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Abstract

Infrared spectroscopy in the visible to near-infrared (vis–NIR) and mid-

infrared (MIR) regions is a well-established approach for the prediction of soil

properties. Different data fusion and training approaches exist, and the optimal

procedures are yet undefined and may depend on the heterogeneity present in

the set and on the considered scale. The objectives were to test the usefulness

of partial least squares regressions (PLSRs) for soil organic carbon (SOC), total

carbon (Ct), total nitrogen (Nt) and pH using vis–NIR and MIR spectroscopy

for an independent validation after standard calibration (use of a general PLSR

model) or using memory-based learning (MBL) with and without spiking for a

national spectral database. Data fusion approaches were simple concatenation

of spectra, outer product analysis (OPA) and model averaging. In total, 481 soils

from an Austrian forest soil archive were measured in the vis–NIR and MIR

regions, and regressions were calculated. Fivefold calibration-validation

approaches were carried out with a region-related split of spectra to implement

independent validations with n ranging from 47 to 99 soils in different folds.

MIR predictions were generally superior over vis–NIR predictions. For all

properties, optimal predictions were obtained with data fusion, with OPA and

spectra concatenation outperforming model averaging. The greatest robustness

of performance was found for OPA and MBL with spiking with R2 ≥ 0.77 (N),

0.85 (SOC), 0.86 (pH) and 0.88 (Ct) in the validations of all folds. Overall, the

results indicate that the combination of OPA for vis–NIR and MIR spectra with

MBL and spiking has a high potential to accurately estimate properties when

using large-scale soil spectral libraries as reference data. However, the reduc-

tion of cost-effectiveness using two spectrometers needs to be weighed against

the potential increase in accuracy compared to a single MIR spectroscopy

approach.
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1 | INTRODUCTION

Visible to near-infrared (vis–NIR, range: 400–2500 nm,
25,000–4000 cm�1) spectroscopy and mid-infrared
(MIR, range: 2500–25,000 nm, 4000–400 cm�1) spec-
troscopy (vis–NIRS and MIRS, respectively) are
well-established spectroscopic techniques for the
simultaneous estimation of a number of chemical and
physical soil properties (Gholizadeh et al., 2013;
Ludwig et al., 2019, 2021; Pallottino et al., 2019;
Soriano-Disla et al., 2014). These spectroscopic applica-
tions may be especially useful in studies with a focus
on spatial and/or temporal monitoring of soil proper-
ties where analytical costs and measurement time
should be reduced considerably (O'Rourke et al., 2011).

The reasons for accurate predictions of soil organic car-
bon (SOC) and total N (Nt) concentrations have been
assigned to vibrations related to alkyl groups, protein
amides, carboxylic acids, water-associated groups, carboxyl-
ate anions, and aromatic groups (Soriano-Disla et al., 2014).
Moreover, based on experiments with different additions of
wheat (Triticum aestivum L.) straw and clover (Trifolium
spp.) residues to soils, Greenberg et al. (2020) summarised
that predictive mechanisms for SOC and Nt appeared to be
similar for vis–NIRS, but not for MIRS. A number of bands
have been assigned to carbonates, especially in the MIR
region (2910–2850, 2686–2460, 1850–1784, 1567–1295, 889–
867, 734–719, and 719–708 cm�1) and also in the NIR
region (2335 nm), which makes predictions of carbonate
concentrations feasible (McBride, 2022; Mirzaeitalarposhti
et al., 2016; Soriano-Disla et al., 2014; Tatzber et al., 2010).

In contrast to direct estimations of SOC, total C (Ct,
sum of SOC and carbonate-C) and Nt concentrations, indi-
rect estimation of pH may be based on the presence of
proton-rich clays, Al oxyhydroxide minerals and sulphides,
oxidisable ammonium and organic N as amides and car-
boxylic acids and phenols (Leenen et al., 2019; Soriano-
Disla et al., 2014). Indirect estimations are understandably
a controversial topic in soil spectroscopy (McBride, 2022;
Viscarra Rossel et al., 2022), since it is very likely that the
calibrations used to predict soil pH by vis–NIRS or MIRS
at one location will fail to predict pH at another location
(McBride, 2022). In general, uncertainty tends to increase
when statistical models are used under extrapolation.

A large number of soil spectral libraries (SSLs) have
already been created, and their usefulness for vis–NIR and
MIR predictions has been demonstrated (e.g., Viscarra

Rossel & Webster, 2012; Wijewardane et al., 2018). Several
studies have shown that general models derived from SSL
may likely produce severely biased estimates for local-scale
applications. Spiking or weighted spiking has been shown
to potentially reduce bias in the estimations considerably
(Guerrero et al., 2010, 2014). However, spiking did not
always result in improved estimations, and Zeng et al.
(2016) discussed the importance of the distribution and
relationship between target set and spiked set for improv-
ing the prediction accuracy.

Viscarra Rossel et al. (2022) summarised that nowadays
SSL may be used as a source of information for building
localised calibrations for specific contexts and pedologic
domains rather than to create general models. Thus, an
alternative approach to a general calibration model (with
or without spiking) using, e.g., partial least squares regres-
sion (PLSR) is memory-based learning (MBL). For each
new unit (i.e., soil), MBL extracts appropriate units from
the SSL based on their spectral similarity and then calcu-
lates the regression equations individually for each new soil
with the selected units (Ramirez-Lopez et al., 2013, 2022).
This approach has given promising results compared with
other calibration strategies with different algorithms. For
instance, Jaconi et al. (2017) found for a German SSL that
calibration with MBL provided more accurate SOC estima-
tions than a general PLSR model. Similarly, Li, Li, et al.
(2022) reported for a Chinese vis–NIR SSL that MBL with
spiking outperformed general PLSR with spiking for the
estimation of soil organic matter concentrations.

The general superiority of MIRS over vis–NIRS for
predictions of spectrally active soil properties has been
reported in a number of studies and has been explained
by a higher information content in MIR spectra, which
contain fundamental vibration bands, compared to the
less intense peaks in the NIR region, which is limited to
overtone and combination bands (Ng et al., 2019;

Highlights

• Optimal procedures for data fusion and train-
ing for SSL are yet undefined

• The combination of OPA with MBL and spik-
ing has a high potential to estimate properties

• Besides the training and fusion effects, the IQR
also affects model accuracies
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Soriano-Disla et al., 2014; Vohland et al., 2014). Never-
theless, vis–NIRS information is not entirely redundant
to MIRS, and low-level [concatenation of the vis–NIR
and MIR spectra or the outer product analysis (OPA)
(Borràs et al., 2015)] or high-level (averaging of vis–NIR
and MIR modelling results) data fusion has the potential
for improved predictions. The results so far are inconclu-
sive: Johnson et al. (2019) reported a benefit of spectra
concatenation for the prediction of SOC over MIR or vis–
NIR predictions for an African SSL, whereas a number of
studies did not find a benefit compared to MIR predic-
tions (e.g., Ng et al., 2019; Vohland et al., 2022). The same
holds true for OPA, which corresponds to a mutual
weighting of each signal (vis–NIR and MIR) by the other.
Terra et al. (2019) and Xu et al. (2020) noted improved
SOC prediction and soil classification, respectively,
whereas Vohland et al. (2022) reported that model aver-
aging outperformed OPA for SOC prediction. Summaris-
ing the studies above using different SSLs indicates that
the benefits of spectral fusion depended on the data set.
Fusing data of vis–NIRS and MIRS may create partly
redundant data due to an addition of overtones and com-
bination bands of the NIR region to the fundamental
bands of the MIR range. However, a potential merit lies
especially in the visible and the directly adjacent NIR
region (600 to 1000 nm) because of the addition of impor-
tant spectral information originated from electronic tran-
sitions in atoms (Terra et al., 2019).

