
1. Introduction
Increasing water and energy demands have been posing large challenges for sustainable social-economic devel-
opment given current global population growth and warming climate (Liu et al., 2017; O’Neill et al., 2017). 
The United Nations predicts that, by 2030, over 20% and 8% of the global population are expected to be living 
in regions with absolute scarcity of water and electricity, respectively (Gain et al., 2016). The construction of 
reservoirs is one of the most practical strategies to alleviate the water and energy shortage (J. Wang et al., 2022; 
Xu et al., 2023; W. Zhong et al., 2020). The global total water storage capacity of reservoirs reach up to around 
three times the annual average water storage in river channels (Hanasaki et al., 2006), and the global hydropower 
production in 2016 is approximately three times higher than it was in 1973 (Wan et al., 2021).

To assess the impact of planned and existing reservoirs on energy systems and their alterations to hydrologic 
regimes, hydrologic models have been developed with varying degrees of complexity of reservoir representa-
tions (Arheimer et  al.,  2017; Giuliani et  al.,  2016; Grill et  al.,  2014; Hoang et  al.,  2019; Lu et  al.,  2018; 
Wan et  al.,  2021). These include the incorporation of reservoir operation at regional scales (Fleischmann 
et al., 2021; Turner et al., 2020; Y. Wang et al., 2019; Wei et al., 2021; G. Zhao et al., 2016), national scales 
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(Ehsani et  al.,  2017), and global scales (Hanasaki et  al.,  2018; Veldkamp et  al.,  2018; Wada et  al.,  2016; 
Wisser et al., 2010). Currently, this is often achieved by coupling reservoir operation schemes that can gener-
ally be divided into conceptual ones and data-driven ones. Conceptual reservoir operation schemes estimate 
the release of reservoirs by establishing empirical functions between release, storage, inflow, and/or water 
demand, which include simpler ones that are designed for large-scale applications with minimum data require-
ments (Hanasaki et al., 2008; Shin et al., 2019; Solander et al., 2016) and more sophisticated ones that require 
long-term operation data for parameter calibration (Wu & Chen, 2012; G. Zhao et  al.,  2016). Data-driven 
models, on the other hand, deduce reservoir releases by training machine learning regression algorithms 
on extensive reservoir operation data (Dong et al., 2023; Yang et al., 2019). Both models have advantages 
and disadvantages. When fed with a sufficiently large amount of data, data-driven models often outperform 
conceptual models, yet their black-box nature often hinders modelers from understanding the mechanism of 
reservoir operation and may yield unreliable results in case of extrapolation beyond training data (Yassin 
et al., 2019).

Despite the progress in representing reservoirs in hydrologic simulations, uncertainties still exist in modeled 
reservoir releases and storages, especially for reservoirs with no in-situ operation data (inflow, release, storage, 
etc.) (hereinafter “ungauged reservoirs”) (Dang et al., 2020; Yassin et al., 2019). Although a variety of reservoir 
operation schemes have been developed to reproduce observed reservoir storages and releases, these schemes 
often introduce structures or parameters that need to be estimated from historic reservoir operation records or 
inferred from detailed operation rules for individual reservoirs (Hoang et al., 2019; Wisser et al., 2010; Zajac 
et al., 2017). However, these data are often unavailable to researchers especially when there is limited stakeholder 
engagement. This leads to a decreased accuracy of reservoir behavior simulations at regional and larger scales 
(Ehsani et al., 2016). Recently, Dong et al. (2022) proposed a calibration-free conceptual operation scheme for 
ungauged reservoirs in the CLHMS model to simulate the reservoir operation of over 3,000 reservoirs in China. 
Despite this advance, the performance of these reservoir operation schemes generally falls short of the accuracy 
requirements for reservoir impact assessment at finer scales.

