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Abstract

The increasing demand for biomass for food, animal feed, fibre and bioenergy

requires optimization of soil productivity, while at the same time, protecting

other soil functions such as nutrient cycling and buffering, carbon storage,

habitat for biological activity and water filter and storage. Therefore, one of

the main challenges for sustainable agriculture is to produce high yields while

maintaining all the other soil functions. Mechanistic simulation models are an

essential tool to fully understand and predict the complex interactions between

physical, biological and chemical processes of soils that generate those func-

tions. We developed a soil model to simulate the impact of various agricultural

management options and climate change on soil functions by integrating the

relevant processes mechanistically and in a systemic way. As a special feature,

we include the dynamics of soil structure induced by tillage and biological

activity, which is especially relevant in arable soils. The model operates on a

1D soil profile consisting of a number of discrete layers with dynamic thick-

ness. We demonstrate the model performance by simulating crop growth, root

growth, nutrient and water uptake, nitrogen cycling, soil organic matter turn-

over, microbial activity, water distribution and soil structure dynamics in a

long-term field experiment including different crops and different types and

levels of fertilization. The model is able to capture essential features that are

measured regularly including crop yield, soil organic carbon, and soil nitrogen.

In this way, the plausibility of the implemented processes and their interac-

tions is confirmed. Furthermore, we present the results of explorative simula-

tions comparing scenarios with and without tillage events to analyse the effect

of soil structure on soil functions. Since the model is process-based, we are

confident that the model can also be used to predict quantities that have not

been measured or to estimate the effect of management measures and climate

states not yet been observed. The model thus has the potential to predict the

site-specific impact of management decisions on soil functions, which is of
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great importance for the development of a sustainable agriculture that is cur-

rently also on the agenda of the ‘Green Deal’ at the European level.
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1 | INTRODUCTION

There is an increasing awareness within the political and
public arena that soil plays a critical role for the function-
ing of the Earth system (Keesstra et al., 2016). At the
European level, the new Green Deal formulates ambi-
tious objectives with respect to more sustainable soil
management (Montanarella & Panagos, 2021).

Agriculture is our essential basis for the production of
food and many raw materials. At the same time, agricul-
ture is the activity where man intervenes most strongly
in the natural functions of soil. This is done, for example,
by selecting crop rotations, tillage, and supply of organic
and mineral fertilizers, as well as pesticides. In the first
place, the aim is to achieve higher and more secure
yields. However, in addition to the production function,
there are other soil functions that we know are essential
for the functioning of our ecosystems: buffering water
flows, being a filter for clean groundwater, recycling
nutrients, storing carbon and being the habitat for a myr-
iad of organisms. For this reason, we need a sustainable
or ecological intensification of agriculture that takes into
account the protection of the other soil functions.
Addressing this multifunctionality requires the develop-
ment of appropriate policy frameworks and practical
decision-support tools. A prerequisite for this develop-
ment is the ability to quantify the impact of agricultural
management on all these functions. Providing the neces-
sary tools for this is a crucial task for soil scientists
(Bouma, 2020).

The various soil functions can be considered to
emerge from interactions of biological, physical and
chemical soil processes which are closely linked. The typ-
ical approach to evaluate the state of soil functions today
is to find suitable indicators that can be observed and that
are clearly related to these functions (Bünemann
et al., 2018). In this way, the actual state of soil functions
can be evaluated and, based on time series, also their
temporal dynamics. However, this approach is unsatisfac-
tory in the sense that it is not possible to directly predict
the effect of individual management measures on the var-
ious soil functions and to unravel the processes that are
responsible for the change in soil functions. This can be
achieved by a modelling approach representing the

relevant soil processes and their interactions in a realistic
way for given site conditions so that the soil functions
emerge from these processes. Hence, to be site-specific
and predictive the required model tools need to be
process-based and mechanistic, and should represent soil
as a complex system (H.-J. Vogel et al., 2018). There is a
number of models following such a systemic approach
but focusing on different aspects of the soil system such
as dynamics of soil organic matter (Coleman &
Jenkinson, 1996; Franko et al., 1995; Parton, 1996), nitro-
gen (Engel & Priesack, 1993; Godwin & Jones, 1991; Haas
et al., 2013), water (Belmans et al., 1983; T. Vogel
et al., 1996), solute transport (Vanclooster et al., 1994),
biological activity (Deckmyn et al., 2020; Komarov
et al., 2017) or integrating different existing
model approaches within one framework (Holzworth
et al., 2014). According to the respective focus, these
models are missing some processes, which are, however,
essential for the representation of the overall system. For
arable soils, a typical example of such a missing compo-
nent is soil structure formation by tillage. Some model
approaches already incorporate several direct effects of
tillage operations on different aspects of the soil system,
such as turnover rates of soil organic matter (Jordon &
Smith, 2022), mixing of soil organic matter and nutrients
(Holzworth et al., 2014), surface residues, or a change in
bulk density affecting hydrological processes (Andales
et al., 2000). However, they do not account for the
dynamic long-term effects following the explicit change
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in soil structure. Other examples are soil structure
formation by biological activity, especially bioturbation,
as well as structural dynamics during the growing season
due to rooting and recompaction of the loosened soil.
These missing components can have implications for
many other processes such as water (Fatichi et al., 2020)
or carbon dynamics (H.-J. Vogel et al., 2022). Some other
model concepts already account for soil structure dynam-
ics induced by biological activity following different
approaches on describing soil structure and with a focus
on more specific soil functions such as carbon storage
(Meurer et al., 2020) while BODIUM targets all soil
functions and their long-term development in response
to agricultural management. A mechanistic modelling
approach that operates at a ‘whole system’ level, that is,
including all necessary processes and providing predic-
tive power with respect to soil functions has been pro-
posed by H.-J. Vogel et al. (2018). The BODIUM model
presented in this paper is motivated by this idea.

