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Abstract
In this study, a new multilayer urban canopy parameterization for
high-resolution (∼1 km) atmospheric models using the nudging approach
to represent the impacts of urban canopies on airflow is presented. In our
parameterization, a nudging term is added to the momentum equations and
a source term to the turbulent kinetic energy equation to account for build-
ing effects. The challenge of this parameterization lies in defining appropriate
values for the nudging coefficient and the weighting function used to reflect
canopy effects. Values of both are derived and the parameterization developed
is implemented and tested for idealized cases in the Mesoscale Transport and
Stream model (METRAS). Comparison data are taken from obstacle-resolving
microscale model results. Results show that the parameterization using the
nudging approach can simulate aerodynamic effects induced within the canopy
by obstacles well, in terms of reduction of wind speeds and production of addi-
tional turbulent kinetic energy. Thus, models with existing nudging can use this
approach as an efficient and effective method to parameterize dynamic urban
canopy effects.
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1 INTRODUCTION

Information about flow characteristics within and above
urban canopies is required in various urban studies,
including urban air pollution modelling, urban wind
energy, urban planning, building design, and so forth. The

impacts of urban canopies on local climate include drag
induced by buildings with consequent loss of momen-
tum, enhancement of the conversion of mean kinetic
energy into turbulence kinetic energy, and modification
of heat fluxes due to shadowing and radiation-trapping
effects (Roth, 2000; Martilli et al., 2002; Garuma, 2018;
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Cheng and Schlünzen, 2023). These impacts may be
different at different vertical levels in the canopy. For
instance, due to the presence of obstacles, shadowing
effects within canopies are enhanced and more short-
wave radiation is reflected within canopies than above
canopies. In contrast, the aerodynamic effects of urban
canopies might be similar at different heights: for example,
the reduction in wind speed and turbulence intensity
occurs at ground level and within canopies (Cheng and
Schlünzen, 2023). However, the intensity depends on the
density of the buildings and their height.

To reproduce the aerodynamic effects of urban
canopies in high-resolution (∼1 km resolution) atmo-
spheric models, two approaches are commonly used.
The first approach is the roughness approach, which
uses a gridded roughness length and a displacement
height to represent the impacts of surface obstacles
on the mean airflow. The roughness-length approach
is based on Monin–Obukhov similarity theory, which
assumes stationary conditions and horizontal homogene-
ity. This approach is only implemented for the lowest
atmospheric model layer. The second approach is the
drag-force approach (Brown, 2000; Dupont et al., 2004).
In this approach, a term is added to the momentum
and turbulence kinetic energy (TKE) equations of atmo-
spheric models to account for obstacle drag. The approach
allows representation of urban canopy effects down to
the surface and up to the height of the highest obstacle
(Masson, 2006).

Both the roughness-length and drag-force approaches
have advantages: for instance, the roughness-length
approach is easy to implement and is generally used
in atmospheric models, while the drag-force approach
can capture the flow dynamics within canopies and
the drag term considers the height dependence of the
obstacles’ density. However, the different approaches
also have drawbacks. The main drawback of the
roughness-length approach is that it assumes a horizon-
tal surface homogeneity within the roughness sublayer
using the constant-flux layer theory, and this simplicity
sacrifices the realistic representation of atmospheric phe-
nomena in urban canopies. The roughness approach can
be satisfactory for modelling overall urban impacts on
the atmosphere, but is not sufficient for generating more
detailed meteorological fields, such as reproducing max-
imum observed TKE at the top of the urban canopy or
reproducing the roughness sublayer over urban surfaces
(Martilli et al., 2002; Otte et al., 2004; Garuma, 2018).
The main disadvantage of the drag-force approach is that
there is difficulty in determining the values of the drag
coefficient, especially for urban areas with highly complex
surface geometries (Brown, 2000; Masson, 2000). In addi-
tion, this approach requires more computational time

and more detailed information about urban morphology
(Grimmond et al., 2009).

To overcome the drawbacks of the roughness-length
and drag-force approaches, a novel approach based on the
nudging concept is developed in this study. The adjusted
nudging approach is designed to simply and efficiently rep-
resent the aerodynamic effects of urban surfaces on airflow
at multiple levels within and above canopies and accounts
for horizontal surface heterogeneity within the roughness
sublayer. Nudging or Newtonian relaxation is a common
method used in downscaling and data assimilation that
adjusts the model dynamically towards forcing data, fre-
quently towards observations. The basic idea of nudging
is to insert a nonphysical linear diffusion term (the nudg-
ing term) that is proportional to the model− observation
difference in the governing model equations so that the
model is “nudged” towards the observations (Hoke and
Anthes, 1976). Numerous studies have been presented
describing the benefits of using nudging to constrain the
evolution of a numerical model, but no studies have
explored the ability of nudging to be served as a canopy
parameterization.

The main advantage of using nudging as an urban
canopy parameterization is that this approach is easy
to implement and there is low computational demand.
Besides this, nudging as a downscaling and data assimi-
lation approach has already been implemented in many
mesoscale models: for example, the Consortium for
Small-scale Modeling (COSMO: Bollmeyer et al., 2015;
Schraff et al., 2016), Mesoscale Transport and Stream
model (METRAS: Dierer et al., 2005a; Dierer and
Schlünzen, 2005b; Ries et al., 2010), Fifth-Generation Penn
State/NCAR Mesoscale Model (MM5: Nielsen-Gammon
et al., 2007; Vinodkumar et al., 2008; Choi et al., 2009;
Park et al., 2011; Solman and Pessacg, 2012), and Weather
Research and Forecasting (WRF: Srinivas et al., 2010;
Liu et al., 2013; Bullock et al., 2014; Wang et al., 2018),
as well as global models: for example, the Community
Atmosphere Model version 6 (CAM6: Kruse et al., 2022),
ECHAM (Bauer and Wulfmeyer, 2009), and Icosahe-
dral Nonhydrostatic Weather and Climate Model (ICON:
Zängl et al., 2022). This means that no additional effort
is required to develop the approach itself; efforts are only
required to determine the value of the nudging term, with
which canopy effects are represented in models.

The article is organized as follows: Section 2 describes
the nudging approach and the numerical model used. In
Section 2.3 the new canopy parameterization based on
the nudging approach is introduced. Section 3 describes
the model setup for the test simulations, the comparison
datasets for evaluation, and the parameter adjustment. In
Section 4, simulation results of METRAS are compared
with an obstacle-resolving microscale model dataset, in
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particular with respect to mean wind speeds and turbu-
lence kinetic energy. Finally, conclusions are drawn in
Section 5.

