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X-ray crystallography has witnessed a massive development over the past

decade, driven by large increases in the intensity and brightness of X-ray sources

and enabled by employing high-frame-rate X-ray detectors. The analysis of large

data sets is done via automatic algorithms that are vulnerable to imperfections in

the detector and noise inherent with the detection process. By improving the

model of the behaviour of the detector, data can be analysed more reliably and

data storage costs can be significantly reduced. One major requirement is a

software mask that identifies defective pixels in diffraction frames. This paper

introduces a methodology and program based upon concepts of machine

learning, called robust mask maker (RMM), for the generation of bad-pixel

masks for large-area X-ray pixel detectors based on modern robust statistics. It

is proposed to discriminate normally behaving pixels from abnormal pixels by

analysing routine measurements made with and without X-ray illumination.

Analysis software typically uses a Bragg peak finder to detect Bragg peaks and

an indexing method to detect crystal lattices among those peaks. Without proper

masking of the bad pixels, peak finding methods often confuse the abnormal

values of bad pixels in a pattern with true Bragg peaks and flag such patterns as

useful regardless, leading to storage of enormous uninformative data sets. Also,

it is computationally very expensive for indexing methods to search for crystal

lattices among false peaks and the solution may be biased. This paper shows how

RMM vastly improves peak finders and prevents them from labelling bad pixels

as Bragg peaks, by demonstrating its effectiveness on several serial crystal-

lography data sets.

1. Introduction

X-ray crystallography using free-electron lasers (FELs) and

synchrotron radiation has witnessed great progress over the

past decade, partly due to the development of detectors that

support increased frame rates and a higher number of pixels.

Modern integrating X-ray detectors such as CSPAD (Hart et

al., 2012), AGIPD (Allahgholi et al., 2015) and JUNGFRAU

(Leonarski et al., 2020), and counting detectors such as the

PILATUS (Bech et al., 2008) and EIGER (Dinapoli et al.,

2011), can record hundreds of megapixel diffraction patterns

per second. Techniques like serial crystallography (our appli-

cation example here; Chapman et al., 2011) can generate

petabytes of data per experiment, challenging data storage

and analysis facilities technically and financially.

ISSN 1600-5767

Published under a CC BY 4.0 licence

https://creativecommons.org/licences/by/4.0/legalcode
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576722009815&domain=pdf&date_stamp=2022-11-21


These X-ray detectors are not flawless and not all of the

recorded data are useful. Often there are pixels in a detector

that are damaged for various reasons (called bad pixels),

corrupting parts of the collected data set. False signals

generated by bad pixels can trigger monitoring systems to

store uninformative volumes of data and bias analysis algo-

rithms, producing low-quality results. Our aim is to develop a

reliable and accurate method to detect the damaged or

misbehaving pixels of an X-ray detector in order to (i) reduce

the size of the collected data set to only the informative parts

and (ii) improve the accuracy of the measurement so as to give

better outcomes such as an improved resolution of the refined

electron density.

An important first step in the analysis of diffraction patterns

from crystallography measurements is the detection of Bragg

peaks – which may be as small as one pixel – in the presence of

background noise. This step is called peak finding. A moni-

toring computer program usually counts the number of

detected Bragg peaks in each diffraction pattern and, if it is

above a certain threshold, stores the pattern. Regardless of the

improvements in peak finding methods (Barty et al., 2014;

Hadian-Jazi et al., 2017, 2021), false signals from bad pixels

(e.g. very bright spots or strong noise in the background) can

still trigger peak finding methods to report incorrect Bragg

peaks. To clarify this, an example of two different diffraction

patterns from a serial crystallography data set is shown in

Fig. 1. In this data set, the sample was a crystal of the lysozyme

protein and data were collected using the AGIPD-1M

detector. The data set is discussed in more detail in Section 4.1.

A state-of-the-art Bragg peak finder called RPF (Hadian-Jazi

et al., 2021) was used to detect Bragg peaks in these diffraction

patterns. Fig. 1(a) shows a diffraction pattern recorded when

no crystal was present, yet the peak finder has identified a

number of bad pixels as Bragg peaks, marked by cyan

diamonds. Fig. 1(b) presents a diffraction pattern that includes

Bragg peaks of a crystal hit by the X-ray beam. The set of

peaks found in this figure includes the same bad pixels

detected as peaks in Fig. 1(a). These have been manually

identified on the basis that their locations are close to those

found in the no-crystal pattern, and are marked again here as

cyan diamonds. Bragg peaks that are not common to both

patterns and which probably belong to one or more crystal

lattices are marked by red circles. The peaks generated by bad

pixels can be seen in most frames of the entire data set. As a

result of including bad pixels in the list of Bragg peaks, the

frame of Fig. 1(a) and others like it are stored and passed on to

the indexing software, which then has to search for a non-

existing crystal lattice in the pattern. This is time consuming,

especially in an online analysis pipeline. Moreover, the

presence of the spurious peaks in Fig. 1(b) prevents the

indexing software from detecting the crystal lattice in that

example. Using a binary software mask (the output of our

program), data from such pixels can be excluded from analysis.

Consequently, the frame depicted in Fig. 1(a) can be discarded

and one crystal lattice could be detected in the frame depicted

in Fig. 1(b). We will show in Section 4 that masking bad pixels

results in a reduction in data and an improvement in analysis

accuracy.

To help with data reduction and to improve the perfor-

mance of the analysis, the bad pixels must be discovered and

labelled on a regular basis during data collection, since pixels

might become damaged or change their behaviour over the

course of the experiment. This discovery is presently accom-

plished by repeatedly tuning the parameters of the available

computer programs to search for bad pixels. Such exhaustive

tweaking of parameters can be challenging and time

consuming. The method we present here can analyse data to

detect bad pixels accurately and generate bad-pixel masks

with little to no parameter tuning.