Overall, the combined investigation of the training
approaches (general calibration and MBL with and with-
out spiking) and data fusion may have greatest merits for
improved predictions. We use a multiple partitioning
approach for independent validation of an Austrian forest
soil archive and hypothesise that the combination of
OPA, MBL and spiking will result in the highest predic-
tion accuracies. Objectives were to study the effects of dif-
ferent training approaches (local calibration, general
calibration using a national database with or without
spiking and MBL with or without spiking) and data
fusion methods (concatenation, OPA and model averag-
ing) for independent predictions of SOC, Ct and Nt con-
centration and pH for an Austrian soil archive.

2 | MATERIALS AND METHODS

2.1 | Austrian forest soil archive: Soil
sampling and chemical analyses

The Austrian Forest Soil Survey (Waldbodenzustandsin-
ventur, WBZI) was carried out in 1987/89 in order to
describe the forest soil condition of the entire federal ter-
ritory on a systematic grid of 8.7 � 8.7 km, resulting in a

total of 511 plots sampled (BMLFUW, 2013). From this
Austrian forest soil archive, 481 plots were available for
spectral measurements in this study, which focuses on
the surface soils (0–10 cm, Figure 1). For each plot, site
(e.g., altitude, slope, exposition and vegetation), soil
(e.g., parent material, soil type and horizon) and chemi-
cal and physical soil properties were recorded.

In this study, we used data for SOC, Ct and Nt con-
centrations and pH. Soils were air dried, sieved to
<2 mm and ground for determinations of SOC, Ct and Nt

concentrations. CaCl2 (0.01 moL/L) was used for pH
measurements (ÖNORM L 1083, 1989). Total N concen-
tration was measured using Kjeldahl extraction (ÖNORM
L 1082, 1989). Total C concentrations were measured via
oxidation in an oxygen flux and infrared detection of the
carbon dioxide generated (ÖNORM L 1080, 1989). Inor-
ganic C was determined with the Scheibler method
(ÖNORM L 1084, 1989), and SOC was calculated as the
difference between Ct and inorganic C.

Soils were classified according to Austrian soil taxon-
omy (Nestroy et al., 2011) and consisted of 26 different
soil types. We grouped these soil types into five groups
A–E (Figures 1 and 2) and provided the soil types
in Appendix A: “A—Fluvisols and others (28 plots,
7 soil types)”; “B—predominantly Podzols (92 plots, 3 soil
types)”; “C—predominantly Cambisols (189 plots, 7 soil
types)”; “D—predominantly Leptosols and Phaeozems
(121 plots, 4 soil types)”; and “E—predominantly Plano-
sols and Stagnosols (51 plots, 5 soil types).

2.2 | Spectral measurements

Dried soils were ball-milled to a particle size <0.2 mm
using a Retsch MM 400 (Haan, Germany) with 10 zirco-
nium oxide balls at 30 Hz for 5 min. Lab spectral measure-
ments were done on two replicates per observational unit.
A Foss XDS Rapid Content Analyzer (Silver Spring, MD,
USA) (optical bandwidth: 8.75 nm) with 32 co-added scans
was used for the vis–NIR spectra in the range of 400–
2500 nm. For each measurement, approximately 10 g of soil
was filled into a cell (5-cm diameter) with a quartz window.
The instrument was recalibrated every ca. 30 min using an
internal white reference to avoid baseline shifts. The region
below 500 nm was excluded from the chemometric analysis
due to instrumental artefacts (Stevens et al., 2013). A splice
correction (package prospectr, Stevens & Ramirez-
Lopez, 2022) with the position of the splice at 1100 nm was
included to account for the detector change (Si detector
from 400 to 1100 nm, PbS detector from 1100 to 2500 nm).
In total, each vis–NIR spectrum consisted of 999 data points
(regular increment of 2 nm). A Bruker-TENSOR 27 MIR
spectrometer (Ettlingen, Germany) with an A562
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integrating sphere detector and the diffuse reflectance
accessory (Ulbricht-Kugel, Ettlingen, Germany) was used
for the scanning of diffuse reflectance infrared Fourier
transform spectra of the soils in the range of 7000–370 to
cm�1. For each measurement, approximately 1.5 g of soil
was filled into a cup. The instrument was calibrated every
hour with a gold reference background. The spectra were
measured with 200 scans at approximately 2 cm�1 intervals.
The longwave NIR region (7000–4000 cm�1) and the region
<650 cm�1, which has limited usefulness due to overlap-
ping mineral and organic absorption bands (Nocita
et al., 2015), were excluded from the analysis. In total, each
MIR spectrum consisted of 1737 data points.

For vis–NIR and MIR spectra, the reflectance values
of replicate measurements at each sampling point were
averaged and converted to absorbance [log10(1/reflec-
tance)] prior to the chemometric analyses.

2.3 | Formation of training and test sets
for local vs. national training

In order to test the robustness and performance variance,
multiple dataset partitions were created as recommended
by Cawley and Talbot (2010). For this, the complete dataset
of surface soils from five regions (1–states Burgenland and
Lower Austrian, n = 108; 2–Carinthia and Salzburg,
n = 116; 3–Upper Austria, n = 67; 4–Styria, n = 119 and
5–Tyrol and Vorarlberg, n = 71) was divided so that each of
the five regions (indicated by different colours in Figure 1)
served as the validation set once for each training strategy
and spectral approach described below. For each of the five

validation sets, 20 soils were removed in a stratified ran-
domisation approach described below, which allowed the
creation of identical independent validation sets used to test
all training strategies and spectral approaches. The 20 soils
removed from each region served as a local training set
(strategy I) or as a spiking set (strategies III and V), as
described below. Across all training strategies and spectral
approaches, the number of soils remaining in the five inde-
pendent validation folds was 88, 96, 47, 99 and 51 for the
five regions, respectively (Table 1). Alternatively, the five-
fold calibration-validations with spectra split according to
the five regions for independent validations may be treated
as leave-one-region-out cross validation with subsequent
averaging of the results.

