
1. Introduction
The gross primary productivity (GPP) of terrestrial ecosystems, of which forests are the dominant factor (Pan 
et al., 2011), is a key element of the global carbon cycle (Canadell et al., 2021). The resulting biomass further is 
important for human demands of food, energy, and construction materials (Taye et al., 2021). The assimilation of 
atmospheric CO2 via photosynthesis is primarily driven by photosynthetically active radiation (PAR), though it 
is also sensitive to intertwined environmental and physiological variables, such as temperature, water, and nutri-
ent  availability, or chlorophyll content of the canopy (Anav et al., 2015; Bao et al., 2022; Keenan et al., 2012).

The light use efficiency (LUE) concept was established by Monteith  (1972) and describes how efficiently 
solar energy is converted to chemical energy. It can be expressed as the ratio of GPP to the absorbed PAR 
(APAR). Under optimal conditions, a linear relation between GPP and APAR is assumed (Monteith, 1972), and 
LUE models utilize this logic for estimating GPP based on APAR and sensitivity functions for environmental 
conditions limiting LUE (e.g., Horn & Schulz, 2011; Stocker et al., 2020; S. Wang et al., 2018). The shape of 
these functions representing the response of LUE to meteorological variables, however, varies widely between 
approaches (Bao et al., 2022). Although LUE models are widely used to predict GPP, such as for the MODIS 
GPP product (Running & Zhao, 2015), they rely on accurate APAR measurements. For most sites with GPP 
data, these are only available from remote sensing derived fraction of APAR (fAPAR) products (Garbulsky 
et al., 2010). For forest ecosystems, however, fAPAR differed among satellite products (Tao et al., 2015) and 
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deviated from in situ fAPAR measurements, especially for temperate coniferous forests (Putzenlechner, Castro, 
et  al.,  2019). On the other hand, in situ measurements of fAPAR are laborious, especially for forest cano-
pies, because of the high spatiotemporal variability of their light transmissivity (Leuchner et al., 2011; Vesala 
et al., 2000), which requires a sophisticated network of PAR sensors to capture the variability of different flux 
terms (Putzenlechner, Marzahn, et al., 2019; Widlowski, 2010). Hence, few studies investigated environmen-
tal controls of LUE for forest ecosystems based on in situ APAR measurements (Goulden et al., 1997; Urban 
et al., 2012).

With climate change, a shift from energy-limited to water-limited conditions is expected for many terrestrial 
ecosystems (Denissen et al., 2022), making it important to accurately identify and distinguish those conditions. 
Vapor pressure deficit (VPD) was found to be a dominant control for stomatal conductance and, thus, for limiting 
photosynthesis (Castro et al., 2018; Katul et al., 2003). Sap flow sensors measure the transport of water through 
the xylem and in this way provide a continuous proxy of stomatal conductance (Ewers et  al.,  2007; Köstner 
et al., 1998; Steppe et al., 2015). Brinkmann et al. (2016) compared the sap flow response to drying conditions 
of different European tree species and showed that the sap flow of Picea abies was especially sensitive to limited 
water availability. Hence, despite being promising for analyzing limiting conditions of photosynthesis, as shown 
by the usefulness of sap flow to estimate GPP (Klein et al., 2016), a combination of sap flow and GPP meas-
urements has rarely been performed to show that the tree-scale sap flow response is analogous to that of the 
ecosystem-scale GPP.

Furthermore, the ratio of available light in the red to light in the far-red domain (R/FR) is a measure of light 
quality (Ammer, 2003; Turnbull, 1991) and can adapt chlorophyll content, though a direct relation to CO2 assim-
ilation could not be found (Heraut-Bron et al., 2000). Besides meteorological drivers, canopy nitrogen and leaf 
mass per area were shown to be important to explain the variation in LUE across species and environments 
(Green et al., 2003), though both are rarely considered in LUE models. The canopy chlorophyll content (CCC) 
incorporates both of these measures and showed a stronger relationship to GPP than leaf area index (LAI) or leaf 
chlorophyll content (Cab) alone (Croft et al., 2015). GPP seasonality of a soybean field was further dominated by 
CCC, while APAR and sun induced chlorophyll fluorescence peaked about 2 weeks earlier (Wu et al., 2022). In 
view of such a plethora of environmental controls on GPP, variable importance measures of machine-learning 
models are a valuable tool to quantify the model importance of individual highly non-linear sensitivities that are 
otherwise difficult to quantify (Archer & Kimes, 2008; Grömping, 2009; Williamson et al., 2021).

For this study, a multitude of environmental data were collected for a European spruce forest, including eddy 
covariance derived GPP, APAR from a network of PAR sensors, sap flow of three trees, and various environmen-
tal variables including satellite derived CCC. Based on these data, our goals were threefold, to (a) assess the LUE 
of a spruce forest and analyze the impact of various environmental drivers on it, (b) quantify the importance of 
single environmental variables for machine-learning GPP models, and (c) identify limiting conditions of photo-
synthesis by linking tree-scale sap flow measurements to ecosystem-scale GPP and meteorological data.