The success of mask-making methods depends on two main

factors: one is the availability of data sets exhibiting abnormal

behaviour of bad pixels and the second is the algorithmic

approach used to detect bad pixels. In this paper we discuss

two kinds of data sets that are easy to collect, namely dark and

bright flat fields, and a mathematical approach to analyse

research papers

1550 Alireza Sadri et al. � Automatic bad-pixel mask maker J. Appl. Cryst. (2022). 55, 1549–1561

Figure 1
(a) A diffraction pattern of a liquid jet without any crystal. The peak
finder software has identified bad pixels as Bragg peaks, marked by cyan
diamonds. (b) A diffraction pattern of a crystal in the liquid where the
same bad pixels as in panel (a) are still identified by the peak finding
software as Bragg peaks. Those peaks also present in (a) are shown in
cyan and the different peaks (which could be Bragg peaks belonging to
one or more lattices) are shown by red circles.



them. Recent improvements in statistical methods developed

in the field of machine learning have been shown to be reliable

for data analysis (Rousseeuw & Leroy, 2003; Huber &

Ronchetti, 2011). Using these ‘robust statistics’ methods, it is

possible to compare the behaviours of pixels with each other

and divide them into two groups: those behaving normally and

those that do not.

The structure of the paper is as follows. In Section 2, the

abnormal behaviours of bad pixels relative to other pixels are

discussed, and we show how to use these differences to detect

them. The mathematical approach and the software for the

detection of bad pixels are introduced in Section 3. In Section

4, our method is benchmarked against standard methods for

three crystallography data sets.

2. Background

2.1. Bad pixels

Two types of detector are often used in X-ray crystal-

lography experiments. The first type includes photon inte-

grating detectors where the charge induced by the photon in

the semiconductor of each pixel is accumulated (using an

integrating circuit) and sampled regularly, and then the

accumulator is discharged after sampling. The second type

includes photon counting detectors where, if the accumulated

charge passes a pre-set threshold, a counter is increased and

the accumulating circuit is discharged to prepare for the next

incoming photon. Both types have high numbers of pixel

sensors and electronic elements to operate.

The photon integrating detectors provide the raw data of

voltage values of each pixel sensor, even if these values do not

reach the equivalent of a photon. We will discuss later that

data collected in the dark field can be used effectively to

calculate pixel offsets and model normal pixels. In photon

counting detectors, the output values are non-negative natural

numbers and a pixel value might not count up as a result of

noise in the dark. As such, normal pixels usually show zero

photon count most of the time in the dark field, which is not

useful for calculating the variance of the data. Some abnormal

pixels will still produce values that are too high compared with

those of other pixels. In this paper our focus is on the inte-

grating detectors such as AGIPD. However, we will show that

bad pixels in the photon counting detectors are still detectable

using our approach by assuming a reasonable minimum

standard deviation for normal pixel values, set to 1/6.

The behaviour of pixels can change for a variety of reasons,

including damage from high beam intensities, age or fabrica-

tion flaws. Each sensor pixel in an integrating or counting pixel

array X-ray detector is composed of many electronic elements.

During operation, some of these electronic elements can

break down, making the readout value for some pixels behave

abnormally. The data from such anomalous pixels must be

masked. One way to make a suitable mask is to manually draw

the regions to exclude. However, the number of defective

elements in a detector can be very high, making this approach

impractical. For example, AGIPD, used at the European

XFEL, has 1024 � 1024 X-ray sensor pixels, each with 352

analogue memory cells to operate in burst mode. The CSPAD

at LCLS has 2.4 megapixels. Counting detectors made by

Dectris and used on the majority of crystallography beamlines,

such as the PILATUS or EIGER, may have up to 16 mega-

pixels. Moreover, some of these detectors support gain

switching to provide increased dynamic range. For example,

AGIPD supports three gain stages and provides the relevant

data in the output. Switching the gain changes the analogue

circuitry of the system, increasing the number of elements that

can potentially fail.

One set of bad pixels are those at the edges of sub-modules

of the detector array called ASICs. These pixels usually vary in

shape, size and sensitivity. The edge pixels are made to be

insensitive to X-rays and are often used as in-built calibration

elements. In our approach, such pixels are masked without

analysis (Allahgholi et al., 2015).

A bad pixel can appear in many frames in sequence as a

bright spot compared with adjacent pixels. To find the bad

pixels, the detector can be illuminated by a uniform X-ray

beam, such as that generated by the X-ray fluorescence of a

foil, where all pixels receive similar X-ray counts. The data

collected over a series of frames can be used for the detection

of pixels with abnormal behaviour. When the detector is not

illuminated by any X-ray beam (to give what are termed dark

frames by closing the detector’s shutter), bad pixels might

present very high or very low readings.

2.2. Bad-pixel masking

There is software available to generate bad-pixel masks for

megapixel X-ray detectors, including the mask maker in

Cheetah (Barty et al., 2014) and the CSPADMaskMaker

(LCLS, https://confluence.slac.stanford.edu/display/PSDM/

Mask+Editor). While the CSPADMaskMaker provides a GUI

for manual interaction, both programs also offer statistical

methods to find bad pixels. The methods and algorithms in

these programs use non-robust statistics which can lead to

masking good pixels and missing bad pixels. In order to

prevent that, the programs rely on the tuning of input para-

meters, which in turn makes the process difficult for users and

may give sub-optimal results, especially when used for auto-

mated data reduction. In this paper, we compare the results of

our method, called robust mask maker (RMM), with those

obtained using the mask provided in the published data sets,

made by the programs mentioned above.

2.3. Robust model fitting and outlier detection

In the approach presented here, detector pixels are divided

into two groups (normal and abnormal pixels) by fitting a

simple geometric model with Gaussian noise to a series of

detector frames. What we refer to here as a detector frame, or

image, is an array of pixel values with the indices of each value

given by the location of the pixel in the detector. The fitting,

however, needs to be done in the presence of bad pixels which

are yet to be identified. Robust statistics methods can deal

with geometric fitting in such situations where the data can be
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divided into inliers (here normally behaving pixels) and

outliers (here bad pixels), the model being fitted to inliers

only. The challenge is to avoid fitting the model to outliers,

which is what non-robust methods cannot do since they use

the entire data set regardless of the presence of bad pixels.

Here we use two basic methods to calculate robust statistics of

the data. The first consists of robustly fitting geometric models

to the data and the second is to obtain a noise scale for normal

pixels (inliers) that allows separation of bad pixels (outliers).

