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1 | INTRODUCTION

Valerie Hase?

Abstract

Computational methods, in particular text-as-data or Natural Language
Processing (NLP) approaches, have become popular to study climate change
communication as a global and large-scale phenomenon. Scholars have dis-
cussed opportunities and challenges of these methods for climate change com-
munication, with some proponents and critics taking strong positions, either
embracing the potential of computational methods or critically questioning
their value. Mirroring developments in the broader social scientific debate, we
aim to bring both sides together by proposing a reflexive, integrative approach
for computational research on climate change communication: We reflect on
strengths (e.g., making data big and small, nowcasting observations) and
weaknesses (e.g., introducing empiricist epistemologies, ignoring biases) of
computational approaches. Moreover, we also provide concrete and construc-
tive guidance on when and how to integrate (or not integrate) these methods
based on theoretical considerations. We thereby understand computational
methods as part of an ever-increasing, diverse toolbox for analyzing climate

change communication.
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The Social Status of Climate Change Knowledge > Knowledge and Practice
The Social Status of Climate Change Knowledge > Sociology/Anthropology
of Climate Knowledge
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Communication about climate change is crucial for developing and implementing societal responses to anthropogenic
global warming (Moser, 2010, 2016). Stakeholders and decision-makers from within and beyond science have started
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communicating on the issue (Schlichting, 2013; Segerberg, 2017; Walter et al., 2019) within an increasingly diversified
media ecosystem that now includes (online) news media, social media, instant messengers, and so on (Schifer,
2012, 2017). Correspondingly, scholarship on climate change communication has grown considerably (Comfort &
Park, 2018). A notable trend in research on communication about climate change is the increasing use of computa-
tional methods, in particular text-as-data or Natural Language Processing (NLP) approaches, often on large-scale
corpora of text sometimes called “big data” (Hase & Schifer, 2023; Koteyko et al., 2015). Computational methods
and “big data” are nothing new in the broader field of climate science, of course: Scholars from STEM disciplines
have long relied on simulation models and large-scale geospatial data to model climate change, its causes, and char-
acteristics (Giorgi & Mearns, 1991; Miiller, 2010), including societal and sociopolitical impacts like migration pat-
terns (Lu et al., 2016).

In recent years, however, computational methods—automated approaches to collect, structure, and analyze data,
from automated content analysis over social network analysis to agent-based simulations—have also reached the social
science domain within climate research. Similar to other fields, this has fostered the emergence of Computational Social
Science (CSS), a strand of research that uses computational methods to study social phenomena (Lazer et al., 2020).
CSS frequently relies on “big data” often large, granular, and unstructured data that is created in real-time
(Kitchin, 2014) and collected via computational methods. Computational methods, however, come not only with oppor-
tunities but also with challenges, such as biases related to data acquisition and analysis (Boyd & Crawford, 2012;
Mahrt & Scharkow, 2013; Ruths & Pfeffer, 2014).

These opportunities and challenges have led to debates about the use of computational methods in social science
more generally (Lazer et al., 2020; Wagner et al., 2021) and for analyzing communication about climate change in par-
ticular (for an overview, see Hase & Schifer, 2023). As communication scholars, we focus on a specific strand of this
discussion: the analysis of large-scale text corpora from social media platforms (Pearce et al., 2019) or news media
(Grundmann & Scott, 2014; Hase et al., 2021; Kirilenko & Stepchenkova, 2012) via automated content analysis. In the
field of climate change communication, NLP approaches have recently faced some criticism (Grundmann, 2021), often
with a focus on specific questions and studies (Lahsen, 2021). Taking these discussions as a starting point, we
(@) critically reflect upon strengths and weakness of NLP approaches beyond single studies or questions, and (b), by rely-
ing on theory, provide concrete and constructive guidance on when and how to (not) integrate these methods. Similar to
discussions in climate science (Faghmous & Kumar, 2014; Kniisel et al., 2019), we argue for an integrative, reflexive
approach to propel computational research on climate change communication forward.

