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Small-angle scattering is an increasingly common method for characterizing

particle ensembles in a wide variety of sample types and for diverse areas of

application. SASfit has been one of the most comprehensive and flexible curve-

fitting programs for decades, with many specialized tools for various fields. Here,

a selection of enhancements and additions to the SASfit program are presented

that may be of great benefit to interested and advanced users alike: (a) further

development of the technical basis of the program, such as new numerical

algorithms currently in use, a continuous integration practice for automated

building and packaging of the software, and upgrades on the plug-in system for

easier adoption by third-party developers; (b) a selection of new form factors for

anisotropic scattering patterns and updates to existing form factors to account

for multiple scattering effects; (c) a new type of a very flexible distribution called

metalog [Keelin (2016). Decis. Anal. 13, 243–277], and regularization techniques

such as the expectation-maximization method [Dempster et al. (1977). J. R. Stat.

Soc. Ser. B (Methodological), 39, 1–22; Richardson (1972) J. Opt. Soc. Am. 62,

55; Lucy (1974). Astron. J. 79, 745; Lucy (1994). Astron. Astrophys. 289, 983–

994], which is compared with fits of analytical size distributions via the non-

linear least-squares method; and (d) new structure factors, especially for ordered

nano- and meso-scaled material systems, as well as the Ornstein–Zernike solver

for numerical determination of particle interactions and the resulting structure

factor when no analytical solution is available, with the aim of incorporating its

effects into the small-angle scattering intensity model used for fitting with

SASfit.

1. Introduction

For the analysis of small-angle scattering (SAS) data, several

approaches have been established in different fields of science.

Typically the SAS signal is interpreted by quantities like form

factor, size distribution, orientation distribution and structure

factor. Depending on the pre-knowledge about the samples,

different analysis techniques have been established. In cases

where the investigated samples consist of dilute and identical

but randomly oriented objects, like, for example, proteins, low-

resolution shape reconstruction algorithms have been estab-

lished (Svergun et al., 1995; Svergun, 1999; Franke & Svergun,

2009; Gdovinová et al., 2017; Grant, 2018, 2021; Konarev &

Svergun, 2021; Schroer et al., 2021). These algorithms have

also been successfully used in other fields to study self-

assembled structures in monodisperse colloidal systems (Luo

et al., 2018). Further extreme examples studied by SAS include

disordered systems, which can be described by statistical

means, e.g. using boolean models (Gille, 2016; Gommes &

Roberts, 2008; Gommes, 2018) describing for instance porous
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media or using leveled-wave models (Berk, 1991; Ingham et

al., 2011; Klimeš, 2002; Jinnai et al., 2000) to describe bi-

continuous systems.

A significant number of scientists using SAS still describe

their data very successfully by modeling them in terms of a

form factor with a size distribution and, if necessary, an

additional structure factor using analytical expressions

(Pedersen, 1997, 2002, 2008). Several software packages for

these cases are publicly available (Kohlbrecher & Studer,

2017; Breßler et al., 2015; Biehl, 2019; Pedersen et al., 2013;

Ilavsky & Jemian, 2009; Doucet et al., 2022) but only a few are

referenced here. These software packages are also to some

extent capable of treating textured samples where the scat-

tering patterns are no longer radially symmetric, for example

because of deformation or an orientation distribution caused

by external forces like shear, or magnetic or electric fields. In

cases where the internal structures of particles are of main

interest, contrast-variation experiments might be necessary, or

in cases where the structure factor is important, the structure-

factor contribution needs to be separated from the form-factor

contribution by diluting the sample. In many of these cases it is

advantageous to analyze a set of several scattering patterns

simultaneously with a common set of global parameters as

well as a set of parameters varying from one pattern to another.

The strategy of using analytical expressions for the size

distribution may limit the model too much to give a reasonable

agreement with the data. To overcome this issue, regulariza-

tion techniques (Lucy, 1974, 1994; Glatter, 1977; Svergun,

1992; Yang et al., 2013) and Monte Carlo methods have been

used (Krauthäuser et al., 1996; Breßler et al., 2015), mainly due

to the lack of flexibility of available analytical probability

distribution functions (PDFs).