Five chemometric training strategies described below
were tested with fivefold partitioning of the data for the
original vis–NIR and MIR regions, the concatenated spec-
tra (each spectrum consisting of 2736 data points) and
the OPA (Terra et al., 2019; Vohland et al., 2022). For the
latter, vis–NIR and MIR spectra were resampled to every
eighth data point (125 and 218 data points for vis–NIR
and MIR, respectively), resulting in each outer product
consisting of 27,250 data points.

2.3.1 | Training strategy I: Local training
(Callocal)

Local training with only small local training sets (n = 20,
Callocal) served as a control (and was additionally used as
a spiking set in variants described below). Soils were
selected for the local training with a stratified

FIGURE 1 Sampling locations of the 481 soils in Austria. Different colours refer to the five regions for the fivefold calibrations-

validations (red: Lower Austria and Burgenland, green: Carinthia and Salzburg, brown: Upper Austria, blue: Styria and pink: Tyrol and

Vorarlberg). The letters A to E refer to groups of soil types explained in the text.
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randomisation approach from each respective region by
having each soil type of the respective region present at
least once in the local training set. Afterwards, each local
training set was completed by randomly adding soils
from the respective region until n equalled 20.

Analysis was performed with the statistical software
R (version 4.2.0, R Core Team, 2022). The package pls
(Liland et al., 2021) was used for PLSR.

Model training included leave-one-out cross valida-
tion to determine the optimal data pretreatment and
number of latent variables.

The following 13 data pretreatments were tested (pack-
age prospectr): (i) use of the full spectra without manipula-
tion, (ii–v) calculation of moving averages (over 5, 11, 17 or
23 data points) and (vi–xiii) application of the Savitzky–
Golay algorithm for the reduction of noise applied with the

polynomial degree (PD) set to 2, the order of the derivative
(DER) ranging from 1 to 2 (with PD-DER: 2–1 or 2–2) and
a window smoothing size of 5, 11, 17 or 23.

The maximum number of latent variables was set to
15, and the optimal numbers (averaged over the five
folds) ranged from 2 to 4 for the local models (Tables 2a
and 2b). For each fold and property, the optimal number
of latent variables was determined in cross validation by
considering minimisation of Akaike information crite-
rion (AIC) (Viscarra Rossel & Behrens, 2010), calcu-
lated as

AIC¼n� log e RMSEð Þþ2k,

where n is the sample size, k is the number of latent vari-
ables and RMSE is the root mean square error.

FIGURE 2 MIR (top) and vis–NIR spectra

(middle) of the 481 soils: mean ± 1 standard

deviation (dotted lines) for each of the five

regions (colour codes: see legend of Figure 1).

Scores of the principal component analysis for

the 481 soils are also shown for MIRS (bottom

left) and vis–NIRS (bottom right, colour codes:

see legend of Figure 1; letters A to E refer to

groups of soil types given in the text).
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The RMSE is calculated as

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

byi� yið Þ2
n

s

,

where byi is the modelled soil property and yi is the mea-
sured soil property.

The inaccuracy determined by the RMSE consists of the
mean error (ME) (or bias) and the standard deviation (SDE)
(or imprecision) (Viscarra Rossel & McBratney, 1998) calcu-
lated as

RMSE2 ¼ME2þSDE2:

The Nash–Sutcliffe model efficiency (Janssen & Heu-
berger, 1995; Ludwig et al., 2008; Yang et al., 2022),
which may also be denoted as coefficient of determina-
tion (R2), is calculated as follows:

R2 ¼ 1�RSS
TSS

,

where RSS is the residual sum of squares and TSS is the
total sum of squares.

For a satisfactory prediction, we suggest an R2

threshold of 0.5, analogous to the suggestion by Chang
et al. (2001) for ratio of performance to deviation
(RPD) values, and a threshold of 0.85 for a good predic-
tion. However, one has to keep in mind that the useful-
ness of a model is always defined in its specific context.

2.3.2 | Training strategy II: Training using
the national database in standard calibration-
validation (Calnat)

For each of the five regions (validation folds 1–5, Table 1)
used in independent validations, the remaining four
regions were used as the respective calibration dataset.
For instance, for the validation of region 1 (Burgenland
and Lower Austria, n = 88), the national dataset con-
sisted of regions 2–5 (n = 373).

PLSR was carried out as described in 2.3.1. How-
ever, since more information was available in the

TABLE 1 Descriptive statistics for the validation samples of the fivefold validations for the four soil properties.

Property Validation fold Minimum Maximum Median IQR p (Shapiro–Wilk)

SOC (g kg�1) 1 12 380 42 63 7.8 � 10�12

2 10 146 50 31 2.3 � 10�5

3 21 380 58 65 2.8 � 10�7

4 14 418 67 49 8.8 � 10�13

5 16 258 67 57 3.3 � 10�6

Ct (g kg�1) 1 12 380 42 65 1.4 � 10�11

2 10 205 51 36 1.8 � 10�8

3 21 414 58 62 2.5 � 10�7

4 14 418 68 54 2.1 � 10�11

5 16 268 69 70 1.5 � 10�5

Nt (g kg�1) 1 0.7 19.0 2.6 3.4 1.5 � 10�10

2 0.7 11.0 2.8 1.6 9.1 � 10�8

3 1.0 15.7 3.0 3.5 1.2 � 10�6

4 0.8 14.5 3.3 2.7 4.4 � 10�9

5 0.8 18.8 3.4 3.5 2.8 � 10�7

pH 1 3.2 7.3 4.2 1.7 3.2 � 10�8

2 3.2 7.6 4.0 0.8 2.9 � 10�11

3 3.0 7.2 3.9 3.0 5.5 � 10�6

4 2.7 7.4 3.8 0.9 8.0 � 10�11

5 3.0 7.5 4.5 2.9 9.5 � 10�5

Note: Validation folds: 1–Burgenland and Lower Austria, n = 88; 2–Carinthia and Salzburg, n = 96; 3–Upper Austria, n = 47; 4–Styria, n = 99; 5–Tyrol and
Vorarlberg, n = 51.
Abbreviations: Ct, total carbon; IQR, interquartile range; Nt, total nitrogen; SOC, soil organic carbon.
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national dataset, the maximum number of latent vari-
ables was set to 20. The optimal numbers, again deter-
mined by minimisation of AIC, ranged from 12 to
19 when averaged over the five folds (Tables 2a
and 2b).