With recent developments in satellite altimetry, it has been possible to derive the water level of reservoirs and lakes 
remotely, providing a promising solution to overcome the scarcity of reservoir operation data (Avisse et al., 2017; 
Busker et al., 2019; Crétaux et al., 2015; Fan et al., 2020; Gao et al., 2012; Huang et al., 2020; Li et al., 2019). 
Since the launch of altimetry satellites, such as Jason, Sentinel, and the Ice, Cloud and land Elevation Satellite 
(ICESat), many studies have combined satellite-derived water levels with remotely sensed reservoir surface areas 
to derive estimates of reservoir water storage (Chen, Song, Luo, et al., 2022; Cooley et al., 2021; Gao, 2015; Shen 
et al., 2022) and infer reservoir operation policies (Bonnema & Hossain, 2017, 2019). Several studies have also 
combined the satellite-derived reservoir storage variation with the conservation of mass principle to determine 
the reservoir releases for downstream hydrologic simulations (Vu et al., 2022; Yoon & Beighley, 2015; Yoon 
et al., 2015; R. Zhong et al., 2020). In most of these cases, remote sensing is used to provide the storage varia-
tion term in the water balance equation, which does not involve the parameterizations of reservoir operation as 
noted earlier, making it less applicable for hydrologic simulations and forecasts in the future. Having said that, 
the potential of this readily available information for improving the parameter estimation of current reservoir 
operation schemes and enhancing the accuracy of hydrologic predictions in ungauged, regulated basins has been 
less investigated (Du et al., 2022).

In addition to challenges with simulating the behavior of reservoirs without operation data, the applicability of 
reservoir parameters estimated during historical periods may decrease under different future conditions. This 
brings into question the accuracy of the simulated reservoir operation over a long-term (e.g., multi-year) period. 
Taking parameters of hydrologic models as an example, Dang et al.  (2020) found that the optimal parameter 
values of the VIC model in the Mekong River Basin varied over time with the ongoing construction of water 
infrastructures along the mainstream. Similarly, Ruijsch et al. (2021) revealed that optimal parameter values of 
the PCR-GLOBWB model for the Rhine and Meuse basin in Europe vary with the changes in regional climate, 
land use, and river structure, highlighting the need to assess model applicability in a changing environment. To 
our knowledge, however, such an assessment has been missing in reservoir modeling, and there exists a gap in 
knowledge about the reliability of the employed reservoir operation scheme tuned on historic data in simulating 
future reservoir operations under a changing streamflow regime.

Writing – review & editing: Mingxiang 
Yang, Jianhui Wei, Joël Arnault, Patrick 
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To enhance the understanding of predictive uncertainties in reservoir representations in hydrologic models, our 
study aims to address the following two research questions:

1.  How can satellite remote sensing be leveraged to improve the reservoir operation parameterizations and the 
simulation accuracy of ungauged reservoirs?

2.  How can reservoir parameterizations derived from past experiences predict reservoir behaviors more accu-
rately under future changes in inflow?

To answer these questions, we propose a synergistic framework that combines remotely sensed reservoir opera-
tion data and simulated reservoir inflow with several widely used conceptual reservoir operation schemes within 
a coupled land surface-hydrologic model. Among the selected reservoir schemes, a calibration-free operation 
scheme for ungauged reservoirs developed in our previous study (Dong et al., 2022) is further extended with 
a storage anomaly-based calibration approach that is tailored to the use of remotely sensed data. We select the 
Yalong River Basin (YRB) in China with two large hydropower reservoirs, namely Jinping I and Ertan, as our 
target region to evaluate the applicability of our framework. The YRB is selected because it is a major water 
source of the Yangtze River and serves as the third largest hydropower base of the country in terms of installed 
capacity, with several large-sized hydropower reservoirs already in operation and a dozen more under construc-
tion and or in planning stages (Gu et al., 2018). An accurate depiction of the water-energy nexus of the basin 
is beneficial to understand the evolution of regional water and energy security and sustainability. Moreover, it 
could also provide implications for similar basins in different regions worldwide, especially ones with a paucity 
of reservoir operation data and/or available operating rules.

2. Study Area
The YRB is located in the upper Yangtze River Basin, with an area of 1.36 × 10 5 km 2 (Figure 1). The basin lies on 
the eastern edge of the Tibetan Plateau and is characterized by subtropical highland climate, rugged terrain, and 
sparse population. The average annual precipitation of the basin is approximately 800 mm. Nearly 75% occurs 
between June and October, thus partitioning a year into the wet and dry seasons. The Ertan station, located imme-
diately upstream of the Ertan Reservoir, is the downstream-most hydrologic station of the basin.