Another important aspect studied by SAS is particle

interaction potentials, which determine the structure-factor

function. If the structure factor is the focus of a study, only a

very few analytical solutions are known, such as that for hard

spheres (Wertheim, 1963), sticky hard-sphere potentials

(Baxter, 1968; Sharma & Sharma, 1977; Santos et al., 2012,

2013) for short-range interaction potentials and a two-Yukawa

potential (Hansen & Hayter, 1982; Liu et al., 2005) for long-

range interaction potentials. For many other interaction

potentials, the Ornstein–Zernike (OZ) equation (Ornstein &

Zernike, 1914; Nägele, 2004; Borowko et al., 2000; Caccamo,

1996) has to be solved numerically together with a closure

relation. Both need to be tested beforehand for being suitable

for use with molecular dynamics (MD) simulations.

2. Overview

SASfit (Breßler et al., 2015; Kohlbrecher & Studer, 2017) has

been one of the most comprehensive and flexible curve-fitting

programs for decades, with many specialized tools for various

fields. In this article, we present major upgrades of the SASfit

package since the last publications. We start with outlining

updates on technical aspects, such as new numerical algo-

rithms employed currently, a continuous integration (CI)

practice for automated building and packaging of the soft-

ware, and the upgrades on the plug-in system for easier

adoption by third-party developers. Furthermore, we will

focus on selected additions to SASfit: First, the extension of

the available models of form and structure factors in SASfit

are described in Section 4. We will also make the link between

the projected correlation function measured by spin-echo

small-angle neutron scattering (SESANS) and that measured

by multiple SAS, and show how those models where an

analytical expression for the SESANS signal exists can be

efficiently used to include multiple scattering effects in SAS.

Furthermore, a new type of size distribution called the

metalog distribution (Keelin, 2016) has been implemented,

which was first introduced in the field of decision analysis and

was designed to be a smooth PDF but also flexible enough to

replace almost all known distribution functions so far. The

metalog distribution can be expressed similarly to a Taylor

series with any number of parameters depending on the

required flexibility of the size distribution. In this article we

will compare how this distribution function performs with

other retrieval strategies for the size distribution.

Some newly implemented size-distribution retrieval algo-

rithms in SASfit will be discussed as well, especially the

expectation-maximization (EM) method introduced by

Dempster et al. (1977), and independently by Richardson

(1972) and Lucy (1974, 1994), which will be applied to SAS

data. We also compare it with the strategy of fitting analytical

size distributions via a non-linear least-squares fit. The EM

method implementation has been extended in SASfit by using

similar criteria to other regularization techniques to find the

optimum regularization parameter. Also, a version of regu-

larized regression using the GSL library (Galassi et al., 2009)

has been implemented for comparison.

Last but not least, a tool for numerically solving the OZ

equations has been added to SASfit. For many models on pair

interactions between colloids, no analytical solution for the

structure factor is available. The OZ tool in SASfit now allows

for a wide range of potentials and closure relations being

implemented, including those trying to obtain thermo-

dynamically consistent solutions.

3. Technical updates

SASfit is an open-source desktop application available for

Windows, Linux and macOS. The computational core is

implemented with the C programming language while the user

interface (GUI) is realized with Tcl/Tk (Breßler et al., 2015).

Much progress has been achieved in the technical foundations

of the program, which are summarized below.

3.1. Numerical algorithms

For many numerical computations, SASfit employs mature

and reliable external third-party open-source libraries such as

GSL (Galassi et al., 2009), FFTW (Frigo & Johnson, 2005),

SUNDIALS (Hindmarsh et al., 2005) and cubature (Johnson,

2020). Third-party code is used for very efficient numerical

integration algorithms in one dimension, such as the double

computer programs
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exponential integration (Mori, 1990; Ooura & Mori, 1991;

Mori & Sugihara, 2001) and specialized integration routines

over the surface of a sphere [Fibonacci grid (Marques et al.,

2013), Lebedev quadrature (Lebedev, 1975, 1976, 1977) and

spherical-t design (Gräf & Potts, 2011; Hardin & Sloane,

1996)] for efficient calculations of anisotropic form factors

with an orientation distribution.

For numerical integrations in multiple dimensions, a more

efficient and flexible routine sasfit_cubature was

implemented alongside a routine for optimized spherical

averages (sasfit_orient_avg). Both employ an algo-

rithm chosen by the user in a dedicated menu, which is shown

in Fig. 16 of the supporting information along with the

respective parameters. The improved routines for numerical

integration are now employed by models for ellipsoidal shells,

triaxial ellipsoidal shells (triax ellip shell) and oriented

primitive objects (OPO), as well as for orientational averages

by the models for OPO. The new numerical routines result in

faster calculations of the model intensities in many cases

depending on the chosen algorithms. See Section 1 of the

supporting information for more background on the models

for OPO and the geometric primitives they describe.