2 METHODS

2.1 Nudging

Let 𝜓(x, t) be a prognostic variable to be nudged. Nudging
introduces an artificial tendency term, the so-called nudg-
ing term, into the tendency equations for the prognostic
variable. The general form for the predictive equation of
variable 𝜓(x, t) being nudged is written as follows:

𝜕

𝜕t
𝜓(x, t) = F(𝜓, x, t)−(x) ⋅ 𝛿 ⋅

[
𝜓(x, t) − 𝜓F(x, t)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Nudging term

, (1)

where 𝜓(x, t) is the predicted value computed by the
model, x is the time-independent spatial variable, t is the
time, F(𝜓, x, t) denotes the model’s physical forcing terms
(e.g. pressure gradient force, Coriolis force, advection,
etc.),(x) is the weighting function (nondimensional), 𝛿
is the nudging coefficient (s−1), and 𝜓F(x, t) is the forcing
data. The second term on the right side of the equation
denotes the nudging term, proportional to the difference
between the model state and the forcing data.

The nudging term is a nonphysical linear diffusion
term. Zou et al. (1992) mentioned that the nudging term
should be large enough to impact simulations, but still
be small enough that it will not completely dominate the
time tendency in the governing equation. According to
Stensrud and Bao (1992), the nudging term is roughly an
order of magnitude smaller than the other terms in the
governing equation. Bollmeyer et al. (2015) stated that the
nudging term remains smaller than the largest term of the
original model forcing.

Simulation results are highly dependent on the prod-
uct of nudging coefficient 𝛿 and weighting function(x).
If the model physical forcing terms F(𝜓, x, t) are neglected
and a weighting function(x) equal to 1 is assumed, then
the prognostic variable state 𝜓(x, t) relaxes exponentially
towards the forcing data 𝜓F(x, t) with an e-folding decay
rate of 1/𝛿. The decay rate describes how much time the
model needs until 𝜓(x, t) is adjusted by a factor of e to
𝜓

F(x, t). Relatively small values of 𝛿 induce more grad-
ual modification, which helps limit dynamic imbalances
that could cause an unstable solution. As the numeri-
cal stability criterion must be satisfied, 𝛿 should follow
𝛿Δt ≤ 1, where Δt is the time step (Stauffer et al., 1991).
Previous studies showed that typical values of 𝛿 are 10−4

to 10−3 s−1 for meteorological systems (Stauffer et al., 1991;

Choi et al., 2009; Korsholm et al., 2015). For example,
the default value for the nudging coefficient in MM5 and
WRF models is set to 3 × 10−4 s−1. The values vary depend-
ing on the nudged variables, that is, wind component,
temperature, surface pressure, vorticity, and so forth.

The weighting function (x) has a value between
0 and 1. Often nudging is only performed at the
model boundaries; however, the data (e.g., measurements)
might also be distributed unevenly in space (Koopmans
et al., 2023).(x) can be a spatial function, usually with a
maximum amplitude of unity where the distance between
the forcing data and nudging grid point is smallest,
decreasing to zero at other grid points (Brill et al., 1991).
For nesting, the values of(x)may be larger at the lateral
boundaries than in the inner of the model domain (Käll-
berg, 1977; Ries et al., 2010), and for initialization they may
be higher, reducing in time (Dierer et al., 2005a). Moreover,
the value of(x) can also depend on the time, quality, and
character as well as accuracy of the forcing data (Hoke and
Anthes, 1976; Brill et al., 1991; Stauffer et al., 1991).

The forcing data 𝜓
F(x, t) are external data sources

that are used to drive the numerical model. The forcing
data variables are consistent with the nudged variables,
such as wind component, temperature, pressure, humid-
ity, precipitation, concentrations, soil moisture, velocity
divergence, vorticity, and so forth. Depending on vari-
ous applications, nudging has been developed to include
different types of synoptic data as forcing data in numer-
ical weather prediction systems, such as in situ observa-
tions (Choi et al., 2009), radiosondes, radar, wind pro-
filer, satellite, and aircraft measurements (Schraff, 1997;
Nielsen-Gammon et al., 2007; Vinodkumar et al., 2008;
Srinivas et al., 2010; Liu et al., 2013), model results (Dierer
et al., 2005a), or reanalysis data (Dierer et al., 2005a; Bauer
and Wulfmeyer, 2009; Ries et al., 2010; Park et al., 2011;
Peings et al., 2012).

Nudging is commonly used in operational numerical
weather prediction because of its easy implementation
and low computational demands; however, the method
has its disadvantages. First, there is difficulty in deter-
mining the nudging coefficient and weighting function.
Usually, they are adjusted empirically in sensitivity exper-
iments and cannot be determined by using a theoreti-
cally optimal solution to the analysis problem through
a mathematic formalism (Bollmeyer et al., 2015). Sec-
ondly, correlations between observation and model errors
are not employed explicitly for this approach (Bauer and
Wulfmeyer, 2009). Thirdly, nudging does not conserve
energy. As a nonphysical linear diffusion term is added to
the governing equation, energy is lost at each time step
due to nudging. Keeping the difficulties in mind, nudging
may be employed for parameterizing building effects
(Section 2.3).
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2.2 METRAS model description

For the present study, nudging is extended to become the
new canopy parameterization (Section 2.3) implemented
in the METRAS model (Schlünzen, 1990). METRAS is a
three-dimensional, nonhydrostatic model on surface fitted
grids based on the conservation equations for momen-
tum, mass, and energy, simplified by using the Boussi-
nesq approximation, anelastic assumption, and may use
a domain-constant Coriolis parameter for a small model
domain (Schlünzen et al., 2018). METRAS solves the prog-
nostic equations for horizontal and vertical wind compo-
nents, temperature, specific humidity, cloud water, rain-
water content, and concentrations in flux form; density
and pressure are derived from diagnostic equations. The
model state variables are staggered using an Arakawa C-
grid (Arakawa and Lamb, 1977). Subgrid-scale land-use
representation and surface subgrid-scale characteristics
are considered in the model via flux aggregation (von
Salzen et al., 1996; Schlünzen and Katzfey, 2003). Urban
influences are considered using a slab model (roughness
approach) that shows similar results to the Building Effect
Parameterization (BEP) which is a complex canopy param-
eterization (Grawe et al., 2013b).