Since early 2010s, there have been two large hydropower reservoirs constructed in the mainstream with a suffi-
cient capacity to regulate the streamflow, namely Ertan and Jinping I. The Ertan Reservoir started operation in 
1998 and has a capacity of 6.1 × 10 9 m 3, accounting for around 13% of the mean annual inflow. The Jinping I 
Reservoir was put into normal operation in mid-2014 and had a capacity of 8.0 × 10 9 m 3, accounting for around 
20% of its mean annual inflow. These two reservoirs had independent operation policies during the study period 
of 2010–2018.

3. Data and Methods
Our proposed framework assumes the in-situ inflow, release, storage, and operation rules are not available for 
the Ertan Reservoir and Jinping I Reservoir during the modeling processes. A coupled land surface-hydrologic 
model (CLHMS) is employed as the underlying model for simulations of reservoir operation and streamflow. 
The Jason-2/3 satellite altimetry is used to extract the historic water level data of the two reservoirs, which are 
then combined with remotely sensed reservoir water area and model-simulated inflow to reconstruct their surface 
area-water level relationship along with their storage and release data and average operating patterns. These 
new data provide the initial conditions, calibration data, and/or target storages and releases for four conceptual 
reservoir operation schemes. Among these schemes, our previously developed reservoir operation scheme is 
particularly extended and tailored to the use of remotely sensed data. All these schemes are then separately 
two-way coupled to the CLHMS model for improved simulations of ungauged reservoirs. The applicability of 
our presented synergistic framework is finally investigated under the changing flow regime of the YRB in terms 
of the release, storage, and hydropower simulations of both reservoirs and the streamflow simulations of the 
CLHMS model. A general workflow of this study is presented in Figure 2.

3.1. Data Sources

Data collected in this study include input data for the hydrologic model, in-situ streamflow data, satellite altime-
try data, reservoir attributes, and in-situ reservoir operation data etc.
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3.1.1. Input Data for the Hydrologic Model

To drive the CLHMS model for simulation of reservoirs and associated streamflow and hydropower production, 
meteorological forcing, soil texture, and geology data are required as model inputs. In this study, the meteoro-
logical data consist of the CN05.1 data set for precipitation (Wu & Gao, 2013) and the NCEP/NCAR reanalysis 
data for air temperature, wind speed, solar radiation, air pressure, and specific humidity (Kalnay et al., 1996). The 
CN05.1 data set published by China Meteorological Administration is a 0.25° × 0.25° gridded precipitation data 
set interpolated from the observed precipitation of ∼2,400 rain gauges nationwide. The meteorological forcing is 
bilinearly interpolated to the model resolution. The soil texture and properties are collected from the Harmonized 
World Soil Database (HWSD) (Nachtergaele et al., 2010). The HydroSHEDs DEM (Lehner et al., 2011) is used 
as surface elevation input of the hydrologic model, and the land use is obtained from the AVHRR (Advanced 
Very High-Resolution Radiometer) (Loveland et al., 2000).

3.1.2. In Situ Streamflow Data

The in-situ daily streamflow of the Yajiang station for the period of 2006–2011 and the Ertan station for the 
period of 2001–2018 is collected in this study to calibrate and validate the CLHMS model (Figure 1). Note that 
Jinping I operated around 2014.

Figure 1. (a) The Yalong River Basin, where the Jason-2/3 ground track #216 intersects Jinping I and Ertan Reservoir (Section 3.1); and (b) the Jinping I Reservoir and 
Ertan Reservoir with GRanD reservoir masks and our generated reservoir masks (Section 3.4).
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3.1.3. Satellite Altimetry Data

Jason-2/3 satellite altimetry data provided by the Centre National d’Etudes Spatiales (CNES) (AVISO CNES 
Data Center, 2018) are used in this study to derive the historic water level of Ertan Reservoir for 2010–2018 
and that of Jinping I Reservoir for 2015–2018. The Jason-2/3 is selected because it has a relatively short revisit 
frequency (10 days) and it intersects these two reservoirs along its track #216.