The intention of BODIUM is not to predict the yield
or nutrient requirements for the current crop as is
the case for typical soil–plant models in agriculture.
The main intention is to evaluate different farming sys-
tems, characterized by crop rotations, tillage and fertiliza-
tion strategies, in their effect on the different soil
functions in the medium and long term. This is to be
achieved by correctly modelling the relevant processes
and their interactions according to our actual state of
knowledge. In this way, we want to make sure that the
differences between management measures in terms of
their effect on soil functions are qualitatively represented
correctly by the model. Hence, the aim is not to predict,
for example, the yield or the nitrogen losses in quantita-
tive terms (i.e., in kg/ha) but to evaluate the differences
between the management option (i.e., is there a differ-
ence and if so, in what direction and how big is it approx-
imately). This leads to another special feature of the
BODIUM model, namely that the model parameters rep-
resent our current understanding of the underlying pro-
cesses and are not calibrated based on any measured
observations. To our knowledge, BODIUM is the first sys-
temic model that follows this concept and can thus
become a valuable decision-support tool in agriculture.
BODIUM is intended to be a reliable process-based
model to evaluate the long-term effect of future scenarios
for which empirical data are missing and for which no
experimental approach is available due to the long-term
nature of the problem. The model is and will be in devel-
opment as our understanding of the soil processes con-
tinues to improve.

The structure of this article is as follows: In the first
section, we introduce the general model concept in terms
of spatial and temporal scales, the type of processes

included and the level of detail of their descriptions.
This is followed by a short description of the technical
implementation and the programming framework. Then
we describe the long-term field experiment which is used
to demonstrate the model performance. The model's
plausibility is confirmed by comparing simulation results
with experimental data for biomass production and the
dynamics of carbon, nitrogen and microbial biomass, and
analyse how new features of our model affect the out-
come. Finally, the impact of tillage on soil functions is
simulated as an example of explorative modelling, which
allows the simulation of any management or climate sce-
nario to predict future dynamics. The details of the
implemented processes and their parametrization are
provided in an extended supplement.

2 | THE BODIUM MODEL

2.1 | Model concept

2.1.1 | General setup

The BODIUM model is designed to explicitly represent
all relevant components of the complex soil system.
These components are interconnected by a large variety
of processes. Many of these processes are well known and
described by appropriate equations, and some of them
are rather hypotheses that can be tested using a simula-
tion model. The ambition of the model is to connect all
known and presumed processes in a structurally correct
way according to the current state of knowledge. The
expectation is that this mechanistic approach will be in a
position to reproduce and predict the effect of external
drivers such as soil management and climate on the vari-
ous soil functions.

2.1.2 | Spatial scale

Soil functions are highly sensitive to the type of soil and
the local site conditions. Especially soil texture is directly
related to soil structure, water capacity and the buffer
capacity for nutrients. From this, it is obvious that differ-
ent soil types have to be distinguished. Hence, the char-
acteristic scale of our model is the field scale which is
also the typical scale for soil management measures. The
parametrization of many processes depends on inherent
soil properties such as texture, mineralogy, stone content,
depth of the soil profile and the more general hydrologic
situation (e.g., depth of groundwater table or waterlog-
ging). This can be accounted for at the field scale such
that the model application is highly site-specific and
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accounts for the fact that agricultural soil management
may have very different impacts depending on the local
site conditions.

The field scale implies that the soil properties do not
vary substantially in the horizontal plane. At this scale,
flow and transport processes are mainly driven by vertical
gradients in water potential or concentrations of sub-
stances. Lateral movement in the range of metres and
beyond is limited to situations close to water saturation
(H.-J. Vogel, 2019). Hence, the model operates, in fact, at
the pedon scale, and flow and transport processes are
modelled in 1D along the vertical soil profile with a flexi-
ble number of vertically connected sub-volumes (in the
following referred to as ‘nodes’) and fluxes of water, sol-
utes, energy and particulate matter in between. The spa-
tial resolution in the vertical direction is high enough to
represent the soil profile (i.e., horizons). While water and
matter fluxes can be modelled for unsaturated soils, lat-
eral fluxes close to water saturation and erosion are not
represented in the present 1D model version. Simulating
a field or watershed with substantial underlying hetero-
geneity is possible by modelling several profiles and sum-
ming up the resulting functions and fluxes according to
the soils' proportions.

2.1.3 | Process descriptions

We do not intend to ‘reinvent the wheel’. BODIUM builds
upon process descriptions that have been successfully
applied in other modelling approaches that were typically
designed for more specific applications such as crop
growth (Groot, 1987; Penning de Vries, 1989; Priesack,
2006; Rahn et al., 2010; Wang & Engel, 1998, 2000; Yin &
van Laar, 2005), root water uptake (Couvreur et al., 2012,
2014), or nitrogen leaching. Those are integrated with
other processes where we developed new concepts, for
example, for water dynamics, carbon turnover and micro-
bial dynamics. This available knowledge is implemented
into a homogenized programming framework that allows
for a seamless coupling of biological, physical and chemi-
cal processes to reproduce the required system behaviour.

