
1. Introduction
Geoelectrical methods, such as electrical resistivity tomography (ERT) and electromagnetic methods, measure 
the electrical conductivity of the subsurface at depths of investigation ranging from a few dm to several 100 m. 
The spectral induced polarization (SIP) method measures the frequency-dependent complex electrical conduc-
tivity σ* of rocks as a function of frequency, typically in the mHz to kHz range. Schlumberger (1920) discovered 
an induced polarization (IP) effect during the time domain geoelectrical field experiments, giving the method its 
name. This method makes use of a capacitive effect, indicated by a slow voltage decay after the current is turned 
off. The voltage decay measured in the time domain corresponds to a phase shift between current and potential 
in the frequency domain.

As in conventional resistivity measurements, a typical configuration for measuring the complex electrical 
conductivity involves four electrodes. Two electrodes inject an AC current into the ground and the electrical 
potential is measured between the two other electrodes (Figure 1). The current electrodes inject an AC current 
I* = |I|exp(j(ωt + ϕI)) with an angular frequency ω = 2πf, where 𝐴𝐴 𝐴𝐴 =

√

−1 , t is time, and ϕI is the current phase. 

Abstract Spectral induced polarization (SIP) laboratory measurements on water-saturated rocks show 
a strong correlation between the electrical polarization strength and the inner surface area of rocks. We 
investigate the influence of inner surface roughness on the SIP response by simulating the frequency-dependent 
complex conductivity of micro-scale rock models. Starting with smooth grain models, we introduce surface 
roughness using two different approaches: increasing the surface roughness in a fractal-like manner, and 
creating random surface structures, resulting in more natural-looking surfaces. We find that surface roughness 
has two distinct effects on the SIP response: (a) a shift in the position and magnitude of the primary relaxation 
frequency to lower frequencies and lower magnitudes, respectively, and (b) the formation of secondary 
polarizations above the polarization frequency of the primary polarization. We also compare the relaxation time 
and normalized chargeability obtained by Debye decomposition and the imaginary conductivity at 1 Hz of our 
models with mechanistic models and empirical relations. We point out the congruences and offer explanations 
for the discrepancies between our models and the empirical observations. We conclude that the results of our 
study are applicable to real rocks and that the SIP method has the potential to detect inner surface roughness. 
However, the SIP method it not able to discriminate between signals from rough particles and a distribution of 
smooth particles.

Plain Language Summary The spectral induced polarization method measures the electrical 
conductivity of the subsurface at depths of investigation ranging from a few dm to several 100 m. The potential 
of the method to detect mineral resources, contamination, microbial activity, etc. makes it a promising tool for 
today's environmental challenges. However, due to the complexity of the underlying physical and chemical 
processes the interpretation of SIP measurements often remains qualitative. Mathematical and mechanistic 
models used to describe the processes are usually simplified with respect to geometry, chemistry, and physical 
properties. In this study, we use computer simulations to investigate the surfaces of spherical particles (grains). 
After simulating the SIP response of models with smooth and rough surfaces, we analyze the influence of 
surface roughness on the SIP response. We find that surface roughness causes distinct changes in the SIP 
response compared to the smooth grain. However, we also find that this introduces an ambiguity in the 
interpretation of SIP data.
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Simultaneously, we measure the amplitude |U| and the phase ϕU of the elec-
tric potential between the two other electrodes:

𝑈𝑈 ∗
= |𝑈𝑈 |exp(𝑗𝑗(𝜔𝜔𝜔𝜔 + 𝜙𝜙𝑈𝑈 )) (1)

In SIP we repeat this measurement over a range of frequencies, usually 
between 10 −3–10 5 Hz in the laboratory and 10 −2–10 2 Hz in the field. We can 
then calculate the frequency-dependent electrical impedance of the sample at 
each sampled frequency with

𝑍𝑍∗
(𝜔𝜔) =

|𝑈𝑈 |

|𝐼𝐼|
exp(𝑗𝑗(𝜙𝜙𝑈𝑈 − 𝜙𝜙𝐼𝐼 )) (2)

From the complex electrical impedance, we can calculate the complex elec-
trical resistivity using the geometric factor K as for DC measurements:

𝜌𝜌∗(𝜔𝜔) = 𝑍𝑍∗
(𝜔𝜔) ⋅𝐾𝐾 (3)

Electrical resistivity 𝐴𝐴 𝐴𝐴 and electrical conductivity 𝐴𝐴 𝐴𝐴 are related by 
𝐴𝐴 𝐴𝐴 = 1∕𝜎𝜎 . Typically, instead of working with the amplitude and phase of 

the complex conductivity we would use the real conductivity 𝐴𝐴 𝐴𝐴′ and the 
imaginary conductivity 𝐴𝐴 𝐴𝐴′′ of the complex valued electrical conductivity 

𝐴𝐴 𝐴𝐴∗
(𝜔𝜔) = 𝐴𝐴

′
(𝜔𝜔) + 𝑗𝑗𝐴𝐴′′

(𝜔𝜔) . More information about IP measurements in time 
and frequency domain can be found, for example, in Telford et al. (1990).

Since the electrical conductivity of porous rocks (without conductive constit-
uents) depends on many parameters (Archie,  1942), the interpretation of 
the electrical conductivity mostly remains qualitative and ambiguous. The 
additional information obtained from complex conductivity measurements 
make the SIP method promising for reducing the ambiguity of the interpre-
tation. So far, scientists and engineers have mainly exploited the sensitiv-
ity of the imaginary part of the conductivity to the properties of the inner 
surface, the interface between the solid rock matrix and the pore filling fluid. 
For example, the SIP method was applied for hydrogeophysical (e.g., Hördt 
et  al.,  2009; Weller & Börner,  1996) and biogeophysical problems (e.g., 

Atekwana & Slater, 2009; Flores Orozco et al., 2011; Mellage et al., 2018). For the hydrogeological interpretation 
of SIP measurements, the hydraulic permeability is estimated using its correlation to inner surface area, which in 
turn depends on σ″. In biogeophysical applications, bacterial or microorganism growth happening on the inner 
surface has an impact on electrochemical properties and, thus, on the SIP response (Strobel et al., 2023).

The interpretation of SIP measurements often remains qualitative too, for example, because the electrochemical 
properties of the inner surface, usually unknown in geophysical field measurements, influence the imaginary 
conductivity (e.g., Revil & Skold, 2011, Weller & Breede, 2006). The quantitative interpretation of SIP measure-
ments requires additional information that can potentially be obtained by exploiting the frequency dependence 
of the conductivity. However, the latter is still not fully understood and is a focus of ongoing research. Although 
there are mechanistic models describing the frequency dependence for several polarization mechanisms (e.g., 
Blaschek & Hördt, 2009; Leroy & Revil, 2009), semi-empirical relations (Cole & Cole, 1941; Pelton et al., 1978) 
are often used to characterize the frequency dependence.

Full exploitation of the SIP method requires universal relationships that take into account the pore space geom-
etries and the electrochemical properties of the fluid-mineral interface. In addition, geophysicists must account 
for all polarization mechanisms that contribute to the frequency dependence. In total, there are five microscopic 
mechanisms that lead to rock polarization in the mHz to MHz frequency range.

1.  electrical double layer (EDL) polarization, for example, Revil and Florsch (2010);
2.  Membrane polarization, for example, Marshall and Madden (1959);
3.  interfacial (Maxwell-Wagner) polarization, for example, Sen et al. (1981), Chen and Or (2006);
4.  electrode polarization, only in the presence of conductive minerals, for example, Wong (1979); and

Figure 1. (a) Schematic of the field measurement and (b) the readouts of 
the injected AC current and measured electric potential in the time domain. 
Repeating this measurement over a range of frequencies and plotting the 
amplitude and phase at each frequency gives (c) the frequency-dependent 
response.



Journal of Geophysical Research: Solid Earth

ZIBULSKI AND KLITZSCH

10.1029/2022JB025548

3 of 19

5.  high-frequency polarization mechanisms such as water dipole orientation, for example, Kremer and 
Schönhals (2003).