The underlying mathematical behaviour of these methods is

reviewed in detail in Appendix A.

Since geometric model fitting using a Gaussian probability

density function has many potential applications in the

analysis of FEL imaging data, a software library including the

methods mentioned above has been made available, named

RobustGaussianFittingLibrary (Sadri, 2020). Using this

library, the X-ray data sets were analysed and bad pixels were

identified as explained in Section 3.

3. Method

Sequences of detector frames collected under controlled

X-ray illumination can be used to generate a bad-pixel mask.

To do this, frames are acquired under dark and bright flat

fields. By flat fields, we mean that the majority of pixels in

subsets of the data set are expected to have similar statistical

characteristics which are called features. In a flat field, a subset

of good pixels contains those that have similar feature values

whose variance can be modelled with reasonable accuracy

with a Gaussian or Poisson probability density function (more

generally, approximately bell shaped). This expectation allows

us to use robust statistics.

In this section we first discuss the operator applied to any

given vector of feature values for a subset of pixels to partition

them into good and bad pixels. This is done via a function that

takes an arbitrary input vector and calculates the robust

statistics of the input vector. The output of the function is a set

of labels that can place the pixels associated with the input

into two groups.

Afterwards, the paper continues with introducing how

different features are extracted and provided as input to the

robust operator to make different masks. Note that the

number of features that can be extracted from the data is

unlimited, although in this paper we refer to just a few that

have yielded good results in our tests.

The section finishes by introducing the RMM procedure

that collects and combines the set of masks from different

features to create the final bad-pixel mask. Note that the mask

will be provided for each pixel, for each panel, for each

memory cell and for each gain stage individually, depending

on the detector.

3.1. Outlier detection function

The core message of robust statistics is that it is not the bad

pixels that are being modelled. Rather, the statistics describing

groups in the data are based on modelling the normal beha-

viour of good pixels. In this part, a function is introduced that

uses robust statistics to fit simple geometric models to

normally behaving pixels with a Gaussian noise model. The

input of this function is a vector of feature values for each

pixel. As will be seen later, these feature values may be the

intensity values themselves, or a statistic based on groups of

related pixels (in one or many frames). The output of the

function is a set of labels, good (1) for inliers of the Gaussian

or bad (0) for outliers, corresponding to each element of the

input.

Given an input vector of feature values for a subset of N

pixels, x = {x(i)}, i = {1, . . . , N}, robust statistics can be used to

find the robust average R�x and robust scale of the Gaussian

R�x (R refers to the robustness of the statistics). Given the

Gaussian model robustly fitted to the subset, a statistical

separability called SNR is calculated for each pixel of the

subset, according to the definition

SNRðiÞ ¼
xðiÞ � R�x

R�x

ð1Þ

for the ith pixel in the input vector. This value reduces the

problem of bad-pixel detection into a simple statistical ques-

tion: how far from its mean can samples of a normal prob-

ability density function (normalized by its standard deviation)

be considered as inliers? This question is parametrized by �. In

other words, x(i) is an inlier if |SNR(i)| < �. This can be used to

define an outlier (a bad pixel) with the feature value of xO that

is separable from the inliers if

jxO �R�xj > �R�x: ð2Þ

Note that we have no intention of modelling the behaviour of

bad pixels (hence the name ‘outliers’). For example, the value

of a bad pixel over time (among many consecutive frames)

may be constant and show zero variance, or it may show an

extreme bi-modal behaviour switching between very high and

very low values. We propose to mask pixels whose behaviour

does not fit into the normal behaviour of the majority of pixels

in the subset. The subset x mentioned above can be as large as

all pixels of all frames or as small as pixels within a local region

in one frame, depending on how we expect the pixels to

behave normally.

The default value of the input parameter � is usually

unknown in the statistics literature. But it is clear that, if it is

set to lower values, fewer inliers will be included in the esti-

mation of model parameters, which can lead to inaccuracy. In

Appendix B we will show, by example, how changing � affects

the overall results at the end of the analysis pipeline and

suggest a default value of � = 8.0.

3.2. Detector in the dark

One of the data sets that is usually readily available is that

of data collected in the absence of X-ray illumination. When

the shutter is closed, the pixels will show their offsets from

zero. Different features can be extracted for different detec-

tors out of pixel values in such a data set. Here we list some
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that can be extracted using the detectors we studied for this

research.

3.2.1. Feature 1: mean intensity of frames. The dark-field

data set is usually composed of a large set of frames which will

also be used for calibrations. Frames for each gain stage are

required for multi-gain integrating detectors, and for each

memory cell for detectors with analogue memory cells. The

dark-field data set is collected to provide offsets for all

analogue readouts of an integrating detector. This data set is

mainly used for the calibration of detectors.

Here we define a feature that is used to flag frames that

should be excluded from further analyses of bad pixels. It is a

scalar value for each frame, representing the mean intensity of

each frame for each gain stage and memory cell. It is calcu-

lated from the robust average of all pixels in a frame, giving

the set xF1 = {xF1,t} =R�ðvi;tÞ for frames t = 1, . . . , T, where vi,t

is the intensity value of pixel i in frame t. Then, from this set

xF1 we use the robust estimator [equation (2)] to detect and

label outlying frames. The frames labelled as outliers are

discarded from the dark-field data set in the remainder of the

analysis and generation of the bad-pixel mask.

After outlying frames of the data set have been rejected, the

remaining reliable frames are analysed at the level of indivi-

dual pixels to extract particular features to make the bad-pixel

mask, as described in the following sections.

3.2.2. Feature 2: pixel offset values. The read-out values of

pixels in an integrating detector like the AGIPD or JUNG-

FRAU are proportional to the total energy of the photons

deposited into the sensor of the pixel. The constant of

proportionality is referred to as the gain, and pixels usually

exhibit an offset value when there is no photon exposure.