One of the major challenges is to represent all rele-
vant processes at the scale defined by the discrete nodes
of the 1D model which is in the range of centimetres to
decimetres. For example, the degradation of organic mol-
ecules by organisms acting at the micro-scale needs to be
described by variables that are relevant at the centimetre
scale such as quality of organic matter, water content,
temperature or soil structural attributes. This upscaling is
a common challenge to all models operating at the scale
of pedons since it is simply not possible to model the pro-
cesses in full 3D at the pore scale. The main problem in
the first place is not the lack of computing power, but the

impossibility to describe the state of the heterogeneous
soil system with the required resolution. Our general
approach for upscaling is to start from the available pro-
cess knowledge at the small scale, where the processes
are actually happening, and, based on that, to develop a
simplified effective description at the larger scale. An
example is the switch from nitrification to denitrification.
At the local spot this depends on the local availability of
oxygen and organic substrate together with the local
microbial activity. This has a sharp transition with the
saturation of oxygen. At the large scale of soil pedons,
due to small-scale soil heterogeneity, we typically observe
a gradual increase in N2O fluxes as the soil moisture
increases towards saturation. For making the scale
change and to gain such a transition for BODIUM, the
dynamic air-filled porosity and the derived distance
distribution from any point within the soil matrix to the
air-filled pore volume can be estimated as an upscaled
attribute of soil structure. In this way, the anaerobic soil
volume, that is, the fraction of denitrification, is calcu-
lated as a function of water content. The spatial distribu-
tion of organic matter is assumed to be homogeneous
and the overall microbial activity depends on additional
boundary conditions such as water content and tempera-
ture. In this way, the observed phenomena at the large
scale is reproduced by translating the small-scale under-
standing (i.e., the microbial activity affected by boundary
conditions) to an effective description based on available,
measurable, macroscopic system variables (i.e., the men-
tioned boundary conditions driven by soil structure). Soil
structure images for such a transformation are available
via the soil structure library (Weller et al., 2022).

2.1.4 | Parametrization

A large number of represented processes leads to an even
larger number of parameters for their description. Thus, it
is not an option to calibrate parameters based on a limited
number of observations in a highly under-determined sys-
tem. In contrast, the required parameters are estimated
based on a systematic assessment of the experimental evi-
dence published in the relevant literature. Based on that,
the model is operated in the forward mode (i.e., model
parameters are not calibrated using measured data for each
respective site) to evaluate the impact of various soil man-
agement strategies on the different soil functions in a site-
specific way. For this purpose, the interactions of the pro-
cesses should be represented following the actual state of
knowledge and/or well-defined hypotheses and the related
parameters should be in a realistic range. The model is not
primarily designed to predict a specific soil state variable of
a given field. This would require also the management his-
tory of this specific field which is often unknown.
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The performance of the model is validated based on
data collected in a long-term field experiment, where dif-
ferent management strategies are known for a long time
span of at least 20 years. The reliability of the model pre-
dictions can be assessed by comparison with the mea-
sured data observed in these experiments. This serves
also as a plausibility check for assumptions that are not
yet tested in experiments or values which cannot easily
be measured, such as soil structure dynamics.

2.2 | Model implementation

In this section, the implementation of components and
processes is described at a more general level. For a full
description of the processes including equations and a
full list of parameters, see Data S1 (Tables S1–S3).

2.2.1 | Model components

The 1D model operates at the scale of a soil profile repre-
sented by a vertical sequence of spatially discrete layers,
that is, nodes. Each node contains all essential entities

depicted as components: roots, mineral nutrients, water
and air, fauna (only earthworms are represented explicitly,
no fauna was simulated in the present study), microorgan-
isms, soil structural attributes and soil organic matter of
different quality (SOM) as illustrated in Figure 1. All these
components co-exist and interact within the volume of
each node without a spatial explicit location. Additionally,
the model includes a stand-alone crop growth component
connected to the uppermost soil node and interacting with
the deeper nodes via the root component (Figure 1). The
number and thickness of the nodes are flexible and can be
chosen based on the structure of the soil profile with its
characteristic soil layers. This way, both can be adapted to
represent flow and transport processes along the soil profile
in a realistic way. This is especially true close to the soil
surface where the vertical thickness of a node should not
exceed a few centimetres while further below a maximum
node thickness of about 20 cm is adequate in most cases.
There is no maximum depth, however, it is typically
assumed that the profile discretization covers at least the
maximum rooting depth. The volume and mass of each
node may change during simulations to allow for local
changes in bulk density as it is typical through tillage or
swelling and shrinking.

FIGURE 1 Scheme of the BODIUM model depicting components (coloured boxes), processes and interactions (arrows) and external

factors (grey circles) within each soil node. On the right, the soil profile consisting of various soil nodes is presented. Note that this illustrates

the current BODIUM version described in this publication, some of the missing arrows or components will be part of future versions

(e.g., other nutrients).
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2.2.2 | Processes

The various model components within each node are
linked by physical, chemical and biological processes
illustrated through arrows in Figure 1. In the following,
these processes are described only briefly.

Soil structure is considered to change not only after till-
age operations but also during the consolidation thereafter.
Thereby, soil structure is quantified through the volume
fraction of different pore-size classes including biopores
(i.e., channels formed by roots and earthworms) as a spe-
cial class of pores with increased vertical connectivity.

Water flow is simulated based on the actual water satu-
ration of the different pore size classes. These saturations
define the local water potential and hydraulic conductivity.
As a special feature during infiltration, water can invade
larger pores prior to smaller ones to represent the effects of
hydraulic non-equilibrium, hysteresis and preferential flow
(Hassanizadeh & Gray, 1979). The transport of dissolved
nutrients is directly coupled to water flow. The movement
of gas components, especially oxygen and heat, is described
by a diffusion process based on local gradients (Moldrup
et al., 2004; Peng et al., 2016).