The fitting of the data is carried out by a dedicated imple-

mentation of the non-linear least-squares algorithm described

by Press et al. (1992) (Levenberg–Marquardt method). It has

been extended to handle the data structures in SASfit and to

be able to minimize multiple data sets and allow simple

bounds as constraints on the fit parameters. So far no other

optimization methods have been supplied.

3.2. Continuous integration

All source codes of the SASfit package are provided on the

code-hosting platform GitHub (https://github.com/SASfit/

SASfit) under the conditions of the General Public License

(GPLv3+, https://www.gnu.org/licenses/gpl-3.0.html). The

GitHub code repository is the central place for all develop-

ment activities around the SASfit package. A CI process has

been set up to automatically generate preliminary binary

packages as soon as a new set of code changes is uploaded (or

pushed) to the code repository. This CI process facilitates

basic automated quality checks of the code, and allows inter-

ested users to try and test new models and features very early

before the next full package version is released. These preli-

minary packages of development versions are uploaded

automatically to the binary distribution platform cloudsmith

(https://cloudsmith.io/~sasfit/repos/build/packages). All web

links for downloading regular package releases and preli-

minary versions can be found at the project website (https://

sasfit.org). It features links to the very extensive manual,

which is also included in each program package, as well as

additional user documentation such as video tutorials (https://

www.youtube.com/@SASfitScience) and developer docu-

mentation of the source code.

3.3. Plug-in system

SASfit offers a system for grouping model functions (of

form and structure factors mostly) in a plug-in. Each plug-in

results in a single shared library file, which is then packaged

with the program. A SASfit plug-in can be shared with other

copies of the program of the same version on different

computers. This is especially useful for customized plug-ins

which users can create with the tools provided by the SASfit

program and its source code. A typical use case is the devel-

opment of a custom plug-in in the course of a research project.

This plug-in could then be used with all copies of SASfit (of the

same version) among collaborators by just copying the plug-in

binary and its header file into the ‘plug-ins’ directory.

Plug-ins can import and employ other pre-existing SASfit

plug-ins and thus use almost the entire library of form and

structure factors, currently consisting of 608 model functions

in 72 plug-ins. Due to this high degree of flexibility and

functional versatility, all new models added to the program are

implemented as plug-ins. This large growing library of model

functions might be attractive to third-party applications. To

support this, source code of a minimal example of a program

computer programs
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Figure 1
Example source code of a minimal program evaluating the FuzzySphere
form-factor plug-in, describing scattering from spherical particles with a
‘fuzzy’ interface function.



evaluating a single plug-in form factor (shown in Fig. 1) is

provided in the main source-code tree along with docu-

mentation on how to build and run the example (https://

github.com/SASfit/SASfit/tree/master/examples).

4. Form factors

4.1. Anisotropic scattering

In the past few years, a whole set of new form factors have

been implemented in the SASfit package. A major part of the

new form factors describe anisotropic particles with a certain

orientation distribution, as well as functions describing the

variation of intensity in the azimuthal ( ) direction rather

than in the radial (q) direction. To fit anisotropic SAS data

recorded as a 2D scattering pattern, SASfit expects 1D input

data extracted from the 2D data, either in the radial (q)

direction from averaged sectors or in the azimuthal ( )

direction from Q-averaged data points over a small interval of

Q. SASfit supplies several models with an azimuthal angle  as

an input parameter. In Fig. 2, the 2D scattering pattern of

bicelles decorated with lanthanide complexes aligned in a

magnetic field is shown (Liebi et al., 2012; Liebi, 2013). To fit

the scattering pattern, either several radially averaged sectors

in certain directions  are taken, which can then be fitted

simultaneously, or an azimuthal intensity is extracted from the

2D plot to be fitted as in this case. Here, the azimuthal fit was

sufficient as the other geometrical parameters of the bicelles

could be extracted in zero field from isotropic spherically

averaged data. Most anisotropic models are implemented

twice as a function of Q for a fixed value of  to fit sector-

averaged data or vice versa to allow for fitting in the azimuthal

direction.