The subgrid-scale turbulent fluxes are parameter-
ized by a first-order closure which employs exchange
coefficients. The exchange coefficient below z = 10 m
(the lowest layer in METRAS) is calculated based on
Monin–Obukhov surface-layer similarity theory with
the near-surface turbulent fluxes calculated by the
flux-averaging method using the concept of blending
height (von Salzen et al., 1996). To determine the exchange
coefficient above z = 10 m, a Prandtl–Kolmogorov clo-
sure is used in the present applications, which uses a
mixing length and solves a prognostic equation for the
subgrid-scale turbulence kinetic energy.

As mentioned in Section 2.1, there are no specific
criteria on determining the value of nudging coeffi-
cient 𝛿; the proper values are usually found empiri-
cally through sensitivity tests. For a standard nudging in
METRAS to observations with a resolution of 1–5 km, 𝛿
is set to 10−3 s−1 (Davies, 1976; Källberg, 1977), which
is equivalent to a forcing time-scale of approximately
30 min at the boundaries. For an intensified nudging
during initialization, the value is increased to 10−2 s−1

(Ries et al., 2010), resulting in a characteristic time of
about 2 min at the boundaries. For nesting METRAS into
ECMWF reanalyses data, a decrease of (x) from one
at the open boundaries to zero in the inner part of the
model domain is implemented, so that METRAS results
are consistent with reanalysis data at the boundaries (Ries
et al., 2010).

2.3 Canopy parameterization by using
the nudging approach

In the current study, we focus on parameterizing aerody-
namic effects, that is, representing the reduction of mean
wind speeds and production of TKE due to the presence
of obstacles in urban areas. We assume that there are no
winds within buildings, which reflects the reality, and set
the forcing field 𝜓F(x, t) in Equation 1 to zero. Note that
this is different from obstacle-resolving models, which typ-
ically use a building-mask concept and set the prognostic
variable 𝜓(x, t) of the building-covered grid cells directly
to zero (Salim et al., 2018). Equation 1 is rewritten for
horizontal wind fields U(x, t) as follows:

𝜕

𝜕t
U(x, t) = F(U, x, t) −(x) ⋅ 𝛿 ⋅ U(x, t)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Nudging term

. (2)

METRAS is based on the Reynolds-averaged
Navier–Stokes equations for describing the flow evolu-
tion. Employing Equation 2, the prognostic equations of
horizontal wind components u and v are calculated as fol-
lows in flux form (Schlünzen et al., 2018), neglecting the
coordinate transformation for simplicity:

𝜕𝜌0𝛼
∗ ū

𝜕t
= − 𝜕

𝜕x
(ū𝜌0𝛼

∗ū) − 𝜕

𝜕y
(

v𝜌0𝛼
∗ū
)
− 𝜕

𝜕z
(

w𝜌0𝛼
∗ū
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Advection

−𝛼∗
(
𝜕p̃
𝜕x

)

⏟⏞⏞⏞⏟⏞⏞⏞⏟

Pressure-gradient force

+f𝜌0𝛼
∗(v − Vg

)
− f ′𝜌0𝛼

∗w
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Coriolis force

+ 𝜕

𝜕x

(
2𝜌0𝛼

∗Khm
𝜕ū
𝜕x

)
+ 𝜕

𝜕y

[
𝜌0𝛼

∗Khm

(
𝜕ū
𝜕y
+ 𝜕v

𝜕x

)]

+ 𝜕

𝜕z

[
𝜌0𝛼

∗Kvm

(
𝜕ū
𝜕z
+ 𝜕w

𝜕x

)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Force by turbulent fluxes

−(x, y, z)𝛿𝜌0𝛼
∗ū

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Nudging term

,

(3a)

𝜕𝜌0𝛼
∗v

𝜕t
= − 𝜕

𝜕x
(

ū𝜌0𝛼
∗v
)
− 𝜕

𝜕y
(

v𝜌0𝛼
∗v
)
− 𝜕

𝜕z
(

w𝜌0𝛼
∗v
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Advection

−𝛼∗
(
𝜕p̃
𝜕y

)

⏟⏞⏞⏞⏟⏞⏞⏞⏟

Pressure-gradient force

−f𝜌0𝛼
∗(u − Ug

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Coriolis force

+ 𝜕

𝜕x

[
𝜌0𝛼

∗Khm

(
𝜕ū
𝜕y
+ 𝜕v

𝜕x

)]
+ 𝜕

𝜕y

(
2𝜌0𝛼

∗Khm
𝜕v
𝜕y

)

+ 𝜕

𝜕z

[
𝜌0𝛼

∗Kvm

(
𝜕v
𝜕z
+ 𝜕w

𝜕y

)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Force by turbulent fluxes

−(x, y, z)𝛿𝜌0𝛼
∗v

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Nudging term

.

(3b)

Here u, v, and w are the Reynolds-averaged wind-velocity
components in the Cartesian coordinates, 𝜌0 is the
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basic-state part of the density, 𝛼∗ is the grid volume, p̃ is
the pressure deviation, and Ug and Vg are the horizontal
components of geostrophic wind, which result from the
balance between the Coriolis force and the large-scale
pressure gradient. The Coriolis parameters f = 2Ω sin𝜑
and f ′ = 2Ω cos𝜑 are calculated according to the local
geographic latitude 𝜑 and the angular velocity of the
Earth’s rotationΩ. Khm and Kvm denote the horizontal and
vertical exchange coefficient, respectively. The last term
on the right side of the equation is the nudging term, with
a negative sign representing the momentum sink.

In this study, 𝛿 in the nudging term is set to 5 ×
10−3 s−1, which is determined empirically (Section 3.4).
The corresponding time is similar to the value found for
flow adjustment from obstacle-resolving microscale model
results, which was determined to “a few minutes” by
Schlünzen et al. (2011). With the nudging coefficient 5 ×
10−3 s−1, wind speeds at obstacles are reduced, but the
nudging effects are not too strong and additionally depend
on the weighting function.