Although this offset is often calibrated, it may drift and must

be accounted for. However, it often happens that a broken

pixel shows an abnormal offset value. Feature 2 is the offset

value in the dark value recorded by each pixel for each gain

stage, memory cell, module and ASIC of an integrating

detector. The offset value for each pixel is calculated by the

non-robust average over T frames and the elements of the

set of offset values of all pixels are used as the feature set

given to the outlier detection function, i.e. xF2 = {xF2(i)} =

fð1=TÞ
PT

t¼1 vi;tg, i = (1, . . . , N). We then apply robust Gaus-

sian fitting to find the robust average and standard deviation

of this set. Then, by comparing the elements of the set with the

robust average and standard deviation, we find SNRF2(i) for

each pixel using the procedure described above with a value of

� = 8. Pixels with {SNRF2(i) > �} are labelled bad pixels.

An example of the above procedure for the AGIPD-1M

detector, module 4, memory cell 1 in the high-gain stage is

shown in Fig. 2. In this image the values for Feature 2 [that is,

xF2(i)] as given to the robust estimator function are shown in

the top panel. The robust estimator function models the pixel

values, and the values of the model at the locations of the

pixels are shown in the middle panel. It is seen that this map is

free of noise and outliers since it is not affected by the

presence of outliers (which shows the robustness of the

statistics). It shows the average offsets of normally operating

pixels which are seen to change smoothly from pixel to pixel

within certain blocks of differing sizes. These blocks corre-

spond to the ASICs of the detector. The set of abnormal

pixels, as determined using equation (2), are marked in black

in the bottom panel.

3.2.3. Feature 3: pixel variations. The variance of noise in

the pixel values under dark conditions is usually different

for each pixel. Too much (abnormal) variation of the dark

values is usually problematic and may obscure the measured

signal. The variation of the dark values is calculated as the

non-robust standard deviation over all frames for each

pixel, and the set of these values is then given to the outlier

detection function to find SNRF3(i) for each pixel i, i.e. xF3 =

{xF3(i)} = ff
PT

t¼1½�F3ðiÞ � vi;t�
2=ðT � 1Þg1=2

g, where the mean

�F3(i) = ð1=TÞ
PT

t¼1 vi;t is the non-robust average over all T

frames for pixel i. The set of outliers for which {|SNRF3(i)| > �}

are considered to behave abnormally and are masked as bad

pixels according to this feature.

3.2.4. Features 4 and 5: gain stage indicator values. To

increase their dynamic range, gain switching detectors such as

AGIPD can switch the gain of the amplification of the

analogue signal. The AGIPD, for example, provides an output

that is used to indicate which gain stage the pixel switched

into, digitized as a 14-bit number. In order to obtain these

values for different gain stages, data must be collected while

the detector is operating in each of those stages. Except when

switching gains, these values ideally should remain constant

over time, exhibit low noise and be different for each gain

stage. For a group of bad pixels, the value of the output does

not always make a large enough change to distinguish the gain

stage that the pixel used. Such abnormally behaving pixels do

not allow this discrimination and are detected using the

following two features.

(i) Feature 4: between gain stages. The current gain-

switching detectors used at XFEL facilities may display

misleading gain stage values for bad pixels. The non-robust
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Figure 2
(Top) The temporal average values of a module of AGIPD-1M read in
the dark, which is Feature 2 or the set xF2. (Middle) The robust model
values at the location of each pixel, estimated to declare normal
behaviour (estimated over pixels within 64 � 64 windows). (Bottom)
Detected bad pixels, shown in black.



average �ðHÞF4 = f�ðHÞF4 ðiÞg = fð1=TÞ
PT

t¼1 gi;tg (where gi,t is the

gain stage indicator value of the ith pixel of frame t) and the

standard deviation �ðHÞF4 ðiÞ = f
PT

t¼1½�F4ðiÞ � gi;t�
2=ðT � 1Þg1=2

are used to model the value of the indicator for a pixel in the

dark over time (for each individual memory cell) for the gain

stage H (e.g. H can represent high-, medium- and low-gain

modes for AGIPD). For normal functioning pixels, it is

expected that the averages of the values of one stage are

independent of those of other stages. Without using further

statistics, the pixels that do not present distinguishable

values for all of their gain stages (for each and all H) are

simply masked, i.e. the set for which f�ðHÞF4 ðiÞ þ ��
ðHÞ
F4 ðiÞ >

�ðHþ1Þ
F4 ðiÞ � ��ðHþ1Þ

F4 ðiÞg are masked according to Feature 4.

(ii) Feature 5: for each gain stage. Another feature used

to identify bad pixels is the average of the gain indicator

values in the dark, �ðHÞF4 ðiÞ. This value for bad pixels is

abnormally different from the majority of pixels. We propose

comparing pixels with each other based on the temporal

average of the gain stage indicator values for each pixel in

each stage (for each memory cell). To do that, the outlier

detection function is called with its input set as xF5 = {xF5(i)} =

f�ðHÞF4 ðiÞg. A Gaussian is fitted to these values robustly and the

robust average R�F5 and standard deviation R�F5 are found

to define SNRF5(i) according to equation (1). The set of

outliers of this Gaussian, {|SNRF5(i)| > �}, is considered to

contain pixels that are behaving abnormally and will be

masked.

To summarize the generation of a bad-pixel mask using the

dark-field data of an integrating detector, a flow chart is

presented in Fig. 3. The analogue pixel values and gain indi-

cator values obtained in the dark field are shown as two

tensors of data. Frames with normal overall intensities

(detected using Feature 1, F1) are shown in green and are used

for further feature extractions and calculation of the bad-pixel

mask. First, the non-robust temporal averages and standard

deviations are obtained. Then a geometric model is fitted

robustly to these quantities and SNR values for every pixel are

calculated, associated with each feature. A pixel is masked if

the absolute value of any of these SNR values is above a given

global threshold �.

3.3. Detector under light

3.3.1. Feature 6: average SNR of pixels over time. It often

happens that pixels that show no abnormal behaviour in the

dark still behave abnormally when illuminated by X-rays. The

intensity values of these pixels can be too high or too low most

of the time, regardless of the overall intensity of the beam. In

the presence of uniform illumination, even though all pixels

might present values that occasionally rise above an accep-

table SNR(�), some might do so too often. If not masked, such

pixels may be flagged as pixels with sensitive information and

become an obstacle for the rest of the analysis pipeline and

data reduction. As such, a large data set of frames for each

gain stage, for each memory cell, for each detector module and

for each pixel (depending on the detector) needs to be gath-

ered with incident illumination that is approximately uniform

across the detector. The RMM program presented in this

paper does not need the X-ray illumination to be truly flat, as

long as it does not cause sudden bright spots in one or a few

pixels. Also, since a robust estimator is used at this stage, there

is no need for a very large data set to be collected (arguably,

even 200 frames are sufficient for each memory cell, for each

module and for each gain stage; Hoseinnezhad et al., 2006).