2.3.3 | Training strategy III: Training using
the national database and MBL (MBLnat)

Training strategy III used the same regions 1–5 in the
independent fivefold validations (Table 1) and the same
respective national training sets as strategy II described
above with the optimal data pretreatments for the
respective properties and regions obtained in strategy
II. However, in contrast to the calibration-
validation-runs described above, MBL does not derive
general or global models for each of the five folds. In

contrast, it derives a local model for each soil of each
fold separately. In the first step for each soil, MBL seeks
a sequence of k-nearest neighbours of the respective soil
from the reference library (i.e., the national database)
based on the Mahalanobis distances in the principal
component space [the default setting of the mbl() com-
mand of the resemble package (Ramirez-Lopez
et al., 2022)]. A local model is then fitted using different
approaches. In this study, a weighted average PLSR
model (Shenk et al., 1997) was used. Briefly, the
weighted average PLSR approach uses multiple models
generated by considering various numbers of pls compo-
nents (i.e., between a minimum of 3 and a maximum
number of 20 pls components in this study). At each
local partition, the final predicted value is a weighted
average of all the predicted values generated by the mul-
tiple pls models (Ramirez-Lopez et al., 2022; Shenk
et al., 1997). In this study, the sequence of k-nearest

TABLE 2a Average performances (mean and standard deviation) and average factors of the PLS regressions in the training for local

calibration (Callocal), calibration using the national archive (Calnat) and the national archive with spiking (Calnat/sp). Median k-nearest

neighbours are also shown for memory-based learning using the national archive (MBLnat) and additionally with spiking (MBLnat/sp).

MIR training Vis–NIR training

Property
Training
strategy

Average
factors
or median k SDECV MECV R2

CV

Average
factors
or median k SDECV MECV R2

CV

SOC
(g kg�1)

Callocal 3 30.0 (10.5) 2.9 (3.0) 0.61 (0.18) 3 24.9 (8.4) 1.9 (2.1) 0.73 (0.13)

Calnat 14 17.9 (0.6) 0.0 (0.3) 0.91 (0.01) 12 22.1 (1.0) 0.4 (0.3) 0.86 (0.01)

MBLnat 160 - - - 60 - - -

Calnat/sp 16 16.9 (1.1) 0.4 (0.4) 0.91 (0.01) 12 22.0 (1.5) 0.3 (0.6) 0.86 (0.01)

MBLnat/sp 120 - - - 80 - - -

Ct (g kg�1) Callocal 2 33.9 (13.0) 1.6 (3.0) 0.65 (0.22) 2 28.1 (8.9) �1.9 (1.8) 0.78 (0.07)

Calnat 1 17.3 (0.8) �0.3 (0.4) 0.93 (0.01) 13 23.8 (1.2) �0.2 (0.4) 0.88 (0.01)

MBLnat 120 - - - 100 - - -

Calnat/sp 16 16.2 (0.8) 0.2 (0.5) 0.94 (0.01) 15 23.3 (1.4) 0.1 (0.7) 0.88 (0.01)

MBLnat/sp 160 - - - 100 - - -

Nt (g kg�1) Callocal 2 1.7 (0.8) 0.1 (0.1) 0.49 (0.27) 3 1.5 (0.5) 0.0 (0.1) 0.62 (0.18)

Calnat 14 1.0 (0.0) 0.0 (0.0) 0.87 (0.02) 13 1.3 (0.1) 0.0 (0.0) 0.80 (0.03)

MBLnat 80 - - - 100 - - -

Calnat/sp 17 1.0 (0.1) 0.0 (0.0) 0.87 (0.02) 15 1.2 (0.1) 0.0 (0.0) 0.82 (0.01)

MBLnat/sp 100 - - - 80 - - -

pH (CaCl2) Callocal 4 0.7 (0.3) 0.1 (0.1) 0.75 (0.18) 3 1.0 (0.2) 0.0 (0.1) 0.44 (0.26)

Calnat 17 0.4 (0.0) 0.0 (0.0) 0.93 (0.01) 16 0.6 (0.0) 0.0 (0.0) 0.78 (0.02)

MBLnat 180 - - - 180 - - -

Calnat/sp 16 0.4 (0.0) 0.0 (0.0) 0.93 (0.01) 17 0.7 (0.0) 0.0 (0.0) 0.78 (0.02)

MBLnat/sp 120 - - - 240 - - -

Abbreviations: MECV, mean error of cross validation; OPA, outer product analysis; R2
CV, coefficient of determination (Nash–Sutcliffe model efficiency) of cross

validation; SDECV, standard deviation of the error of cross validation. Other abbreviations: see Table 1.
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neighbours to be tested ranged from 40 to 340 in steps of
20. Tables 2a and 2b show the median numbers of k of
the respective five folds for the four properties, which
ranged from 60 to 300.

2.3.4 | Training strategy IV: Training using
the national database with spiking in standard
calibration-validation (Calnat/sp)

Training strategy IV used the same regions 1–5 in the
independent fivefold validations (Table 1) and the
same respective national training sets as described
above. The calibration was carried out as described for
training strategy II above, except that for each of the
five folds, the 20 soils (described in training strategy I)
were used additionally in the calibration sets, and each
spiking soil was weighted fivefold.

2.3.5 | Training strategy V: Training using
the national database with spiking and MBL
(MBLnat/sp)

Training strategy V also used the regions 1–5 in the five-
fold validation approach (Table 1) and the same respec-
tive national training sets as described above. The
training was carried out as described for training strategy
IV with the optimal data pretreatments for the respective
properties and regions obtained in strategy IV, except
that for each of the five folds, the 20 soils were used addi-
tionally in the training set as spiking soils.

2.4 | Additional analyses

Principal component analyses (PCAs) were carried out for
the vis–NIR and MIR regions (Figure 2) using centred

TABLE 2b Average performances (mean and standard deviation) and average factors of the PLS regressions in the training for local

calibration (Callocal), calibration using the national archive (Calnat) and the national archive with spiking (Calnat/sp). Median k-nearest

neighbours are also shown for memory-based learning using the national archive (MBLnat) and additionally with spiking (MBLnat/sp).

Vis–NIR-MIR concatenation OPA vis–NIR-MIR training

Property
Training
strategy

Average
factors
or median k SDECV MECV R2

CV

Average
factors or
median k SDECV MECV R2

CV

SOC (g kg�1) Callocal 3 29.2 (11.7) 1.4 (4.6) 0.64 (0.19) 4 19.0 (7.1) 2.4 (3.6) 0.82 (0.11)

Calnat 16 17.1 (0.5) �0.1 (0.3) 0.92 (0.01) 14 14.2 (0.5) 0.7 (0.5) 0.94 (0.00)

MBLnat 100 - - - 300 - - -

Calnat/sp 18 16.0 (1.0) 0.4 (0.2) 0.92 (0.01) 15 13.1 (0.6) 0.5 (0.4) 0.95 (0.01)

MBLnat/sp 140 - - - 240 - - -

Ct (g kg�1) Callocal 3 30.2 (12.0) 1.4 (3.9) 0.72 (0.19) 4 18.3 (9.5) 2.2 (4.1) 0.88 (0.11)

Calnat 17 16.7 (0.8) �0.3 (0.4) 0.94 (0.01) 13 13.1 (1.2) 1.0 (0.3) 0.96 (0.01)