In this paper, we neglect electrode polarization (4) because we only consider non-conducting minerals. Polarization 
mechanisms (1) and (2), both caused by the EDL, dominate in the low frequency range. For the EDL polarization 
(1) grain-based models have been proposed, for example, by O'Konski (1960), Schwarz (1962), and Schurr (1964). 
Membrane polarization (2) is a pore-based model that describes polarization as a response to charge separation in the 
pore space. Both approaches have been refined over the years (Bücker & Hördt, 2013a, 2013b; Titov et al., 2002). With 
increasing frequency, interfacial polarization (3) and high-frequency polarization mechanisms (5) become increas-
ingly important, that is, the four polarization mechanisms operate in overlapping frequency ranges (Revil, 2013).

In this study we focus on the polarization mechanism (1). The corresponding models provide information on 
chargeability m, the normalized difference between high- and low-frequency conductivities, and a distribution 
of relaxation times for the potential decay, which is associated with a distribution of polarization length scales. 
These length scales are related to the grain size or characteristic pore size (Revil et al., 2012). However, these rela-
tionships are based on simplified assumptions about the microstructure and processes at the solid-water interface. 
Typically, we consider ideal geometric shapes (e.g., spheres, cylinders) with smooth surfaces. Expectedly, such 
simplified models have their shortcomings for the analysis of SIP data of rocks with a complex internal structure, 
that is, they often fail to describe the SIP response of rocks.

In addition to mechanistic models, micro-scale numerical simulations can be used to study the SIP response of 
micro-scale rock models by numerically solving the Nernst-Planck-Poisson (NPP) equations (e.g., Blaschek & 
Hördt, 2009; Volkmann & Klitzsch, 2010). The NPP equations are a set of coupled partial differential equations 
describing ion migration and diffusion processes in the electrolyte and along internal interfaces. Micro-scale 
simulations therefore provide a powerful tool to study structural (e.g., pore space geometry, surface roughness) 
and electrochemical parameters (e.g., ion mobility, ion charge) that influence the SIP response.

Recently, Bücker et  al.  (2019) created a numerical model using COMSOL Multiphysics®, a general-purpose 
finite element simulation software. Bücker et al.  (2019) provide two models, a spherical grain used to model 
the polarization of the EDL and a pore-constriction geometry commonly used to model membrane polarization. 
Both models, the grain and the pore space have perfectly smooth surfaces represented by spheres and a sequence 
of cylinders of different diameters, respectively. They validated their numerical results with analytical models 
(Dukhin et al., 1974; Lesmes & Morgan, 2001; Lyklema et al., 1983). We use their models for EDL polarization 
around grains and membrane polarization as the basis for our study of the influence of rough surfaces on the SIP 
response. Our motivation stems from empirical results (Weller et al., 2010) showing a strong correlation between 
Spor and parameters of rock polarization, for example, chargeability m, relaxation time τ, and σ″. With the introduc-
tion of surface roughness, we alter Spor, and expect therefore changes in the SIP response. Laboratory SIP meas-
urements, for example, on silica beads by Leroy et al. (2008) support this hypothesis. They compared two sets 
of bead packs with the same bead size, but one set of beads had been treated with an acid to increase the surface 
roughness. They found an increase of the phase shift and amplitude at higher frequencies (secondary peak) for the 
rough compared to the smooth beads, which they attributed to the increased surface roughness. In our numerical 
study, we aim to investigate the influence of surface roughness on the polarization of the EDL around particles.

We have chosen two different approaches to create rough surfaces. First, we add self-similar objects to the surface 
in a fractal-like fashion. This gives us direct control over structural changes. The second approach is to create a 
randomly generated surface, which we believe is a suitable method to simulate realistic surface roughness. After 
simulating the SIP response of models with smooth and rough surfaces, we analyze the influence of surface 
roughness on the magnitude and frequency dependence of the polarization.

2. Governing Equations
In this section, we present the fundamental theories of the electrical double layer (EDL) and its mathematical 
description, which we use as the governing equations in our study. First, we describe the EDL at the solid-water 
interface, which primarily drives the two main polarization processes of non-conducting solid particles in the low 
frequency range. Then, we introduce the Nernst-Planck-Poisson (NPP) model, which serves as a mathematical 
characterization of the EDL by considering the coupled ion migration and diffusion processes within an electro-
lyte and their relation to an electric potential field. We also present the equations derived from the NPP equation 
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that are used in COMSOL Multiphysics® to study the SIP response of rock 
models. We conclude this section with a brief description of the methods 
used to calculate conductivity spectra from the simulation results and their 
quantitative analysis.

2.1. Electrical Double Layer

In contact with an electrolyte, most rock minerals exhibit a surface charge 
due to chemical reactions at the electrolyte-mineral interface. The surface 
charge varies with the pH of the electrolyte and the chemical composition 
of the mineral phase. We consider silica surfaces in contact with a mono-
valent electrolyte such as NaCl, where deprotonation of silanol surface sites 
produces a negative surface charge density Σ over a wide pH range (e.g., 
Revil & Glover,  1998). Due to Coulomb forces, ions of opposite charge 
(counterions) are attracted, and ions of the same charge (co-ions) are repelled. 
As a result, two layers are formed in the electrolyte adjacent to the silica 
surface: a monolayer of counterions adsorbed to the silica surface by chem-
ical interaction, known as the Stern layer. And a second layer, the diffuse or 
Gouy-Chapman layer, populated mainly by counterions and a small fraction 
of co-ions, both following Poisson-Boltzmann statistics (Figure 2).

We adopt a model where the Stern layer is assumed to be an infinitely thin 
layer of counterions. Within the Stern layer, we assume that counterions can 
only move tangentially to the surface and partially shield the negative surface 
charge density −Σ by a contribution of the uniform surface charge density 𝐴𝐴 Σ

(0)

𝑆𝑆
 

(the superscript (0) denotes quantities in the equilibrium state, that is, without 
external excitation). In the adjacent diffuse layer, the electrolyte has an excess 
of counterions due to the remaining attractive forces of the partially shielded 
surface charge. Within the diffuse layer, ions can move freely without restric-

tion. With d as the distance to the particle surface, the total positive charge density within the diffuse layer ρ(d), 
after an integration over the diffuse layer thickness, gives the equivalent surface charge density 𝐴𝐴 Σ

(0)

𝑑𝑑
. Together, the 

Stern and diffuse layers describe the EDL. With increasing distance from the surface, counterions compensate for 
the negative surface charge 𝐴𝐴 − Σ = Σ

(0)

𝑆𝑆
+ Σ

(0)

𝑑𝑑
 , and the electrostatic potential eventually dissipates to zero.

At a characteristic distance from the surface, the electrostatic potential dissipates to 1/e (Euler's number), to 
approximately 1/3, of the initial potential at the solid liquid interface. This characteristic distance is expressed by 
the Debye length λD:

𝜆𝜆𝐷𝐷 =

√

𝜀𝜀0𝜀𝜀𝑎𝑎𝑘𝑘𝐵𝐵𝑇𝑇

2𝑁𝑁𝐴𝐴𝑒𝑒2𝐼𝐼
 (4)

with ε0  =  8.85  ×  10 −12 F/m as vacuum permittivity, and εa as the relative permittivity of the electrolyte, 
kB = 1.381 × 10 −23 J/K as Boltzmann constant, T as absolute temperature, NA = 1.602 × 10 23 mol −1 as Avogadro 
constant, e = 1.602 × 10 −19C as elementary charge, and I as ionic strength of the electrolyte. At the inner bound-
ary of the diffuse layer, the electrostatic potential is typically assumed to be equal to the ζ-potential at the shear 
plane (e.g., Bücker & Hördt, 2013a; Leroy et al., 2008) and can be computed from the total charge density in the 
diffuse layer via the Grahame equation (Grahame, 1947)

𝜁𝜁
(

Σ
(0)

𝑑𝑑

)

= −
2𝑘𝑘𝐵𝐵𝑇𝑇

𝑒𝑒
sinh

−1

(

Σ
(0)

𝑑𝑑

𝜅𝜅

4𝑒𝑒𝑒𝑒
(0)

𝑖𝑖

)

 (5)

with κ as the inverse Debye length, and 𝐴𝐴 𝐴𝐴
(0)

𝑖𝑖
 as bulk ion concentrations.