4.2. Multiple scattering

For a small number of form factors the contributions of

multiple scattering effects can be calculated, namely for mono-

disperse and lognormal-distributed polydisperse spheres, the

Debye–Anderson–Brumberger (DAB) model (Debye et al.,

1957; Debye & Bueche, 1949) and the generalized Gaussian

coil model, to be found under the form-factor menu ‘by

plugins’ ! ‘MSAS’. SASfit uses a formalism introduced by

Schelten & Schmatz (1980) and Jensen & Barker (2018). They

have shown that a multiple SAS signal can be computed from

a single scattering approximation (the scattering of the sample

volume in the absence of multiple scattering) via an inter-

mediate function i1(r):

i1ðrÞ ¼ 2�t

Z1
0

J0ðqrÞ
d�1

d�
ðqÞ q dq

¼ 2�tH0

d�1

d�
ðqÞ

� �
ðrÞ ¼ 4�2t ~GGðrÞ; ð1Þ

imðrÞ ¼ exp �
i1ð0Þ

k2
0

� �
k2

0 exp
i1ðrÞ

k2
0

� �
� 1

� �

¼ k2
0 exp

t ~GGðrÞ � ~GGð0Þ
� �

k2
0

( )
� exp �

t ~GGð0Þ

k2
0

� � !
ð2Þ

and

d�m

d�
ðqÞ ¼

1

2�t
H0 imðrÞ
� �

ðQÞ; ð3Þ

with k0 ¼ 2�=�, J0 being the Bessel function of the first kind

and zero order, and H0½ � being the Hankel transform

operator. Further parameters include the sample thickness t

and the wavelength �. ðd�m=d�ÞðqÞ is the measured scattering

cross section, including multiple scattering contributions

normalized on the sample volume and corrected for absorp-

tion and incoherent scattering, i.e. corrected for all beam

attenuation effects except coherent SAS. ðd�1=d�ÞðqÞ is the

corresponding single scattering cross section per volume. The

intermediate function i1(r) is mostly identical to the projected

correlation function ~GGðrÞ used in the theory of SESANS or

computer programs
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Figure 2
(a) Experimental data (top left) and 2D simulation of the fit shown in (b)
at the same detector setting (top right). (b) The fit I( ) was carried out in
the azimuthal direction over Q-averaged data points, in a small interval of
Q within the ring shown in the graph of the experimental data (top), to
obtain the orientational distribution. The structure that is scattering
comprises lipid bilayers oriented in a magnetic field, which are described
by discs with an orientational distribution, with details given by Liebi et
al. (2012) and Liebi (2013). The resulting sector-averaged data I(Q, 0�)
and I(Q, 90�) are shown in the inset.



spin-echo modulation SANS analysis except for a pre-factor

(Kohlbrecher & Studer, 2017):

i1ðrÞ ¼ ~GGðrÞ 2�ð Þ2t: ð4Þ

In principle the formalism in equations (1)–(3) allows one to

include multiple scattering effects for any kind of model with

radially symmetric scattering (isotropic models), and the

models have to decay faster than q�2 otherwise the Hankel

transform diverges. To calculate the projected correlation

function, the Hankel transform is already implemented in

SASfit to be applied on any available model function for

ðd�m=d�ÞðqÞ (Kohlbrecher & Studer, 2017) and can be chosen

in the ‘transform’ selection box in the bottom-right corner of

the model parameter window, next to the progress bar.

However, the multiple scattering contribution consists of one

integral for the size distribution, one integral for the Hankel

transform and the subsequent backward Hankel transform

with another numerical integration. These three subsequent

numerical integrations slow down the numerical calculation

too much to be used efficiently. Therefore, at the moment,

only the analytical models for projected correlation functions

are made available as scattering curves including multiple

scattering effects because the forward Hankel transform is

known analytically and only two integrals need to be calcu-

lated in this case. To include multiple scattering effects, the

scale parameter will be the total scattering cross section per

sample volume, �t ¼
~GGð0Þ ð2�Þ2 ¼ i1ð0Þ=t, for all models.