The turnover of organic matter is based on the separa-
tion of different pools, namely fresh organic matter,
degraded organic matter (assimilable and non-assimila-
ble) and physically protected organic matter bound to
mineral surfaces or occluded in the mineral soil matrix.
This is similar to most of the currently used carbon
models (Abrahamsen & Hansen, 2000; Komarov
et al., 2017; Parton, 1996). In addition to that, we con-
sider the active microbial biomass as an individual com-
ponent that changes its mass depending on the quality
and quantity of available resources. Provided the avail-
ability of water and oxygen, the interaction between liv-
ing microbes and available organic matter is mainly
governed by stoichiometric relations in terms of carbon
and nitrogen (Kirschbaum, 1995; König et al., 2017;
Monod, 1949; Sinsabaugh et al., 2013; Stolpovsky et al.,
2011; Svendsen et al., 1995; Wang & Post, 2012).

The simulation of plant growth is based on simplified
modelling of photosynthesis and assimilate distribution
including the plant-specific separation between above-
ground biomass production and root growth. Water and
nutrient uptake by plants is directly coupled to the actual
photosynthesis.

The typical time step of the BODIUM model is 1 day,
but can be adapted by the user. If external factors affect
processes in a way requiring an increase in temporal reso-
lution, the time step is automatically reduced for specific
processes (i.e., water distribution after heavy rainfall). The
duration of the simulation is also defined by the user, but
should cover at least one vegetation period.

2.2.3 | Management options

With the generic plant component, BODIUM can
simulate monocultures as well as crop rotations depend-
ing on available data. Parametrizations can be directly
selected for winter wheat, spring wheat, winter barley,
spring barley, sugar beet, potato, silage maize and corn
maize (Hunt & Loomis, 1979; Jones et al., 1986; Lenz,
2007; Yang et al., 2004). Mineral and organic fertilizer
can be applied at a defined depth and with a specific C:N
ratio. Tillage operations can be simulated for different
depths as well. This is reflected by a changing pore size
distribution and the mixing of solid components along
the depth of the tilled layer. Moreover, the oxygen con-
centration is set to the atmospheric value within this
layer. The decrease in bulk density by tillage is followed
by re-settling during the following time period depending
on soil depth. It is further possible to set negative effects
of soil management on earthworms and soil microorgan-
isms in terms of a reduction, which is however not yet
parameterized.

2.2.4 | Programming tools

The BODIUM model is coded following the approach of
object-oriented programming in the programming language
C++ with the cross-platform development environment Qt
(Version 6.2.3, https://www.qt.io/). It uses json files as input
and is linked to an R script for directly analysing and plot-
ting simulation results using the packages ‘ggplot2’, ‘viridis’,
‘tidyft’ and ‘dplyr’ (R Core Team, 2021). The source code
including all input files used for the present study is avail-
able in a git repository (https://git.ufz.de/bodium/bodium_
v1-0). Input by the user is needed for soil profile initializa-
tion, management and weather (Tables S4 and S5). Manage-
ment comprises crop planting, nitrogen fertilization and
tillage operations.

2.3 | Model validation

For model validation, we used data from long-term field
experiments with a well-known management history,
available weather data and a description of soil parame-
ters. With that, all necessary boundary conditions are
available and the model can be initialized properly.
Depending on the specific motivation of the long-term
field experiments, data sets including time series on dif-
ferent state variables are available. Typically, available
data are plant yield, soil carbon, or nitrogen content.
They always comprise only a part of the variables consid-
ered in the model but can be used for its validation and
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for a check of plausibility. This is also true for quantities
that are measured only sporadically and are not
monitored continuously.

In the following, data from the Static Fertilization Exper-
iment Bad Lauchstädt were used (Merbach & Körs-
chens, 2002; Merbach & Schulz, 2013). More information on
the field experiment can be found on the experiments' web-
site https://www.ufz.de/index.php?en=39220. The long-term
field experiment is operated since 1902 and has an area of
4 ha split into eight strips, in which all crops of the rotation
are grown simultaneously every year. The crop rotation is
sugar beet–spring barley–potatoes–winter wheat until 2014,
and silage maize–spring barley–silage maize–winter wheat
thereafter. In total, 18 different fertilizer treatments are
applied with three levels of organic fertilization (without,
20tha�1 farmyard manure (FYM) every 2 years, 30tha�1

FYM every 2 years) and six mineral fertilization treat-
ments (without, NPK, NP, NK, N, PK) where the applica-
tion rate depends on crop and FYM treatment.

We simulated four strips of the eight strips where the
management was not essentially changed during the whole
experiment for a duration of 40 years (1980–2019) so that
we can assure no effects of management transition for the
start of our simulations. As input, we used weather data
from the weather station of the field site and documented
management data on the date of seeding; date, type and
amount of fertilization; and date and depth of tillage. As
currently only nitrogen is implemented in BODIUM, we
cannot simulate any limiting effects of phosphorous and
potassium. In consequence, we have to assume an optimal
supply of phosphorous and potassium within our simula-
tions, reducing the mineral fertilizer treatments we are able
to handle to two (NPK, PK).

Except for sugar beet, straw remains on the field after
harvest and is incorporated during the next tillage event.
Further, we include atmospheric nitrogen deposition with
an amount of 50kgha�1 as a simple input rate distributed
over the vegetation period (Merbach & Schulz, 2013).