2. Materials and Methods
2.1. Study Area Description

Measurements took place between 28 April and 30 September 2021 at the Wüstebach forest site (50°30′16″N, 
6°19′50″E), Germany, which is part of the TERrestrial ENvironmental Observatories (TERENO) network 
(Bogena et al., 2018). The forest lies at 600–620 m asl within the Eifel National Park near the Belgian border and 
is a spruce monoculture (Picea abies (L.) H. Karst.) planted in 1946 with an overall tree density of 370 trees/ha 
(Etmann, 2009) and an average canopy height of 25 m. The understory mostly consisted of young beech plantings 
(Fagus sylvatica L.), Vaccinium myrtillus L., ferns (e.g., Struthiopteris spicant (L.) Roth) and various mosses. 
The dominant soil types are Cambisols and Planosols (Graf et al., 2014) and the dominant soil textures are silt 
loam and silty clay loam (Borchardt, 2012). During April–September 2021 the site had a mean temperature of 
12.2°C, and received 629 mm of precipitation. At the nearest long-term official weather station Kall-Sistig of the 
German Weather Service, about 13 km to the east, this period was 0.6°C colder and had 158% of the precipita-
tion compared to the 1991–2020 averages. April and May were especially cold (−3.2°C and −2.4°C deviation, 
respectively) and July was especially wet (347% of average), while June was significantly warmer than average 
(+2.4°C).
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2.2. Eddy Covariance, Meteorological, and Sap Flow Measurements

Turbulent fluxes of CO2, water vapor and sensible heat were measured with an eddy covariance system consist-
ing of a sonic anemometer (CSAT-3, Campbell Scientific, Logan, Utah, USA) and an open-path infrared gas 
analyzer (LI-7500, LI-COR, Lincoln, Nebraska) with 15 cm sensor separation. The instruments were mounted 
at 38 m above ground on a tower above the forest canopy (Figure 1). Raw data recorded at 20 Hz were processed 
to 30-min fluxes with the software TK3 (Mauder & Foken, 2011), applying the strategy for quality control after 
Mauder et  al.  (2013), which includes tests for stationarity, well-developed turbulence, and source area repre-
sentativeness. Following this, only data of the highest quality (flag 0) were retained and a storage flux estimated 
from single point CO2 measurements was added. Post-processing was carried out using the REddyProc soft-
ware package (Wutzler et al., 2018), which includes friction velocity filtering, gap filling and partitioning of 
net ecosystem exchange of CO2 into ecosystem respiration (Reco) and GPP. For partitioning, the method after 
Reichstein et al. (2005) was applied, which determines the temperature sensitivity of Reco from nighttime data 
and extrapolates this to daytime.

Further environmental variables used for the analysis include measurements of global radiation (I) and 
diffuse radiation (d) measured at 34  m (NR01, Hukseflux Thermal Sensors, Delft, Netherlands), from 
which the diffuse fraction (d/I) was calculated. In addition, air temperature (Tair) and relative humid-
ity (rH) were measured at 38  m (HMP45, Vaisala Inc., Helsinki, Finland), from which VPD was derived. 
From measurements of soil water content (SWC) in 2, 5, 10, 20, 50, and 80  cm depth (CS616, Camp-
bell Scientific, Logan, Utah, USA) a root zone SWC weighted by thickness of layer was calculated as 

𝐴𝐴 SWCAVG = (SWC02 ∗ 3 + SWC05 ∗ 4 + SWC10 ∗ 7 + SWC20 ∗ 20 + SWC50 ∗ 30 + SWC80 ∗ 36) ∕100 , where 
each subscript denotes the depth in cm to account for dynamic root growth (Y. Wang et al., 2021).

Figure 1. Light Detection And Ranging (LiDAR) derived canopy heights from the Wüstebach forest site, western Germany. 
LiDAR data collected on a March 2022 measurement campaign and were used for visualization only.
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As an indicator of stomatal responses, sap flow density (JS) was derived from three spruce trees about 20 m to 
the southeast of the tower (Figure 1). Each tree was instrumented with a Granier sensor comprising four needles 
(Ecomatik SF-L, Ecomatik, Dachau, Germany), mounted at 1.5 m height, from which the average JS of the trees 
was derived from the temperature difference between two probes (Bogena et al., 2015; Neuwirth et al., 2021). The 
respective equation follows empirical relations (Granier, 1987):

𝐽𝐽S = 119 ∗
(

∆𝑇𝑇max − ∆𝑇𝑇

∆𝑇𝑇

)1.231

, (1)

where JS is the sap flow density (g m −2 s −1), ΔT is the actual temperature gradient between the two probes and 
ΔTmax the maximum temperature gradient measured between the probes in a given time period. The length of 
this time period depends on the prevailing environmental conditions, because ΔTmax represents a state of zero sap 
flow. According to the manufacturer's recommendations (Ecomatik, 2005) we identified ΔTmax as the maximum 
ΔT of the vegetation period representing no radial tree-trunk increment and an rH of 100% with transpiration 
tending to zero. With these measurements, the relationships between JS, VPD, and APAR were then analyzed to 
identify energy-limited and water-limited conditions for photosynthesis.