Helmholtz (1853) presented the first model of the EDL comprising surface charges and a rigid molecular layer of 
counter-ions with a finite size neutralizing these surface charges. Within this layer, the surface charge potential dissi-
pates linearly with distance from the charged surface. Later, Gouy (1910) and Chapman (1913) postulated their model 

Figure 2. Schematic representation of the electrical double layer on charged 
silica surface at equilibrium. Deprotonation of silanol surface sites produces 
a negative surface charge density Σ. This typically negative surface charge 
is compensated by positive charges distributed over the Stern layer (𝐴𝐴 Σ

(0)

𝑆𝑆
 ) and 

the diffuse layer (𝐴𝐴 Σ
(0)

𝑑𝑑
 ). The red line shows the spatial variation of the electric 

potential U (0) in the different parts of the EDL.
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of a diffuse layer considering Brownian motion of ions and molecules. Within the diffuse layer, both co-ions and 
counter-ions can move freely. Furthermore, the local ion density of counter-ions and co-ions, and therefore the surface 
charge potential, change exponentially with distance from the charged surface according to the Boltzmann equation:

𝑐𝑐𝑖𝑖(𝒓𝒓) = 𝑐𝑐0𝑖𝑖 exp

(

−𝑒𝑒𝑒𝑒𝑖𝑖

𝑘𝑘𝐵𝐵𝑇𝑇
𝑈𝑈

(0)

𝑎𝑎 (𝒓𝒓)

)

 (6)

With ci as concentration of ion species i, zi as signed ion valence, and Ua(r) electric potential in the electrolyte.

Eventually, Stern (1924) unified both theories in his double layer model. There, the Stern layer is made up of 
the rigid molecular layer of finite sized counter-ions adsorbed onto the surface. And the adjacent diffuse layer, 
comprises the point charges of co- and counter-ions. The electrostatic potential within the EDL partially dissipates 
in the Stern layer in linear fashion with distance from the solid-liquid interface. In the diffuse layer, this partially 
compensated potential further decays exponentially due to the ion density following the Boltzmann equation.

2.2. The Nernst-Planck-Poisson Equation System

The Nernst-Planck-Poisson (NPP) equations are a coupled system of partial differential equations. They describe 
the spatial and temporal variation of ion concentrations ci(r,t) of ion species i and electric potential U(r,t) in 
an electrolyte due to concentration and electric potential gradients and convective flow. The Poisson equation 
resembles the coupling term in that it relates the electric field strength to charge density distributions, that is, 
ion concentrations. Together, these equations form the mathematical basis for a quantitative description of all 
processes involving ion migration and diffusion in electrolytes with and without the presence of external electric 
fields. We do not consider convective flow in our models and omit the corresponding part of the Nernst-Plank 
equation. For the sake of readability, we will write φ for φ(r,t) and ci for ci(r,t) in the following paragraphs.

First, we look at Poisson's equation, starting with Gauss' law in differential form as

∇ ⋅𝑫𝑫 = 𝜌𝜌 (7)

where ∇· is the divergence operator, D is the electric displacement field, and ρf is the free charge volume density. 
In a homogeneous, isotropic, non-dispersive, linear medium the relationship between the electric displacement 
field and the electric field E is given by

𝑫𝑫 = 𝜀𝜀0𝜀𝜀𝑟𝑟𝑬𝑬 (8)

Substituting (8) into Gauss' law (7), and assuming a spatially constant relative permittivity εr we obtain

∇ ⋅ 𝑬𝑬 =
𝜌𝜌

𝜀𝜀0𝜀𝜀𝑟𝑟
 (9)

where ρ is the total volume charge density. If we further assume, that there is no magnetic field, we can describe 
the electric field E as the gradient of the scalar electric potential U:

𝑬𝑬 = −∇U (10)

Substituting the potential gradient for the electric field in Equation 9 gives Poisson's equation for electrostatics:

∇
2𝑈𝑈 = −

𝜌𝜌

𝜀𝜀0𝜀𝜀𝑟𝑟
 (11)

Finally, we can replace ρ with 𝐴𝐴 𝐴𝐴
∑

𝑖𝑖

𝑧𝑧𝑖𝑖𝑐𝑐𝑖𝑖 , where F is the Faraday constant, to obtain the Poisson-Boltzmann 

equation:

∇
2𝑈𝑈 = −

𝐹𝐹

𝜀𝜀0𝜀𝜀𝑟𝑟

∑

𝑖𝑖

𝑧𝑧𝑖𝑖𝑐𝑐𝑖𝑖 (12)

Solving Equation 11 for the potential requires information about the ion concentrations 𝐴𝐴 𝐴𝐴𝑖𝑖 . We can obtain this 
information by solving the Nernst-Planck equation.

The Nernst-Planck equations describe the total flux of ionic species in an electrolyte. In our studies, we use a 
binary electrolyte as the fluid medium. For simplicity, we also assume that the mobilities of cations (index p) and 
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anions (index 𝐴𝐴 𝐴𝐴 ) are equal. Ion mobilities 𝐴𝐴 𝐴𝐴𝑖𝑖 of ion species 𝐴𝐴 𝐴𝐴  relate ion drift velocities to the applied electric force. 
The ion mobility is related to the diffusion coefficient 𝐴𝐴 𝐴𝐴 by the Einstein relation 𝐴𝐴 𝐴𝐴 = 𝜇𝜇𝜇𝜇𝐵𝐵𝑇𝑇 ∕𝑒𝑒 .

When dissolved in water, a binary electrolyte such as NaCl dissociates into cations (positive ions) and anions 
(negative ions) that are uniformly distributed throughout the volume. The total flux J of ion species i, in the 
absence of advective mass flow, is given by:

𝑱𝑱 𝑖𝑖 = −𝐷𝐷𝑖𝑖∇𝑐𝑐𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑐𝑐𝑖𝑖𝑧𝑧𝑖𝑖𝑬𝑬 (13)

The first term represents the diffusive flux due to an ion concentration gradient ∇ci with diffusion coefficient 
Di. The second term represents the electro-migratory flux due to an external electric field E. The ionic charges 
are expressed by the elementary charge e and their respective valence zi. Using Equation 10 we can also write:

𝑱𝑱 𝑖𝑖 = −𝐷𝐷𝑖𝑖∇𝑐𝑐𝑖𝑖 − 𝜇𝜇𝑖𝑖𝑐𝑐𝑖𝑖𝑧𝑧𝑖𝑖∇U (14)

Furthermore, following the conservation of electric charge with the continuity equation

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕
= −∇ ⋅ 𝑱𝑱 𝑖𝑖 (15)

where t is time. Combining Equations 14 and 15 gives the Nernst-Planck equation:

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕
= ∇ ⋅ (𝐷𝐷𝑖𝑖∇𝜕𝜕𝑖𝑖 + 𝜇𝜇𝑖𝑖𝜕𝜕𝑖𝑖𝑧𝑧𝑖𝑖∇U) (16)

For an external harmonic excitation E  =  E0exp(jωt), where E0 is the strength of the external electric field, 
𝐴𝐴 𝐴𝐴 =

√

−1 , and ω is the angular frequency, we can express the electric potential and ion concentrations as the sum 
of a static equilibrium and a perturbation part (Bücker et al., 2019):

𝑈𝑈 (𝑟𝑟𝑟 𝑟𝑟) = 𝑈𝑈 (0)(𝒓𝒓) + 𝛿𝛿𝑈𝑈 (𝒓𝒓𝑟 𝜔𝜔) ⋅ exp(𝑗𝑗𝜔𝜔𝑟𝑟) (17)

𝑐𝑐𝑖𝑖(𝑟𝑟𝑟 𝑟𝑟) = 𝑐𝑐
(0)

𝑖𝑖
(𝒓𝒓) + 𝛿𝛿𝑐𝑐𝑖𝑖(𝒓𝒓𝑟 𝜔𝜔) ⋅ exp(𝑗𝑗𝜔𝜔𝑟𝑟) (18)

By substituting Equations 17 and 18 into Equations 12 and 16 and performing a Fourier-transform on the result-
ing system, the problem can be divided into a static part and a frequency-dependent part. The static part can be 
solved independently, while the frequency-dependent part is coupled to the static solution (Bücker et al., 2019).