Furthermore, all respective models contain two parameters

depending on the experimental conditions, which are the used

wavelength � and the sample thickness t. Similarly to the

arguments for SESANS, the units should be chosen so that �
has the reciprocal units of the scattering vector q, i.e. nm or Å,

and the thickness should have the reciprocal units of the

scattering cross section per volume, which is normally supplied

in units of cm�1. By this parametrization, the intermediate

function im(r) reads as

imðrÞ ¼ k2
0 exp t�2�t

~GGðrÞ � ~GGð0Þ

~GGð0Þ

� �
� expð�t�2�tÞ

� �
: ð5Þ

Including multiple scattering in the data analysis means that,

next to material properties, instrumental parameters such as

sample thickness and the wavelength used also need to be

known. The influence of multiple scattering is shown in Fig. 3

for monodisperse spheres and the DAB model (Debye et al.,

1957; Debye & Bueche, 1949). For these two models, the

projected correlation function can be calculated analytically.

For the more general case of multiple scattering, the package

MuScatt (Jaksch et al., 2021) might be an option.

5. Size distributions

5.1. The metalog distribution

Retrieving size-distribution information from SAS data is a

standard task. Typically, two strategies are used for it: One is

to model the size distribution by a known analytical expres-

sion. This is actually the main strategy followed by the SASfit

package so far. The drawback of this method is that the

solution is constrained by the shape of the chosen distribution

function. Using analytical expressions for the size distribution

has suffered so far from the lack of flexibility of the available

distribution functions. Many distribution functions have two

or three parameters for location, skewness and sometimes

kurtosis, which can be expressed in terms of moments of the

PDF. So far, in cases of more advanced distributions, a sum of

multiple distributions was the only way to describe them.

A newly introduced distribution function, called the

metalog distribution, tries to overcome the limitation in shape

flexibility. The distribution has been introduced in the area of

decision analysis (Keelin & Powley, 2011; Keelin, 2016, 2021;

Wikipedia Contributors, 2021; Powley, 2013). In this approach,

the cumulative distribution function (CDF) rather than the

PDF is directly fitted to the data. The derivative of the CDF

results in the PDF. The metalog distribution can be expressed

in a similar manner to a Taylor series, with any number of

terms depending on the required degree of shape flexibility. It

has been shown by Keelin (2016) that a ten-term metalog

distribution is capable of reproducing shapes almost identical

computer programs
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Figure 3
Multiple scattering effects of (a) monodisperse spheres and (b) the DAB
model for total scattering cross sections �t between 1 and 104 cm�1 nm�2,
a sample thickness of 0.1 cm, and a wavelength of 0.6 nm. The DAB
model calculates the scattering of a randomly distributed (i.e. non-
particulate) two-phase system assuming sharp interfaces between the
phases. The two-phase system is characterized by a single length scale, the
correlation length �, which is a measure of the average spacing between
regions of phase 1 and phase 2.



to a large number of distributions, including normal, log-

normal, Weibull, gamma, exponential, chi-squared, extreme-

value, beta, uniform and triangular distribution. We have

implemented this distribution with a maximum of ten terms in

SASfit to allow more flexibility in determining the shape of a

size distribution. Example plots of metalog distributions with

two, four or six terms mimicking a bilognormal distribution

and the resulting scattering intensities are shown in Fig. 4.

Even though the metalog distribution is quite flexible in its

shape and can reproduce a large number of distributions, it

remains smooth and even a fit with several parameters does

not become so ill posed that it yields unstable solutions. The

metalog distribution might be a useful choice if, next to the

mean and width, some information about the skewness and

kurtosis are also extractable from the SAS data.

The metalog distribution is defined via its quantile prob-

ability distribution Q(y) (QPD). The QPD in statistics is the

inverse CDF. In the calculation of SAS data, one needs to

integrate the form factor in the case of a size distribution over

a probability density function p(x) representing the size

distribution, i.e. the integration is carried out over the random

variable x. The metalog distribution is, however, defined via its

CDF: y ¼ FðxÞ ¼
R x

�1
pðxÞ dx with y 2 [0, 1]. The inverse of

this function is the QPD: x = Q(y) = F�1(y). Differentiating the

QPD with respect to y yields the quantile density function

q(y) = dx/dy = dQ(y)/dy, whose reciprocal defines the prob-

ability density function p(x) = 1/q(y) = mk(y). The metalog

PDF mk(y) is therefore parameterized in terms of y instead of

x. The QPD of the metalog distribution Q(y) = Mk(y)

[according to Keelin (2016)] and its PDF are given in the

supporting information [equations (26) to (31)] for an

unbounded distribution as well as distributions that are left

bounded and bounded from both sides.