2.3. Sentinel-2 Derived Vegetation Indices

The normalized difference vegetation index (NDVI) was used for the estimation of APAR by green vegetation 
and CCC was used as an indicator of photosynthetic capacity to incorporate nutrient availability and past envi-
ronmental conditions, especially the delayed response of chlorophyll content to suitable meteorological condi-
tions in the early growing season (Gitelson et al., 2014). In order to estimate NDVI and CCC, Sentinel Level-2A 
bottom of atmosphere images between April and October 2021 were downloaded from Google Cloud via sen2r 
(Ranghetti et  al.,  2020). A mask was applied to filter out clouds and shadows, and the images were further 
visually inspected to exclude scenes with undetected clouds or cloud shadows over the study area, after which 13 
scenes well distributed over the growing season remained. NDVI was calculated as

NDVI = (𝐵𝐵842 − 𝐵𝐵665) ∕ (𝐵𝐵842 + 𝐵𝐵665), (2)

where the subscript denotes the wavelength in nm of the respective Sentinel-2 band (B), that is, band 8 (near 
infra-red) for B842 and band 4 (red) for B665. For CCC, the 13 scenes were resampled to 20 m spatial resolution and 
processed with the Biophysical Processor in SNAP (https://step.esa.int/main/toolboxes/snap/) to yield LAI and 
Cab products. The algorithm for biophysical variables included in SNAP consists of an artificial neural network 
trained with PROSAIL radiative transfer model input variables (Weiss et al., 2020). CCC was then derived by 
multiplying LAI with Cab and for both NDVI and CCC pixel values of the woodlot were averaged. Finally, values 
from the 13 scenes were linearly interpolated to a daily scale.

2.4. PAR and R/FR Measurements

PAR was recorded instantaneously every 10  min with full-spectrum quantum sensors (SQ-521-SS, Apogee 
Instruments, Logan, Utah, USA) measuring the photon flux in the spectral range from 389 to 692 ± 5 nm. The 
sensors' error due to temperature response is below 2% for prevalent temperatures of the 2021 growing season 
(5°C–30°C). The R/FR ratio was recorded likewise with S2-431-SS sensors (Apogee Instruments, Logan, Utah, 
USA) measuring red light from 645 to 665 nm ± 5 and far-red light from 720 to 740 nm ± 5 nm. All PAR and R/
FR sensors were connected to the wireless sensor network SoilNet (Bogena et al., 2010). Incident PAR (PARin) 
and outgoing PAR (PARout) and incident R/FR (R/FRin) were measured with two opposite PAR sensors and one 
R/FR sensor above the forest canopy on a tower at 38 m above ground (Figure 1). In order to find a suitable field 
for measurements of transmitted PAR (PARtrans) and R/FR (R/FRtrans) below the canopy, several criteria were 
set. According to these, the field had to be: (a) within the 50% cumulative source area of the eddy covariance 
station as calculated after Kormann and Meixner (2001), (b) at least 80 m away from the forest edge to minimize 
the influence of lateral radiation fluxes, and (c) representative of the general woodlot comprising the 50% foot-
print area in terms of canopy density. For the latter, a Light Detection And Ranging (LiDAR) point cloud from 
Geobasis NRW was used and the ratio of above ground to total LiDAR points for each 30-m cell of the woodlot 
was calculated. A representative cell was identified as being within one standard deviation from the mean ratio of 
the whole woodlot. Based on these criteria, a measurement field 70 m to the southwest of the tower was chosen 

https://step.esa.int/main/toolboxes/snap/
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(Figure 1). There, 10 PAR sensors were mounted on tripods in 1.3 m height and arranged with 10 m distance in 
two hexagons to maximize the sensing area (Putzenlechner, Marzahn, et al., 2019) and one of these hexagons was 
also equipped with six R/FR sensors.

For calculating APAR, cases with PARtrans > PARin were excluded as a sign of cloud cover only above the tower. 
High wind speeds can induce an increase of the sampling error of PARtrans measurements from a limited number 
of sensors during direct light conditions (Putzenlechner, Marzahn, et al., 2019). This sampling error is caused by 
the high spatial variability of forest canopies (Leuchner et al., 2011; Widlowski, 2010). Therefore, the fAPAR 
was calculated first and filtered for low wind speeds (<5 m s −1), and data gaps were linearly interpolated. We 
also considered reducing the sampling error further by filtering for diffuse light conditions (d/I > 0.9). However, 
important conditions such as the highest VPD typically occur during direct light conditions, and only considering 
diffuse light would also ignore the bowl-shaped diurnal cycle of fAPAR during direct light (Widlowski, 2010). 
The domain-level fAPAR was calculated as a two-flux product instead of a three-flux product because in this way 
the bias to fAPAR from all four flux terms is expected to be smaller (Putzenlechner et al., 2020; Widlowski, 2010):

fAPAR =
1

𝑛𝑛

𝑛𝑛
∑

𝑖𝑖

1 − PARtrans𝑖𝑖∕PARin, (3)

where i is the sensor location of each PARtrans sensor, however, without measurements from one sensor due to 
malfunctioning (n = 9). APAR of green parts of the tree canopy was then calculated as

APAR𝑔𝑔 = PARin ∗ fAPAR ∗ NDVI, (4)

for which each 10-min values of PARin and fAPAR were linked to the NDVI values of the corresponding day. 
NDVI was used for the proportion of green vegetation because of its normalized nature and utility in previous 
research to estimate APARg (Nestola et al., 2016).

