and Zithier
(2015) performed a monitoring of ten pesticides in small
water bodies used by amphibians in agricultural landscapes
in North Germany and detected amongst others the potential
EDCs metazachlor and propiconazole. However, in general
little information on pesticide contamination is available on
water bodies used by amphibians for spawning and larval
development, as most studies investigate pollution of
groundwaters, river systems and lakes (Lorenz et al. 2017),
neglecting small, shallow water bodies that are especially
important for amphibians (Wells 2007).

Studies on direct reproduction effects of pesticides on
amphibians are considerably rare. One of the few well-
studied pesticides with endocrine disruptive properties is the
insecticide atrazine that shows severe effects on the repro-
duction of amphibians. Larvae of African clawed frogs
(Xenopus laevis) showed a decreased gonadal volume and
germ cells (Tavera-Mendoza et al. 2002a, b) as well as a
trend to hermaphroditism (Hayes et al. 2002b) after expo-
sure to atrazine. Further, atrazine induced feminization of
male leopard frogs (Lithobates pipiens) in nature (Hayes
et al. 2002a). Pesticide mixtures containing atrazine also
indirectly inhibit reproductive functioning, e.g., by
increasing stress hormone levels like corticosterone in adult
X. laevis (Hayes et al. 2006). This may lead to further
impacts including inhibition of sex hormones (Burmeister
et al. 2001) and the alteration of reproductive development,
breeding behavior and fertility (Moore 1983). Other current-
use pesticides with endocrine disruptive properties are for
example dicarboxamides like the viticultural fungicide
vinclozolin (Kortekamp et al. 2011). This fungicide has
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been shown to contribute to shifted sex ratios, an inhibited
maturation and reduced fecundity as well as fertility in fish
(Lor et al. 2015). Although a few studies have explored
endocrine disrupting effects of viticultural azole fungicides
like tebuconazole and penconazole (e.g., Lv et al. 2017,
Poulsen et al. 2015), they are not yet considered as EDCs by
the Pesticide Properties DataBase (PPBD, Agriculture and
Environment Research Unit of the University of Hertford-
shire 2013) and the PAN International List of Highly
Hazardous Pesticides (PAN List of HHPs; Pesticide Action
Network International 2019). Further pesticides may have
similar effects, however, the database on endocrine dis-
ruptive properties is too small to allow for concrete
conclusions.

Especially field data on sublethal reproduction endpoints
are scarce because mainly laboratory studies are used to
investigate effects of pesticides on reproduction. Thereby,
the most investigated endpoint in field studies analyzing
effects on reproduction is the incidence of intersex, in which
individual’s gonads contain both female and male tissue
(Ujhegyi and Bokony 2020). However, also other endpoints
like the number of laid eggs, fertilization rates or the
development success of early larvae can be used to evaluate
effects of pesticides on the reproductive capacity. Békony
et al. (2018) investigated the effects of EDCs on common
toads (Bufo bufo) in agricultural and urbanized ponds in
Hungary and observed reduced developmental rates and
lower body mass of the offspring compared to natural ponds.

Investigations on pesticide effects on the reproduction of
amphibians in viticultural landscapes do not exist so far,
although viticulture is one of the most pesticide-intensive
cultures in Central Europe. On average 9.5 pesticide
applications with a mixture of on average 1.6 formulations
per application are performed during March and August in
vineyards (RoBberg 2009). Because of the combined
aquatic and terrestrial exposure of amphibians to viticultural
pesticides, long-term adverse effects on reproduction are
likely. To address this lack of knowledge, we investigated
the reproductive capacity of common toads (Bufo bufo,
LINNAEUS 1758) in the viticultural landscape of Palatinate
in Southwest Germany along a pesticide gradient. We
hypothesized that an increased chronic pesticide exposure
affects fecundity, fertilization rate as well as offspring sur-
vival and size. Common toads were used since it is the most
common amphibian species in Central Europe (Sillero et al.
2014) and it occupies a broad range of habitat types
including agricultural landscapes like vineyards (Leeb et al.
2020b; Lenhardt et al. 2013). They are not yet considered
endangered on an international as well as national level
(Agasyan et al. 2009; Kiihnel et al. 2009). However,
population declines have been observed on a local level
(e.g., Beebee and Griffiths 2005; Bonardi et al. 2011; Kyek
et al. 2017; Petrovan and Schmidt 2016).
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Material and methods
Study sites and exposure assessment