RMM calculates the statistical separability of every pixel

from its background for every frame collected under X-ray

illumination. For a frame t and a given window Wi,t of pixels

located around a pixel in that frame, the set of pixel values

{vj,t , j 2Wi,t} is used for robustly finding the parameters of the

Gaussian model, R�F6ði; tÞ and R�F6ði; tÞ. While it is

suggested that it should be as large as possible, the size of the

local area Wi,t can include as few as 200 pixels (windows of size

15 � 15) without losing accuracy, as recommended by

Hoseinnezhad et al. (2006). To find the robust average

R�F6ði; tÞ, a plane is first fitted to the background values vj,t of
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Figure 3
The procedure for calculating different SNR values for every pixel using
data from the dark field for a multi-stage detector, such as AGIPD. (a)
The analysis of the data set of intensity values. (b) The analysis for gain
stage indicator values if available. In both, analysis starts by reducing the
size of the input data set to frames that present normal overall intensities
according to Feature 1 (F1). The non-robust statistics are used as features
for each pixel and pixels are compared with each other afterwards. Each
mask is generated by analysing features F1 to F5 as explained in Section
3.2 and combined as explained in Section 4.4.



the local region to give �F6(i, t) as the projection of the ith

pixel onto that plane. SNRF6(i, t) is then found and its non-

robust average over all frames is chosen as the input feature of

the outlier detection function to result in calculation of

SNRF6(i). If the value of a pixel is excessive too often, so as to

produce (abnormally) high SNR values, the pixel is masked. A

similar procedure is followed for pixels showing abnormally

low values.

The final overall mask is simply composed of pixels labelled

bad following any of the above calculations. The software is set

up accordingly, as explained in Section 4.4.

4. Results

We applied RMM to three crystallographic data sets to eval-

uate its performance. If not treated correctly, bad pixels that

are too bright compared with their surroundings will be

identified as Bragg peaks. Also, bad pixels with intensities that

are too low can bias the estimated model parameters for Bragg

peaks, depending on the robustness of the Bragg peak finder

(Hadian-Jazi et al., 2021). We compared the results of data

analysis using the published masks available in the data sets

with results using masks generated by RMM. The influence of

using the two bad-pixel masks is highlighted by comparing the

crystallographic self-consistency parameters of the data sets

after indexing and merging of patterns. In the following, the

mask was changed in the analysis pipeline while all other

methods or parameters were fixed. The figures of merit used to

compare the performance of the bad-pixel masks are CC*,

Rsplit , CC1/2 and SNR, which are commonly used as quality

indicators in crystallographic data analysis pipelines (Karplus

& Diederichs, 2015).

In the crystallographic data analysis pipeline, the peak-

finding stage is the most vulnerable to bad pixels, and the

choice of peak finding method can affect the sensitivity of the

pipeline to bad pixels as well. The reason is that peak finding

methods are typically used to analyse frames individually and

no information is shared between frames. As such, a peak

finding method has no prior knowledge that a pixel shows

extreme values abnormally or too often. We used the two peak

finding methods PF8 (Barty et al., 2014) and RPF (Hadian-Jazi

et al., 2017) as they are based on two different approaches to

peak finding. PF8 uses a non-robust yet iterative outlier

filtering technique to detect Bragg peaks, and it is expected

that bad pixels will bias the non-robust estimates of the

background, preventing the method from detecting actual

Bragg peaks. RPF uses robust statistics for modelling the

background and detecting Bragg peaks. While its models are

not biased by bad pixels, those bad pixels that show abnor-

mally high values are likely to be picked up as Bragg peaks

unless they are masked beforehand. For indexing and calcu-

lating the figures of merit, CrystFEL (Version 0.9.1; White et

al., 2012) was used. In the following sections the results of the

tests on the analysis of three different crystallographic data

sets are provided in terms of self-consistency values. It is also

useful to study the effect of the mask on the hit rate (the

number of hits out of all frames in the data set; hits are frames

when the beam hits a crystal) and on the indexing rate (the

number of patterns indexed by the crystallography suite out of

all the hits).

4.1. AGIPD-1M, SPB/SFX, EuXFEL

In this experiment, the target samples were crystals of

lysozyme. The data set was collected in March 2020 as an

experiment for commissioning the AGIPD detector at the

EuXFEL on the SPB/SFX instrument (Mancuso et al., 2019).

X-ray pulses of 9.3 keV photon energy were delivered at a

repetition rate of 1.1 MHz within bunch trains (352 pulses per

bunch train as AGIPD has 352 analogue memory cells, trains
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Figure 4
Effect of RMM on the self-consistency statistics (a) CC*, (b) CC1/2, (c)
Rsplit (%) and (d) SNR, using the PF8 peak finder for the detector
AGIPD 1-M. Green curves show the results when applying the proposed
bad-pixel mask, while the red curves show the results when using the bad-
pixel mask provided with the data set.

Figure 5
Effect of RMM on the self-consistency statistics (a) CC*, (b) CC1/2, (c)
Rsplit (%) and (d) SNR, using the RPF peak finder for the detector
AGIPD 1-M. Green curves show the results when applying the proposed
bad-pixel mask, while the red curves show the results when using the bad-
pixel mask provided with the data set.



delivered at 10 Hz). The AGIPD-1MP detector (Allahgholi et

al., 2015) was 129 mm away from the jet injecting the crystals

into the X-ray beam. The sample was delivered using a 3D-

printed gas dynamic virtual nozzle (Knoška et al., 2020) in

combination with injection infrastructure described by Vakili

et al. (2022). The data set is composed of seven runs. Three

runs include patterns collected in the dark, one for each of the

gain stages of AGIPD. That is, for each gain stage and for each

memory cell of AGIPD (352 cells), 512 frames were collected

and reduced to 200 normally biased frames, as explained in

Section 3.2.1. Another run contains bright near-flat field data

which helps in detecting bad pixels that are not detected in the

dark field. Three further runs include experimental crystal-

lography data (collected while all memory cells and gain stages

were active) with a total of 5.5 million diffraction patterns. The

results for self-consistency statistics for peak finders PF8 and

RPF are shown in Figs. 4 and 5, respectively. For both peak

finders, all of the crystallographic parameters (CC*, Rsplit ,

CC1/2 and SNR) are improved when the RMM bad-pixel mask

is used. These results verify that the detector includes bad

pixels that need to be masked and that the methodology

introduced in this paper is reliable and effective. The advan-

tage of using the proposed method to generate a bad-pixel

mask is that the process is automatic and requires little to no

parameter tuning.