MBLnat 100 - - - 120 - - -

Calnat/sp 18 15.5 (0.9) 0.4 (0.4) 0.95 (0.01) 15 12.4 (0.7) 0.5 (0.4) 0.97 (0.01)

MBLnat/sp 80 - - - 100 - - -

Nt (g kg�1) Callocal 2 1.7 (0.8) 0.1 (0.2) 0.51 (0.31) 3 1.3 (0.5) 0.1 (0.3) 0.73 (0.13)

Calnat 15 1.0 (0.0) 0.0 (0.0) 0.88 (0.01) 17 0.9 (0.0) 0.0 (0.0) 0.91 (0.01)

MBLnat 120 - - - 200 - - -

Calnat/sp 17 1.0 (0.1) 0.0 (0.0) 0.89 (0.01) 20 0.8 (0.0) 0.0 (0.0) 0.92 (0.01)

MBLnat/sp 100 - - - 180 - - -

pH (CaCl2) Callocal 3 0.8 (0.3) 0.1 (0.1) 0.70 (0.18) 4 0.8 (0.3) 0.0 (0.1) 0.70 (0.12)

Calnat 19 0.4 (0.0) 0.0 (0.0) 0.92 (0.01) 18 0.4 (0.0) 0.0 (0.0) 0.92 (0.01)

MBLnat 100 - - - 220 - - -

Calnat/sp 19 0.4 (0.0) 0.0 (0.0) 0.93 (0.01) 19 0.4 (0.0) 0.0 (0.0) 0.92 (0.01)

MBLnat/sp 100 - - - 240 - - -

Abbreviations: see Tables 1 and 2a.
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spectral data and the variance–covariance matrix. Sampling
points in Austria (Figure 1) were plotted using the packages
sf (Pebesma, 2018) and tmap (Tennekes, 2018). Spearman
rank correlation coefficients were calculated to study the
relationships between R2

V and IQR values.

3 | RESULTS

3.1 | Chemical and spectral soil
properties

The ranges and IQR of the soil properties differed
between the five regions, which were separated according
to states and allowed five independent validations. For
SOC, IQR values were almost identical with a ratio of 1.0
between regions 1 (Burgenland and Lower Austria) and
3 (Upper Austria) but differed by a factor of 2.1 between
regions 2 (Carinthia and Salzburg) and 3 (Table 1).

MIR and vis–NIR spectra of the different regions
are quite similar (Figure 2 shows mean values of absor-
bances ±1 standard deviation for each region). For
MIRS, absorption was pronounced between 3600 and
3700 cm�1 (related to clay minerals kaolinite, smectite
and illite), around 2000 and 1880 cm�1 (likely indicat-
ing quartz content), around 2950 and 2870 cm�1 (indi-
cating aliphatic CH) and around 1600 cm�1 (indicating
aromatic compounds). In contrast, vis–NIR spectra
showed much less pronounced features.

PCA for MIRS showed a large overlap for the five
regions (indicated by different colours, Figure 2),
which suggests that independent validations for each
of the five regions may be successful for the spectrally
active properties SOC, Ct and Nt. However, exceptions
included one soil from region 4 (Styria) on PC 1 and
several from regions 1 (Burgenland and Lower
Austria), 4 (Styria) and 5 (Tyrol and Vorarlberg) on PC
2. For these soils, predictions may be less accurate for
spectrally active properties. The five regions were also
similar with respect to soil types: regions 3 to 5 com-
prised 15 different soil types and regions 1 and 2 had
19 and 17 different soil types, respectively. For vis–
NIRS, PCA indicated some deviations from the average
spectra especially for regions 1 and 4 (Figure 2).

3.2 | Performance of the spectral
approaches and training strategies in the
fivefold validations

Figure 3 shows summarising information on the per-
formances (measured as R2

V) in the fivefold indepen-
dent validations for the different spectral approaches and
training strategies. For all the four soil properties, the cal-
ibrations using a local data set with n= 20 showed gener-
ally poor performances. However, OPA performed better
than all other spectral approaches already for the local
calibrations for Ct (Figure 3).

FIGURE 3 Boxplots of R2
V (coefficient of determination, Nash–Sutcliffe model efficiency) of validation values for the four soil

properties using the vis–NIR or MIR spectra or data fusion approaches [spectra concatenation, outer product analysis (OPA) and model

averaging] for the five training variants. Green and red horizontal lines indicate thresholds for good (R2
V ≥ 0:85) and satisfactory (R2

V ≥ 0:5)

validation results, respectively. Negative R2
V values were set to zero.
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For the training strategies which included the
national database (strategies II to V), MIRS generally
performed better than vis–NIRS for all the four prop-
erties. High-level data fusion by model averaging had
generally similar performance compared with MIR
alone for SOC, Ct and pH. However, for Nt, model
averaging performed poorly in strategies II and IV
compared with MIR alone. The low-level fusion
approaches had generally similar or better perfor-
mance compared with use of MIR alone. Also, MBL
(strategies III and V) was superior over the general
PLSR models (strategies II and IV) in several cases.
The effect of spiking was variable (Figure 3,
Tables 3a and 3b). Specifically, optimal validation
performances based on mean R2

V values (Tables 3a
and 3b) and highest minimum R2

V values of the five
folds (Figure 3) were obtained for SOC and Nt by OPA
of vis–NIRS and MIRS and MBLnat (strategy III, SOC:
mean R2

V ¼ 0:92 and highest minimum R2
V ¼ 0:86, Nt:

mean R2
V ¼ 0:87 and highest minimum R2

V ¼ 0:78), for
Ct by OPA and Calnat (strategy II: mean R2

V¼ 0:95 and
highest minimum R2

V ¼ 0:91) and for pH by spectra con-
catenation and Calnat/sp (strategy IV: mean R2

V ¼ 0:93
and highest minimum R2

V ¼ 0:91).
The greatest robustness of performance over all the

four properties was found for OPA and MBLnat/sp with
R2 ≥ 0.77 (Nt), 0.85 (SOC), 0.86 (pH) and 0.88 (Ct) in
the validations of all folds (Figure 4). For SOC, all pre-
dictions were good (R2

V ≥ 0:85), and only few larger
deviations between measured and modelled data were
noted (one outlier in regions 1, 3 and 4 each). For Ct,
agreements were even better, with R2

V values ranging
from 0.88 to 0.98 and only one outlier in regions 3 and
4. For Nt and pH, validations were at least satisfactory
(0:77≤R2

V ≤ 0:97) for Nt and good for pH
(0:86≤R2

V ≤ 0:98, Figure 4). For Nt, region 2, which had
the worst performance, was the one with the smallest
IQR values (Figure 4, Table 1).

TABLE 3a Average performances (mean and standard deviation) of the PLS regressions in the validation for local calibration (Callocal),

calibration using the national archive (Calnat) and the national archive with spiking (Calnat/sp). Average performances are also shown for

memory-based learning using the national archive (MBLnat) and additionally with spiking (MBLnat/sp).