For the weighting function, we used two urban canopy
parameters: building surface fraction and building height.
Building surface fraction (bsf ) is defined as the ratio of
the building plan area to total plan area. In the current
study, bsf of each grid refers to the fraction of subgrid-scale
buildings within a grid volume. bsf is a three-dimensional
array and the values are between 0 and 1, varying with
space. The value of bsf for one grid column changes with
height and reaches zero above the height of the tallest
building. This means this approach is considered up to the
height of the highest obstacle at a grid cell at place (x, y)
starting from the surface. Then the weighting function is
defined as

(x, y, z) = bsf (x, y, z). (4)

Note that bsf (x, y, z) is zero without any buildings in
the corresponding grid volume (x, y, z). With the param-
eter bsf , nudging is only active for the grid cell with
subgrid-scale land-cover class belonging to an urban class,
and the grid cell is partially or totally covered by obstacles.

The nudging approach is similar to the drag-force
approach, which also adds a diffusion term to the right-
hand side of the conservation of momentum equation
(Brown, 2000; Martilli et al., 2002). As the diffusion
terms in both the nudging approach and the drag-force
approach contain height-dependent weighting functions,
both approaches are height-dependent from the ground
up to the highest building, and proportional to the frac-
tional area of the buildings. The difference between these
two approaches is that the former is a purely mathematical
linear diffusion term while the latter is a nonlinear term
(∼U2) and has physical meaning.

One challenge to overcome is that nudging does not
conserve energy, that is, kinetic energy is lost at each time
step by nudging winds. To overcome this problem, the lost
kinetic energy is firstly tracked and then added back to
the right-hand side of the subgrid-scale TKE equation as a
source term at each time step and each model level.

At the lowest atmospheric model level (z = 10 m), the
subgrid-scale TKE at time step n + 1, ēn+1, is calculated in
differential form as

ēn+1 =
(

un+1
∗

)2

c2
1

+Gn+1
⏟⏟⏟

Energy from the nudging terms

, (5a)

Gn+1 = 1
2
𝜌0𝛼

∗
{[(

ūn+1)2 +
(

vn+1
)2
+
(

wn+1
)2
]

−
[(

ūn)2 +
(

vn)2 +
(

wn)2
]}
, (5b)

where un+1
∗ is the friction velocity at time step n + 1, and c1

is the proportionality constant. ūn+1, vn+1, wn+1, and ūn, vn,
wn are the Reynolds-averaged wind-velocity components
at time step n + 1 and n, respectively. The original equation
ēn+1 = (un+1

∗ )2∕c2
1 ensures continuous fluxes (Schlünzen

et al., 2018). The additional Gn+1 term is the energy result-
ing from the nudging term, calculated by Equation 5b,
at time step n + 1, which is the kinetic energy change
between time steps n + 1 and n. It is added to the TKE
equation, thus the G term represents the energy conver-
sion of mean kinetic energy into turbulence kinetic energy
ē generated by the interactions between buildings and the
airflow.

Above z = 10 m, where the first model level is located,
the G term is added to the prognostic equation of the
subgrid-scale TKE as follows:
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Energy from the nudging terms
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Here ē = 0.5
∑3

i=1u′iu
′
i is the mean TKE, i and 𝑗 are indices

taking values of 1, 2, and 3 for the three Cartesian coordi-
nates (x, y, z), respectively; Ki𝑗 is the turbulent exchange
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coefficient for momentum in the x𝑗 direction;

Si𝑗 =
𝜕ūi

𝜕x𝑗
+
𝜕ū𝑗
𝜕xi

,

𝛿i𝑗 denotes the Kronecker delta; K3,𝜒 is the vertical
exchange coefficient for the scalar variable𝜒 . K3,𝜒 depends
on the mixing length, the Richardson number, and
TKE. Γq and Γ𝜃 are the potential temperature coun-
tergradient and humidity countergradient terms, respec-
tively, active for convective atmospheric conditions (Lüp-
kes and Schlünzen, 1996). The term G represents the
canopy-induced TKE source.

Thus, parameterization using a nudging approach con-
sists of three main steps: (1) nudge winds; (2) track the
lost kinetic energy due to wind-nudging; (3) add the lost
kinetic energy as a source term to the turbulence kinetic
energy equation. A workflow is provided in Figure S1 in
the Supporting Information.

3 COMPARISON DATA AND
MODEL SETUP

3.1 Meteorological microscale
comparison data

To evaluate the urban canopy parameterization effects,
observation data from meteorological stations are usu-
ally used: for example, the Basel Urban Boundary Layer
Experiment (BUBBLE) microclimate field campaign con-
ducted in the city of Basel (Christen and Vogt, 2004;
Rotach et al., 2005; Moradi et al., 2021). However, for the
current assessment, spatial average profiles over differ-
ent types of canopies were needed. In this context, the
data of a Reynolds-averaged Navier–Stokes (RANS) based
obstacle-resolving microscale model, which captures well
the detailed characteristics of urban winds and turbulent
flows at multiple levels above and within urban canopies,
provide an optimal choice to be used for the validation
datasets. In addition, previous studies showed that RANS
models can simulate urban flow fields accurately and
are commonly used for microscale applications (Hertwig
et al., 2012; Grawe et al., 2013a). Thus, in the current
study, the published simulation results of the Microscale
Transport and Stream model (MITRAS) are used for model
evaluation.

MITRAS is the sister model of METRAS. It is a
three-dimensional, nonhydrostatic, prognostic, numerical
model for wind, temperature, and humidity (Schlünzen
et al., 2003; Grawe et al., 2013a; Salim et al., 2018).
Obstacles (buildings, trees, etc.) are resolved explicitly in
MITRAS using the building-mask concept. MITRAS has

been developed based on METRAS, and both models share
many properties and parameterizations. For example,
Monin–Obukhov similarity theory is assumed in the low-
est model layer, and exchange coefficients above the low-
est model layer are calculated using Prandtl–Kolmogorov
closure.

The simulated microscale domain is described in
Section 3.2. Vertically, the microscale model domain has
91 levels reaching 8,587 m above ground, with the lowest
model level at 2.5 m above ground. The vertical resolution
increases above 150 m nonequidistantly from 5 m to 200 m
at the top of the model domain. Horizontal wind, vertical
wind, and TKE are calculated as influenced by obstacles.
Results are stored for all grid cells every 5 min (Voss, 2023)
and are analysed as given in Section 4.

3.2 Building data for the
parameterization

The parameterization is tested for the central urban area
of Hamburg (Germany). The 3D city model LoD2 (Level of
Detail 2) Hamburg, which contains building information,
serves as input data. A microscale model domain cover-
ing 2.88 km2 in the city centre of Hamburg is used. This
domain includes different urban complexity, in terms of
building-height variability, elements of urban composition
(e.g., Elbe River, Inner Alster Lake), and street patterns
(Salim et al., 2015). It has 730 × 730 grid cells with a hor-
izontal resolution of 2.5 m. Buildings in the domain are
between 10 m (about 2.0% of all buildings) and 140 m high,
and the average value of the building height, Hr, is 35.24 m.