2 | COMPUTATIONAL METHODS FOR THE ANALYSIS OF CLIMATE
CHANGE COMMUNICATION: A BRIEF OVERVIEW

In recent years, computational methods have increasingly gained traction in research on climate change communica-
tion (Hase & Schifer, 2023; Koteyko et al., 2015)—partly because they lend themselves well to cross-national and longi-
tudinal studies focused on assessing societal responses to climate change as a development that occurs on large scales
both temporally and spatially (IPCC, 2021). On the one hand, this concerns the use of these methods for data retrieval,
for instance scholars acquiring “big data” via crawling, scraping, or by relying on Application Programming Interfaces
(APIs). Computational methods have been used ...

« to collect data on how organizational and individual, professional and non-professional communicators position them-
selves towards climate change by using transcripts of national parliamentary debates (Majdik, 2019), crawling
websites and social media accounts of influential stakeholders (Adam et al., 2020), or scraping websites hosting pol-
icy documents (Biesbroek et al., 2020);

« to collect data on how public communication about climate change is structured by using programming scripts to
access databases on news coverage (Buckingham et al., 2020) or social media platforms (Pearce et al., 2014);

« or to collect data on audience behavior towards climate change by relying on Google search trends (Le Nghiem
et al., 2016), individual users' social media content (Williams et al., 2015), or digital traces from web tracking (Yan
etal., 2021).
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On the other hand, and often connectedly, scholars have used computational methods for data analysis. This
includes variants of automated content analysis including dictionary-based approaches, co-occurrence analysis, or (un-)
supervised machine learning (for an overview, see Hase, 2023) used ...

« to analyze the salience of climate change compared with other issues in political debates (Liu et al., 2011), news media
(Schmidt et al., 2013), or Google searches (Le Nghiem et al., 2016);

« to identify relevant actors and communicators in public communication about climate change in news media
(Grundmann & Scott, 2014), on social media (Pearce et al., 2014), among policy-makers (Biesbroek et al., 2020), or
think-tanks and activists (Boussalis & Coan, 2016);

« to reconstruct communities and networks of individuals that share similar, and sometimes opposing, views of climate
change, often on social media (Williams et al., 2015) and with a specific focus on denialist communities (Adam
et al., 2020; Farrell, 2016);

« to analyze linguistic patterns of climate change communication on the word, sentence, text, and narrative level (for an
overview, see Flgttum, 2016);

« or to identify prevalent evaluations, topics, and frames of climate change in news media (Hase et al.,, 2021;
Kirilenko & Stepchenkova, 2012) or social media content (Kirilenko & Stepchenkova, 2014).

3 | FROM THE “END OF THEORY” TO THE “RESURRECTION OF
THEORY”: THE FUTURE OF COMPUTATIONAL METHODS

In line with a computational turn in social science, debates about how to employ computational methods have
evolved—with scholars often taking somewhat opposing views on their suitability (see Figure 1).

On the one hand, some scholars push forward a technocratic view on computational advances by highlighting
their promises. Especially early-on, CSS was considered “an entirely new scientific approach for scientific analysis”
(Conte et al., 2012, p. 327). “Big data,” instead of theoretical and conceptual advances, was embraced as driving
knowledge generation, even heralding an “end of theory” (Anderson, 2008, no page). Social science, so the argu-
ment, might be transformed “to be more like physics by identifying general principles” (Watts, 2017, p. 1) in the
process."

However, there has been critical pushback by social scientists perceiving such claims as an attacking “opening salvo”
(Margolin, 2019, p. 232) on social science and the role of theory. Some fear for the field to be colonized by computer sci-
ence perspectives and practices (McFarland et al., 2016). This led scholars to criticize a “big data hubris” (Lazer

CSS: End of Theory ~ CSS: Demise of Theory

+ CSS = new & better epistemology « CSS = colonialization of social
for social science CssS: | Reflexivity ~ CSS: | science by computer science

* push for data-driven knowledge Endof | & Integration Demise « criticism of data-driven knowledge
and engineering principles Theory via Theory ~ of Theory and engineering principles

+ largely uncritical of CSS « largely critical of CSS

Reflexivity & Integration via Theory

» CSS = interdisciplinary field, disciplinary overlaps and boundaries

\
\
|
- reflecting upon strengths & weaknesses of CSS; providing concrete and |
constructive guidance on integration via theory ‘

» embracing and criticizing CSS ‘

FIGURE 1 A reflexive, integrative view for computational research.
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et al., 2014, p. 1203), that is, the lack of theoretically embedded applications of computational advances, often within
positivist paradigms reducing science to empiricism (see critically Fuchs, 2017).