3. Methods
In this paper, we numerically solve the Fourier transform of Equations 12 and 16 to study the frequency-dependent 
electrical properties of rock models. We perform our studies following the workflow published by Bücker 
et al.  (2019). They used COMSOL Multiphysics®, a finite element simulation software, to solve the coupled 
system of partial differential equations described below. The mathematical model is based on Equations  16 
and 17, which are divided into two steps: a steady-state solution and a frequency-dependent solution of the NPP 
equations. Bücker et al. (2019) based their mathematical model on the publications of Chew and Sen; Chew and 
Sen (1982a, 1982b). In the following section, we will briefly describe the implementation of the mathematical 
and physical model in COMSOL Multiphysics.

For the stationary solution of Equation 17, where no external electric field is applied to the model, the potential 
distribution can be derived by solving the Poisson-Boltzmann equation

∇
2𝑈𝑈 (0)

(𝒓𝒓) = −2𝑐𝑐0
𝐹𝐹

𝜀𝜀0𝜀𝜀𝑟𝑟
sinh

(

𝑈𝑈 (0)
(𝒓𝒓)

𝑘𝑘𝐵𝐵𝑇𝑇

)

 (19)

where c0 is the bulk electrolyte concentration. The ion concentrations do not require additional numerical calcu-
lations as they are linked to the potential via the Boltzmann Equation 6.

In the second step of the simulation, we perform a parametric sweep over the model parameter ω (angular 
frequency) to simulate frequency dependent behavior, obtaining solutions for a discretized range of angular 
frequencies. We compute the potential perturbation within the electrolyte domain as well as the cation (cp) and 
anion (cn) perturbations by solving the following system of equations
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Equation 20 includes the Fourier transformed Equations 12 and 16 formu-
lated in the frequency domain for the perturbations only. In addition, we 
solve for the perturbation of the potential US at the solid-electrolyte interface 
(Bücker et al., 2019):

∇S

(

−𝐷𝐷𝑆𝑆∇S𝛿𝛿Σ𝑆𝑆 − 𝜇𝜇𝑆𝑆Σ
(0)

𝑆𝑆
∇S𝑈𝑈𝑆𝑆

)

+ 𝑖𝑖𝑖𝑖𝑈𝑈𝑆𝑆 = 0 (21)

where ∇S denotes differential operators acting along the particle surface and 𝐴𝐴 Σ𝑆𝑆 (𝒓𝒓, 𝑡𝑡) = Σ
(0)

𝑆𝑆
(𝒓𝒓) + 𝛿𝛿Σ𝑆𝑆 (𝒓𝒓, 𝜔𝜔) ⋅ exp(𝑗𝑗

𝐴𝐴 Σ𝑆𝑆 (𝒓𝒓, 𝑡𝑡) = Σ
(0)

𝑆𝑆
(𝒓𝒓) + 𝛿𝛿Σ𝑆𝑆 (𝒓𝒓, 𝜔𝜔) ⋅ exp(𝑗𝑗𝜔𝜔𝑡𝑡) denotes the surface-charge density in the Stern layer. Since the potential at the surface is assumed to be 

continuous, U = US at all points along the particle surface.

For a thorough description of the underlying mathematical framework, we refer to Bücker et al. (2019).

3.1. Models

Here we introduce our models; first, the general model geometry. We then explain how we modify our models 
to mimic the roughness of the inner rock surface (Sections 3.1.1 and 3.1.2), followed by model parametrization 
(Section 3.1.3). Finally, we describe post-processing steps, including the calculation of the frequency-dependent 
conductivity from the simulation results (Section  3.2). Regarding the model geometries, we use the spherical 
(grain) models of Bücker et al. (2019). Apart from introducing surface roughness and adjusting the size of the finite 
element mesh, we have refrained from modifying the authors' simulation workflow and model design. In the discus-
sion section, we will highlight advantages and shortcomings of the provided implementation for our specific case.

We consider a cylindrical domain with a spherical particle at the center of the cylinder. The cylindrical domain 
has the properties of a liquid electrolyte with commonly used parameters (Table 1). To ensure a constant volumet-
ric particle content of our models throughout all studies, we coupled the domain volume to the particle volume. 
Furthermore, we sized the domain appropriately to avoid the influence of boundary conditions on the calculations 
at the electrolyte-particle interface. For a particle radius of rp = 5 μm, we set the cylinder height and diameter to 
hc = dc = 40·rp. The particle represents a solid, non-conducting grain with either a smooth or rough, electrically 
charged surface. Thus, our models represent dilute suspensions of such particles.

We create our models in COMSOL's 2D axisymmetric space dimension, a 
special environment for axisymmetric 3D geometries, like in our case. It is a 
common strategy to significantly reduce computational memory and time by 
taking advantage of model symmetry. In this case, we build our model in a 
2D plane (r, z) of a cylindrical coordinate system (Figure 3a). Before solving 
a 2D problem in the rz-plane, all coefficients must be multiplied by the radial 
coordinate r to describe the rotational symmetry of the problem. Since we 
are exploiting axis symmetry in 3D, the resulting particles resemble objects 
that have been formed on a turning lathe (e.g., Figure 3b). Surely, real surface 
roughness would not look like this. We will address the implications of this 
characteristic structure in our discussion.

3.1.1. Self-Similar Geometries

To increase the surface area of our grain models, we implement a finite, 
semi-fractal geometry by placing smaller daughter grains on the surface of a 

Parameter Unit Value

Bulk ion concentration, 𝐴𝐴 𝐴𝐴
(0)

𝑝𝑝𝑝𝑝𝑝
mol/m 3 1

Bulk ion mobility, μ = μp = μn m 2/(Vs) 5E−8

Ion mobility in Stern layer, μS m 2/(Vs) 5E−9

Relative fluid permittivity, εa 𝐴𝐴 – 80

Temperature, T K 293

External field strength, E0 V/m 1

Fraction of charge in Stern layer, p 𝐴𝐴 – 0.5

Table 1 
Parameter List of Our Modeled Electrolyte

Figure 3. Self-similar grain model with two daughter generations. (a) 
Geometrical assembly of the grain within the 2D axisymmetric plane. (b) 
Resulting 3D geometry.
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parent grain. In 2D, this corresponds to circles with their centers positioned 
on the contour of the parent circle (Figure 3a). The primordial particle has a 
radius of rp = 20 or 5  μm. The radii of the first and second daughter gener-
ations (rd,1 and rd,2) are each five times smaller than the previous generation 
(Table 2).

3.1.2. Randomly Generated Surfaces

Following an approach by Sjodin  (2017), we use harmonic functions in 
conjunction with random number generators to resemble natural rough 
surfaces (Figure 4). We generate these surfaces in the 2D rz-plane by using a 
sum of trigonometric functions, like in a Fourier series:

⎛

⎜

⎜

⎝

𝑟𝑟(𝑠𝑠)

𝑧𝑧(𝑠𝑠)

⎞

⎟

⎟

⎠

= 𝑟𝑟𝑝𝑝

⎛

⎜

⎜

⎝

sin(𝑠𝑠)

cos(𝑠𝑠)

⎞

⎟

⎟

⎠

[

1 + 𝑎𝑎

𝑁𝑁
∑

𝑘𝑘=−𝑁𝑁

(

𝑘𝑘2
)−

𝑏𝑏

2 𝑔𝑔(𝑘𝑘)cos(2𝜋𝜋𝑘𝑘𝑠𝑠 + 𝑢𝑢(𝑘𝑘))

]