Data from the six R/FR sensors were averaged for the calculation of R/FRtrans. As R/FR is strongly dependent 
on solar elevation and the precipitable water vapor in the atmosphere, which attenuates light in the far-red but 
not in the red domain (Doroszewski et  al.,  2015; Kotilainen et  al.,  2020), we also calculated the difference 
between the R/FR ratios above and below the canopy as 𝐴𝐴 𝐴𝐴∕FRdiff = 𝐴𝐴in∕FRin −𝐴𝐴trans∕FRtrans to represent the 
change of the spectral ratio caused by the canopy alone. All radiation data were filtered for daytime conditions 
(PARin > 10 μmol m −2 s −1) and linked to GPP estimates by aggregating them to 30-min values. Finally, green 
LUE was calculated as

LUE𝑔𝑔 = GPP∕APAR𝑔𝑔. (5)

2.5. Evaluation of Environmental Drivers

LUEg was calculated at the half-hourly scale and at the daily scale from daytime integrals of GPP and APARg. 
Half-hourly LUEg, however, has the problem of being skewed because a ratio is more affected by changes of the 
denominator (APARg), especially if it is low (Hedges et al., 1999). At the daily scale, the range of APARg was 
much smaller, and hence the dependence on APARg was not as dominant (see Figure S1 in Supporting Infor-
mation S1). For this reason it is necessary to present half-hourly LUEg with a log10-transformed y-axis so that 
LUEg is affected equally by changes of the numerator and denominator. However, Feng et al. (2014) stated to use 
log-transformations with caution as statistical modeling on those data may not be relevant for the original data. 
Therefore, we also provide an alternative approach in Supporting Information S1, that uses deviations of GPP 
from a year- and site-specific optimal GPP (GPPopt) in relation to APARg instead (see Text S1 and Figures S2 and 
S3 in Supporting Information S1).

In order to robustly quantify the importance of environmental variables for predicting half-hourly daytime GPP, 
two different feature importance measures based on different machine-learning algorithms were applied. First, 
permutation importance based on random forest (RF, Breiman, 2001), and second, SHapley Additive exPlanations 
(SHAP) values (Lundberg & Lee, 2017) based on gradient boosting (GB, Friedman, 2002). Both RF and GB 
have the advantage of capturing even highly non-linear relations between target and predictors and are based 
on an ensemble of decision trees. For RF, all trees are grown independently with a random subsample of data, 
while the trees for GB are built based on the errors of the previous tree in order to minimize a loss function. The 
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permutation importance is assessed by randomly shuffling the values of each variable and measuring the decrease 
in prediction accuracy. To avoid a bias from correlated predictors, we used the conditional permutation scheme of 
Strobl et al. (2008), where values are permuted within a grid of correlated variables. For this, we applied the latest 
version of this algorithm in the permimp package in R, which also considers non-linear dependence between 
variables (Debeer & Strobl,  2020), based on the conditional inference trees implementation of RF in cforest 
(Hothorn et al., 2006). SHAP is a local method to explain the importance for individual predictions by unifying 
various Shapley value methods, which use equations from game theory to fairly allocate rewards. For this study, 
we applied SHAP via SHAPforxgboost (Liu & Just, 2021) based on the XGBoost implementation of GB (Chen 
& Guestrin, 2016). For both models, only non-gap-filled values were considered and hyperparameter tuning and 
a random 5-fold cross-validation was conducted with caret (Kuhn, 2008). As RF and GB are subject to random 
variation, the procedures were repeated 10 times and results were averaged to produce more robust estimations.

3. Results
3.1. Interpretation of Environmental Drivers

The efficiency by which APARg is used for photosynthesis is observed by a light response curve of GPP 
(Figure 2). For each APARg domain, a wide range of GPP values was recorded. Low GPP values at a particular 
APARg corresponded well with a low CCC, indicating a limiting effect on photosynthetic capacity. In general, 
GPP displays an increasing trend with increasing APARg until about 600 μmol m −2 s −1, after which a saturation 
of APAR occurred. The larger circles further show that many of the lowest GPP values at high APAR coincided 
with high VPD, most of them during a warm and dry spell in June.

The good agreement between CCC and GPP can also be seen in time series (Figures 3b and 3c) and a scatter-
plot (Figure S4a in Supporting Information S1). In Figure 3, no significant increase of GPP, LUEg or CCC can 
be noticed until mid-June. In mid-July and mid-August, however, LUEg exhibited two marked peaks with a 
minimum in between. APARg and JS had a high day-to-day variation while Tair and VPD peaked in mid June. Over 
the whole research period, daily LUEg was 4.0% ± 2.3%, with daily values ranging from 0.7% to 12.1%. Out of 
total APAR, the LUE was 3.1% on average, and of PARin just 2.8%.