Recently, scholars have started to discuss how perspectives embracing or criticizing the computational turn can be
aligned more. Instead of resurrecting a “Methodenstreit” that fuels either-or-propositions on the suitability of different
methods (for a detailed discussion, see Gerring, 2017), they propose a reflexive yet integrative view for advancing compu-
tational research: Reflexive means that they ponder and critically discuss strengths and weaknesses arising from the
approximation of social science and computer science. Integrative means that they also provide concrete and constructive
guidance on how to rely on conceptual and theoretical guidance for employing (or deciding against) these methods,
thus leading to a “resurrection of theory” (Halavais, 2015, p. 586). Best-practices include work on the integration of pre-
dictive and explanatory modeling (Hofman et al., 2021) or machine learning in social science (Grimmer et al., 2021;
Radford & Joseph, 2020).

4 | COMPUTATIONAL RESEARCH ON CLIMATE CHANGE
COMMUNICATION: A REFLEXIVE, INTEGRATIVE PERSPECTIVE

For the context of climate change communication, existing work has been reflexive by critically discussing shortcom-
ings of computational advances and how not to use them, often for the context of specific studies and questions
(e.g., Lahsen, 2021). However, we are not aware of work providing concrete guidance on when and how to apply these
methods in a more integrative manner and beyond selected questions. Taking the work by Lahsen (2021) as a starting
point and in line with arguments by Grundmann (2021) that computational methods “need to be aligned with theoreti-
cal perspectives [...] in order to advance research in this field” (p. 395), we propose a reflexive and integrative perspec-
tive for computational methods: We reflect strengths and weaknesses of computational methods for studying climate
change communication. Related to these, we also propose guidance on how computational advances could be integrated
via theory—including when to opt against using them.

In doing so, we focus solely on how scholars, should they consider employing computational methods, could do so
in a more reflexive and integrative way. Work on climate change communication should, and often does, rely on a plu-
ralist methodological toolkit including qualitative, quantitative, and computational methods (Agin & Karlsson, 2021;
Hase & Schifer, 2023). The degree to which researchers employing qualitative and quantitative methods are critical
about their methods and rely on theory to integrate approaches can thus serve as role model for computational
research. Our focus on computational methods—and a reflexive, integrative approach for this line of work—does not
mean that we consider non-computational research to not be reflexive or integrative. On the contrary, we argue for
computational research to better align with principles already established in qualitative or quantitative research.

4.1 | Strength 1: Making data big and small

The temporal and spatial granularity of “big data” allows us to understand phenomena on a larger scale and
through comparative, cross-national, cross-sectoral, longitudinal perspectives—that is, to make data big. For exam-
ple, we can compare discussions about climate change across countries and beyond Anglophone contexts via
machine translation (Hase et al., 2022; Reber, 2019). Pianta and Sisco (2020), for instance, analyze the salience of
climate change in global news in 22 different languages; others use multilanguage approaches to study event-
centeredness in global news coverage (Wozniak et al., 2021). Many of these studies work with large-scale geospatial
data from climate science, for instance to understand how global temperatures are associated with shifts in climate
change communication and respective news coverage (Pianta & Sisco, 2020; Schifer et al., 2014). But computational
methods also allow us to make data "small". Large data sets enable researchers to identify sub-populations or out-
liers (Choi, 2020), “thus providing access to the proverbial needle in the digital haystack” (Mahrt & Scharkow, 2013,
pp. 24-25): Scholars can identify outliers within “big data” via computational methods and learn more about those
less (or least) representative, seeing that such cases may be hard to reach via traditional “small data.” Examples
include the identification of people with strong attitudes towards climate change via those most actively discussing
the issue on social media (Williams et al., 2015) or studying conspiracy theories related to climate change as fringe
phenomena (Mahl et al., 2021).
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In sum, computational methods allow us to make data big and small, enabling researchers to address specific gaps
in analyses of climate change communication: They help us to understand climate change as a truly global crisis by
including “big data” from a broad range of national cases (Pearman et al., 2022) and analyzing them via cross-language
NLP approaches.” This extends to addressing theoretical issues such as fragmentation and polarization (Moser, 2016),
for instance identifying ideological communities and their communication about climate change by making data small
(e.g., Cann et al., 2021; Williams et al., 2015).