 (22)

where a is the maximum amplitude, k = 2π/λ is the wavenumber or spatial frequency and λ is the wavelength, b 
is the attenuation exponent, s is the spatial variable along the surface with 0 = s≤π·rp, g(k) is a random function, 
which creates random numbers from a normal distribution, and u(k) is a random function with uniform distribu-
tion. The left term on the right-hand side of Equation 22 creates a half circle with the radius rp. The sum term 
on the right creates the random roughness along the line of the half circle. Each term in this sum represents an 
elementary wave with a certain wavelength λ = 2π/k. The rough surface is generated by the superposition of N 
elementary waves with Gaussian distributed amplitudes and uniformly distributed phase angles. The coefficient 
a determines the maximum amplitude as a function of particle size. In a preliminary study, we determined a 
scaling factor of a = 0.1·rp as a reasonable maximum. For low attenuation exponents b ≤ 1.2, higher maximum 
amplitudes resulted in unrealistic surfaces. Reducing the maximum amplitude below a certain threshold had a 
similar effect as increasing the attenuation exponent b. This exponent accounts for natural processes such as wear 
and erosion by damping higher frequencies. Consequently, low frequencies will have larger amplitudes than high 
frequencies, as observed in nature. The normal distribution function g(k) has a mean of μ = 0 and a standard 
deviation of σ = 1. The phase angles are sampled from a uniform distribution function u(k) between −π/2 and π/2. 
Summing the wavenumber k over −N to N with equal probabilities ensures the generation of a synthesized surface 
without a preferred oscillation direction (Sjodin, 2017). Consequently, the maximum amplitude a, the wave count 

N and the attenuation exponent b are controlling parameters for the gener-
ation of rough surfaces. Surface roughness is controlled by b, which takes 
values between 2 (low roughness) and 1 (high roughness). N controls the 
spatial frequency content of the surface topography. The difference between 
high and low values of N is best observed at low values of b, that is, rough 
surfaces. Low values (N < 20) produce smooth, wavy surfaces, while higher 
values (N > 20) produce sharp-edged surfaces.

Please refer to the supporting material of this publication for the complete 
mathematical parameterization of the surface function in Comsol.

We investigate the influence of randomly generated rough surfaces on the IP 
response. We modify the surface of two different spheres with radii of 5 and 
20 μm. We use different ranges of wavenumbers k = {−N,…,N} and vary 
the attenuation exponent b between 1 (rough) and 2 (smooth) for each range. 
For high wave counts (N > 100), the low-end of b had to be raised to b = 1.1. 
High wavenumbers create sharp surface structures that cannot be resolved 
with the applied mesh settings without further refinement of the mesh size.

3.1.3. Etched Surfaces

In addition, we have created random surface roughness models where we can 
choose the preferred direction of oscillation of the trigonometric function, 
that is, surface roughness is created by either adding or removing material 
from a smooth particle surface. Removal of material from the surface can be 

Grain radius

Group A Group B

[m −6]

1st generation, rp 20 5

2nd generation, rd,1 4 1

3rd generation, rd,2 0.8 0.2

Table 2 
Grain Radii of Fractal Models

Figure 4. 3D models of spherical grains with randomly generated surfaces 
for different spatial frequencies N and attenuation exponents (b) For b = 2 the 
surface is smooth regardless of the spatial frequency content (a) N = 10, and 
(b) N = 100. For b = 1, we see (c) undulating surfaces with N = 10, and (d) 
edgy surfaces with N = 100.
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associated with surface etching or dissolution, while addition of material can be associated with processes such 
as precipitation, flocculation, or bacterial growth.

To create the etched surfaces, we used the same method as for the randomly generated surfaces. To control the 
direction of oscillation, we used an if condition in the surface parameterization in Comsol, which sets all posi-
tive values of the surface function to zero. We also included a second condition that allows us to filter out low 
wavenumbers, that is, k < 10, to avoid the longer wavelengths of the spatial oscillation. These lower wavelengths 
produce smooth, dent-like structures on the surfaces, which in our opinion do not resemble an etched surface as 
seen in Leroy et al. (2008).

3.1.4. Model Parametrization and Boundary Conditions

Our models consist of a solid phase (particle) and a liquid phase (electrolyte), each with its own set of physical 
properties (Table 1). In addition, we assign boundary conditions to the outer and inner boundaries, that is, the 
solid-fluid interface, before solving the NPP equations. The partition coefficient p (Bücker et al., 2019) defines 
the fraction of the surface charge that is compensated by the Stern layer (see Section 2.1)

𝑝𝑝 =
−Σ

(0)

𝑆𝑆

Σ

 (23)

For p = 0, there are no counter ions in the Stern layer and the surface charge is compensated only by charges in the 
diffuse layer. At p = 1, the surface charge would be compensated only by counterions in the Stern layer. At p = 0.5, 
the counterions are equally distributed between the Stern and diffuse layers and equalize the surface charge.

The two simulation steps, the steady-state solution and the frequency-dependent solution of the NPP equations, 
require different boundary conditions. For the steady-state problem, we set a zero potential at the outer domain 
boundaries and assume a fixed surface charge density Σ = −0.01 C/m 2 at the solid-electrolyte interface. For the 
frequency-dependent solution, we apply an electric field of 1 V/m parallel to the symmetry axis of our model 
domain. We assign potentials of U = ±E0L at the bottom and top of the cylindrical fluid domain, where L is half 
the length of the cylindrical domain. Further, we assign a zero-flux condition to the cylinder wall. The perturba-
tion of the ion concentrations at these boundaries is set to zero, that is, equal to the equilibrium bulk concentration.

Regarding the discretization of our models, we use two different meshing options, following the approach of 
Bücker et al. (2019). We reduce the size of the mesh elements at the charged surface to allow the resolution of the 
processes inside the electrical double layer. To do this, we use COMSOL's built-in boundary layers. Eight bound-
ary layer elements extend perpendicularly on each side of a charged surface. The minimum height of these cells 
is set to half a Debye length and increases by a factor of 1.2 outward. In the direction parallel to the surface these 
elements are segmented with a minimum size of 5 × 10 −3 rp. In the adjacent fluid and solid domains, the triangu-
lar mesh is used, increasing by a factor of 1.25 toward the outer boundaries to a maximum element size of 1/20L.

3.2. Model Conductivity Calculation and Analysis

If the applied electric field is parallel to the electric current passing through the electrolyte domain, which is 
the case in our models, an approximation for the current density can be expressed as the product of the electric 
conductivity and the electric field strength J = σE. In our models, this corresponds to the product of the observed 
electric field Eobs and the complex electrolyte conductivity 𝐴𝐴 𝐴𝐴∗

𝑎𝑎 (𝜔𝜔) = 𝐴𝐴𝑎𝑎 + 𝑗𝑗𝜔𝜔𝑗𝑗0𝑗𝑗𝑎𝑎 or, alternatively, the product of 
the external electric field E0 and the effective complex conductivity 𝐴𝐴 𝐴𝐴∗

eff
(𝜔𝜔) (Bücker et al., 2019):

𝐸𝐸obs𝜎𝜎
∗

𝑎𝑎 = 𝐸𝐸0𝜎𝜎
∗

eff (24)

Consequently, We can write

𝜎𝜎∗

eff

𝜎𝜎∗

𝑎𝑎

=
𝐸𝐸obs

𝐸𝐸0

= 𝜎𝜎∗

sim
 (25)

Using Equation 25, we define the simulated complex conductivity as the effective complex conductivity normal-
ized by the fluid conductivity. We obtain the complex conductivity of our models by numerically integrating the 
total ion flux densities over the cross-section of our domain at the top or bottom of the cylinder:

𝜎𝜎∗

sim
=

2𝐹𝐹

𝐸𝐸0𝑅𝑅
2

0
∫

𝑅𝑅0

0

[𝑱𝑱+(𝑟𝑟) + 𝑱𝑱−(𝑟𝑟)]𝒆𝒆𝒛𝒛𝑟𝑟𝑟𝑟𝑟𝑟 (26)
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This integration gives us the effective complex conductivity normalized by the complex fluid conductivity. The 
factor 𝐴𝐴 2∕𝑅𝑅2

0
 accounts for the normalization with the cross-sectional area with R0 = dc/2 (see Section 3.1) as the 

radius of the cylindrical domain and the term rdr accounts for the area element of the boundary.