In general, the response to environmental drivers was similar for half-hourly and daily LUEg. Tair had a relatively 
clear optimum around 15°C for both 30 min and daytime averages, though even around 15°C low LUEg values 

Figure 2. Gross primary productivity (GPP) against green canopy absorbed photosynthetically active radiation (APARg) 
during the 2021 growing season, colored by canopy chlorophyll content (CCC) and dot sizes by Vapor pressure deficit (VPD).
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were observed (Figures 4a and 4b). Half-hourly LUEg was rather insensitive to VPD until it reached values above 
about 7.5 hPa, after which a decrease was noticeable. For daily LUEg a similar pattern was evident, although the 
decrease started at daytime averaged VPD > 3 hPa (Figures 4c and 4d). Half-hourly and especially daily LUEg 
were higher during diffuse compared to direct light conditions. Similarly, they tended to be higher when R/FRdiff 
was lower (Figures 4e–4h), meaning that the ratio was shifted comparatively less to the far-red spectrum after 
passing the canopy. However, neither showed a clear response to SWCAVG (Figures 4i and 4j).

3.2. Importance of Environmental Drivers for Machine Learning Models

The results from permutation importance and SHAP agree well, indicating that the importance estimations can be 
considered robust. For both approaches, CCC was the most valuable feature for predicting GPP closely followed 
by APARg (see Figure 5). Though only according to SHAP, SWCAVG had a higher importance than the remainder 
variables. RF and GB both could reproduce GPP well within a 5-fold random cross-validation, resulting in an 
R 2 of 0.83 for RF and 0.84 for GB (Figure S5 in Supporting Information S1), though this does not tell how good 
the models are for spatiotemporal extrapolation. However, when replacing APARg and CCC by the rough proxies 
of SZA and day of year (DOY), the RF model performance drops only to an R 2 of 0.81 with SZA and DOY as 
the most important variables (see Figure S6 in Supporting Information S1). A RF model with neither of them, 
on the other hand, has only an R 2 of 0.56. This leads to the impression that the diurnal and seasonal information 
contained in APARg and CCC are more important than their specific quantities.

The analysis of individual SHAP values further revealed that high CCC values yielded higher GPP predictions 
and the limiting effect of low APAR was also evident. Dependence plots of SHAP values of each variable give a 
more detailed view, especially for variables with a rather small range of SHAP values (see Figure S7 in Supporting 

Figure 3. Time series of daily averaged daytime values of (a) green canopy light use efficiency (LUEg), (b) gross primary productivity (GPP), (c) green canopy 
absorbed photosynthetically active radiation (APARg), (d) canopy chlorophyll content, (e) air temperate (Tair), (f) Vapor pressure deficit, (g) soil water content 
(SWCAVG), and (h) sap flow density (JS) from 20 April to 30 September. For LUEg and GPP, only those days with at least 25% non-gap-filled GPP data were considered.
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Information S1). Here, it is notable that both very low and high VPD yielded a low GPP outcome, while high and 
low SWCAVG values are related to high GPP outcomes.

3.3. Sap Flow—GPP Relationship and Their Response to Environmental Drivers

The correlation of JS to GPP in relation of VPD and CCC is shown in Figure 6. Half-hourly periods with high 
GPP despite very low JS (<0.025 ml cm −2 min −1) occurred on very low maximum daily VPD (VPDmx) days 
(Figure 6a), indicating that JS and GPP were not correlated when photosynthesis required little transpiration. For 

Figure 4. Green canopy light use efficiency (LUEg) at a half-hourly scale with log10-transformed y-axes (left) and at a daytime scale (right) against (a and b) air 
temperature, (c and d) vapor pressure deficit, (e and f) diffuse fraction, (g and h) red to far-red ratio difference between above and below canopy, and (i and j) soil water 
content, each with a locally estimated scatterplot smoothing function in blue and a 0.95 confidence interval in gray. For daily LUEg, only those days with at least 25% 
non-gap-filled gross primary productivity data were considered.
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a given value of JS above 0.05 ml cm −2 min −1, GPP was generally lower on high VPDmx days and likewise for the 
same GPP, a higher JS occurred on high VPDmx days. In the relation to VPD, JS showed a strong increase with 
increasing VPD until about 7.5 hPa were reached, after which JS seems to be capped and even showed a slightly 
decreasing trend for VPD > 12.5 hPa (Figure 6b). However, even at low VPDs, JS was within a broad range of 
about 0.1 ml cm −2 min −1. Lower JS values corresponded well to low CCC, indicating a limiting influence on sap 
flow potential. Extraordinarily low JS values stand out at moderate VPD values of about 10 hPa. These values 
correspond to low sun angles (SZA > 70°; star symbol in Figure 6b) and occurred in the early morning after 
nights during which VPD remained relatively high but APAR and thus JS were still low.