In spring 2019, we studied common toad populations from
five ponds (pond A-E, Table 1, Fig. 1) around Landau, one
of the largest winegrowing areas in Southwest Germany.
These ponds were expected to represent a gradient of pes-
ticide contamination due to their varying agricultural sur-
rounding. For validation of the pesticide gradient, five water
samples were collected of each pond between April and
May 2018 and analyzed for 47 different fungicides, six
insecticides, three herbicides, and two acaricides (Table S1)
by the Institute of Phytomedicine of the Dienstleis-
tungszentrum Lindlicher Raum Rheinpfalz in Neustadt/
Weinstrale, Germany. The selection of analyzed pesticides

Table 1 Locations of study ponds, contamination level (sum of toxic
units, STU, see Eq. 2), number of captured toad pairs and number of
toad pairs that spawned

Pond Coordinates (WGS84) STU Number of toad pairs
Captured Spawned

A 49.25475, 7.96182 —4.48 12 11

B 49.23830, 7.99002 —3.48 13 11

C 49.20329, 8.20917 -3.09 15 13

D 49.21830, 8.04944 -2.25 14 14

E 49.18898, 8.03709 -1.75 8 5

Pond letters indicate increasing STU. Since no pesticides were
detected in pond A, its STU was calculated based on the use of 1/10
of the minimum TU observed in the sites with detected concentrations
(for rationale s. Schifer et al. 2011)

was based on spraying recommendations for vine from local
authorities (www.dlr.rlp.de).

The pond pesticide toxicity was assessed using Toxic
Units for each detected pesticide (Eq. 1, with C; = detected
concentration of pesticide i and LC50; =median lethal
concentration causing 50% mortality of test organisms).

— Ci
- LCS0;°

(1)

As LC50 values for amphibians are often lacking, data of
acute fish toxicity studies compiled from the PPDB (Agri-
culture and Environment Research Unit of the University of
Hertfordshire 2013) were used as proxy for amphibians
(Weltje et al. 2013). The sum of TU (STU, Eq. 2, with n =
number of detected pesticides) was calculated to aggregate
the toxicity of the detected pesticides (Table 1, Schifer et al.
2011) by using the maximum detected sum of TU of each
study pond. To allow the comparison to sites without any
detected pesticides, uncontaminated ponds were assigned to
a TU of 1/10 of the minimum TU observed in the con-
taminated sites (Fernandez et al. 2015), leading to a STU of
—4.48 for pond A.

STU = log maXZTU

i=1

(2)

The detected pesticides were checked for endocrine
disruptive properties using toxicity data from the PPDB
(Agriculture and Environment Research Unit of the Uni-
versity of Hertfordshire 2013) and the PAN List of HHPs
(Pesticide Action Network International 2019). Moreover,
acute and chronic regulatory acceptable concentrations
(RACs) were calculated based on fish toxicity values from

Fig. 1 Map of study ponds in P
Palatinate in Southwest
Germany. Increasing letters and
colors of study sites represent
the pesticide contamination from A B
no contamination (dark-green, () GER
Pond A) to high contamination B s
(red, Pond E). Source: Basemap: :
DI M50 —CCoeBusic DEI P Palatinate forest D - °
LVermGeoRP2020, dI-de/by-2- L/ c [ o AUT
0, www.lvermgeo.rlp.de Landau ©) CHE".
[modified data] .E ——
Agriculture
| } Settlement
- Forest
j Vineyard
Others
—— N 4,479 1,752 Street
[ 2 4 8 12 16 (7: Pond
Sum TU ]

@ Springer


http://www.dlr.rlp.de
http://www.lvermgeo.rlp.de

216

E. Adams et al.

the PPDB (LC50 and NOEC = No observed effect con-
centration, Egs. 3, 4, Table S2). As uncertainty factors, 100
was used for the acute and 10 for the chronic RAC as
recommended for aquatic organisms by EFSA (2013). The
RACs were compared to the detected concentrations to
estimate the acute and chronic aquatic toxicity of the ponds.