Throughout our study, we have ensured that the solid volume fraction νmod = Vp/V, where Vp is the particle 
volume, and V is the total volume of the model domain, remains constant for all models. For smooth spherical 
grains this is simply done by linking the domain size to the grain radius. For more complex geometries, we 
determined the grain volume numerically and calculated an equivalent radius for a smooth sphere. Using this 
equivalent radius, we adjusted the domain size to match our desired volume ratio. Following the approach of 
Bücker et al. (2019), we adjust the volumetric solid fraction of our model νmod to that of a suspension of the 
modeled grain νsus = 0.4. The procedure is derived from the Maxwell-Wagner mixing rule according to the 
formula:

𝑓𝑓 (𝜔𝜔) =
1

𝜈𝜈mod

𝜎𝜎∗

mod
(𝜔𝜔) − 𝜎𝜎∗

𝑎𝑎 (𝜔𝜔)

𝜎𝜎∗

mod
(𝜔𝜔) + 2𝜎𝜎∗

𝑎𝑎 (𝜔𝜔)
 (27)

where f(ω) is the reflection coefficient. With the reflection coefficient we can calculate the upscaled conductivity 
with the desired νsus = 0.4:

𝜎𝜎∗

sus(𝜔𝜔) =
1 + 2𝜈𝜈sus𝑓𝑓 (𝜔𝜔)

1 − 𝜈𝜈sus 𝑓𝑓 (𝜔𝜔)
 (28)

With COMSOL Multiphysics® we calculate the surface area of the modeled particle Smod, the particle volume Vp, 
and the total model volume V. After upscaling of the volumetric particle content from νmod to νsus, we calculate 
Spor. We keep the total volume V constant and treat the upscaling process as an increase in particle number. Thus, 
the mineral surface area increases by a factor of νsus/νmod = 600. We can then calculate the specific surface area 
per unit volume (Stot), which is the mineral surface area S = 600Smod normalized by the total volume V:

𝑆𝑆tot = 600𝑆𝑆mod∕𝑉𝑉 (29)

After calculation of Stot, we obtain

𝑆𝑆por =
𝑆𝑆tot

𝜙𝜙
=

𝑆𝑆tot

1 − 𝜈𝜈sus
 (30)

For the quantitative analysis of our simulation data, we use the Debye decomposition (DD) method (Nordsiek 
& Weller, 2008), which is effective for analyzing SIP data regardless of the shape of the conductivity spectra. 
The DD fits the polarization magnitudes mj to a defined range of discrete time constants τj over the measured 
frequency range ω of the SIP response spectra. The fitted complex conductivity is defined by:

𝜎𝜎∗
(𝜔𝜔) = 𝜎𝜎0∕

(

1 −

𝑛𝑛
∑

𝑗𝑗=1

𝑚𝑚𝑗𝑗 ⋅

(

1 −
1

1 + 𝑖𝑖𝜔𝜔𝑖𝑖𝑗𝑗

)

)

 (31)

The result is a distribution of Debye relaxations characterized by the polarization magnitudes mj. Summing up the 
polarization magnitudes mj gives the total polarization mt:

𝑚𝑚𝑡𝑡 =

∑

𝑚𝑚𝑗𝑗 (32)

To avoid the influence of Maxwell-Wagner polarization, we fit our data in the frequency range between 10 −1−10 5 
rad/s. We then multiply the calculated total chargeability by the dc conductivity σ0 to obtain the normalized 
chargeability mn:

𝑚𝑚𝑛𝑛 = 𝑚𝑚𝑡𝑡𝜎𝜎0 (33)

4. Results
In this section, we show the simulated frequency-dependent conductivity of our models. Here, we omit the plots 
of σ′(ω) and only show plots of σ″(ω), which we think is a more suitable way to display the polarization.
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4.1. Fractal Models

Figure 5 shows the SIP response of fractal grain models with one and two daughter generations compared to the 
spectra of the smooth particles that make up the fractal model. The original particle has a radius of rp = 5  μm and 
the radii of the two daughter generations are rd,1 = 1  μm and rd,2 = 0.2  μm. The polarization magnitudes of the 
smooth particles were adjusted to match their respective magnitude in the fractal model to emphasize the peak 
shifts. The unmodified response spectra can be found in the supporting material for this publication.

Figure 5a shows the effects of one daughter generation. The primary peak shifts from around 20–30 rad/s for 
the smooth particle to 10  rad/s. The secondary peak caused by the daughter generations shifts from around 
70 rad/s for the smooth particle to 90 rad/s in the fractal model. The magnitude decreases by 44% (not visible in 
Figure, because magnitudes are scaled). With the addition of the second daughter generation to the grain surface 
(Figure 5b), we observe additional polarization at ω = 10 4 rad/s and a shift in the position and magnitude of all 
polarization peaks with respect to signals of the smooth models. The primary peak at 10 rad/s shifts further toward 
lower frequencies. This is now also true for the secondary peak at about 10 3 rad/s (Figure 4b). Although not visible 
in 5b, we register a shift of the last polarization peak, caused by the latest daughter generation, to slightly higher 
frequencies. In comparison to the fractal model with one daughter generation, the magnitude of the primary polar-
ization decreases by 79% from around 3.9·10 −6 S/m (see Supporting Information S1) to 1.8·10 −6 S/m.

4.2. Random Surface Geometries

Figure 6a shows the imaginary conductivity of the simulations with a fixed wave count N = 50 and an attenua-
tion exponent b varying between 1 (rough surface) and 2 (smooth surface). We added the response of the fractal 
model for comparison. The spectra show a dominant contribution of the grain size (rp = 5  μm) in the frequency 
range between 10–30 rad/s. With decreasing spectral exponent b, that is, increasing roughness, a slight shift of the 
primary peak toward lower frequencies and slightly lower magnitudes can be observed. Furthermore, a polariza-
tion in the frequency range between 10 2–10 4 rad/s develops, which is expressed by an increase of the imaginary 
part within this interval. Compared to the spectra of the fractal models, the primary peak shift and the second-
ary polarization are less pronounced. This is mainly due to the relatively large size of the daughter generations 
(rd = 0.2·rp) compared to the maximum amplitude of the trigonometric surface function (a = 0.1·rg).

Figure 5. Imaginary conductivity of fractal grain models with (a) one and (b) two additional daughter generations. The 
solid lines represent the fractal models, the other lines are spectra of smooth models used to construct the fractal models. (c) 
2D axisymmetric sketch of the particle for the fractal grain with one daughter generation and the smooth particles. (d) 2D 
axisymmetric sketch of the particle for the fractal grain with two daughter generations and the smooth particles.
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Figure 6b shows the results of simulations with different wave counts N = {10, 20, 100, 200} for a fixed attenu-
ation exponent b = 1.1. Again, we observe a dominant contribution of the grain diameter and slight shifts in the 
position and magnitude of the primary peak. Furthermore, we observe a pronounced effect of the surface rough-
ness, which is expressed by an increased polarization in the range of about 10 2–10 4 rad/s for N ≥ 20. For wave 
counts N < 100 and attenuation exponents 1.5 < b < 2, we observe slight changes in the primary peak and slightly 
increased polarization at frequencies above the primary peak frequency. For higher wave counts N ≥ 100 and low 
attenuation exponents b < 1.25, we see a stronger influence on the primary peak and an increase in polarization 
above the primary peak frequency.

4.3. Etched Surface Geometries

SIP responses from models where we have removed material from the smooth surface generally show similar 
behavior. We also observe a shift in the primary polarization frequency and magnitude as well as the formation 
of secondary polarizations.

Figure 7 shows the results of our studies with a preferred direction of oscillation of the surface structures. 
First, we illustrate the difference between adding and removing material on an exaggerated model. We chose 
a single harmonic function with the wavenumber k = 12 and an amplitude of a = 0.2rp. We observe similar 
behavior with respect to the primary polarization shift and the build-up of a secondary polarization. Figure 7b 
shows the effect of surface etching, that is, removal of surface material. The model with the highest wave-
number count (N = 200) has the greatest effect on the SIP response. The models with the lower wavenumber 
count (N = 20) show only small secondary polarizations as increased imaginary conductivity in the range of 
10 3−10 4 rad/s. We see that increasing the maximum amplitude of the surface generator function for the N = 20 
model from a = 0.1 to a = 0.2 has only a small effect on the SIP response, slightly increasing the secondary 
polarization.