The loamy soil used for the simulations is classified as
Haplic Chernozem and the soil profile is initialized using
the data provided in the related publication (Altermann
et al., 2005; Leuther et al., 2022). Initial conditions were the
same for all simulations except for nitrogen and carbon con-
tent. Here, we used the measured values of the year before
the simulation period started. Initial partitioning of carbon
pools was based on previous estimates for the stable pool
(0.85) (Cécillon et al., 2021), and adjustment following
1 year of pre-simulation for the labile pools.

For comparison of our simulation results, we used the
measured yield in terms of biomass of storage organs,
yearly soil analyses of total organic carbon and total
nitrogen in the depths of 0–20 cm, and of microbial
biomass in the year 2012. See Merbach and Schulz (2013)
for details on sampling and analysis. As an indicator for

the model accuracy, we used the normalized root mean
square error (nRMSE)

nRMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

PN
n¼1 ys,n� yo,n

� �2
q

yo,max � yo,min
ð1Þ

with N the number of data, ys the simulated values, yo
the observed values and yo,max and yo,min the maximum
and minimum of the observed values respectively. Fur-
ther, the model efficiency EF is calculated

EF¼
PN

n¼1 yo,n� yo
� �2�PN

n¼1 ys,n� yo,n
� �2

PN
n¼1 yo,n� yo

� �2 ð2Þ

with yo the mean of the observed values. Here, an EF of
1 would indicate no difference between simulated and
observed values, while a negative EF means that the
model simulation outcome is worse than using the mean
of the observed values. Additionally, we calculated the
coefficient of determination r2, where appropriate.

To demonstrate the impact of the newly introduced
concept of non-equilibrium water flow we compared the
simulated yields with and without this feature (Ippisch
et al., 2006).

2.4 | Explorative scenarios

In order to demonstrate the application of the BODIUM
model for evaluating different management scenarios,
two contrasting tillage schemes were simulated in an
explorative way using the validation scenario of the static
fertilization experiment as a basis. For the tillage sce-
nario, the soil was loosened to the working depth
between 5 and 28 cm, according to the documented man-
agement events. All components in the nodes down to
the tillage depth were mixed by taking the average of the
present values and the soil was aerated. The dates and
depths were taken from the experimental station.

In a second no-till scenario all tillage practices were
omitted and the soil structure was kept constant without
any mixing. Due to the fact that we expect more earth-
worms to be active under no-till management, macro-
pores were added to the soil structure. We assumed
approximately 50 macropores per m2 with a saturated
conductivity of 10�4ms�1 (Chan, 2001).

2.5 | Evaluation of soil functions

For the comparison of the contrasting scenarios, we com-
pare some quantitative measures that can be derived from
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the state variables of the model and provide substantial
information for a direct evaluation of soil functions:

Production: The yield is described as the biomass in
storage organs at harvest for all simulated crops except
for silage maize, where the overall aboveground biomass
is used.
Carbon storage: The total soil organic carbon stock
summed up over the first 20 cm gives an expression for
the carbon storage function.
Nutrient cycling: As a measure for nitrogen buffering,
the nitrogen use efficiency is calculated as the fraction of
nitrogen that was uptaken by the plant from the total
sum lost via plant uptake and nitrogen that has leached
to the groundwater.
Water storage and filtering: The available water capac-
ity summed up over the first 30 cm gives the storage
potential difference of the various scenarios. The differ-
ence was averaged over the whole time span. The filter
function of soil is related to the adsorption of pollutants
(which we do not cover here) and metabolization

through biological activity. For the latter, we use the resi-
dence time of solutes within the soil profile weighted by
the microbial activity, integrated over the first metre of
the soil profile and over the vegetation period.

3 | RESULTS

3.1 | Model validation

The simulated yield of plant biomass in storage organs
(hereafter referred to as yield) showed good agreement
with the measured yield for all treatments with an overall
model efficiency (EF) of 0.71 and an nRMSE of 0.09. Fur-
ther, the model is able to reproduce the general temporal
dynamics of the crop rotation (Figure 2, see also
Figures S3–S6).

The mean relative difference is 23%, with a standard
deviation of 5%, ranging from 12% (silage maize, PK
+ manure) to 41% (potato, PK). The model performance
differentiated between treatments varies between the

FIGURE 2 Yearly simulated yield (filled dots) compared to observed yield (unfilled dots) for four selected treatments. Crops are

indicated by colour and difference between simulated and observed by line, with dashed lines indicating an overestimation of the

simulation. Yearly precipitation is shown with light blue bars.
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different crops with a model efficiency between 0.62
(silage maize, PK + manure) and �0.89 (winter wheat,
PK + manure) and an nRMSE between 0.18 (silage
maize, PK + manure) and 0.39 (winter wheat, PK
+ manure).

For soil organic carbon, the overall trend between the
simulated mean yearly outcomes for the different treat-
ments fitted well with the observed data, with a model
efficiency EF of 0.51 and a nRMSE of 0.12. However,
when distinguishing between treatments and strips

FIGURE 3 Simulated soil organic carbon (lines) compared to observed soil organic carbon (dots) in topsoil (0–20 cm) for the six

different treatments (rows) indicated by colour and the four strips (columns, SH, strip).
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(Figure 3), nRMSE ranges between 0.16 and 1 (strip
2, NPK) and EF is always negative between �22 (strip
2, NPK) and �0.2.

For the treatments without manure application, we
observe a depletion of organic carbon over time which is
faster than the observed decline.

The total nitrogen content shows a similar picture
(Figure 4).