3.1.4. Surface Water Extent

The JRC global surface water (GSW) data set is employed to calculate the reservoir water area, which provides 
rasterized monthly water extent at a spatial resolution of ∼30 m at global scales (JRC, 2016; Pekel et al., 2016). 
The Global Reservoir Surface Area Dataset (GRSAD) provides the values of the global monthly reservoir 
water area (Gao & Zhao, 2019) and is also collected for comparison with the reservoir water area derived in 
our study. In GRSAD, the reservoir area values are derived by masking GSW raster data with GRanD reservoir 
polygons.

3.1.5. Digital Elevation Data

The SRTM DEM is used to generate the reservoir boundary mask for reservoir water area calculation, which was 
generated by an interferometric synthetic aperture radar (InSAR) system on board the Space Shuttle Endeavor in 
February 2000 and provides the surface elevation data at a spatial resolution of 30 m.

3.1.6. Reservoir Attributes

The location, dead storage, conservation storage, and capacity of the Jinping Reservoir and the Ertan Reservoir 
are collected from the Changjiang Water Resources Commission (CWRC). Static reservoir attributes are gener-
ally widely shared in China, which can also be retrieved from the literature.

Figure 2. A general workflow of this study.
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3.1.7. In Situ Reservoir Operation Records for Validation

The historic in-situ release, storage, and hydropower output of the Ertan Reservoir and the Jinping I Reservoir 
are collected to evaluate the reservoir storage and release reconstructed from remote sensing (Section 3.5), and 
the reservoir operation simulations using conceptual reservoir operation schemes (Section 3.6). These data are 
collected from CWRC and can be downloaded from Dong (2022).

3.2. The Coupled Land Surface and Hydrologic Model System

In this study, the CLHMS, that is, a fully coupled system of the land surface scheme of GENESIS (LSX) and 
the physically based Hydrological Model System (HMS) (Yu et al., 1999, 2006), is employed to simulate the 
reservoir-regulated hydrologic regime of the YRB at a spatial resolution of 5 km. The LSX vertically solves 
the water and energy balance in the land and calculates the runoff, infiltration, evapotranspiration, and other 
hydrologic components over each grid cell, while the HMS solves the river runoff routing and soil moisture trans-
port on a grid basis with the diffusion wave equation and steady-state Richards equation, respectively (Wagner 
et  al.,  2016). The model is also coupled with a 2-D groundwater routing model, which can explicitly solve 
groundwater hydrodynamics (Yu et  al., 2006). The model is deployed in the high-performance cluster in the 
State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin of China, which allows ∼100 
parallel model runs.

3.3. Reconstructing Reservoir Water Level From Satellite Altimetry

In this study, the historic water level of two mainstream reservoirs, namely Jinping I and Ertan Reservoir, is 
reconstructed from the Geophysical Data Record (GDR) of the Jason-2/3 satellite altimetry from 2010 to 2018 
and from 2015 to 2018, respectively, at a revisiting frequency of 10 days. For each of the satellite footprints within 
the maximum surface water extent of reservoirs, the water level with respect to the reference geoid (i.e., EGM96 
in this study), 𝐴𝐴 𝐴𝐴 , is derived following Huang et al. (2018, 2020):

𝐻𝐻 = 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎 −𝐻𝐻𝑟𝑟𝑎𝑎𝑟𝑟 −𝐻𝐻𝑐𝑐𝑐𝑐𝑟𝑟 (1)

with

𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑤𝑤𝑤𝑤𝑐𝑐 + 𝑑𝑑𝑤𝑤𝑐𝑐 + 𝑖𝑖𝑐𝑐 + 𝑠𝑠𝑠𝑠𝑤𝑤𝑐𝑐 + 𝑝𝑝𝑤𝑤𝑐𝑐 (2)

where 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 is the altitude of the satellite with respect to the geoid, 𝐴𝐴 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟 is the distance between the reservoir water 
surface and the satellite; 𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐 is the correction term, which consists of the wet tropospheric (𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 ), dry tropo-
spheric (𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 ), ionospheric (𝐴𝐴 𝐴𝐴𝐴𝐴 ), solid Earth tide (𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ), and polar tide corrections (𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 ), respectively. These data 
are provided in the GDR files.