The integration of a form factor P(Q, x) over one of its size

parameters x can be written as

R1
0

pðxÞPðQ; xÞ dx ¼
R1
0

mk ½FðxÞ�PðQ; xÞ dx ð6Þ

and

R1
0

mk ½FðxÞ�PðQ; xÞ dx ¼
R1
0

P½Q;MkðyÞ� dy: ð7Þ

The last equation is obtained by a change of variables using

dx/dy = dMk(y)/dy = 1/mk(y). The change of variable has the

additional side effect that now the integration over the size

distribution becomes an integral with finite limits over the

cumulative distribution y from 0 to 1, which behaves

numerically well for both very sharp and very broad distri-

butions.

5.2. Regularization techniques

The second strategy for obtaining size-distribution infor-

mation is to employ regularization techniques, which

determine a model-independent distribution function. Regu-

larization techniques are required as retrieving the size

distribution from a scattering experiment is an ill-posed

problem.

SASfit implements a standard Tikhonov regularization

technique (Tikhonov, 1943; Tikhonov et al., 1995) with a cost

function, which can be chosen to be either an identity operator

or a first- or second-order derivative operator. The Tikhonov

regularization and the optimization of the weighting factor for

the cost function have been implemented using standard

functions provided by the GSL library (Galassi et al., 2009).

An entropy cost function is also statistically very well

supported, i.e. the maximum-entropy method (MEM) (Skil-

ling & Bryan, 1984; Hansen & Pedersen, 1991; Elliott &

Hanna, 1999; Hansen, 2000; Vestergaard & Hansen, 2006). As

the cost function becomes non-linear, the minimization algo-

rithms get a bit slower compared with a linear cost function in

the Tikhonov regularization, where linear regression tools can

computer programs
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Figure 4
(a) Examples of the metalog radius distribution with two (black line),
four (blue line) or six terms (green line), a bimodal metalog variant of 2�
4 terms (dashed line), and the bimodal lognormal distribution (red line).
(b) The resulting scattering intensities. Black circles represent the original
data, and the bimodal lognormal distribution is omitted because it
overlays the bimodal metalog variant exactly, as can be seen in the
residual plot (inset). The original data comprise a simulated scattering
curve of a bimodal distribution with Gaussian noise added, which was
introduced for benchmarking by Jemian (2013) (file data/test.sas).



be used. In SASfit, for the MEM, an iterative scheme has been

implemented called EM, which was first explained by Demp-

ster et al. (1977). The method is an iterative fixed point method

for positive defined functions. Vardi & Lee (1993) have shown

how the EM method can be applied to solve Fredholm inte-

grals for the domain of non-negative real valued functions.

The smearing of a form factor by a size distribution belongs to

that class of Fredholm integral. The method described there is

equivalent to the Lucy–Richardson method (Richardson,

1972; Lucy, 1974). The method has been applied for calcu-

lating a size distribution from scattering data by several

authors (Yang et al., 2013; Benvenuto et al., 2016; Benvenuto,

2017; Bakry et al., 2019). Although the convergence of the

iterative EM algorithm is ensured since the algorithm is

guaranteed to increase the likelihood with each iteration, a

stable solution cannot be obtained because of its ill-posed

nature and because an additional stabilization mechanism is

required.

Several stabilization methods have been suggested for the

EM algorithm. One of them is to add an additional smoothing

operator into the iteration sequence. In SASfit, the smoothing

operation suggested by Eggermont (1999), Eggermont &

LaRiccia (1995) and Byrne & Eggermont (2011) has been

implemented. For more details, refer to equations (36)–(55) in

the supporting information.

As the EM algorithm is an iterative scheme, it can be

extended by an additional entropy cost function, as shown by

Richardson (1972) and Lucy (1974). In the work of Lucy

(1994), two variants for introducing the maximum entropy

cost function into the iteration algorithm are described: either

using a known fixed prior or assuming an adaptive prior for

the solution vector. These are the two other strategies for the

EM iteration scheme made available in SASfit, and are

detailed in the supporting information.

In all cases, the stabilization term or cost function is scaled

by a weighting factor. To find the weighting factor, the same

approaches have been used as in Tikhonov regularization by

L-curve analysis (Hansen, 1998, 2001; Gazzola et al., 2018).