Although model accuracy for the overall simulations
is reasonable (nRMSE: 0.15, EF: 0.31), model efficiency
for the different treatments is between �13 and 0.08 and
nRMSE ranges between 0.18 and 0.78. Again, we observe

FIGURE 4 Simulated soil nitrogen content (lines) compared to observed soil nitrogen content (dots) in topsoil (0–20 cm) for the six

different treatments (rows) indicated by colour and the four strips (columns, SH, strip).
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a faster depletion of total nitrogen for the treatments
without manure application compared to the observed
values.

Regarding microbial biomass, only data for one point
of time in October 2012 are available for the different
strips simulated here. As microbial biomass is a quite
dynamic value, we compare the observed data with the

daily simulated result of the whole simulation period
(Figure 5).

In general, the model appears to overestimate the
total microbial biomass.

To further understand the limiting processes for plant
growth emerging from the model process interactions,
we analysed the accumulated drought stress for each

FIGURE 5 Daily values of

simulated microbial biomass in topsoil

(0–20 cm) for the six different treatments

indicated by colour (bars). Observed

microbial biomass in topsoil (0–20 cm)

of one sampling from October 2012

(points) for the six different treatments

indicated by colour.

FIGURE 6 Accumulated drought

stress related to simulated plant biomass

at harvest for the six different treatments

indicated by colour and for the five

crops indicated with the different

symbols.
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plant by summing up the total drought stress (according
to S1.8.3) during the whole vegetation period (Figure 6).

When related to the simulated yield, the maximum
yield limited by water becomes obvious as it decreases
with increasing drought stress for all plants. Here, also
an increase in nutrients in terms of higher fertilizer
amount cannot further increase the yield. We observe a
differentiation among the different crops as well as fertil-
izer treatments. The reason for the difference might be
related to non-equilibrium water distribution along the
profile.

To test the actual effect of the hydraulic non-
equilibrium on yields, we repeated the simulations with-
out non-equilibrium and compared the simulated yields
(Figure 7). Overall, the yields are slightly higher and the
prediction of the actual yield is slightly better (r2

increased from 0.67 to 0.76, model efficiency from 0.59 to
0.73) for the simulations with non-equilibrium, however,
the effect can be both positive or negative for specific
years. The influence of modelled non-equilibrium differs
depending on the water content profile and root develop-
ment at times when heavy rainfalls occur. Two examples
with different impacts on yields of sugar beet and maize
are shown in Figures 8 and 9 for the years 2009 and 2017
respectively. In 2009, non-equilibrated deeper percolation
occurs during the substantial rainfall events in June
when plant roots are still distributed in the shallow soil
and the water cannot be stored in the lower profile. This
water is then missing later in the year when plants try to
compensate the water deficacy by increased root growth

around 50 cm depth. If non-equilibrium flow is not con-
sidered, the water remains in the shallower part of the
profile and can support plant growth. In 2017, there was
less rain in spring and some of the water that bypasses
the topsoil can be stored in the lower, already desiccated
profile. In the later season, the deeper developed plant
roots can profit from this water. Regardless of non-
equilibrium, the shallower water is used up until July.
The following precipitation is distributed over a larger
soil depth during non-equilibrium and does not remain
near the surface, where it is partially lost through evapo-
ration. The plants try to compensate for the deeper water
shortage with root growth in the topsoil, but cannot bal-
ance the water loss.

3.2 | Explorative scenario simulations
for tillage

As already stated earlier, the aim of BODIUM is to pre-
dict the effect of agricultural management on the identi-
fied five soil functions and their interrelated dynamics. In
terms of productivity, no differences were observed
between the tillage and no-till scenarios (Figure 10). As
expected, higher yields are observed in the scenarios with
nitrogen fertilization.

However, for the soil function ‘carbon storage’, the
scenario without tillage shows a clear increase in topsoil
organic carbon compared to the tilled scenarios for the
fully fertilized treatment. This is true for all crops
(Figure 11). Almost no differences are observed for the
unfertilized treatment, where organic carbon input is
mainly due to plant residues and roots.

As a measure for nitrogen buffering, the nitrogen use
efficiency is used by calculating the fraction of nitrogen
taken up by the plant from the total sum of lost
nitrogen including uptaken nitrogen and nitrogen lea-
ched to the groundwater (Figure 12).

The nitrogen use efficiency is generally much higher in
all N-unfertilized treatments—due to the nitrogen limitation
in these simulations the plants take up almost all nitrogen.
In the fully fertilized treatment, the nitrogen use efficiency
is lower for all crops in the scenario with tillage (green).

In terms of water storage, the total available water
capacity (AWC) within the top 30 cm (ploughing depth)
was higher in the tillage scenario than in the no-till sce-
nario, with an average increase of 5.7% across all simula-
tions. However, the actual effect on the drought stress of
plants is species-dependent because of different root sys-
tems. For silage maize with a deeper root system, the dif-
ference in drought stress between tillage and no-till is
only 15% while for sugar beets with a more shallow root
system, this amounts to 40%.

FIGURE 7 Comparison of biomass production with and

without dynamic non-equilibrium for all crops.
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The indicator for water filter was calculated based on
the water residence time and the microbial activity, and
was analysed for the months in which pesticides are usu-
ally applied (March–June). Higher values translate into a
better filter capability due to a longer contact time of

pesticide and degrading microbes and higher microbial
activity in general. Overall, the filtering ability increases
throughout the vegetation period with higher values in
June compared to March due to a higher microbial
activity—resulting from warmer temperatures and

FIGURE 8 Development of profiles for nitrogen, roots and water content indicated by line type of simulations with (blue) and without

(green) dynamic non-equilibrium of selected days in 2009, and the corresponding plant biomass and drought stress for 2009.
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increasing energy sources, for example, organic matter
and root exudates (Figure 13).