LC50
RACuue = —. 3
" 100 (3)

NOE
RAC jyonic = % (4)

Moreover, the landscape composition around the study
ponds was analyzed. Based on a vector landscape model of
Rhineland-Palatinate (ATKIS DLMS50), the percentages of
vineyards, other agriculture, meadows, settlements, and
forests were calculated. A radius of three kilometer was
chosen to analyze the landscape composition because this
distance reflects the annual migrations between hibernation
as well as summer habitats and breeding ponds for B. bufo
(Giinther 2009). To estimate the terrestrial exposure, data of
viticultural and other agricultural area was used.

Reproductive capacity analysis

We aimed to capture ten or more reproductively active adult
common toad pairs during their spawning season between 9
and 28 March 2019 from each pond. After capturing, each
pair was housed in a net cage (80x65x60cm) in the
respective breeding pond containing a wire hanger as
spawning substrate. Due to the short spawning season of B.
bufo and the fact that not all pairs spawned, it was not pos-
sible to investigate ten spawning pairs of each pond (Table 1).
Finally, we captured 62 toad pairs from which eight pairs did
not spawn, 45 pairs spawned within 7 days and nine pairs
within 15 days after catchment. One day after spawning, the
body mass of each toad was measured (+0.1g) and the
individuals were released in their ponds. It can be assumed
that females laid all eggs at once because the spawning pro-
cess is usually finished after 6 to 12 h (Giinther 2009) and the
pairs terminated the amplexus after oviposition.

As measures of each population’s reproductive capacity,
we analyzed the fecundity, fertilization rate, offspring survival
until the free-swimming Gosner Stage 25 (GS; Gosner 1960)
and offspring size (tadpole length) at GS25. To determine the
fecundity, the number of laid eggs per female was counted.
Because fecundity is known to increase with female size
(Banks and Beebee 1986; Reading 1986), we calculated
the ratio of the amount of laid eggs and the body mass of the
females after spawning (eggs/g body mass). To estimate the
fertilization rate and offspring survival, approximately 90
eggs of each clutch were removed from three randomly
chosen parts of the egg string and kept individually in clear
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plastic aquariums (22.5 % 16.5 x 7 cm, Braplast, Bergheim,
Germany) filled with 1L FETAX medium (Dawson and
Bantle 1987). To prevent any injuries of eggs, the handling of
the spawning strings was kept to a minimum. Thus, the
number of eggs was not identical for each sample. Because
mold grew on the first three egg strings collected from pond
C, three samples of pond C could not be used to analyze the
fertilization rate and offspring survival. To prevent mold from
growing on further eggs, eggs of one egg string were sepa-
rated but still incubated together in one aquarium. The eggs
were reared in a climate chamber at 21 +1°C and a 16:8h
day:night light cycle until they reached GS25. The individuals
were photographed daily. Three days after spawning, non-
fertilized eggs that exhibited mold growing on them or did not
show embryonic development were removed. Developing
eggs were counted using Image J (Schneider et al. 2012) to
calculate the fertilization rate. Fertilized eggs from one egg
string hatched within a time difference of maximum 24 h. As
soon as all tadpoles reached GS25 (9-10 days), the proportion
of embryos that survived to this stage was counted to estimate
the offspring survival. Moreover, the lengths of twelve ran-
domly selected tadpoles of each sample were determined to
estimate the offspring’s sizes. After recording the needed data,
the tadpoles were released in their origin pond.

Statistical analyses

Statistical analyses were performed using R (version 3.5.2;
R Core Team 2013). To determine the correlation of the
aquatic and terrestrial exposure, a Pearson’s correlation was
performed. Kendall-Theil Sen Siegel non-parametric
regressions (Sen 1968; Siegel 1982; Theil 1950) were per-
formed to check whether the investigated endpoints depend
on the pesticide contamination of ponds (STU). Moreover,
Spearman’s rank correlations between the investigated
endpoints and the STU of ponds were computed (Spear-
man’s rank correlation coefficient p, Hollander et al. 1973).