4.2 | Strength 2: Nowcasting observations and recommendations

Another key advantage of “big data” is its in-time creation (Kitchin, 2014). Scholars can use computational methods to
make timelier, often longitudinal observations, something that is useful for instantly understanding public reactions
towards COPs (Fownes et al., 2018), extreme weather events, or disasters (Ford et al., 2016). This includes nowcasting
recommendations for early warning systems or disaster responses. As such, CSS can prove useful for mitigation, pre-
paredness, response, and recovery in disaster management (Yu et al., 2018).

While nowcasting observations and recommendations can be useful for approaching applied problems (see similarly
Watts, 2017), it is also important for addressing theoretical gaps: As Olausson and Berglez (2014) note, there is a lack of
understanding climate change communication across analytical levels in the form of (intermedia) agenda-setting and
building, especially information flows between news media and the public. By instantly tracking communication via
NLP approaches, computational studies can show how public communication on social media may try to influence
news agendas (Su & Borah, 2019) or how social movements may apply pressure on politicians related to climate change
(Haf3ler et al., 2021) through bottom-up perspectives.

4.3 | Strength 3: Enabling data-based knowledge generation

Third, scholars in CSS have pushed for “data-driven science that radically modifies the existing scientific method by
blending aspects of abduction, induction, and deduction” (Kitchin, 2014, p. 10). Approaches such as machine learning
can facilitate more inductive approaches (Grimmer et al., 2021) frequently proposed by qualitative scholars, especially
since researchers often employ NLP approaches to explore data via mixed methods (Hase et al., 2022). Grounded theory
approaches (Nelson, 2020), for example, can provide an explicit bridge for combining qualitative, quantitative, and com-
putational methods within these more inductive approaches, something also proposed for understanding climate
change (Ford et al., 2016).

This strength of enabling data-based knowledge generation might enable researchers to address another theoretical
gap in the field: Scholars have repeatedly criticized that climate change communication is focused too narrowly on
framing theory (Agin & Karlsson, 2021). We think that, in combination with quantitative or qualitative methods, com-
putational methods can remedy this gap by supporting theory-building in the field of climate change communication.
While not explicitly focusing on theory-building themselves, recent studies have for instance inductively identified
peaks in public attention to extend research on climate-change related media events (Olteanu et al., 2021) or combined
computational and qualitative approaches for typologies of attitudes towards climate change (Tvinnereim
et al., 2017)—approaches that can become building blocks for more conceptual and theoretical work.

44 | Weakness 1: (Re-)introducing empiricist epistemologies

But CSS also introduces new, profound challenges. This includes its data-driven approach, a strength-turned-challenge
when combined with positivist paradigms from computer science (see critically Fuchs, 2017). Scholars have repeatedly
stressed that CSS pushes an epistemological shift towards an “empiricist mode of knowledge production”
(Kitchin, 2014, p. 3).

This weakness of (re-)introducing empiricist epistemologies may perpetuate existing theoretical issues, including a
narrow focus on few, selected theories like framing (Agin & Karlsson, 2021). NLP approaches are often used to detect
topics or “frames” (Hase et al., 2022)—something that extends to research on climate change communication, as
Grundmann (2021) critically reflects. As it is unclear whether NLP approaches measure “frames” in their theoretical
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sense (Schéfer & O'Neill, 2017), this is highly problematic (Grundmann, 2021). Thus, we urge researchers to opt against
the use of computational methods if these cannot be used to adequately measure theoretical concepts of interest (Baden
et al., 2021). Theoretical and conceptual considerations need to guide “big data” studies on climate change
(Faghmous & Kumar, 2014; Kniisel et al., 2019), especially within data-driven knowledge generation—or else, they will
perpetuate and even increase the theoretical limitations of the field.