Figure 5. Average conditional permutation importance (unitless) of environmental variables for a random forest gross primary productivity (GPP) model with 
error bars displaying one standard deviation between 10 iterations (a), and SHapley Additive exPlanations (SHAP) values of those variables for a gradient boosting 
GPP-model (b). The more values deviate from 0, the more important was the respective variable for the prediction, with negative values related to low GPP outcomes. 
Numbers on the left show the average absolute SHAP value (unitless) of each variable. R 2 of a random 5-fold cross-validation of the models was 0.83 for random forest 
and 0.84 for gradient boosting.
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The hysteretic responses of JS and GPP to VPD and APARg are shown in Figure 7 for different VPDmx classes. 
The averaged hysteresis of JS to VPD showed markedly different patterns for different VPDmx domains. For 
VPDmx < 1.5 hPa (not shown), a chaotic pattern generally dominated, though for days with VPDmx between 1.5 
and 5 hPa, an anti-clockwise pattern with higher JS later in the day at same VPD could be observed (Figure 7a). 
A transitional pattern occurred for days with VPDmx between 5 and 9 hPa without a clear hysteresis or just a 
clockwise loop around midday (Figure 7b). On VPDmx days between 9 and 15 hPa, instead, a clear clockwise 
pattern with lower JS later in the day at the same VPD levels was visible (Figure 7c). For days with VPDmx above 
15 hPa, the clockwise hysteresis was even more pronounced, and a decreasing JS despite further rising VPD in 
the early afternoon occurred (Figure 7d). GPP, on the other hand, always showed a clockwise response to VPD 
independent of the VPDmx scale (Figures 7e–7h). In the response to APARg, however, JS and GPP both showed 
a clockwise pattern on high VPDmx days. Though on lower VPDmx days, GPP did not have a time lag toward 

Figure 6. Sap flow density (JS) against gross primary productivity colored by daily maximum vapor pressure deficit (VPDmx) (a) and JS against VPD colored by 
canopy chlorophyll content (b). The star symbols in panel (b) represent observations with solar zenith angle > 70° and VPD > 5 hPa.



Journal of Geophysical Research: Biogeosciences

REITZ ET AL.

10.1029/2022JG007197

11 of 18

APARg, while JS had an anti-clockwise pattern that shifted toward a clockwise pattern with increasing VPDmx 
(Figures 7i–7p).

4. Discussion
4.1. Identification of Photosynthesis Limiting Conditions

Besides this study, an anti-clockwise hysteretic response of JS to VPD was reported only for P. sylvestris growing 
in a wet and cool climate (H. Wang et al., 2019). This hysteretic response has not been found for plants in tropical 

Figure 7. Hysteresis plots between (a–d) sap flow density (JS) and vapor pressure deficit (VPD), (e–h) gross primary productivity (GPP) and VPD, (i–l) JS and green 
canopy absorbed photosynthetically active radiation (APARg), and (m–p) GPP and APARg, averaged for four different daily maximum VPD classes (columns). A 
clockwise (anti-clockwise) pattern occurs if afternoon and evening values of JS or GPP are higher (lower) than in the morning at the same VPD or APARg.
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(Motzer et al., 2005; Roddy, 2013) or semi-arid climates (Li et al., 2016; Zha et al., 2017). A delayed response 
of JS to VPD can be explained by the use of water stored in the upper stem during the morning hours (Goldstein 
et al., 1998; Perämäki et al., 2005). Stored water is only sufficient on low VPD and APARg days, and is not 
detected by sap flow measurements usually carried out at 1–1.5 m height (H. Wang et al., 2019). We hence inter-
pret the shift of the JS response to VPD from anti-clockwise to clockwise as a sign of non-sufficient water storage 
in the upper plant. Main possible reasons for afternoon stomatal closure causing a clockwise response of JS to 
VPD given by previous studies (O’Brien et al., 2004; Zeppel et al., 2004; Zhang et al., 2014) can be summarized 
to: (a) a declined soil–root conductance due to decreased SWC, (b) a higher stomatal sensitivity to VPD due to 
changed water potential gradients or xylem sap chemical composition, and (c) decreased APARg, caused by the 
delay of VPD to radiation resulting in higher APARg values earlier in the day at a given VPD (see Figure S8 in 
Supporting Information S1).

Given that GPP showed a clockwise response to VPD even on very low VPDmx days, we conclude that a decrease 
of APARg and hence stomatal closure induced by energy limitations is the main cause for such cases at this 
particular site. This means that for higher VPDmx days a clockwise JS-VPD pattern by itself is not a sufficient 
indicator for water stress or atmospheric demand induced stomatal closure. The decrease of JS despite increasing 
VPD only on the highest VPDmx days can be considered a clearer sign of such conditions. As photosynthesis is 
primarily driven by APARg, the non-hysteretic response of GPP to APARg on low VPDmx days seems reasonable. 
Since JS is likewise driven by APARg, but also scaled by VPD, which is typically highest in the afternoon, a slight 
anti-clockwise response to APARg can be expected (Zeppel et al., 2004) that is also enhanced by the use of stem 
water in the morning. Hence, the shift to a clockwise pattern of both GPP and JS to APARg only on the highest 
VPDmx days can be regarded as a good indicator of stomatal closure related to high atmospheric water demand 
at this site and year. Water-limited conditions, however, also depend on soil water potential, which can only be 
roughly estimated for this site. According to the soil water retention curve for the dominant silt loam texture after 
Tuller and Or (2004), even the minimum SWCAVG of 20.3% during the 2021 growing season would have resulted 
in a pressure head of no less than about −10 m.