To check the assumption that fecundity is increased by
female size, a Spearman’s rank correlation was performed for
the female body mass and the number of laid eggs. Moreover,
Spearman’s rank correlations were performed to investigate
the relationship between the pesticide contamination (STU)
and the female body mass, the number of laid eggs and the
tadpole length in GS25, parental body masses and the fertili-
zation rate as well as the number of laid eggs per female and
the fertilization rate. To investigate a measure of population
fitness, the product of the four investigated reproductive end-
points was calculated and a one-way analysis of variance
(ANOVA) was performed to identify differences between the
investigated ponds. Tukey’s method was used to identify and
remove outliers ranged above and below the 1.5xIQR
(Kannan Senthamarai et al. 2015). For all statistical tests, the
criterion for significance was set to a = 0.05.
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Results
Exposure assessment

The pesticide residue analysis revealed 22 different pesti-
cides in total and 0-19 different pesticides per pond with a
STU between —4.48 and —1.75 (Tables 1, S2) meaning no
aquatic toxicity at a STU of —4.48 and high toxicity at a
STU of —1.75. Toxicity data extracted from the PPDB and
the PAN List of HHPs for the detected pesticides did not
show any endocrine disruptive properties or the data base
was insufficient to make a statement about endocrine dis-
ruptive properties. However, azole fungicides which were
shown to be potential EDCs (Kortekamp et al. 2011; Lv
et al. 2017; Poulsen et al. 2015) were detected in the ponds.
Penconazole was detected in ponds B, D and E
(0.02-0.18 pg/L), tebuconazole in ponds C, D and E
(0.05-0.08 pg/L) and difenconazole in pond C (0.02 ug/L).

The comparison of detected concentrations to RACs
revealed a conspicuous toxicity of the chronic exposure to
the fungicides folpet and famoxadone and the acute expo-
sure to famoxadone in pond E (Table S2). The chronic RAC
of folpet was 5.6 times lower than the detected concentra-
tion in sampling 2 (4.53 pg/L), the chronic RAC of
famoxadone was 1.1 times lower and the acute RAC of
famoxadone was 1.4 times lower than the detected con-
centration in sampling 5 (0.15pg/L), resulting in an
increased hazard of adverse effects.

The landscape composition analysis showed an increas-
ing agricultural land-use from pond A to pond E in a three-
kilometer radius around the study ponds ranging from 0O to
60% (Table 2). The Pearson correlation revealed a statisti-
cally significant correlation between the STU and the
agricultural land-use (p =0.02, Pearson’s r = 0.94, df = 3).

Reproductive capacity

Neither the female body mass (52.0+14.1 g), the male
body mass (33.46 £ 6.7 g), nor the number of laid eggs per
female (3243 +1538) affected the fertilization rate (p =
—0.24, p=0.10, p=-0.09, p=0.56 and p=—-24, p=
0.10). The female body mass was positively correlated with
the number of laid eggs (p =0.62, p <0.001) and the STU
(p =0.38, p<0.01). Moreover, the offspring size (tadpole
length in GS25) was negatively correlated with the number
of laid eggs per female (p = —0.32, p =0.03).
Kendall-Theil Sen Siegel regressions revealed a sig-
nificant influence of the STU on all investigated endpoints
(p <0.001, Table S3). The mean fecundity differed from 49
to 74 eggs/g body mass and showed a positive correlation
with increasing STU (p =0.54, p<0.001, Fig. 2A, Table
S4). The fertilization rate, offspring survival and tadpole
lengths showed mean decreases of 4.5%, 32.6% and 10.7%

with increasing STU (Fig. 2A-D, Table S4). Negative
correlations between the STU and the fertilization rate (p =
—0.32, p=0.03, Fig. 2B), the offspring survival (p=
—0.57, p<0.001, Fig. 2C) as well as the offspring size (p =
—0.49, p<0.001, Fig. 2D) were observed. The performed
ANOVA did not reveal any differences for population fit-
ness between the study ponds (p >0.05).

Discussion
Exposure assessment

Since pesticide contamination of ponds are often reported to
correlate with the surrounding agricultural land-use (Baker
2006), it was assumed that the detected pesticide gradient
also represents the exposure during the pre- and post-
breeding migration of the terrestrial amphibian stages. The
determined correlation of aquatic exposure and land-use
confirms this hypothesis.