To understand better the spatial distribution of build-
ing coverage over the model domain, we separated the
centre area of the model domain (hereafter Di, note that
Di has 600 × 600 grid cells) into nine equally sized sub-
domains (hereafter Di1–Di9), each having 200 × 200 grid
cells and covering an area of 0.25 km2 (Figure 1). We then
calculated the building surface fraction for each subdo-
main and at different height intervals: 0–20, 20–40, 40–60,
60–80 m. These four height intervals correspond to the first
four vertical layers in METRAS (lower to upper level of
the corresponding layer). As the building surface fraction,
information from Di is used to determine the weighting
function for the nudging simulation in METRAS.

The distributions of building heights and building sur-
face fractions in the nine subdomains show both clear
differences and similarities (Figure 2). For example, Di8,
which is mostly covered by Inner Alster Lake (Figure 1),
has the lowest building coverage (Figure 2). Di4–Di7
are covered by higher and denser buildings compared
with other subdomains. The average building heights of
the nine subdomains are in the range 31.6 m (Di1) to
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F I G U R E 1 Spatial distribution of building heights in the
microscale model domain and schematic illustration of centre area
(Di) division into nine subdomains (Di1–Di9). The whole domain Di
has a 2.5-m horizontal resolution and covers 2.88 km2. Each
subdomain has 200 × 200 grids and covers 0.25 km2. Grey spaces
denote water, sealed, or other open areas that are not covered by
obstacles. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 2 Stacked bar chart of building surface fraction at
different height levels for each subdomain Di1–Di9 and for the
microscale model domain Di. Choice of height level is based on the
vertical layers in mesoscale model METRAS. [Colour figure can be
viewed at wileyonlinelibrary.com]

41.2 m (Di6). The highest building with 140 m is located
in Di2. Note that orography is neglected for the present
study.

The simulations were carried out for idealized mete-
orological conditions (Voss, 2023) summarized in Table 1
(column MITRAS). A diurnal cycle was not simulated,
and thus only the dynamic effect of the buildings is stud-
ied. Wind fields and turbulence kinetic energy values were
analysed for the evaluation (Section 4); these are available
at a 2.5-m horizontal and 5-m vertical resolution within
the canopy layer.

3.3 Mesoscale model setup

Based on the microscale model domain Di, we developed
a mesoscale model domain (hereafter De) for the model
METRAS. The domain De covers 15 × 15 km2 with 30 ×
30 grid cells and has a horizontal resolution of 500 m. The
nine grid cells (De1–De9) located in the domain centre
represent the nine subdomains Di1–Di9 (Figure 3). The
vertical resolution is 20 m near the surface, with the low-
est model level at 10 m, and increases above 80 m from
20 to 1,000 m vertical resolution at the top of the model
domain at 12 km height. “Grass” fully covers the whole
domain, except for the nine urbanized centre grid cells.
As subgrid-scale land cover is allowed in METRAS, the
nine centre grid cells are partially covered by the “compact
sealed urban” and “grass” surface land cover classes. The
subgrid-scale surface cover fraction for the urban class is
determined using the bsf values from 0–20 m (Figure 2).
The values for weighting functions in the nudging term for
each urban grid cell at each vertical level in De are identi-
fied using bsf calculated from Di (Figure 3). The urbanized
part in the model domain is admittedly very small. This
size was deliberately chosen to assess whether the present
nudging approach influences the model results sufficiently
towards a more realistic simulation of the wind field within
the urban canopy, even if the model grid size is coarse
compared with the extension of the urban area.

As the MITRAS simulation was carried out for ideal-
ized conditions (Voss, 2023), the METRAS simulations are
carried out for the same idealized meteorological condi-
tions. The values of input parameters are listed in Table 1.
The ambient temperature is set to 283 K at the surface and
changes with height according to the potential temper-
ature gradient of 0.005 K⋅m−1, which represents a stable
atmospheric stratification. The diurnal cycle for temper-
ature is not taken into account to study purely aerody-
namic effects and their changes induced by nudging. Both
simulations start at 04:00 am local standard time (LST);
MITRAS is integrated for 70 min, while METRAS is inte-
grated for 30 hr to assess possible longer term influences
of the nudging. For comparison analysis, only the out-
puts from 04:00–04:45 am LST are presented, since results
change very little in the remaining time (not shown).

3.4 Sensitivity study of nudging
coefficient 𝜹

Values of the nudging coefficient 𝛿 usually have to be
selected empirically. We have conducted sensitivity exper-
iments to assess how sensitive simulation results are to
changes of the nudging coefficient. 𝛿 was set to 5 × 10−1,

http://wileyonlinelibrary.com
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T A B L E 1 Input parameters for this study, meteorological conditions in MITRAS and METRAS simulations.

Variables MITRAS METRAS

Simulation time 04:00–05:10 am LST 04:00 am LST–10:00 am LST next day

Undisturbed wind speed from west at the model top 3.0 m⋅s−1

Temperature at the surface 283 K

Potential temperature gradient 0.005 K⋅m−1

Surface pressure 1,013 hPa

Diurnal cycle No

Abbreviation: LST, local standard time.

F I G U R E 3 (a) 3D illustration and (b) horizontal cross-section of the mesoscale model domain De. The building area covers 3 × 3 grid
cells, grass covers 30 × 30 grid cells. [Colour figure can be viewed at wileyonlinelibrary.com]

5 × 10−2, 5 × 10−3, and 5 × 10−4 s−1. Considering the aver-
age value of bsf over the nine urban grid cells from 0–20 m
of 0.3551 (Figure 2, column Di), the characteristic time
1/(𝛿 ⋅ bsf ) in the urban grid cells for each case is about 5 s
for 𝛿 = 5 × 10−1 s−1, 1 min for 𝛿 = 5 × 10−2 s−1, 10 min for
𝛿 = 5 × 10−3 s−1, and 100 min for 𝛿 = 5 × 10−4 s−1.