One question that remains unanswered is the importance of

the robustness of the statistics. A contribution of our work is

to automate the process of bad-pixel mask generation.

However, to reduce the sensitivity of the algorithm to input

parameters and to increase the accuracy of the analysis,

robustness of the algorithm is crucial. As such, we performed a

test using only non-robust statistics, to produce what we refer

to as a non-robust mask. Table 1 provides the hit and indexing

rates of the analysis for the mask published with the data set,

for our method without robustness and for our method with

robustness (labelled RMM). As can be seen, the number of

hits increases dramatically as a result of using a non-robust

mask. These hits found using a non-robust mask are false

positives. This result proves the effectiveness of the proposed

method for the task of data reduction. The results in Figs. 4

and 5 show the improvement in accuracy in PF8 and RPF

when the RMM bad-pixel mask is used. Our conclusion is that

the hit rate is overestimated if no mask is applied or when

using a mask generated based on non-robust statistics. In these

figures we only report the metrics up to 2 Å, as the values of

these curves do not change trend at lower resolutions.

4.2. CSPAD-2.5M, CXI, LCLS

The second data set, containing diffraction from crystals of

the rhodopsin–arrestin complex, was collected with a CSPAD

detector on the CXI beamline at the Linac Coherent Light

Source (LCLS) (Zhou et al., 2016). The data set is publicly

available in the Coherent X-ray Imaging Data Bank (Maia,

2012) (entry 32). The CSPAD detector has 32 modules of

185 � 388 pixels each (2.5 megapixels in total). The published

data set includes a bad-pixel mask made by the software

CSPADMaskMaker. Our proposed automated mask maker
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Table 1
An overview of numerical results related to the analysis in Section 4.1
(AGIPD detector).

Total number of frames 5 764 736.

Procedure
No. of
hits

Hit
fraction
(%)

No. of
indexed
frames

Indexing
rate (%)

RPF data set mask 5 701 046 98.89 1 485 668 26.05
RPF with non-robust mask 4 032 906 69.95 1 391 527 34.50
RPF with RMM 2 527 171 36.89 1 285 649 70.65
PF8 data set mask 5 117 076 88.76 1 496 030 29.23
PF8 with RMM 3 422 532 59.37 1 257 048 51.33

Figure 6
Effect of RMM on the self-consistency statistics (a) CC*, (b) CC1/2, (c)
Rsplit (%) and (d) SNR, using the PF8 peak finder for the detector
CSPAD 2.5-M. Green curves show the results when applying the
proposed bad-pixel mask, while the red curves show the results when
using the bad-pixel mask provided with the data set.

Figure 7
Effect of RMM on the self-consistency statistics (a) CC*, (b) CC1/2, (c)
Rsplit (%) and (d) SNR, using the RPF peak finder for the detector
CSPAD 2.5-M. Green curves show the results when applying the
proposed bad-pixel mask, while the red curves show the results when
using the bad-pixel mask provided with the data set.



uses the dark runs and a run that contains no crystal frames to

determine a bad-pixel mask. We applied our mask to the two

million frames of the data set, and the results for the self-

consistency statistics are shown in Figs. 6 and 7 using peak

finders PF8 and RPF, respectively. The results have improved

using the RMM mask for both peak finders. This shows that

the proposed bad-pixel mask method can be used reliably for

different detectors and experiments while improving the

results of the data analysis.

In Table 2, the hit and indexing rates are provided. The use

of the mask has an overall positive effect on the reduction of

the hit rate (by reducing false positive hits) and an increase in

the indexing rate (by finding true hits). This shows that

applying the right mask will avoid overestimating the hit rate,

and in this case increase the indexing rate. This is especially

important for online/immediate analysis of the data. By

considering the results in Figs. 6 and 7 one can also observe an

improvement in accuracy.

4.3. PILATUS-6M, PETRA III, P11, DESY

This experiment recorded diffraction patterns of a dioxy-

genase mixture using a PILATUS 6M detector. PILATUS is a

photon counting detector, unlike the integrating detectors

used in the experiments of Sections 4.1 and 4.2. The experi-

ment was performed using 12 keV X-rays and the detector was

positioned 250 mm downstream of the sample. The collected

data were divided into many data sets where different

experimental settings were tested, some of which are discussed

in the relevant paper (Beyerlein et al., 2017). A subset of this

data set, chosen for our evaluation, is composed of hits that

include very weak Bragg peaks. Peak finders often set a

minimum threshold of the SNR of a peak. For this experiment,

we set this to a low value of 5 to be sensitive to weaker peaks.

In such a scenario, the presence of bad pixels can drastically

reduce the performance of peak finders. We chose this subset

from the entire data set as this would be a challenging data set

to test our proposed methodology. The dark runs available in

the data set were used to make the bad-pixel mask. The data

set includes 453 231 frames, of which only a small portion are

indexable. The self-consistency statistics are shown in Figs. 8

and 9, demonstrating that RMM has improved the analysis.

The numbers of hits and indexed patterns are listed in Table 3.
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Table 2
An overview of numerical results related to analysis in Section 4.2
(CSPAD).

Total number of frames 3 135 659.

Procedure
No. of
hits

Hit
fraction
(%)

No. of
indexed
frames

Indexing
rate (%)

RPF with data set mask 410 445 13.08 31 783 7.74
RPF with RMM 58 670 1.87 54 345 92.62
PF8 with data set mask† 375 288 11.96 23 528 6.26
PF8 with RMM 37 466 1.19 36 369 97.07

† Reproduced using the output available in the data set.