No general statement can be drawn about the endocrine
disruptive potential of the detected pesticides because fur-
ther research is needed on their potential to act as EDCs.
The well-studied endocrine disrupting herbicide atrazine
was not detected in any of the study ponds probably
because it is prohibited in Germany since 1991. However,
since potentially endocrine disruptive pesticides like the
azole fungicides penconazole, tebuconazole and difenco-
nazole were detected, similar endocrine effects are likely.
Furthermore, the ponds were only analyzed for active
ingredients of pesticides. A statement about the toxicity of
product additives, which can have a high acute toxicity,
endocrine disruptive or reproductive toxic properties
themselves or as metabolite (Mesnage and Antoniou 2017;
Mullin et al. 2016), cannot be made.

The comparison of detected concentrations to chronic
RAC: of folpet and famoxadone in pond E reveals a high
toxicity for aquatic vertebrates. Next to possible adverse
effects because of single pesticides, mixture effects in
ponds with up to 19 detected pesticides may contribute to
higher toxicities (Relyea 2009). Moreover, it cannot be
excluded that even higher concentrations and further
pesticides were present in the ponds due to the limited
number of water samplings (n =5) and analyzed pesti-
cides (n = 58 target molecules). Since only one rain event
sampling was performed in the present study, peak pes-
ticide concentrations may be underestimated (Neumann
et al. 2003). Especially folpet and famoxadone may be
present at higher concentrations than detected because
they have very short dissipation times in water (DT50
folpet =0.02 d, DT50 famoxadone =0.1 d, Agriculture
and Environment Research Unit of the University of
Hertfordshire 2013).

@ Springer



218

E. Adams et al.

Table 2 Landscape composition

in a radius of 3000 m around the Pond Viticulture [%] Other agriculture [%] Meadow [%] Settlement [%] Forest [%] Other [%]
study ponds based on a vector A 0.0 0.0 51 13 92.9 0.6
landscape model of Rhineland- ’ ’ ’ ' ) '
Palatinate (ATKIS DLM50) B 0.1 L1 19.2 5.6 72.1 L9

C 0.3 314 19.6 15.5 28.5 4.8

D 47.5 1.1 7.9 11.6 29.8 2.2

E 57.0 3.1 6.1 10.1 22.5 1.3
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Fig. 2 Dependence of fecundity (A), fertilization rate (B), offspring
survival until Gosner stage 25 (C) and offspring size in Gosner stage
25 (D) on the pesticide contamination of breeding ponds (maximum

Reproductive capacity

Toads of the highest contaminated pond E showed on
average a 1.5 times higher fecundity than toads of the
uncontaminated pond A. In comparison to the present study,
Bdkony et al. (2018) did not observe any effect on the
fecundity of common toads in agricultural ponds compared
to natural ponds. Because the female body mass correlated
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sum of toxic units, STU). Fecundity was corrected for the body mass
of the females after spawning (eggs/g body mass). For each pond, the
means and standard deviations are presented (Table S4)

with the number of eggs and both of them correlated with
STU, the increased fecundity may be based on the higher
female body masses in the contaminated ponds. Guillot
et al. (2016) also observed larger and heavier common toads
in French agricultural habitats compared to uncontaminated
forest habitats. The increased body sizes might either sug-
gest a potential adjustment during aging or some habitat
specificities in the agricultural landscape may enhance body
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size. For example, smaller population densities in agri-
cultural landscapes might decrease intra- and/or inter-
specific competition leading to larger individuals (Bishop
et al. 1999; Guillot et al. 2016; Janin et al. 2011). However,
there are multiple reasons that may affect adult body size
without an agricultural context such as climate, habitat
geography, size at metamorphosis, and availability of food
resources.