For each revisiting cycle, there are many available satellite footprints and corresponding water level data within 
the reservoir geospatial boundary provided by the Global Reservoir and Dam (GRanD) database (Lehner 
et al., 2011). However, many of them are subject to land contamination and other sources of noise in satellite 
signals. To improve the quality of water level retrieval, we exclude any data beyond three times the standard 
deviation of the water level, and then select the median of remaining water level data as the resulting water level. 
Valid water level data are not guaranteed for all of the revisiting cycles due to the data noise. Invalid data are 
discarded and then filled by linear interpolation between the previous and next 10-day cycles. In all, invalid cycles 
account for 5%–7% of the total cycles. Given that 70%–80% of these invalid cycles occur in the dry season where 
the water level often changes in a steady manner, the linear interpolation is unlikely to have induced large errors.

3.4. Estimating Water Area for Channel-Type Reservoirs With Improved Boundary Masks

By combining the altimetric water level with the surface water area from remote sensing images, the reservoir 
water storage variations can be approximated (Busker et al., 2019; Gao et al., 2012). To derive the surface water 
area, a rigorous reservoir boundary mask is required to identify the maximum extent to which the reservoir water 
area is to be extracted. Here, GRanD and other existing reservoir databases may not be applicable for this purpose 
because their reservoir masks are derived by visually identifying the maximum water extent from remote sensing 
images. While this often works well for lake-type reservoirs, the identified maximum water extent and hence 



Water Resources Research

DONG ET AL.

10.1029/2022WR033026

7 of 24

the mask in some cases can be smaller for channel-type reservoirs, because narrow reservoir sections could be 
mistakenly identified as river channels due to the lack of an easily visible boundary between the river channel and 
the upstream end of the reservoir pools.

In light of this issue, one solution is to compare the maximum water area of remote sensing images before 
and after the construction of reservoirs to derive the reservoir water extent. However, due to the serious cloud 
contaminations during the wet season and the limited coverage of optical remote sensing satellites before 2000 
(Pekel et al., 2016), this solution is inapplicable to the majority of reservoirs in China. Therefore, we employ the 
SRTM DEM data and altimetric reservoir water level to derive the reservoir boundary. The reservoir boundary 
extent is identified as the area where the STRM DEM surface elevation is no larger than the highest altimetric 
reservoir water level determined in Section 3.3. A mask is then generated by buffering 500 m outward from this 
DEM-based reservoir boundary. Note that this mask does not necessarily represent the maximum extent of that 
reservoir. However, it is considered to encompass all water pixels that can be used to establish the area-elevation 
relationship with any of the altimetric water levels.

To derive the reservoir water area within the generated reservoir mask, the JRC (GSW data set is employed, 
which provides the monthly water extent at a spatial resolution of ∼30 m at global scales (Pekel et al., 2016). Due 
to the contamination of clouds, snow, ice, and terrain shadows, a large number of no-data pixels exist in the GSW 
data set, which could lead to the underestimation of the surface water area. To this end, we calculate the no-data 
ratio by dividing the number of no-data pixels in each month by the total number of pixels within the  generated 
reservoir mask. If the no-data ratio is larger than 5%, the GSW data for this month is excluded from the analysis. 
The monthly reservoir water area is then calculated by multiplying the number of water pixels by the spatial 
resolution of a pixel.

To demonstrate the improvement of our derived reservoir mask and hence the water area against current products, 
the monthly water area of the two reservoirs is first collected from the Global Reservoir Surface Area Dataset 
(GRSAD) (Gao & Zhao, 2019), which employs the GRanD reservoir mask to derive the global monthly reservoir 
water area values. We then reconstruct the reservoir water storage with (a) the derived GSW monthly water area 
(i.e., based on our generated DEM-based reservoir mask) and (b) the GRSAD monthly water area (i.e., based on 
the GRanD reservoir mask) in the following section for comparison, respectively.