Limiting conditions for photosynthesis can also be identified by a time series of the relevant variables (see 
Figure 3 and Figure S9 in Supporting Information S1). For example, 12 June saw a marked minimum of APARg 
around noon, which was likewise evident for VPD, JS and GPP, demonstrating an energy-limited response. During 
a high APARg period from 14 to 19 June with the highest VPD values (21.5 hPa) recorded during the whole grow-
ing season, both JS and GPP were lower than during 25–28 June with distinctively lower VPD (<12.5 hPa). This 
could be interpreted as a water-limited response. However, the photosynthetic capacity also increased markedly 
from mid to late June (Figure 3d), complicating the analysis. For the hysteretic response differing CCC is not an 
issue as GPP and JS are compared within the same day. In summary, the analysis of the JS response especially to 
APARg can reveal useful information to identify photosynthesis limiting conditions, although GPP and JS are not 
always related as shown by discrepancies during very low VPD conditions.

4.2. Environmental Drivers

Both machine learning analyses show the consistency of CCC as the most important environmental variable 
for GPP. This high ranking also reveals that even for evergreen trees, meteorological drivers alone may not be 
sufficient to explain the variability in GPP. Moreover, a variable containing seasonal information about photo-
synthetic capacity will be also required. Our results are in agreement with previous research for mixed forests and 
maize crops (Croft et al., 2015; Gitelson et al., 2014; Peng et al., 2011). The higher importance of CCC even over 
APARg agrees with the results from Wu et al. (2022). However, other variables influencing photosynthetic capac-
ity, such as atmospheric CO2 concentrations, were not included in the analysis (Dusenge et al., 2019; Farquhar 
et al., 1980). Furthermore, Cabon et al. (2022) showed that wood growth in contrast to GPP is more limited by 
water stress than temperature-related leaf phenology.

As for environmental drivers of LUEg, we found a unimodal response to Tair with decreasing LUEg at high temper-
atures. With this analysis, however, it is not possible to single out the effect of a specific variable on LUEg because 
co-dependencies between variables occur. High values of Tair were strongly correlated to high VPD values (89% 
of Tair > 25°C had VPD > 15 hPa). Nevertheless, the observed decrease of LUEg can also be caused by high Tair 
alone due to higher photorespiration in relation to photosynthesis with increasing leaf temperatures (Long, 1991), 
a process which also relates to high APARg. Likewise, as summarized by Bao et  al.  (2022), the temperature 
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sensitivity has been represented by bell-shaped functions many times in LUE-models though with differing opti-
mum ranges (e.g., Horn & Schulz, 2011; Stocker et al., 2020; Xiao et al., 2004). Otherwise, it was also modeled 
by a linearly increasing function that reaches a plateau at ca. 16°C (Mäkelä et al., 2008).

VPD was overall not a very important variable for machine learning models despite its impact on stomatal 
conductance as shown by the sap flow analysis. This discrepancy can be attributed to the fact that the site is 
typically energy-rather than water-limited (Graf et al., 2014) with a particular cool and wet 2021 growing season. 
This resulted in many low VPD observations that were rather indifferent to LUEg, though nonetheless some high 
VPD days occurred that restricted stomatal conductance. The wet growing season probably also explains the 
relatively low importance of SWC, which reacts slower to dry periods with increasing depth (Xu et al., 2021). In 
comparison, for a drought-affected tropical dry forest, a high importance of VPD and latent heat flux to explain 
GPP was detected by Castro et al. (2018). A similar response to VPD as ours, that is, a decrease of LUE only at 
VPD above ca. 5 hPa, was found by Horn and Schulz (2011), while others found an immediate decrease of LUE 
with increasing VPD (Kalliokoski et al., 2018; S. Wang et al., 2018). Likewise, Fu et al.  (2021) showed that 
during soil moisture dry downs, the covariance between GPP and VPD was positive at first, and changed to nega-
tive only after a certain soil moisture threshold was surpassed. The low LUEg values even within the optimum 
range of environmental variables such as Tair shows those are necessary but not sufficient conditions. During the 
occurrence of highest GPP and LUEg values in mid-July and mid-August all or most environmental drivers likely 
were within their optimal range.

While half-hourly LUEg showed only a modest increase with d/I, which is also reflected in a low importance 
for machine learning models, daily LUEg was significantly higher during diffuse light conditions (Figure 4f). 
A similar response was observed to low R/FRdiff and both were highly correlated (correlation coefficient of 
−0.92; see also Figure S4b in Supporting Information S1). This is probably linked to lower APARg values during 
diffuse light and therefore less excessive light. Besides that, an enhancement of LUEg under diffuse conditions 
has been linked to a smaller fraction of the canopy in deep shade (Williams et al., 2014) and previous research 
showed that coniferous forests can also be larger CO2 sinks under diffuse conditions (Law et al., 2002; Urban 
et al., 2007, 2012). A linear increase between cloudiness and LUE was hence included in LUE-models (S. Wang 
et al., 2018), though Bao et al. (2022) found an exponential increase more suitable that also fits better with our 
results. As the R/FR ratio was always shifted to FR after passing the canopy but less so during diffuse conditions, 
obscured parts of the canopy received not only a higher light quantity, but also a higher light quality than under 
clear skies. Such a vertical R/FR profile was shown for spruce trees by previous research (Dengel et al., 2015; 
Hertel et al., 2011), and in this way the higher LUEg at small R/FRdiff might not be attributed to higher d/I and 
less excessive light alone.