MIR validation Vis–NIR validation

Property Training strategy SDEV MEV R2
V SDEV MEV R2

V

SOC (g kg�1) Callocal 31.5 (9.4) 2.0 (9.2) 0.63 (0.16) 31.5 (7.5) 2.6 (9.3) 0.62 (0.21)

Calnat 18.4 (1.7) 0.1 (3.3) 0.84 (0.18) 22.4 (3.1) �0.4 (3.2) 0.80 (0.16)

MBLnat 16.1 (4.7) 0.3 (2.8) 0.91 (0.06) 22.5 (4.8) 0.8 (7.8) 0.67 (0.45)

Calnat/sp 18.4 (1.9) �0.3 (3.6) 0.85 (0.15) 21.8 (3.7) 0.1 (4.8) 0.81 (0.15)

MBLnat/sp 16.5 (4.3) 0.1 (3.0) 0.90 (0.05) 21.7 (3.7) 0.2 (7.0) 0.73 (0.36)

Ct (g kg�1) Callocal 35.5 (9.0) �0.2 (10.0) 0.66 (0.14) 39.2 (7.4) 1.6 (11.8) 0.58 (0.20)

Calnat 17.2 (1.5) 0.0 (3.8) 0.91 (0.06) 23.1 (2.9) �1.6 (4.5) 0.85 (0.08)

MBLnat 15.1 (4.0) �0.4 (3.3) 0.94 (0.03) 23.8 (2.8) 0.6 (4.5) 0.82 (0.16)

Calnat/sp 17.4 (2.0) �0.9 (3.7) 0.91 (0.05) 23.3 (2.2) �1.2 (4.8) 0.84 (0.11)

MBLnat/sp 15.6 (4.2) �0.6 (3.4) 0.94 (0.03) 23.5 (3.9) �0.5 (3.3) 0.81 (0.23)

Nt (g kg�1) Callocal 1.8 (0.4) 0.1 (0.6) 0.48 (0.30) 1.7 (0.4) 0.1 (0.6) 0.52 (0.27)

Calnat 1.1 (0.2) 0.0 (0.2) 0.80 (0.16) 1.9 (1.4) �0.2 (0.4) �0.70 (3.37)

MBLnat 0.9 (0.2) 0.0 (0.1) 0.86 (0.09) 1.2 (0.4) 0.0 (0.3) 0.69 (0.39)

Calnat/sp 1.1 (0.2) 0.0 (0.1) 0.79 (0.18) 1.7 (1.0) �0.1 (0.3) �0.11 (2.05)

MBLnat/sp 1.1 (0.3) 0.0 (0.1) 0.81 (0.14) 1.2 (0.3) 0.0 (0.3) 0.72 (0.31)

pH (CaCl2) Callocal 0.8 (0.3) 0.0 (0.3) 0.59 (0.26) 1.1 (0.2) �0.2 (0.1) 0.24 (0.37)

Calnat 0.3 (0.0) 0.0 (0.1) 0.93 (0.02) 0.6 (0.0) 0.0 (0.1) 0.79 (0.06)

MBLnat 0.4 (0.1) 0.0 (0.1) 0.91 (0.05) 0.6 (0.1) 0.0 (0.1) 0.79 (0.05)

Calnat/sp 0.3 (0.1) 0.0 (0.1) 0.93 (0.03) 0.6 (0.0) 0.0 (0.1) 0.79 (0.07)

MBLnat/sp 0.4 (0.1) 0.0 (0.1) 0.91 (0.05) 0.6 (0.1) 0.0 (0.1) 0.76 (0.08)

Abbreviations: MEV, mean error of validation; R2
V, coefficient of determination (Nash–Sutcliffe model efficiency) of validation; SDEV, standard deviation of the

error of validation. Other abbreviations: see Table 1.

10 of 17 LUDWIG ET AL.



T
A
B
L
E

3
b

A
ve
ra
ge

pe
rf
or
m
an

ce
s
(m

ea
n
an

d
st
an

da
rd

de
vi
at
io
n
)
of

th
e
PL

S
re
gr
es
si
on

s
in

th
e
va
lid

at
io
n
fo
r
lo
ca
lc
al
ib
ra
ti
on

(C
al

lo
ca
l),

ca
lib

ra
ti
on

us
in
g
th
e
n
at
io
n
al

ar
ch

iv
e
(C
al

n
at
)
an

d

th
e
n
at
io
n
al

ar
ch

iv
e
w
it
h
sp
ik
in
g
(C
al

n
at
/s
p
).
A
ve
ra
ge

pe
rf
or
m
an

ce
s
ar
e
al
so

sh
ow

n
fo
r
m
em

or
y-
ba
se
d
le
ar
n
in
g
us
in
g
th
e
n
at
io
n
al

ar
ch

iv
e
(M

B
L
n
at
)
an

d
ad

di
ti
on

al
ly

w
it
h
sp
ik
in
g
(M

B
L
n
at
/s
p
).

V
is
–N

IR
-M

IR
co

n
ca

te
n
at
io
n
va

li
d
at
io
n

O
P
A

vi
s–
N
IR

-M
IR

va
li
d
at
io
n

V
is
–N

IR
an

d
M
IR

m
od

el
av

er
ag

in
g
va

li
d
at
io
n

P
ro
p
er
ty

T
ra
in
in
g

st
ra
te
gy

SD
E
V

M
E
V

R
2
V

SD
E
V

M
E
V

R
2
V

SD
E
V

M
E
V

R
2
V

SO
C
(g

kg
�
1 )

C
al

lo
ca
l

30
.0
(8
.9
)

0.
9
(9
.4
)

0.
65

(0
.1
7)

23
.3
(5
.7
)

2.
2
(7
.6
)

0.
76

(0
.1
9)

29
.3
(9
.1
)

2.
3
(9
.0
)

0.
68

(0
.1
4)

C
al

n
at

17
.8
(2
.2
)

�0
.6
(2
.9
)

0.
85

(0
.1
6)

15
.4
(2
.6
)

0.
5
(3
.3
)

0.
90

(0
.1
0)

17
.9
(3
.5
)

0.
0
(3
.1
)

0.
88

(0
.0
9)

M
B
L
n
at

15
.2
(3
.5
)

0.
2
(2
.1
)

0.
91

(0
.0
7)

14
.8
(4
.3
)

0.
4
(2
.4
)

0.
92

(0
.0
4)

17
.2
(2
.9
)

0.
5
(3
.6
)

0.
86

(0
.1
4)

C
al

n
at
/s
p

17
.6
(2
.9
)

�0
.5
(3
.3
)

0.
86

(0
.1
3)

15
.4
(2
.2
)

�0
.1
(2
.5
)

0.
91

(0
.0
7)

17
.9
(3
.7
)

0.
1
(4
.0
)

0.
88

(0
.0
8)

M
B
L
n
at
/s
p

15
.1
(4
.1
)

0.
5
(2
.2
)

0.
92

(0
.0
5)