In SASfit, the algorithms for determining the size distribu-

tion can be accessed via the menu bar of the main window

under ‘Calc’! ‘integral parameters’. This opens the ‘integral

structural parameters’ window, which provides a selection box
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Figure 5
(a) Volume distributions DV(R) obtained by the different smoothing options in the EM iteration scheme. (b) Volume distributions DV(R) obtained by
Tikhonov regularization. (c) Simulated experimental SAS data with noise and corresponding model scattering function. (d) The corner of the L-curve
determines the optimum weighting factor for the cost function, which was chosen to be the entropy of the solution vector (blue) or the sum of its first
(red) or second derivative (green), over the G-test for the goodness of fit, which progresses from right to left with each iteration.



at the top where the retrieval algorithms are available for

selection. The button ‘calculate N(R) using’ on the left side

starts the algorithm using the input data from the main

window.

In Fig. 5, the different size-distribution retrieval algorithms

are applied to a simulated scattering curve of a bimodal

distribution with Gaussian noise added which was introduced

for benchmarking by Jemian (2013) (file data/test.sas).

6. Structure factors

6.1. Ordered materials

To describe the influence of the spatial arrangement of

scatterers on the SAS signal, the structure factors need to be

taken into account. However, an analytical description of the

structure factor is available for only a limited number of

models. For ordered nano- and meso-scaled materials, the

scatterers show diffraction spots on the detector. For those

systems, most of the structure factors from the software

package Scatter (Förster et al., 2010, 2005, 2011) are made

available in SASfit for both aligned ordered structures and

their powder averages. These models can be found in the

‘structure factor’ tab of the fit or simulation window under ‘by

plugins’! ‘ordered obj.’, where the ‘iso’ variants compute the

structure factor for orientational averages and the ‘aniso’

variants compute for aligned ordered structures. A few

examples are shown in Fig. 6.

6.2. Ornstein–Zernike solver

In the case of a simple liquid, in the framework of the OZ

equations the structure factor can be calculated numerically

on the basis of the known pair interaction potential between

two particles and a choice of a closure relation. Therefore,

SASfit now includes an OZ solver to calculate structure factors

for spherically symmetric pair interaction potentials of scat-

terers. At the moment, only the monodisperse case is imple-

mented. To account for polydispersity, approximations like the

decoupling approach (Kotlarchyk & Chen, 1983), the local

monodisperse approach (Pedersen, 1994) and a simple partial

structure-factor model, as well as a scaling approximation of a

partial structure factor (Gazzillo et al., 1999), are imple-

mented.
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Figure 6
Structure factors of ordered mesoscopic structures, both for oriented crystals and their powder average. Structure factors of 3D crystals occurring in soft
matter (SC, BCC, FCC, HCP, BCT – simple cubic structure, body-centred cubic, face-centred cubic, hexagonal close-packed, body-centered tetragonal),
as well as 2D ordering (HEX, SQ, CREC) and 1D ordering (LAM), are supplied.

Figure 7
GUI for the OZ solver. The pair interaction potential together with a
closure relation can be freely chosen by the user, as can the volume
fraction of the particles. The internal algorithm can be configured as well,
and the resulting structure factor is supplied by a special plug-in: SQ
calculated by OZ solver. With this, however, only the radius can be fitted
at the moment and all other parameters of the structure factor are fixed.



The GUI for the OZ solver is shown in Fig. 7. It allows one

to choose a closure relation out of a set of 19 different closure

relations and combine it with a pair interaction potential,

ranging from sticky hard spheres to the soft sphere potential,

several types of depletion potentials, the Yukawa potential, a

piecewise constant potential, and Derjaguin–Landau–

Verwey–Overbeek (DLVO), star-like or Lennard–Jones

potentials, to name a few. The list of closure relations and

potentials is extended continuously. Depending on whether

the potential is short ranged or long ranged, the step size and

total number of steps in real space need to be adapted.

We have compared the results of the numerical OZ solver in

SASfit with known analytical solutions, which are also avail-

able in this software package. For a two-Yukawa potential

with a hard core, Liu et al. (2005) have found an analytical

solution using a closure for the mean spherical approximation

(MSA). The potential reads as

UHC2YðrÞ

kBT
¼

1 for r<�;XN¼2

i¼1

�Ki

exp �ð1=�iÞ ðr=�Þ � 1½ �
� 	

r=�
for r � �:

8><
>:

ð8Þ

In Fig. 8, the structure factor of the analytically solved two-

Yukawa potential is compared with the numerical solution of

the OZ equations using the same MSA closure. The differ-

ences between the two solutions are visually indistinguishable.