Figure 4 shows results for the temporal development
of the spatially averaged wind profiles over the nine urban
grid cells (De1–De9) in METRAS. For 𝛿 = 5 × 10−1 and
5 × 10−2 s−1, in less than 5 min wind profiles are close to a
steady state; however, there is almost no wind in the urban
canopy layer, which indicates that the nudging effects are
too strong (Figure 4a,b). Considering the average bsf of
below 36%, light winds are to be expected in the canopy.
For 𝛿 = 5 × 10−3 s−1, the wind profiles are relatively steady
within about 10 minutes as expected, and the nudging
effects are neither too strong nor too weak (Figure 4c). In
addition, the value 5 × 10−3 s−1 also reflects the adjustment
time of about 4 min obtained in the obstacle-resolving
microscale model for the wind (and temperature) pro-
files, as shown in figure 4 of Schlünzen et al. (2011). For
𝛿 = 5 × 10−4 s−1, the wind profile after 45 min is still almost
the same as the basic state, which means nudging has

nearly no impact on wind velocities (Figure 4d). Thus, 𝛿 is
set to 5 × 10−3 s−1.

4 COMPARISON BETWEEN
METRAS AND MITRAS DATA

In this section, a comparison between METRAS model
results (with and without nudging) and MITRAS data is
made for wind speeds and turbulence kinetic energy. We
first compare results for the whole urban area (De and
Di), then we go into details for each urban subdomain
(De1–De9 and Di1–Di9).

4.1 Results over the whole urban area

Figure 5a presents a comparison between the vertical
profiles of horizontally averaged wind speeds over the
nine urban grid cells obtained from the METRAS run
with nudging (METRAS-nud) and the average profile over
the nine subdomains obtained from the MITRAS run
(MITRAS). Results of the METRAS run but without using

http://wileyonlinelibrary.com
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F I G U R E 4 Temporal
development of spatially averaged wind
profiles over the nine urban grids
(De1–De9) using METRAS for an
integration starting at 04:00 am LST
(basic state) and encompassing the
following 45 min. Simulations are
carried out for the same initial
meteorological conditions but with
different values of the nudging
coefficient: (a) 𝛿 = 5 × 10−1, (b)
𝛿 = 5 × 10−2, (c) 𝛿 = 5 × 10−3, and (d)
𝛿 = 5 × 10−4 s−1. [Colour figure can be
viewed at wileyonlinelibrary.com]

the nudging approach (METRAS-nonud) are added for
comparison. Note that, even though there are more vertical
levels in the MITRAS model domain than in the METRAS
model domain, MITRAS simulation results are chosen
only at the mesoscale vertical layers for this comparison
analysis, that is, 10, 30, 50, 70, 90, 112, 138, 168, 204,
247, 300 m. If the microscale vertical level is not consis-
tent with the mesoscale vertical level, nearest-neighbour
interpolation is used.

Figure 5a shows that wind profiles obtained from
both METRAS-nud and METRAS-nonud peak at 90 m
high. From 10 to 70 m, wind speeds of METRAS-nud and
MITRAS show good agreement, suggesting that the nudg-
ing approach performs well in representing wind-blocking

effects in the canopy layers if appropriate values are
used for the forcing field (here: zero wind speed) and
the weighting function. Compared with METRAS-nonud,
wind speeds of METRAS-nud and MITRAS are approxi-
mately 30% lower.

At the levels above 90 m (z > 2.5Hr, note that Hr
is the average building height), vertical profiles of both
METRAS-nud and METRAS-nonud runs overlap almost
completely, indicating that the influences of obstacles on
the mean flow apply only up to the level z ≈ 2.5Hr and
the airflow is fully adjusted to the underlying surface
above this height. This is consistent with a previous study
in which horizontal homogeneity of the urban canopy
flow is achieved at 2–5 times the average building height

http://wileyonlinelibrary.com
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F I G U R E 5 Vertical profiles of
horizontally averaged (a) horizontal
wind velocity ff and (b) subgrid-scale
TKE (tke). ff is normalized by the
undisturbed wind speed (Table 1). The
blue line represents the METRAS
simulation with nudging
(METRAS-nud), the yellow line the
METRAS simulation without nudging
(METRAS-nonud), and the black line
the MITRAS simulation. For TKE, the
black line represents the total TKE
obtained from the MITRAS simulation
result (MITRAS (total tke)), the grey
line subgrid-scale TKE obtained from
the MITRAS simulation result
(MITRAS (sgs tke)). [Colour figure can
be viewed at wileyonlinelibrary.com]

(Raupach et al., 1991). However, these two vertical profiles
above 90 m are quite different from the MITRAS run, that
is, wind speeds of METRAS-nud and METRAS-nonud are
lower than those of MITRAS. The reason for this is that
buildings are resolved explicitly in the microscale model
MITRAS and vortices caused by buildings are stronger
in MITRAS than METRAS. Moreover, besides horizontal
transport, large momentum transport from lower to upper
levels and vice versa occurs in MITRAS. That is, updraft
and downdraft vertical velocities are higher in MITRAS
than METRAS-nud and METRAS-nonud (Figure S2 in the
Supporting Information).

For comparing TKE with METRAS and MITRAS,
two terms are distinguished: the resolved TKE and the
subgrid-scale TKE. The resolved TKE (TKERES) is calcu-
lated from the output velocity fields at each microscale
model grid point i, given by Equation 7:

TKERES(t) = 1
n

∑n
i=1

ûi(t)2+v̂i(t)2+ŵi(t)2

2

= 1
n

∑n
i=1
(ūi(t)−⟨ū(t)⟩)2+(vi(t)−⟨v(t)⟩)2+(wi(t)−⟨w(t)⟩)2

2
,

(7)

where the resolved velocity deviations ûi(t), v̂i(t), ŵi(t), are
calculated at each grid point i as the differences between
the instantaneous velocities at this grid point, ūi(t), vi(t),
wi(t) (note that the overbars here refer to the Reynolds
averaging as in Equations 3, 5, 6) and the horizontally
averaged velocities, ⟨ūi(t)⟩, ⟨vi(t)⟩, ⟨wi(t)⟩, respectively.