15
.3
(3
.7
)

0.
6
(2
.9
)

0.
92

(0
.0
4)

16
.5
(3
.7
)

0.
1
(3
.4
)

0.
88

(0
.1
2)

C
t
(g

kg
�
1 )

C
al

lo
ca
l

32
.8
(1
0.
5)

1.
7
(9
.3
)

0.
71

(0
.1
3)

25
.1
(5
.0
)

0.
8
(7
.5
)

0.
82

(0
.1
0)

33
.6
(8
.9
)

1.
3
(9
.5
)

0.
71

(0
.1
0)

C
al

n
at

16
.8
(3
.0
)

�1
.0
(3
.0
)

0.
92

(0
.0
4)

14
.0
(3
.2
)

�0
.1
(1
.9
)

0.
95

(0
.0
3)

17
.6
(2
.9
)

�0
.7
(3
.8
)

0.
92

(0
.0
3)

M
B
L
n
at

15
.9
(5
.2
)

�0
.4
(1
.9
)

0.
90

(0
.1
3)

20
.2
(4
.0
)

�0
.5
(3
.8
)

0.
87

(0
.1
0)

17
.5
(2
.4
)

0.
1
(2
.1
)

0.
91

(0
.0
5)

C
al

n
at
/s
p

16
.6
(2
.5
)

�0
.8
(2
.6
)

0.
92

(0
.0
4)

13
.7
(2
.8
)

�0
.4
(1
.3
)

0.
95

(0
.0
3)

18
.3
(2
.4
)

�0
.8
(2
.9
)

0.
91

(0
.0
5)

M
B
L
n
at
/s
p

13
.5
(3
.8
)

�0
.4
(1
.6
)

0.
95

(0
.0
3)

16
.8
(5
.4
)

0.
5
(4
.0
)

0.
92

(0
.0
4)

17
.3
(2
.8
)

�0
.6
(2
.2
)

0.
91

(0
.0
7)

N
t
(g

kg
�
1 )

C
al

lo
ca
l

1.
8
(0
.4
)

0.
0
(0
.5
)

0.
48

(0
.3
1)

1.
5
(0
.4
)

0.
1
(0
.5
)

0.
56

(0
.3
4)

1.
6
(0
.5
)

0.
1
(0
.6
)

0.
58

(0
.2
5)

C
al

n
at

1.
1
(0
.3
)

0.
0
(0
.1
)

0.
79

(0
.1
7)

0.
9
(0
.2
)

0.
0
(0
.1
)

0.
84

(0
.1
8)

1.
4
(0
.6
)

�0
.1
(0
.2
)

0.
45

(0
.9
2)

M
B
L
n
at

1.
0
(0
.3
)

0.
0
(0
.1
)

0.
81

(0
.1
4)

0.
9
(0
.2
)

0.
0
(0
.2
)

0.
87

(0
.0
8)

0.
9
(0
.3
)

0.
0
(0
.2
)

0.
83

(0
.1
6)

C
al

n
at
/s
p

1.
0
(0
.2
)

0.
0
(0
.2
)

0.
81

(0
.1
6)

0.
8
(0
.2
)

0.
0
(0
.2
)

0.
87

(0
.1
2)

1.
2
(0
.5
)

0.
0
(0
.2
)

0.
61

(0
.5
9)

M
B
L
n
at
/s
p

1.
0
(0
.2
)

0.
0
(0
.1
)

0.
83

(0
.1
3)

0.
9
(0
.2
)

0.
0
(0
.2
)

0.
87

(0
.0
9)

1.
0
(0
.3
)

0.
0
(0
.2
)

0.
82

(0
.1
5)

pH
(C
aC

l 2
)

C
al

lo
ca
l

0.
8
(0
.3
)

0.
0
(0
.3
)

0.
57

(0
.3
0)

0.
7
(0
.2
)

0.
1
(0
.1
)

0.
66

(0
.1
7)

0.
8
(0
.2
)

�0
.1
(0
.2
)

0.
63

(0
.1
4)

C
al

n
at

0.
3
(0
.0
)

0.
0
(0
.1
)

0.
93

(0
.0
2)

0.
4
(0
.1
)

0.
0
(0
.1
)

0.
92

(0
.0
4)

0.
4
(0
.0
)

0.
0
(0
.1
)

0.
90

(0
.0
3)

M
B
L
n
at

0.
4
(0
.1
)

0.
0
(0
.1
)

0.
91

(0
.0
5)

0.
4
(0
.1
)

0.
0
(0
.1
)

0.
91

(0
.0
4)

0.
4
(0
.1
)

0.
0
(0
.1
)

0.
89

(0
.0
4)

C
al

n
at
/s
p

0.
3
(0
.0
)

0.
0
(0
.1
)

0.
93

(0
.0
2)

0.
4
(0
.1
)

0.
0
(0
.1
)

0.
92

(0
.0
3)

0.
4
(0
.0
)

0.
0
(0
.1
)

0.
90

(0
.0
3)

M
B
L
n
at
/s
p

0.
4
(0
.1
)

0.
0
(0
.1
)

0.
91

(0
.0
5)

0.
4
(0
.1
)

0.
0
(0
.1
)

0.
91

(0
.0
5)

0.
4
(0
.1
)

0.
0
(0
.1
)

0.
88

(0
.0
4)

A
bb

re
vi
at
io
n
s:
se
e
T
ab
le
s
1
an

d
3a
.

LUDWIG ET AL. 11 of 17



3.3 | Relationships between R2, RMSE
and IQR

For all the four properties, R2
V values in the different

folds showed a marked scatter (Figure 3). This scatter is
related to the variation of the response variable (TSS),
which is related to the IQR, and RMSE (consisting of bias
and imprecision). Figure 5 shows the R2

V values against
IQR and RMSEV values for SOC for the training strategies
II (calnat/sp) and IV (MBLnat/sp) for MIRS (open symbols)
and OPA (closed symbols) as examples. For SOC, the gen-
erally smaller RMSEV values for OPA indicate the benefit
of this data fusion approach. The benefits of MBL are espe-
cially visible for small IQR values, which overall resulted
in good [SOC (Figure 5), Ct and pH] and satisfactory (Nt)
predictions for all five folds in the respective validations.

The smallest R2
V values were obtained for region 2,

the region with the smallest IQR and thus smallest

variation of the contents of response variable (Figure 5).
The Spearman rank correlation coefficient between R2

V

and IQR for the SOC example was 0.86, which shows the
profound effect of the variation of the contents on the
R2

V values.