Our results reveal two main aspects of surface roughness: a shift of the primary polarization peak, and the genera-
tion of secondary polarization. In order to see how our results compare to laboratory measurements and analytical 
models, we have performed an extensive analysis, which we present in the following discussion section.

Figure 6. Imaginary conductivity spectra of spheres with randomly generated rough surfaces. (a) shows the effects of a 
varying attenuation exponent b and (b) of a varying spatial frequency content N. Sketches of the particle surface of (c) the 
fractal model and the random model with three stages of varying attenuation exponent, and (d) the four random models with 
varying wave count N.
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5. Discussion
In the previous section, we presented exemplary results of our simulations, that is, imaginary conductivity spectra 
of the studied grain models with fractal and randomly generated surfaces. We observe distinct changes in the 
spectral behavior of grains with rough compared to smooth surfaces. Compared to the smooth grain, the primary 
peak is slightly shifted to lower frequencies for both rough surface types. In contrast to the fractal models, which 
show an additional peak for each daughter generation, the randomly generated surface models create secondary 
polarizations over a wide range of frequencies, but mostly no distinct polarization peaks.

To further evaluate the influence of surface roughness, we now compare the SIP parameter determined by Debye 
decomposition of all simulated spectra with empirical results from SIP measurements on rock samples as well as 
with responses from mechanistic EDL polarization models. We discuss the influence of surface roughness on the 
frequency dependence and on the polarization strength.

5.1. Influence of Surface Roughness on Frequency Dependence

Figures 8a and 8b show the relaxation time over the grain radius for all the models studied (symbols). In the case 
of rough grains, we chose the relaxation time of the first peak as it reflects the grain size. We have added plots of 
an analytical model for the relaxation time as a function of grain size:

𝜏𝜏 = 𝑟𝑟2∕2𝐷𝐷𝑆𝑆𝑀𝑀 (34)

with grain radius r, Stern layer diffusion coefficient DS = 1.3 × 10 −10 m 2/s, and coupling coefficient M (Lyklema 
et al., 1983). The coupling coefficient takes into account the coupling of the charges in the Stern layer to the 
electrolyte and is defined by:

𝑀𝑀 = 1 +
𝜅𝜅Σ

(0)

𝑆𝑆

2𝑒𝑒𝑒𝑒0 cosh
[

𝑒𝑒𝑒𝑒∕(2𝑘𝑘𝐵𝐵𝑇𝑇 )
] (35)

where κ is the inverse Debye length. The solid lines in Figures 8a and 8b represent the relaxation time with 
charges equally distributed between Stern and diffuse layers (p  =  0.5,M  >  1). Smooth grains (circles) with 

Figure 7. Imaginary conductivity spectra of surfaces with a preferred direction of oscillation. (a) Comparison of removing 
and adding material to the surface with a single harmonic function. (b) Surface etching (removal of material) with the random 
surface function (Equation 22). (c and d) illustrate the corresponding surface geometries depicted in the conductivity spectra.
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r ≥ 4  μm plot on the solid line. However, grains with rough surfaces have slightly longer relaxation times than 
grains with smooth surfaces (Figure 8b). This observation is consistent with the shift of the first polarization 
peak of rough models to lower relaxation frequencies compared to smooth grains of similar size, as seen in 
Figures 5–7. We attribute this to the increased relaxation path caused by surface roughness, that is, to the longer 
path along the rough surface compared to the smooth surface that the ions in the EDL traverse to build up or decay 
the polarization. This interpretation is also consistent with the larger peak shifts observed for grains with high 
surface roughness than for grains with low surface roughness.

We expect the primary relaxation time of a rough grain to be proportional to the polarization length, the length 
of the path along the surface connecting the two opposite poles of the polarized grain, which is in our case 
equal  to  the circumference of a (rough) hemisphere. In Figures 8c and 8d, we test the hypothesis by plotting the 
primary relaxation time versus the radius L of a sphere with the same circumference as the rough grain, calcu-
lated using the circumference cg of the rough grain: L = cg/2π. Thus, we obtain an equivalent radius L, which we 
substitute into Equation 34.

� =
( ��
2�

)2
∕2��� (36)

Figure 8. (a) Relaxation time τ versus grain radius. The line shows the prediction of the analytical model for electrical double layer (EDL) polarization (Equation 34). 
(b) Detail view of the models based on a 5 μm grain radius. (c) Relaxation time τ versus equivalent pore radius L. The line shows the prediction of the analytical model 
for EDL polarization (Equation 36). (d) Detail view of the models based on a 5 μm grain radius.
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With this, our rough models perfectly match the trend predicted by Equa-
tion 36 confirming the dependence of the primary relaxation time of rough 
grains on polarization length (Figures 8c and 8d).

In addition to shifting the primary polarization peak, surface roughness leads 
to additional polarizations at higher frequencies (Figure  5 through  7). We 
associate these additional polarizations with the tiny structures, that is, short 
relaxation lengths (and thus times), on the rough surfaces. This is best seen 
for fractal grains, where one and two daughter generations give rise to one 
and two polarization peaks, respectively (Figure 5). To confirm or reject this 
interpretation, we look at the perturbation of the Stern layer charge density.

Figure  9 shows the Stern layer surface charge perturbation at four differ-
ent frequencies. Figures  9a and  9b show it along the model surface for 
ω = 10 rad/s and ω = 10 3 rad/s, respectively, with the electric field paral-
lel to the vertical axis. The Stern layer charge perturbation shows surpluses 
(yellow) and deficits (blue). The magnitude of the perturbation decreases 
with increasing frequency from about 5  ×  10 −7  C/m 2 (Figures  9a) to 
3.5 × 10 −8 C/m 2 (Figure 9b). At ω = 10 rad/s, the surface charge perturbation 
shows a gradient across the grain surface (Figure 9a), that is, the entire grain 
is polarized. At 10 3 rad/s, the large-scale gradient disappears and gradients 
at each small daughter structure dominate. This is reflected in the imaginary 
conductivity spectrum of this model (Figure  5a): the primary peak corre-
sponds to the large-scale polarization of the whole grain around 1 rad/s, and 
the secondary peak represents the small-scale polarizations of the daughter 
structures between 10 2 and 10 4 rad/s. Figure 9c shows the Stern layer charge 
perturbation as a function of arc length for four different frequencies, includ-
ing those shown in Figures 8a and 8b. The red line (ω = 10  rad/s) corre-
sponds to the primary peak frequency. The surface charge perturbation takes 
negative values at the beginning (bottom side of the grain) and increases 
steadily with distance until it reaches the end (top side of the grain). Halfway 
through (right side of the grain) we see a change in polarity, where all the 
lines overlap. Blue (ω = 1 rad/s) and red (ω = 10 rad/s) lines show the surface 
charge perturbation just before and at the polarization peak of the primary 
(large-scale) polarization. Although the effects of the smaller structures are 

visible in the plot (oscillations), they play a minor role compared to the effects over the entire arc length. This 
changes drastically when we reach the onset of the secondary polarization (ω = 100  rad/s, yellow line). The 
large-scale gradient almost disappears and the small-scale perturbations start to dominate. At the peak frequency 
of the secondary polarization (ω = 1,000 rad/s, purple line), the large-scale perturbation becomes negligible, and 
the line oscillates around δΣS = 0 C/m 2. For both high frequencies (10 2 and 10 3 rad/s) we can see an increase of 
the small-scale perturbations from the edges to the center.

5.2. Influence of Surface Roughness on Polarization Magnitude

In Figure 10a, we compare the normalized chargeability obtained for our models, plotted against Spor, with the 
results of an empirical study on natural sandstone samples (solid line) and unconsolidated sand-clay mixtures 
(dashed line) by Weller et al. (2010). Our results follow the empirical trends, that is, have the same slope as the 
laboratory data, but have slightly lower chargeabilities.