The parameterized subgrid-scale TKE (TKESGS) is cal-
culated directly by the corresponding model. As men-
tioned above, for the current study, Prandtl–Kolmogorov
closure solving a prognostic equation for TKESGS is
employed in both METRAS and MITRAS models. The sum

of TKERES and TKESGS is the total TKE (TKETOT):

TKETOT = TKERES + TKESGS. (8)

Figure 6 illustrates the relationship between the TKE
for a mesoscale grid and the TKE for a microscale grid sys-
tem. For a single mesoscale grid (Figure 6a), the TKE of
the eddies smaller than the model grid size is TKESGS (blue
arrows). Assuming that the mesoscale grid consists of 4 × 4
microscale grid cells (Figure 6b), the amount of TKESGS for
a single mesoscale grid should be approximately equal to
TKETOT of the corresponding 4 × 4 microscale grids, which
is the sum of TKERES and the averaged TKESGS over all 4 ×
4 microscale grids. In the present study, TKESGS obtained
from METRAS and MITRAS is averaged over the domains
De and Di, respectively. As the nine urban grid cells in
the mesoscale model domain De represent the nine subdo-
mains of Di, the averaged TKESGS over the nine urban grid
cells in De should be approximately equal to the averaged
TKETOT over the whole domain Di (note that for METRAS
nine grid cells are in the domain De, while for MITRAS
there are 360,000 cells in the domain Di).

Figure 5b shows vertical profiles of the horizon-
tally averaged TKESGS obtained from the METRAS-nud
and METRAS-nonud runs, and the TKESGS and TKETOT
obtained from the MITRAS run. It was found that sim-
ulated TKESGS in both METRAS-nud and MITRAS runs
reaches maximum values at 50 m high (z ≈ 1.4Hr, just
above the mean building height) and reaches zero at
about 138 m high (z ≈ 3.9Hr). This is similar to the results
obtained in a wind-tunnel study by Kastner-Klein and
Rotach (2004), who modelled and measured turbulence
structures within and above a realistic urban canopy with

http://wileyonlinelibrary.com


CHENG et al. 2627

F I G U R E 6 Schematic illustration of the relationship between the subgrid-scale TKE of (a) a mesoscale grid and (b–d) the total TKE of
microscale grids assuming that the mesoscale grid consists of 4 × 4 microscale grid cells. The yellow arrows denote large eddies that can be
resolved by the microscale model. The blue arrows in the mesoscale and microscale grids denote small eddies that cannot be resolved directly
in mesoscale and microscale models, respectively. [Colour figure can be viewed at wileyonlinelibrary.com]

highly variable building heights and shapes and found that
the maximum values of TKE occurred at 1–1.5 times the
average roof level.

At 10 m above ground, the TKESGS of METRAS-nud
is slightly lower than that of METRAS-nonud. The rea-
son for this is that TKESGS is related to wind speed, and
wind speeds of METRAS-nud at 10 m are reduced due to
nudging. At 10–112 m, TKESGS of METRAS-nud is above
the values achieved without nudging (METRAS-nonud).
Compared with TKESGS of the MITRAS run, more
TKESGS is obtained from the METRAS-nud run at 50 m
above ground, which indicates that the parameteriza-
tion induces some of the canopy-induced TKE. However,
above 50 m high, the TKESGS of METRAS-nud is below
that of MITRAS. In addition, when comparing TKESGS of
METRAS-nud with TKETOT obtained from the MITRAS
run, the latter has much higher values than the former
within and above canopies. This indicates that the nudging
parameterization underestimates canopy-induced TKE
and an extra source of TKE is required. Two main rea-
sons could cause this underestimation. First, the resolved
buildings in MITRAS cause more surround-building ver-
tical vortices, thus more TKE is produced. Secondly,
the subgrid-scale urban spatial heterogeneity including
building-height variation and street patterns is not rep-
resented in the nudging parameterization used for the
mesoscale model domain. The turbulence caused by the
complex buildings in the airflow is thus only partly repre-
sented by the nudging approach, where the kinetic energy
lost by nudging is added to TKESGS.

4.2 The impacts of building surface
fraction on airflow

To study the effects of building surface fraction on air-
flow better, we categorized the subdomains into three

groups based on the values of bsf at heights of 0–20 m (see
Figure 2): high bsf (Di7, Di6, Di4, and Di5), middle bsf (Di2
and Di1), and low bsf (Di9, Di3, and Di8). Figure 7 shows
vertical profiles of horizontally averaged wind speeds over
each subdomain in Di from the MITRAS run (Figure 7a)
and for the same domain from the METRAS-nud run
(Figure 7b) at all corresponding grid levels. Results from
the MITRAS run show that averaged wind speeds of each
subdomain for lower altitudes below ∼ 50 m are related
to the building surface fraction, while wind speeds of the
high bsf group (Di7, Di6, Di4, Di5) are lower than those
of the middle (Di2 and Di1) and low bsf (Di9, Di3, and
Di8) groups. In general, higher bsf results in lower wind
speeds within the canopy (Figure 7a). However, due to the
vertical momentum transport (Figure S3 in the Support-
ing Information), this signal is not pronounced at higher
latitudes above ∼ 50 m. In contrast to the high spatial
variation in wind speeds of the nine subdomains from
the microscale model results, Figure 7b shows that wind
speeds of the corresponding nine mesoscale urban grids
in De do not vary greatly. The reason for that might be
that all nine urban grid cells are closely located and the
effects from neighbouring grids are strong. For example,
Di5 belongs to the high bsf group but has the lowest wind
speeds, due to its location in the centre of the domain.
With an urban area of 3 × 3 grid points, the relatively
small spatial differences are not surprising, keeping in
mind that “… 5–8 grid lengths is the scale of the atmo-
spheric process that is captured by a model” (WMO, 2023).
Thus, the effect of flow reduction is represented, but,
as to be expected, the heterogeneity cannot be repro-
duced.

Figure 8 shows the vertical profiles of the horizon-
tally averaged TKESGS over the nine subdomains in Di
and TKESGS of each corresponding urban grid cell De.
It is evident that the profiles are influenced by build-
ing surface fraction (Figure 8a). Di6 with the highest bsf
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F I G U R E 7 Vertical profiles of horizontally averaged wind velocity (ff ) for each subdomain from (a) MITRAS (Di) and (b) METRAS
(De). ff is normalized by the wind speeds in the free atmosphere. Labels are sorted according to the building surface fraction at heights of
0–20 m for each subdomain in Di, from highest (Di7) to lowest (Di8). [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 8 Vertical profiles of horizontally averaged subgrid-scale turbulent kinetic energy (sgs tke) for each subdomain from (a)
MITRAS (Di) and (b) METRAS (De). Labels are sorted according to the building surface fraction at heights of 0–20 m for each subdomain in
Di, from highest (Di7) to lowest (Di8). [Colour figure can be viewed at wileyonlinelibrary.com]

(0.51) at 20–40 m above ground has higher TKESGS com-
pared with other subdomains (Figure 8a,b). In addition,
it is worth noting that TKESGS from the MITRAS simula-
tion reaches a maximum between 30 and 50 m (between
about 1.0 and 1.5 z∕Hr). However, this pattern cannot be
seen in Figure 8b, due to the coarser vertical resolution in
METRAS.