Although we observe significant differences between
the tillage scenarios for some months and for both fertili-
zation treatments, the filter function of both treatments is

nearly identical. This is due to the high complexity of this
function, as it can be either increased by an enhanced
microbial activity or by a higher water residence time,
which both are highly affected by soil structure dynamics
induced by tillage.

FIGURE 9 Development of profiles for nitrogen, roots and water content indicated by line type of simulations with (blue) and without

(green) dynamic non-equilibrium of selected days in 2017, and the corresponding plant biomass and drought stress for 2017.
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FIGURE 10 Plant yield for the two tillage scenarios indicated by colour and the two fertilization treatments for the five different

crops.

FIGURE 11 Total organic soil carbon in topsoil (0–20 cm) for the two tillage scenarios indicated by colour and the two fertilization

treatments for the five different crops.
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4 | DISCUSSION

4.1 | Model validation

Our simulation results suggest that we successfully dem-
onstrated the plausibility of the BODIUM model with
observed data from the described field experiment. The

validation results for yield fit reasonably well considering
that the parameters are not calibrated and plant growth
is modelled generically. The yields of the five crops differ
in the simulation accuracy, indicating that optimization
of plant parametrization would enhance model fit (see
also Figure S2). The simulation of crop rotations is a chal-
lenging task also for dedicated plant growth models

FIGURE 12 Nitrogen use efficiency for the two tillage scenarios indicated by colour and the two fertilization treatments for the five

different crops.

FIGURE 13 Daily values of the

filter indicator for the two tillage

scenarios indicated by colour and for

the two fertilization treatments for

the months of March, April, May

and June.
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including multi-model ensembles (Kersebaum, 2022;
Kollas et al., 2015), which is mainly improved by inten-
sive calibration where comprehensive data sets are
required (Kersebaum et al., 2015). However, the aim of
BODIUM is to simulate dynamic trends in reaction to cli-
mate and management, but the focus is not on simulating
accurate yields. Of course, model error of specific crops
can accumulate in the following years and also affect
other soil functions, and thus simulating the dynamic
response is precious. We show that BODIUM is able to
capture the trend in yield dynamics for most years,
including extreme events such as drought. One example
is the simulation of sugar beet in the years 1987 and 1991
(Figure 2). Although we have the highest deviation from
observed results with sugar beet in general, we capture
the high yield in the wet year of 1987 as well as the rather

low yield following a drought period in 1991. However,
there are also years where the simulations are far away
from the observations—because our model cannot
account for events like diseases, human failure, or some
extreme weather events such as strong or very hot winds.
The latter might explain the high differences between the
simulation and observation of silage maize yields in 2019,
where observed yields were quite low, especially in the
manure treatments.

We also show that BODIUM simulates the relative
differences in response to management, here the fertiliza-
tion regime, compared to the observed differences
(Figure 14).

The described differences in the model efficiency
between the fertilizer treatments may indicate an under-
estimation of organic matter input, for example, resulting

FIGURE 14 Comparison of the

difference in yield of observation (blue)

and simulation (green) for different

fertilization regimes.
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from crop growth and/or nitrogen mineralization due to
biological processes. Indeed, the former is corroborated
by the fact that the simulated soil organic carbon content
for the treatments without organic fertilization is lower
compared to the observed values. The soil organic carbon
dynamics is also highly sensitive to the rates describing
the stabilization and destabilization, which are still
lumped values and not mechanistic in this model version.
The maximum rates are similar for all treatments, and
the actual processes are only indirectly affected by biolog-
ical activity, as they depend on the current pool size. This
is a pretty good example of how important a real mecha-
nistic description is to simulate the complex response to
management and environmental fluctuations. This is fur-
ther strengthened by the differences in the various strips:
we know from field measurements that there are differ-
ences in soil parameters such as pH between the different
strips (Dierke & Werban, 2013; Werban et al., 2009),
which we currently cannot simulate with our model
approach, but which would likely have an influence on
the dynamics of the whole system. Also, the fraction of
stable carbon might differ between the strips and treat-
ments, which would affect the simulated carbon dynam-
ics, as we currently consider the same initial partitioning
for all strips and treatments.

The underestimation of soil nitrogen indicates that
the model still misses some processes related to nitrogen
input like biological nitrogen fixation or nitrogen excre-
tion by soil fauna (Lang & Russell, 2022). Another possi-
bility is that the C:N ratio of the organic matter is not
correct, for example, because of inadequate distribution
of nitrogen in the different plant organs. This could lead
to a higher C:N ratio of incoming plant material (roots,
straw). Of course, an increased organic carbon content
would also increase the total nitrogen content.

The overestimation of microbial carbon in our simu-
lation results is in accordance with other microbial soil
models of croplands (Horrigue et al., 2016; K. Wang
et al., 2017). As mentioned, the microbial biomass is a
quite dynamic value and therefore it is already promising
that the model output is in the right range. The microbial
biomass can fluctuate due to incoming plant material,
root exudation, manure application, tillage events, inter-
actions with soil fauna, pesticide application and local
changes in temperature, soil water content and aeration.
The two scenarios without organic fertilization show the
best fit between observed and simulated data, likely
because for these treatments the local conditions were
less dynamic. However, together with the comparison of
organic carbon and nitrogen content—where these two
scenarios show the most differences—this may indicate
that the stoichiometric considerations are not well bal-
anced. Here, the simulated microbial biomass fits real

observations, while organic carbon and nitrogen contents
are underestimated. This may be due to a low carbon use
efficiency resulting in a higher carbon loss via respiration
and, at the same time, an imbalance of mineralization
and immobilization. This can be caused either by a high
C:N ratio of the soil organic matter assimilated by the
microbes or a low internal C:N ratio of the microbes. In
the current BODIUM version, the internal microbial C:N
ratio is a static value, although the homeostatic flexibility
of microbes, especially fungi, is discussed within the sci-
entific community (Camenzind et al., 2021; Strickland &
Rousk, 2010). In future model extensions, it is planned to
also account for a more flexible C:N ratio as is already
implemented by other modelling approaches (Kyker-
Snowman et al., 2020; Manzoni et al., 2021).