Figure 8
Effect of RMM on the self-consistency statistics (a) CC*, (b) CC1/2, (c)
Rsplit (%) and (d) SNR, using the PF8 finder for the detector PILATUS
6-M. Green curves show the results when applying the proposed bad-
pixel mask, while the red curves show the results when using the bad-pixel
mask provided with the data set.

Figure 9
Effect of RMM on the self-consistency statistics (a) CC*, (b) CC1/2, (c)
Rsplit (%) and (d) SNR, using the RPF peak finder for the detector
PILATUS 6-M. Green curves show the results when applying the
proposed bad-pixel mask, while the red curves show the results when
using the bad-pixel mask provided with the data set.

Table 3
An overview of numerical results related to analysis in Section 4.3
(PILATUS).

Total number of frames 453 231.

Procedure
No. of
hits

Hit
fraction
(%)

No. of
indexed
frames

Indexing
rate (%)

RPF with data set mask 452 259 99.78 29 777 6.58
RPF with RMM 282 452 62.31 34 550 12.23
PF8 with data set mask† 453 231 100.0 23 864 5.26
PF8 with RMM 90 479 19.96 27 425 30.31

† Reproduced using the output available in the data set.



This challenging data set contains fewer frames than the last

two. The use of the mask has a positive effect on the reduction

in the hit rate and, even in this special case, results in an

increase in the indexing rate and, critically, the number of

indexed patterns.

4.4. Software

RMM is implemented in Python Version 3 and is publicly

available for the generation of bad-pixel masks (Sadri, 2021).

The software documentation provides guidance on how to add

support for other X-ray detectors. The core robust statistics

methods are implemented in a software package that we have

called RobustGaussianFittingLibrary.

One of the key benefits of RMM is that each module of the

detector can be analysed in parallel, making the algorithm

scalable on cluster computers. The output file contains an 8-bit

value for every pixel. A value of 0 indicates good pixels. Other

values above 0 present a specific problem for each pixel

according to the features introduced in Section 3.

5. Conclusions

We have introduced a methodology for generating bad-pixel

masks for X-ray pixel detectors, called robust mask maker

(RMM), that is based upon modern approaches of machine

learning. When working with detectors with multiple gain

stages and multiple memory cells, RMM requires two sets of

data: one recorded in the dark (that is, without X-rays) and

one recorded with a nearly uniform exposure (such as from

X-ray fluorescence from a foil). These two data sets should

pan each gain stage and memory cell. Different measurements

are obtained from the dark data set, such as offset or variation

in the dark. The average SNR of a pixel under X-ray exposure

is also calculated as another feature for each pixel. Consid-

ering that these measurements are supposed to be almost the

same for adjacent pixels, we use robust statistics to segment

out pixels that behave normally and mask out the abnormal

ones.

We have evaluated and compared the performance of the

proposed method with existing methods using three crystal-

lographic data sets, each collected with a different kind of

detector. The data were passed through the analysis pipeline

for crystallography to examine the effect of the analysis on the

bad-pixel mask. When using an inaccurate mask, some bad

pixels might be detected as Bragg peaks by the peak finding

software. In such cases, serial crystallography analysis software

tends to overestimate the hit rates, which in turn causes a low

indexing rate. More importantly, the number of indexed

patterns may only be a fraction of the possible indexable

patterns. We found that the improved RMM bad-pixel mask

often increased the total number of indexed patterns, even

though fewer patterns were identified as hits. Moreover, by

using an improved mask we have greatly speeded up the

indexing since we are not feeding the analysis software un-

informative patterns. RMM is relatively fast and scalable and

shows a low sensitivity to its parameters (over a wide range of

values), which makes it suitable for automatic processes and

the task of online/offline data reduction.

APPENDIX A
Robust Gaussian fitting

In this appendix we review the underlying mathematical

operations used in RMM.

Given X = {x(j)}, j = 1, . . . , N, where xðjÞ 2 Rm, a set of m-

dimensional data points, and using a model (with � para-

meters) parametrized by � 2 R�, the task is to segment a group

of data points according to their relationship to each other.

The group of strongly correlating data points (according to

the fitted model) are usually called the data structure. The size

of this data structure, i.e. the number of data points in the

group, is initially unknown. However, an initial guess for

structure size can help in solving the problem and we denote

this by k. The least kth order statistics (LkOS) introduced by

Bab-Hadiashar & Hoseinnezhad (2008) is the chosen cost

function for fitting the model to the data, and an optimization

algorithm is incorporated that aims to minimize d2
½k�;� where

d[k],� is the kth sorted residual with respect to the model with

parameters �. Given a sampled subset of X with size � + 4 [that

we choose to adopt from the work of Tennakoon et al. (2016)]

called e, the parameters of the model are obtained by fitting it

non-robustly to xe where �e = minFð�; xeÞ. To make this non-

robust fit to the small subset, first a distance measure dx;�e
=

Dðx; �eÞ is defined for all x in e and is used to calculate the

residuals (fitting errors) for all N data points. Note that N is

the number of data points given to the robust estimator

function as used in Section 3.1. A cost function F is then

defined using some norm over the residuals, i.e. Fð�; xÞ =

kDðx; �Þknorm (where F is a non-robust cost function). The

noise of the data points is assumed to be independent and

each follows the same normal distribution di ’ Nð0; �Þ with

variance �. The parameter norm is usually 2, which turns the

optimization into a linear regression problem, the solution of

which can be obtained in closed form enabling fast compu-

tation. The evaluation function D is defined depending on the

number of parameters of the geometric model. For example

(in the calculation of Feature 2 in the main text), for three-

dimensional data points (m = 3, where the locations of the

pixels and their intensities matter) the model can be a four-

dimensional plane or a more complex surface which will be

affected by how D is formulated (shown in Fig. 10).

The positive integer k is the initial guess of the number of

inliers out of N total data points and is initialized to a value

more than 0.5N in all the applications in this paper. This means

that we initially assume that half of the pixels are good pixels

in any given reasonably large window on the detector pixels. It

is notable that, because of this assumption, the estimates of the

model parameters are independent of � and therefore of �.