4.5 | Weakness 2: Ignoring bias for precision

Due to its size, “big data” allows for seemingly precise inferences. In turn, however, it can introduce non-random biases
(Salganik, 2018). A perpetual weakness of many “big data” studies concerns the fact that researchers prefer more pre-
cise estimates over less biased ones, often for atheoretical reasons. This is particularly evident in terms of representa-
tiveness bias—that is, getting highly precise estimates but of less important populations (Boyd & Crawford, 2012;
Salganik, 2018), for instance by focusing on selected social media samples.

Again, this weakness of ignoring bias for precision may exacerbate existing theoretical issues: An example is the spe-
cific, and narrow, set of samples researchers use to test key theories in climate change communication. Currently, most
theories are explored and evaluated based on analyses of textual communication, especially from printed newspapers
(Comfort & Park, 2018; Schifer & Schlichting, 2014) which serve as proxies for news coverage in general or from Twit-
ter which serves as a proxy for social media communication in general (Pearce et al., 2019). While such narrow foci are
not limited to climate change communication (see critically Hase et al., 2022; Jiinger et al., 2022), they are particularly
problematic in this context since they increase the existing lack of knowledge on whether theories on climate change com-
munication are generalizable. This includes testing existing theories for visual communication (Thorsen &
Astrupgaard, 2021) or platforms other than Twitter (Pearce et al., 2019) as understudied but theoretically important
populations of interest.

5 | CONCLUSION

In sum, “big data” and computational methods are not always better (Boyd & Crawford, 2012) than “small data” or
non-computational methods—but they are also not always worse. For the use of text-as-data approaches in research on
climate change communication, we follow Faghmous and Kumar in arguing that “big data analytics should not be seen
as the ‘silver bullet’ of modern research and must be used in addition to other tools” (Faghmous & Kumar, 2014,
p. 261). Instead of pitting research paradigms and methods against each other, scholars should employ qualitative,
quantitative, and computational perspectives on climate change communication in a complementary fashion (see simi-
larly Boussalis & Coan, 2016; Hase & Schifer, 2023). Not every scholar, or every study, has to use qualitative,

TABLE 1 Reflexivity and integration for computational research on climate change communication

Reflexivity Integration
Key Strengths In Line with Theory: Integrate Computational Methods
Making data big and small ... to study climate change as global crisis

... to analyze fragmentation and polarization concerning climate change

Nowecasting observations and ... for applied disaster management

recommendations ... to study communication across analytical levels, e.g., (intermedia) agenda-setting and
agenda-building

Enabling data-based knowledge ... for theory-building

generation
Key weaknesses In Line with Theory: Do Not Integrate Computational Methods

(Re-)introducing empiricist ... if they cannot measure theoretical concepts of interest and thus increase theoretical
epistemologies narrowness in the field

Ignoring bias for precision ... if they cannot help to study populations of theoretical interest and thus increase a lack of

generalizability in the field
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quantitative, or computational methods on their own or in combination—instead, “what the field requires is not repre-
sentativeness in each individual study, but representativeness across studies.” (Margolin, 2019, p. 242).

However, should scholars decide to use computational methods, they need to know what computational methods
can and cannot do—that is, reflect their strengths and weaknesses—to decide whether and how to employ these
methods adequately. They should rely on theory and conceptual thought to identify meaningful questions, data, mea-
surements, and interpretations (Radford & Joseph, 2020) and, relatedly, decide whether to integrate computer science
methods (for an overview, see Table 1). Key strengths of computational methods (i.e., making data big and small,
nowcasting observations and recommendations, data-based knowledge generation) can only emerge in light of theory;
similarly, key weaknesses (i.e., empiricist epistemologies, ignoring bias for precision) can only be recognized and allevi-
ated via theory—which may, in many cases, lead researchers to opt against the use of computational methods.

A last, important point concerns environmental costs of computational methods: Cloud computing services used for
NLP leave a heavy carbon footprint (Strubell et al., 2020). Moreover, NLP models are often optimized for English-
language corpora—but their environmental impact affects populations in non-English speaking countries. Researchers
should consider whether they want to contribute to the affectedness of populations not benefitting from such models
by building NLP approaches that “serve the needs of those who already have the most privilege in society” (Bender
et al., 2021, p. 613).
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