The fertilization rate was negatively affected with
increasing pesticide contamination of the ponds, suggesting
that the higher exposed populations suffer from long-term
reproductive impairments. There are several reasons that
may have led to the observed decreased fertilization rate.
Due to the increased number of eggs per female, the male
fertilization success may be reduced. But also behavioral
impairments during mating could lead to decreased fertili-
zation rates. Hayes et al. (2010a) observed a reduced suc-
cess of amplexus in male X. laevis exposed to atrazine and
thus a lower proportion of fertilized eggs for atrazine
exposed males. Also endocrine disruptive properties of
pesticides may have led to this decrease for example due to
impaired spermatogenesis which already has been reported
after the exposure of frogs to the herbicide atrazine. Hayes
et al. (2010a) observed a decreased frequency of testicular
tubules with mature spermatozoa in X. laevis. In X. laevis
tadpoles a reduction in testicular volume during sexual
differentiation of the testis was observed (Tavera-Mendoza
et al. 2002b). Another reason may be an effect on female
sexual development. In-vitro assays with eleven pesticides
of Orton et al. (2009) revealed altered ovarian ster-
oidogenesis and reduced progesterone production. Pickford
and Morris (2003) investigated the effects of the insecticide
methoxychlor on female X. laevis and detected an inhibition
of oviposition and maturation of oocytes. Moreover, the
exposure to atrazine caused a reduction in the number of
germ cells in the ovary and an increase of damaged oocytes
(Tavera-Mendoza et al. 2002b). The larval exposure of X.
laevis to atrazine induced a reduction of testosterone levels
in males (Hayes et al. 2010a) leading to a decrease of male
reproductive success (Moore and Hopkins 2009).

Decreasing survival rates and tadpole sizes were
observed with increasing pesticide contamination. Békony
et al. (2018) also observed reduced body masses of common
toad larvae and juveniles in agricultural landscapes in
comparison to natural landscapes. Clearly, decreased sur-
vival of the tadpoles directly leads to population declines.
The reduced tadpole lengths could lead to further impair-
ments since body size is a critical determinant of individual
fitness (Wells 2007). Smaller tadpoles sizes lead to reduced
sizes at metamorphosis and thus to a decreased survivorship
of the first hibernation (Uveges et al. 2016) and until
maturity as well as delayed achievement of reproductive
size (Smith 1987). Reduced body size is also a disadvantage

as adult for reproduction because it affects female fecundity
and male mating success (Banks and Beebee 1986; Davies
and Halliday 1979; Reading et al. 1991).

On the one hand, reduced offspring size may be a long-
term consequence of chronic pesticide pollution over
several generations. Transgenerational effects were
observed in rats after the exposure to EDCs as Anway
et al. (2005) detected a decreased spermatogenic capacity
in cell number and viability as well as an increase of male
infertility in four tested generations. Thus, early-life
exposure of parents can lead to impaired offspring via-
bility. To verify the proposed reasons of reproduction
impairments regarding endocrine disruptive effects, tissue
analyses of e. g. thyroids and gonads would be needed.
However, the present study was designed and completed
without any lethal interferences and tissue withdrawals of
the amphibian populations.

On the other hand, the reduced offspring size origi-
nating from highly contaminated ponds may be a cost of
an evolutionary adaptive resistance (Whitehead et al.
2012) or of detoxification processes of contaminants (Rix
et al. 2016). Similar effects have been observed for urban
fish populations which evolved tolerance to toxic pollu-
tants (Meyer and Di Giulio 2003; Whitehead et al. 2012).
However, their offspring showed reduced growth rates
and were more susceptible to other stressors compared
with the offspring from a non-contaminated site (Meyer
and Di Giulio 2003). Similar trade-offs may be respon-
sible for the smaller tadpoles of the more contaminated
ponds. Adult toads of these ponds may invest more
resources into the production of egg jelly coat material to
provide a better protection against pesticides. These
resources may have in turn not be invested into larger ova
(Podolsky 2004) which may have led to smaller tadpoles
such as determined by Kaplan (1980). The higher egg
production in contaminated ponds may be discussed as an
adaptation to increase fitness by counterbalancing nega-
tive pesticide effects on embryo and tadpole development
by an increased egg number.

Although amphibians are especially affected by pesti-
cides due to their biphasic lifecycle, they are not yet
considered in the environmental risk assessment of pes-
ticides in the EU (Ockleford et al. 2018). Our data support
the suggestion of inhibitory effects of current-use pesti-
cides on the reproductive capacity of amphibians, poten-
tially contributing to population declines. Thus, not only
acute effects should be investigated in ecotoxicological
amphibian studies but also sublethal effects on repro-
duction on a population level. Since data involving field
scenarios analyzing the effects of multiple pesticides on
amphibian reproduction are considerably rare, our results
are of significant importance for amphibian conservation
in agricultural landscapes.
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