The closure recommended for a certain interaction poten-

tial is normally verified by MD simulations. Therefore,

literature needs to be consulted to find the most appropriate

combination of a potential and a closure. In the case of a

piecewise linear potential, Santos et al. (2012, 2013) have

found a quasi-analytical solution without introducing any

closure relation, namely the ‘rational functional approxima-

tion’ (RFA). In Fig. 9 the RFA solution is compared with the

numerical solution of the OZ solver using different closure

relations. In the first case of a strong attractive well of E1 =

�kBT followed by a repulsive shoulder of E2 = kBT/2, all

closures show a significant difference from each other as well

as a clear difference from the RFA approximation. To decide

which closure is more appropriate for this potential, MD

simulations would be needed. In the second example of Fig. 9,

a less attractive well of E1 = �kBT/2 has been chosen, and all

closures as well as the RFA approximation yield very similar

features. More details about solving the OZ equations can be

found in the literature (Caccamo, 1996; Bomont, 2008; Hansen

& McDonald, 2013; Santos, 2016; and references therein).
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Figure 8
The numerical solutions of the OZ equations have been determined on a
grid with 214 = 16 364 points and a width of �r = �/500, where � is the
hard core diameter. The parameters of the potentials are chosen so that
they reproduce the cluster peak as discussed by Liu et al. (2005), caused
by a long-range attractive interaction potential contribution. The
solutions of the numerical OZ solver (dashed lines) overlay with the
analytical solutions (solid lines). Therefore, the numerical OZ solver
provides equivalent results to the analytical solutions.

Figure 9
Structure factors of two different piecewise constant potentials shown in
the insets are solved by the analytical solution of the RFA as well as by
using different closures solved numerically with the OZ equations,
namely Percus–Yevick (PY) (Percus & Yevick, 1958), hypernetted chain
(HNC), MSA (Hansen & McDonald, 2013) and modified MSA (mMSA)
(Gazzillo & Giacometti, 2003, 2004). For extreme values of the attractive
well, such as those shown in (a), the closures might not be valid anymore
and have to be verified against MD simulations; for more details, see the
main text.



Suggestions about combinations of potentials and the closures

are also given there.

7. Conclusions and outlook

We have highlighted selected additions and updates to the

SASfit program that may be most useful to interested users

since the last publication concerning this software package.

The technical foundation of the program is extended

continuously with state-of-the-art algorithms according to the

needs and challenges faced when new models and efficient

problem-solving strategies are implemented. The plug-in

system is one part of that foundation and it will be more

extensively used in the future. New models are implemented

as plug-ins by default, while older model functions from the

early beginnings of the program will also be converted to plug-

in functions. Recent changes to the plug-in system allow third

parties to make use of the extensive library of models more

easily and, moreover, they lay the groundwork to allow for

interface packages to other programming languages. As an

example, users can create Python-compatible modules from

SASfit model plug-ins. For this endeavour, the current

continuous integration setup is a suitable starting point. It

builds software packages for all supported platforms on the fly

and allows users to test code changes within hours instead of

waiting for the next release. Prospectively, it will be extended

to build further binary packages, for other programming

languages, for example, and include more testing of basic

program functions. Also, generating more of the available

documentation automatically, such as the manual and the

developer documentation, is planned.

In addition to new form and structure factors, some of

which were presented here, a challenge for the future is the

combination of regularization techniques with fits of multiple

data sets from the same sample under different conditions.

This scenario, also referred to as ‘global fitting’, aims to take

advantage of the expanded information content available for

fitting a form factor of the scatterers and employing regular-

ization to determine a size distribution valid for all measure-

ments considered. While this would not be possible with a

single measurement, the additional information provided by

multiple measurements could be sufficient to derive shape and

size. The applicability of this scheme will only be proven by

actual implementation.

We have presented the OZ solver as a versatile tool for

numerically determining particle interactions and the resulting

structure factor when no analytical solution is available, with

the goal to include its effects in the SAS intensity model used

for fitting with SASfit. At the moment it is a separate part of

the program with little integration into the main curve-fitting

workflow. Changes to achieve a more flexible integration of

the numerically determined structure factors within the model

setup are likely in future.
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