Figure 10b shows the imaginary conductivity σ″ at 1 Hz versus Spor. Again, we compare our simulation results 
with measurements on sandstone samples and unconsolidated sand-clay mixtures (Weller et al., 2010). Since we 
are considering the polarization at 1 Hz, we are interested in the grain size that has its relaxation frequency at 
1 Hz. The relaxation time τ and the angular frequency ω are related by τ = 1/ω. Together with Equation 31, we 
obtain the relationship between polarization frequency and grain radius:

𝜔𝜔 =
2𝐷𝐷𝑆𝑆𝑀𝑀

𝑟𝑟2
 (37)

Figure 9. Stern layer charge perturbation at (a) 10 rad/s and (b) 1,000 rad/s of 
a fractal grain model. The applied electric field is pointing upward, that is, it is 
parallel to the vertical axis. (c) Stern layer charge perturbation as a function of 
arc length along the surface displayed in (a and b).
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Given ω  =  2πf, grains with radii of 2–20  μm will have a polarization frequency around frequencies of 
f = 0.1−10 Hz. Smaller and larger grains would polarize at higher and lower frequencies, respectively. Conse-
quently, only the models with grain radii in this range, that is, the 20 and 5 μm models produce signals in the 
relevant frequency range. Our smaller models polarize at much higher frequencies and, therefore, have a low σ″ 
around 1 Hz.

5.3. Effect of Model Symmetry

The results presented show the influence of surface roughness on the SIP response of grain models. However, 
even our models with random surface roughness are unnatural due to their axis symmetry (Figures 3 and 4). 
Since the symmetry axis is parallel to the applied electric field, all ions moving along the particle surface trav-
erse the same topographic profile, that is, each polarization caused by a particular structural feature is empha-
sized. Consequently, the fractal models with one or two daughter generations, that is, with surface structures of 
one or two length scales, show one or two distinct peaks above the primary peak frequency, respectively. For 
non-axisymmetric fractal grains, the ions moving along the surface would traverse different topographic profiles. 
Thus, we expect a broadening of the secondary peaks for non-symmetric rough surfaces.

5.4. Comparison With Experimental Data

Leroy et al. (2008) observed similar behavior in their experiments on packs of smooth and rough glass beads 
packs. Their figure 14 shows the phase spectra of a smooth bead pack and a rough bead pack, as well as images of 
the bead surface. The smooth bead packs appear to have some minor surface roughness (dark spots in the image) 
which produces a secondary polarization between 10−10 3 Hz (Leroy et al., 2008). After acid treatment, the bead 
surface becomes noticeably rougher, existing cavities are further eroded, and numerous new cavities appear in the 
rough bead image (see their Figure 14). The phase spectrum shows the expected behavior, with the polarization 
flattening and extending over a wider frequency range. Contrary to our models, the primary polarization of the 
rough bead pack increases in magnitude.

Consequently, even though axis symmetry introduces a flaw to our models, our results enable us to qualitatively 
predict the effects of surface roughness on the SIP response. A non-axisymmetric model domain would allow 
the creation of surfaces with variations in two dimensions. However, such a true 3D model requires a very large 
computational grid and exceeds the computing power of the computers used. Even on a cluster, parameter studies 
would not be possible due to the high number of grid elements.

5.5. Effect of Increased Surface Roughness on Spor

The particle volume determines the bulk volume of the model domain because we keep the volumetric content of 
the solid fraction constant for all models. Eventually, the Spor of all our models is mainly controlled by the ratio 

Figure 10. Comparison of simulation results (symbols) to the empirical behavior of sandstones (solid line) and 
unconsolidated sand-clay mixtures (dashed line) from Weller et al. (2010) for (a) normalized chargeability mn versus inner 
surface area relative to pore volume Spor,and (b) σ″ at 1 Hz versus Spor.
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of the surface area to the bulk volume of the model (Equations 29 and 30)). We have presented two approaches 
to generate surface roughness. For the fractal models, we add material to the existing smooth surface. With the 
random models, the amplitude associated with a normal distribution function that produces values around a 
zero mean (3.1.2) determines whether material is added to or subtracted from the smooth surface. By modifying 
the mathematical parameterization, we can take control over the preferred direction of oscillation and choose 
whether  material is added or removed.

Consequently, with the fractal approach, we continue to increase the particle volume with each addition of 
smaller particles. The fractal model with one daughter generation grows in volume by 41%, while two daughter 
generations increase the particle volume by 52%. The random models don't change as much, growing in volume 
by up to 8%, and the preferred direction models gain or lose up to 4% compared to the volume of the smooth 
particle. The surface area increases by 66% and 127% for the two fractal models and by up to 40% for the random 
models. However, the fractal models all have lower Spor than the random models because they gain more volume 
per increase in surface area.

5.6. Ambiguity of IP Spectra

Despite the shortcomings of our models, we assume that our results regarding the influence of surface roughness 
on the SIP response are still applicable to rocks. In this sense, we see an ambiguity in the interpretation of IP spec-
tra. Mechanistic grain polarization models have been and are being used to derive grain size distributions from 
SIP measurements (e.g., Revil & Florsch, 2010). These approaches assume that the distribution of relaxation 
time is transferable to a grain size distribution. However, as Leroy et al. (2008) already have shown in laboratory 
experiments and supported by our simulation results, this assumption is not universal. Surface roughness causes 
additional polarization in the frequency range above the primary polarization. Consequently, the interpretation of 
a SIP response with a broad secondary peak is ambiguous, since a set of equally sized, rough grains and sets of 
differently sized grains can produce a similar SIP response.

6. Summary and Conclusion
Previous publications indicate that Spor plays an important role in the SIP response of rocks (Weller et al., 2010). 
In order to better understand the SIP signals measured on rocks, we have numerically investigated the influence 
of surface roughness on the SIP response of grain models. Since the introduction of surface roughness has a 
direct effect on Spor. To increase the surface roughness, we chose two different approaches: (a) we assembled 
fractal grains from self-similar geometries, and (b) we used harmonic functions in conjunction with random 
number generators for more natural looking surfaces. We numerically solved the NPP equations, which we used 
to describe the polarization of the EDL at the solid-electrolyte-interface, to simulate the SIP response. Finally, we 
compared the SIP parameter of the simulation results with those of empirical and mechanistic models.

We find that, with few exceptions, the behavior of our models is in good agreement with observations from 
laboratory measurements (Andreas Weller et al., 2010; Leroy et al., 2008). Our simulations of smooth and rough 
grains follow the trend of the Spor−mn relationship. However, models of smaller particles with rp < 5   μm do 
not reproduce the empirically found 𝐴𝐴 𝐴𝐴por − 𝜎𝜎′′

1Hz
 relationship. This is mainly due to the nature of our simulation, 

which only considers the polarization of the EDL around single grains, which polarize for these small grains at 
frequencies significantly above 1 Hz. Moreover, our simulations neglect mechanisms such as grain-grain inter-
actions, membrane polarization at pore constrictions, or overlapping EDLs, all of which may contribute to the 
polarization around 1 Hz. The tiny structures on rough surfaces as well as most of our grains have smaller polar-
ization lengths and thus higher polarization frequencies. Therefore, without interaction with adjacent charged 
surfaces they contribute little or nothing to the polarization at 1 Hz. Volkmann and Klitzsch (2016) observed 
a similar behavior in SIP measurements on sintered glass samples consisting only of certain grain sizes. They 
found a strong frequency dependence of the correlation between imaginary conductivity and inner surface area 
for these samples.

We identified the following effects of surface roughness on the SIP response. First, we observed a shift of the 
primary polarization frequency to lower frequencies and lower magnitudes. The primary peak frequency is 
mainly controlled by the relaxation path length along the particle surface. This path length increases as the inten-
sity of the surface roughness increases. Second, we observed an increase of σ″ behind the primary peak up to the 
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formation of secondary polarization peaks (fractal models). These secondary polarizations occur at the smaller 
surface structures (Figure 9).

The SIP method is sensitive to inner surface roughness with characteristic surface structure lengths down to a 
few hundred nanometers. Thus, SIP has the potential to measure the inner surface roughness by interpreting the 
secondary polarizations caused by the rough inner surface. However, such an interpretation would be ambiguous 
because, for example, the SIP response of a suspension of similarly sized, rough particles cannot be distinguished 
from a suspension of particles following a particular particle size distribution.

Data Availability Statement
Scripts, numerical models, and data used for this manuscript are available at Zenodo (Zibulski & Klitzsch, 2022).
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