The LkOS cost function, as described by Rousseeuw & Leroy

(2003) and Chin et al. (2009), has its minima where the

underlying structure is highly likely to be in the parameter

space. In other words, there is a probability density function
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(not in closed form) that models how likely it is for input data

points to take different values, and the samples leading to

models with low LkOS cost are generated according to this

density function. As such, samples are made relative to how

well the model fitted to them explains the data with high

probability, leading to a good fit to the data. This allows the

detection of structures in the presence of outliers, especially

since this cost function is biased towards structures with low-

cost fitting errors, with little attention to their size. However,

the local minimization task is challenging, since the cost

function is highly nonlinear due to the sorting step, making it

unfeasible to obtain its derivatives analytically. Bab-Hadiashar

& Hoseinnezhad (2008) introduced the fast least kth order

statistics (FLkOS) algorithm, which uses approximate second

derivatives (similar to Newton’s method) to find a local

minimum rapidly. This is the robust optimization method that

we use to find the minimum of the LkOS cost function d2
½k�;�.

The robust optimization method begins with an initial subset e

of size �̂� which is randomly selected from the input data and

non-robustly fits a geometric model to it. For the robust

optimizer, the initial sample does not have to be purely made

from the target structure (the target structure would be the

subset of normally behaving data points among all data points

given to the robust estimator function). Tennakoon et al.

(2016) showed that this robust method can easily be extended

to use larger sample sizes and still minimize the cost function

effectively. This is particularly important when it comes to

sampling from the challenging underlying probability density

function assumed to be modelling the data. Such a density

function would be a convolution of many kinds of noise

functions, including a Poisson density (due to counting

photons) convolved with the noise density of the detector that

changes with temperature. It was shown by Sadri et al. (2018)

that the optimization method is capable of finding the mode of

a skewed density function (suitable for dealing with Poisson

processes). After the mode is detected, an i.i.d (independent

and identically distributed) Gaussian noise is assumed for all

data points in X to find inliers, and the non-robust average and

standard deviation of the inliers (with noise levels less than a

given threshold) is given as the output of the robust estimator

function.

The FLkOS algorithm uses the sorting indices of the entire

input data x to perform the robust optimization iteratively as

follows. The squared fitting errors d2
i ¼ jjDðxðiÞ; �Þjj

2
2 are

calculated for each data point in x (according to model �
obtained by non-robust fitting of the geometric model to an

initial random sample). The set of indices I is found to sort the

set of di (Ii � Ij if di � dj). Since outliers are present, the

optimization of the LkOS cost function, intuitively, is such that

it minimizes the residual of the furthest inlier (the inlier with

the largest fitting error). The strategy of FLkOS embeds the

calculation of derivatives of the cost function and applies the

gradient descent by sampling from sorted residuals and letting

the new subset e be e = fxI½k��̂��
; . . . ; xI½k�

g. This then runs

iteratively. By iterating only once, the percentile of input

values would be found (such as the median for k = N/2).

However, we propose to use 12 steps of the robust optimiza-

tion according to the work of Bab-Hadiashar & Hoseinnezhad

(2008). Given the final optimized model parameters, di is

calculated with respect to the model. A � square is fitted to the

residuals from which the � of the Gaussian structure can be

calculated. This is done by finding the first sorted residual d[k]

such that d½kþ1�>�
P

d2
½1;...;k�. These k data points (the final

estimated structure size) with the lowest fitting errors are

inliers of the model whose non-robust average and standard

deviation are provided as the output of the above procedure,

i.e. D�X = 1
k

Pk
i¼1 x½i� and D�2

X = 1
k

Pk
i¼1 ðD�X � x½i�Þ

2. Finally,

the statistical separability of the i th data point from data

points in X is SNR(i) = ½xðiÞ � D�X �=D�X .

To clarify the above, an example is presented in Fig. 11. In

the left-hand panel a set X of randomly generated data points

are shown. The values of N = 150 data points are shown, where

Nin = 100 of them are identically independently distributed by

a normal probability density with average �in = 20 and stan-

dard deviation �in = 5. Nout = 50 data points are distributed

according to a uniform density with a lower bound of �20 and

an upper bound of 180. The non-robust average and upper

thresholds are defined by � and � + 3�, respectively. The

robust average, upper and lower thresholds are defined by �in,

�in + 3�in and �in � 3�in, respectively. The settings � = 8, k =

N/2 and � = 3 were applied. This method estimates the

thresholds more accurately than the non-robust way.
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Figure 11
Robust fitting of a Gaussian to a set of 1D data points. The inliers are
shown as small blue circles and outliers as small red circles. Detected
inliers are marked with larger green circles. The blue curve presents the
distribution of the data. The robust average, upper and lower thresholds
using the fitting method are shown with yellow, magenta and cyan lines,
respectively. The non-robust average and upper threshold are also shown.
The lower non-robust threshold is too low and off the chart.

Figure 10
Robust fitting of a plane to a set of 3D data points (in purple). The
outliers have no effect on the model of the plane (background) where the
majority of the data behave normally. The algebraic error (shown in red
for a data point di) is the model fitting residual for any data point.



APPENDIX B
Discussion of k

In this appendix we discuss how changing the parameter �
affects the results of the analysis pipeline described in Section

4.1, using the RPF software (Hadian-Jazi et al., 2021).

Increasing � allows the scale of the noise to be biased by the

outliers which, in the task of making the bad-pixel mask, might

lead to including bad pixels in the normal group. A part of the

data set (from run 96, sequences 2 and 5, comprising 180 000

patterns from which around 44 000 were indexed) was selected

for this test. The effect of the mask is shown using self-

consistency statistics for two specific resolution values. As can

be seen from Fig. 12, the statistics are insensitive to the value

of � over the range 7 � � � 12. Based on this figure, we

recommend a value of � = 8.0. As � gets smaller, good pixels

are labelled as bad, and as it gets larger, bad pixels are labelled

good.
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Figure 12
The effect of changing the threshold for abnormalities of pixels on the self-consistency statistics for a subset of the data set introduced in Section 4.1.
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