Moreover, the MITRAS result (Figures 7a and 8a)
shows that the impacts of urban heterogeneity on the

mean flow and turbulence kinetic energy distributions
are clearly noticeable up to about 168 m (z ≈ 5Hr),
which is higher than z ≈ 3Hr mentioned in the study
by Kastner-Klein and Rotach (2004). Above 168 m, the
spatial variation in mean velocity and turbulence kinetic
energy is less than 15% and 2%, respectively. However, the
METRAS-nud result (Figures 7b and 8b) shows that the
influences of urban heterogeneity are pronounced only up
to 90 m (z ≈ 2.5Hr).

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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5 DISCUSSION AND
CONCLUSIONS

It is important to take canopy-layer influences on wind
and turbulence into account when simulating meteoro-
logical fields in urban areas with mesoscale models. The
main objective of our study is to show the possibilities
and limitations of using the nudging approach as an urban
canopy parameterization. The parameterization is novel in
terms of its simplicity and efficiency to represent the effects
of urban canopies on airflow, that is, the canopy-induced
momentum sink, and partly provides a turbulence kinetic
energy source. The simplicity of this parameterization
allows it to be tested, evaluated, and then implemented fur-
ther in other high-resolution atmospheric models, such as
COSMO, WRF, MM5, and so forth.

To overcome one of the main drawbacks of nudg-
ing, that it does not conserve energy, we track the
lost kinetic energy and add the amount of energy into
the TKE equation as a source term. It is shown that
TKE production is represented. However, TKE is still
underestimated compared with the model results of the
obstacle-resolving model MITRAS. This suggests that
an explicit obstacle-induced source of TKE should be
included in addition to the conversion of mean kinetic
energy to TKE, which, however, would depart from the
concept of a simple nudging parameterization and might
make it less attractive for use as a simple canopy param-
eterization in mesoscale and global scale models. In addi-
tion, results also show that the vertical turbulent transport
is not reflected well by the parameterization. We suggest
that the relevance of enhanced vertical transport needs to
be assessed in evaluations for realistic cases (e.g., hind-
cast of an urban heat island situation for a moderate wind
situation and comparison with measurements).

One particular challenge in urban modelling studies
is to deal with the relationship between the real complex-
ity of urban morphology and the simplified morphology
adopted in the parameterization (Martilli et al., 2015). Two
parameters, namely building height and building surface
fraction, are used in the current parameterization. Com-
parison results show that the parameterization using these
two parameters can represent aerodynamic effects well.
However, the underestimation of TKE might be related
to the simplification of urban morphology. At this point,
more parameters may be needed to define the simplified
morphology. Ching et al. (2018) have summarized the com-
mon urban canopy parameters required for urban climate
modelling, such as building frontal density, vegetation
fraction, street orientations, and so forth. Nowadays there
are more high-resolution urban morphological datasets
available for many cities in the world. For example, the
Urban Atlas data developed by European Environment

Agency (EEA) (2018) contains building-height informa-
tion with 10-m resolution and street tree information in
major cities in Europe. In addition, the Local Climate
Zone (LCZ) characterizes urban landscapes by a range
of urban morphological and physical parameters (Stew-
art and Oke, 2012). Using the LCZ classification frame-
work, the World Urban Database and Access Portal Tools
(WUDAPT) project has characterized many cities around
the world in a consistent way and developed the cor-
responding LCZ maps (Ching et al., 2018). A study by
Demuzere et al. (2022) has developed the global LCZ
dataset with a resolution of 100 m. Researchers need to
investigate, using obstacle-resolving models, what influ-
ence the class ranges have on spatially averaged microscale
model results and whether this is comparable with the
simplifications inherent in the current simple nudging
approach with TKE source.

For further implementations of the parameterization
in various models, it might be necessary to verify the char-
acteristic time 1/(𝛿 ⋅ bsf ) and ensure numerical stability
for the time steps the model uses (Section 2.1). For most
high-resolution models, the model time step has a range of
several tens of seconds to several minutes, depending on
the horizontal grid resolution. For example, the time step
(in seconds) for WRF is usually set to approximately six
times the horizontal grid resolution (in km); the time step
for MM5 is approximately three times the grid resolution
(Skamarock et al., 2019), and the time step for METRAS
is varied but less than one minute. With these time steps,
the characteristic time of nudging should be set accord-
ingly to this range, that is, several minutes. This guarantees
that model states are nudged to forcing fields within just
a few time steps. Thus, the nudging coefficient 𝛿 = 5 ×
10−3 s−1 used in this study (corresponding to a charac-
teristic time of, e.g., 3 min for a 100% building-covered
model domain) can be used generally for different stud-
ies on various models. The value of the weighting func-
tion, which is the height-dependent building surface
fraction (bsf ), needs to be adjusted for different urban
areas.

Future research might consider possible developments
of the nudging coefficient. The nudging term in this
study is linear to the wind speed itself. In contrast to
that, the traditional drag-force approach (Brown, 2000;
Dupont et al., 2004) parameterizes wind reductions by
using the drag term with a form of the square of the wind
speed, which is physically more correct. Theoretically,
one could also use a nudging coefficient dependent on
wind speed. We did not try this approach, which demands
time-dependent calculation of the coefficient, because it
might hinder the nudging implementation as parameter-
ization of urban effects into nonurbanized mesoscale and
global-scale models.
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From the thermodynamic perspective, cities exert great
influence on the local and regional weather and climate,
such as the urban heat island (UHI) phenomenon, anthro-
pogenic heat emissions, radiation trapping due to obsta-
cles, and so forth. It is known that the UHI intensity
depends on wind speed and is smaller for larger wind
speeds (Schlünzen et al., 2010). In the next step, the influ-
ence of the current parameterization on thermodynamic
effects of cities, for example, UHI, will be investigated
in realistic cases including the calculation of tempera-
ture, relative humidity, clouds, rain, and diurnal cycles in
the simulations. Moreover, further research can investi-
gate whether nudging of temperature and humidity might
improve modelling results.
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