4 | DISCUSSION

4.1 | Performance of the spectral
approaches and training strategies in the
fivefold validations

Calibrations with local datasets of n = 20 did not result
in convincing validation results for the different spectral
approaches. These results indicate that such a small set
does not include sufficient spectral variation for success-
ful validations at this geographical scale, despite the

FIGURE 4 Validation results for the outer product analysis vis–NIR-MIR validation with memory-based learning for the five folds using

the national dataset and spiking (red: Lower Austria and Burgenland, green: Carinthia and Salzburg, brown: Upper Austria, blue: Styria and

pink: Tyrol and Vorarlberg).
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stratified random approach to selecting diverse soil types
for the training set. The Kennard-Stone algorithm was
also tested to select a spectrally diverse subset for train-
ing, but performance was likewise generally poor. How-
ever, local calibrations with small samples sizes,
e.g., n = 20, have been successful for SOC and N at the
field scale (Debaene et al., 2014; Greenberg et al., 2022)
and 5 km2 scale (Guerrero et al., 2010), suggesting that
the performance of small local calibrations is related to
the heterogeneity of the target site. In the present study,
local calibrations showed good performances for all the
four properties for at least one validation fold of one
approach and region (Figure 3) but poor performances
for several other validation folds, indicating that the use
of different validation sets defined by multiple partition-
ing is essential for conclusive evaluations.

For the local calibrations with limited spectral infor-
mation, the greater potential of MIRS over vis–NIRS is
obvious (except for Nt), but OPA already showed its
potential for the property Ct, indicating that vis–NIRS
was not entirely redundant to MIRS and provided com-
plementary information helpful to improve estimation
accuracies as has been pointed out by Terra et al. (2019)
for the region of 600 to 1000 nm.

Training strategy II to V indicated a general superior-
ity of MIRS over vis–NIRS for all the four properties

[with n ranging from 362 to 414 for Calnat (strategy II)
and MBLnat (strategy IV)]. This superiority is in line with
other studies and can be traced back to more pronounced
information in the MIR spectra, consisting of fundamen-
tal vibrations (e.g., Ng et al., 2019; Soriano-Disla
et al., 2014; Vohland et al., 2014).

In our study, low-level data fusion generally outper-
formed MIRS, with slightly greater benefits of OPA (for
SOC, Ct and Nt) over model concatenation (for pH) based
on mean R2

V values (Tables 3a and 3b) and highest mini-
mum R2

V values of the five folds (Figure 3). In contrast,
model averaging was not as successful, which is not sur-
prising considering the superior performance of MIRS
over vis–NIRS. The very good potential of OPA—also
reported by Terra et al. (2019) and Xu et al. (2020)—has
been assigned to the mutual weighting of each signal
(vis–NIRS and MIRS) by the other, with maximum prod-
ucts when the intensities are simultaneously high in the
two domains (Barros et al., 2008). In contrast, Vohland
et al. (2022) did not find a benefit of OPA for SOC predic-
tion, where model averaging outperformed OPA. The lat-
ter study, however, was based on a smaller data set of
186 spectra, and the differences between vis–NIR and
MIR prediction accuracies were not as pronounced as in
this study, resulting in more reliable vis–NIR estimates
for model averaging in that study. From a practical point
of view with respect to cost-effectiveness of reflectance
spectroscopy (Li, Viscarra Rossel, & Webster, 2022), how-
ever, it has to be noted that fusion of vis–NIRS and MIRS
increases the cost of spectroscopy and thus decreases the
cost-effectiveness compared with a stand-alone MIRS
approach.

The combination of OPA and MBL with spiking
achieved the greatest robustness of performance over all the
four properties. Prediction accuracies were good (R2

V ≥ 0:85
for all five validation folds) for SOC, Ct and pH, whereas
for Nt predictions, accuracies were at least satisfactory
(0.77≤R2≤ 0.97 for the five validation folds). The useful-
ness of MBL for any validation set will depend largely on
the representativeness of the considered SSL and the
defined validation set. In addition, dissimilarity methods
used to find spectral neighbours will determine the pre-
dictive success of MBL models (Summerauer et al., 2021).

4.2 | Relationships between R2, RMSE
and IQR

Besides the training and data fusion effects discussed
above, the interquartile distance (which is related to the
variation of the contents of the response variable) also
affected the R2

V values markedly (the Spearman rank
correlation coefficient between R2

V and IQR was 0.86 for

FIGURE 5 R2
V (coefficient of determination, Nash–Sutcliffe

model efficiency) of validation values against IQR (interquartile

range) and RMSEV (root mean square error of validation) errors for

MIRS (open symbols) and outer product analysis (closed symbols)

with the variants calibration (squares) and memory-based learning

(MBL) (triangles) using the national dataset and spiking (colour

codes: see legend of Figure 1) for soil organic carbon (SOC).
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SOC for MIRS and OPA for training strategies II and IV,
Figure 5). This indicates the need to focus on both contri-
butions for quality assessment in spectroscopy: factors
that affect RMSEV, SDEV and MEV, such as instrumental
specification, spectral approach, training approach and
soil mineral composition, must be considered in conjunc-
tion with the range of contents, which affects R2

V values,
RPD values and ratios of performance to interquartile
distance (RPIQ).

The results suggest that by selecting only data sets
(and folds) with large standard deviations and/or IQR,
any model for spectrally active properties can be pushed
to become very successful when rated only by R2

V values,
RPD or RPIQ values and that a focus on error measures
such as RMSE, SDE and ME is equally important.
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APPENDIX A

A.1 | Classification of soils according to Austrian
soil taxonomy (Nestroy et al., 2011).
Group “A—Fluvisols and others (number of plots:
28)”: Anmoor (2), Brauner Auboden (6), Grundwas-
sergley (6), Kunstböden (1), Rohauboden, Grauer
Auboden (2), Rohböden und Ranker (9), Schwemmbö-
den und Bachauböden (2).

Group “B—predominantly Podzols (92)”: Klimabe-
dingter Podsol (11), Semipodsol auf Kristallin (76), Sub-
stratbedingter Podsol (5).

Group “C—predominantly Cambisols (189)”: Bin-
dige Braunerde auf Moränen, Geschiebe, Staublehm
und tonhältigem Ausgangsmaterial allgemein (auch
Werfener Schichten) (21), Braunerde aus Löß (3),

Braunerde und Hangkolluvien auf ärmerem Kristallin
(86), Braunerde und Kolluvien auf basenreichem Kris-
tallin und kalkbeeinflusste Braunerde (60), Leichte
Braunerde und podsolige Braunerde auf Lockersedi-
menten (14), Parabraunerde (2), Silikatischer Braun-
lehm, Rotlehm (3).

Group “D—predominantly Leptosols and Phaeozems
(121)”: Mischböden aus Rendsina und Terra fusca (28),
Pararendsina (3), Rendsina und Rohböden auf Kalk (40),
Terra fusca und Kalksteinlehm allgemein (50).

Group “E—predominantly Planosols and Stagnosols
(51)”: Hangpseudogley und Hanggley (19), Pseudogley
auf Flysch, Werfener Schichten, Fleckenmergel und
anderem tonhaltigem, festem Grundgestein (11), Pseu-
dogley auf Lockersedimenten (17), Pseudogley auf Löß
(1), Stagnogley (3).
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