4.3. Variability and Uncertainties of LUEg Estimates

Variation of LUEg shown in Figure 3a can primarily be attributed to variations of APARg and GPP. APARg was 
predominantly dependent on fluctuating cloud cover patterns, while GPP likely was influenced by various current 
and past environmental drivers (see Section 3.2). LUEg remained within a rather low range between late April and 
late June. This can be attributed to below average temperatures in April and May with a subsequent low CCC well 
into June, as well as a warm and dry period with comparatively high VPD values in mid-June probably causing 
water-related stomatal closure (see Section 3.3). As the first peak of GPP corresponds to an increase of CCC as 
well as low VPD, we attribute this peak to the probably first suitable growing conditions after cold temperatures 
in May and dryness in June. The first LUEg drop in late July saw decreasing APARg, GPP, Tair, and CCC (although 
from few observations) and thus may be related to energy-limited conditions. The second GPP and LUEg peak did 
not occur during the same days. A peak of GPP occurred from 12 to 15 August but was associated with relatively 
high APARg values and thus did not result in a high LUEg. The LUEg peak instead occurred from 16 to 19 August 
with only moderate GPP (1.03–1.24 mol m −2 d −1) during the rapid onset of very low and consistent APARg in 
consequence of the passage of the low pressure system Luciano. Explaining why GPP did not likewise decrease 
to lower values is beyond this analysis. However, the low amounts of PARin were perhaps still enough to sustain a 
moderate GPP. The last drop of GPP in late August then is accompanied by a continuous decrease of CCC, which 
can be interpreted as the onset to the end of the growing season.

GPP derived from eddy covariance measurements is subject to well-known limitations including the difficulty of 
estimating a storage term without a vertical CO2 profile (Montagnani et al., 2018), the identification of vertically 
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decoupled flows (Peltola et al., 2021), and the uncertainty from partitioning net ecosystem exchange into GPP 
and Reco (Raj et al., 2016). PARtrans measurements from a limited number of sensors were subject to a sampling 
error during direct light conditions, as indicated by a non-flattening curve of the coefficient of variation as a 
function of the number of sensors (see Figure S10 in Supporting Information S1). Additionally, a bias to an ideal 
APAR calculated from all PAR flux terms can be expected (Widlowski, 2010). In our case, we did not measure 
horizontal and ground-reflected PAR fluxes. Green APAR has the advantage over total APAR that only light 
actually useable for photosynthesis is considered. In this way, the effect of short-term drivers such as VPD and Tair 
on the partitioning of energy in photosynthesis and, for example, transpiration, non-photochemical quenching, 
and fluorescence can be investigated. However, environmental conditions causing a reduction of NDVI such as 
drought, insect infestation or wind storms will not properly be reflected in a decreased LUEg. With total APAR, 
these conditions would decrease LUE as long as the canopy surface area is not reduced. Chlorophyll content, 
on the other hand, can be low despite an apparently “green” leaf (Gitelson & Gamon, 2015). Hence it is impor-
tant for GPP models that PAR absorbable by chlorophyll might still be overestimated by NDVI-based APARg 
and thus LUEg underestimated. The Sentinel-2 derived NDVI estimates induce a further uncertainty to APARg, 
although a validation with in situ measurements showed the reliability of Sentinel-2 NDVI (Lange et al., 2017). 
By measuring PARtrans in 1.3 m, the light used for photosynthesis by the ground vegetation was not included in 
fAPAR, though their productivity was included in GPP. The contribution of ground vegetation to GPP, however, 
can be expected minor in an old growth forest stand (Kulmala et al., 2011). Excluding photosynthesis of ground 
vegetation would hence slightly decrease LUEg, which is a counterweight to the former limitation. Although 
calculating LUE as in Equation 5 is most straightforward and commonly used (e.g., Gitelson & Gamon, 2015; 
Martini et al., 2022; Wieneke et al., 2018), LUE can also be assessed by metrics of the light response curve, 
such as the initial slope or the half saturation point (Williams et al., 2014). In addition, the SQ-521-SS sensors 
measured PAR from 389 to 692 nm, though Zhen and Bugbee (2020) argued to include FR light (701–750 nm) 
in the definition of PAR, as FR causes a balanced excitation of the two photosystems, and hence improves photo-
chemical efficiency.

5. Conclusions
Our study found that (a) a seasonal variable such as CCC is consistently necessary for accurate GPP estima-
tions by machine learning models and hence should be considered as a possible improvement for LUE-based 
approaches and (b) tree-scale JS and ecosystem-scale GPP showed a congruent clockwise hysteretic response to 
APARg on high VPD days, thus likely being a good indicator of water stress induced stomatal closure. In this 
way, this novel dual-scale comparison of hysteretic cycles has the potential to be of general value for identify-
ing photosynthesis-limiting conditions. We anticipate these findings will be valuable for the development of 
GPP-modeling approaches, and can serve as a basis to be confirmed by multi-site and multi-year studies across 
different environments and climate zones.

Data Availability Statement
Associated data are available at http://doi.org/10.5281/zenodo.7014604. LiDAR data used in this study can be 
freely accessed at https://www.opengeodata.nrw.de/produkte/geobasis/hm/3dm_l_las/3dm_l_las/ and Sentinel-2 
data can be freely accessed at https://scihub.copernicus.eu/.
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