In terms of drought stress, the differentiation in the
effects between different crops can be explained by their
traits: less drought stress of rather deep-rooting crops
(silage maize) with increased drought resistance and high
drought stress of crops with a higher overlap of the vege-
tation period and dry summer days (sugar beet). How-
ever, in the case of high nutrient deficiency, the
limitation due to nutrients is more important than water
limitation as the treatments with no nitrogen fertilization
mostly show similar yields independent of the drought
stress (yellow dots in Figure 6).

Non-equilibrium bypass flow has an impact on water
and plant root development, it also increases nitrogen
losses in the modelled scenarios. The annual yield pat-
tern indicates that considering these dynamic effects can
improve the prediction of the model. We are currently
conducting a study on the validity and magnitude of the
process using water content profiles from lysimeters and
field observations. Earlier studies suggest also a consider-
able impact of this process (Hannes et al., 2016).

4.2 | Explorative scenario simulations
for tillage

In summary, managing this specific site without
tillage would cause an increase in soil carbon content
and nitrogen use efficiency. Both are caused by the
increased mineralization of organic matter in the well-
aerated tilled topsoil and the related mobilization of
nitrate. Moreover, this increased mineralization is also
located in the lower part of the tilled horizon where root
uptake is somewhat reduced and more nitrogen might be
leached. At the same time, the available water capacity of
the topsoil is reduced which might be critical in dry
years. This example demonstrates the potential of the
BODIUM model to evaluate the various soil functions
simultaneously. The evaluation of agricultural
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management practices is typically done by analysing
yields which are interpreted as an integral measure of soil
quality and which is easily accessible also for farmers.
Interestingly, the yield is actually not affected by the dif-
ferent tillage treatments while some of the other soil
functions are. Thus, the model simulations allow for a
much more detailed analysis of the soil system as a whole
and, herewith, a more differentiated evaluation of the
impact of management practices.

5 | OUTLOOK AND CONCLUSION

The BODIUM model presented here is a systemic soil
model, developed in a modular way. This enables an easy
integration of further components or processes of the soil
system as well as a continuous improvement of the imple-
mented modules according to newly developed process
knowledge. First, model simulations for long-term field
experiments demonstrated the plausibility of the imple-
mented process interactions for soil as a complex system.
To do so, the model was applied in the forward mode, that
is, no model parameters are calibrated to measured data.

In principle, there are no restrictions for possible
future extensions. We will focus here on a few points
which are currently under development and will be
addressed in the next model version.

A more comprehensive description of the nutrient
cycle is crucial for plant growth and the dynamics of soil
microbial activity based on stoichiometric principles
(Achat et al., 2016). In particular, the dynamics of phos-
phorous will be included which will be built upon con-
cepts that have been developed recently (Das et al., 2019;
Nakhavali et al., 2022; Yu et al., 2020). Further, the effec-
tive rate parameters currently used to model the turnover
of soil organic matter need to be replaced by mechanistic
process descriptions. This is especially true for the stabili-
zation of organic matter in interaction with the mineral
soil matrix. We will consider the diffusion of dissolved
organic carbon as an important process for mixing
organic and mineral soil components. Additionally, bio-
turbation will be included which affects the depth distri-
bution of surface litter and the mixing of mineral and
organic components within individual soil layers (Meurer
et al., 2020). This process is also influenced by agricul-
tural management, thus, the effects of tillage and nitro-
gen fertilization on soil fauna will be implemented in the
future based on information derived from different meta-
analyses (Betancur-Corredor et al., 2022a, 2022b;
Briones & Schmidt, 2017).

An unresolved critical question is in what detail
small-scale microbial ecology in soils should be repre-
sented in models aiming at larger-scale soil functions

(Smercina et al., 2021). Currently, this is lumped into an
effective microbial pool. In a follow-up version, we will
distinguish bacteria and fungi since they have some fun-
damentally different characteristics in terms of optimal
living conditions, their stoichiometry and their way to
explore the soil volume. This will be an important step
towards a better characterization of the functional diver-
sity of the soil microbiome.

The temporal changes in soil structure will be
extended for compaction due to heavy machinery and for
the impact of root growth, including cover crops and the
activity of burrowing soil organisms. While erosion
threatens all soil functions, it cannot be represented in
our 1D model. However, we will address erodibility as a
function of soil structure, texture and organic matter so
that an interface to erosion models can be established.
Our vision for the future development of BODIUM is to
provide the source code and the related programming
infrastructure for the wider scientific community. The
process descriptions should be easy to edit even for users
without in-depth programming knowledge. This can be
accomplished using an appropriate metalanguage. In this
way, BODIUM can be constantly updated according to
the development of the current state of knowledge. More-
over, alternative hypotheses on soil processes can be
investigated in terms of their implications for the context
of the entire soil system. We believe that such a freely
available community model will be a valuable tool to fos-
ter an improved understanding of soils and their response
to external drivers, which is urgently needed under the
current challenges of rapidly changing conditions in
terms of land use and climate worldwide.
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