3.5. Deriving Reservoir Storages, Releases, and Average Operating Patterns

The 10-day altimetric water level in Section 3.3 is firstly linearly interpolated to produce daily values and then 
averaged on a monthly basis to match the monthly water area in Section 3.4 (Busker et al., 2019). The monthly 
water level and water area are then used to establish an empirical water area-level relationship for reservoirs, 
that  is,

𝐴𝐴 = 𝑓𝑓 (ℎ) = 𝑎𝑎 ⋅ ℎ + 𝑏𝑏 (3)

where 𝐴𝐴 𝐴 is the monthly reservoir water level; 𝐴𝐴 𝐴𝐴 is the monthly reservoir water area; 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 are the slope and 
intercept parameters derived by least square regression. Linear area-elevation functions have been widely adopted 
in previous studies, for example, Gao et al. (2012), Eldardiry & Hossain, 2019, Chen, Song, Zhan, et al. (2022). 
While functions of higher order can also be employed, there can be a risk of overfitting due to the limited set of 
remotely sensed area-elevation data pairs in our study, which could cause large errors beyond the range of the 
available data. Another common approach to establishing the area-level relationship is to calculate the area encir-
cled by each 1-m elevation of the DEM. We did not opt for this approach because Ertan had already been filled 
at the time STRM was launched, and most of the terrain information was not available.

The 10-day altimetric water level is then used to reconstruct the 10-day historic reservoir storage variation with 
the simplified storage update equation of Equation 4 (Gao et al., 2015), that is, a single variable function of water 
level with the area-level relationship (Equation 3):

Δ𝑉𝑉 = Δℎ ⋅ 𝐴𝐴 = Δℎ ⋅

(

𝑎𝑎 ⋅ ℎ + 𝑏𝑏

)

 (4)

where 𝐴𝐴 Δ𝑉𝑉  and 𝐴𝐴 Δℎ are the absolute variation of the reservoir storage and altimetric water level during the 
10-day intervals; 𝐴𝐴 ℎ is the average water level at the beginning of two continuous 10-day interval. To calculate 
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the absolute reservoir storage at each time step, a set of initial values of 𝐴𝐴 𝐴 and 𝐴𝐴 𝐴𝐴  are required to complement 
Equation 4. Here, we assume that the multi-year maximum monthly value of the water level during the dry 
season, 𝐴𝐴 𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , corresponds to the conservation pool level in the dry season and its corresponding storage 𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐 
(see Figure S4 in Supporting Information S1 for illustrations), providing Equation 4 with a known data point 
(𝐴𝐴 𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , 𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐 ) and hence a unique solution. It is a reasonable assumption because both reservoirs are within-year 
reservoirs that are designed to return to the conservation level at the dry season in most of the years. For 
some of the over-year reservoirs with very large capacities, on the other hand, it may take longer for them to 
return to the conservation level than within-year reservoirs, and in this case longer remote sensing records 
are desirable.

With the reservoir storage computed, we next use CLHMS as the underlying model to reconstruct the inflow and 
release of the Jinping I Reservoir and the Ertan Reservoir. To achieve an accurate streamflow simulation across 
the YRB and hence the inflow of reservoirs, we first calibrate the model to the daily streamflow at the Yajiang 
station and the Ertan station, with results provided in Section 4.1. Then, the daily inflow of the Jinping I Reservoir 
is simulated by the CLHMS model and combined with the altimetry-based reservoir storage to reconstruct its 
historic release at a daily scale:

𝑄𝑄 = 𝐼𝐼 + 𝑃𝑃 − 𝐸𝐸 −

Δ𝑉𝑉

Δ𝑡𝑡
 (5)

where 𝐴𝐴 𝐼𝐼  , 𝐴𝐴 𝑄𝑄 , 𝐴𝐴 𝑃𝑃  , and 𝐴𝐴 𝐸𝐸 are the daily averaged inflow, release, precipitation, and evaporation of the reservoir, respec-
tively. 𝐴𝐴 Δ𝑉𝑉  is the daily storage variation that is linearly interpolated from the reconstructed storage variation at the 
10-day interval, and 𝐴𝐴 Δ𝑡𝑡 is the time step (daily). The reservoir evaporation rate is calculated based on Penman's 
equation (McMahon et al., 2013; Penman, 1948). We closely follow Zhao and Gao (2019) and Tian et al. (2021) 
for detailed calculation procedures, which are given in Text S1 in Supporting Information S1. Infiltration and 
recharge are not considered in the reservoir water balance because both reservoirs lie in a rocky valley covered 
mostly by basalt rock that has a rather low permeability, which prevents considerable groundwater-reservoir water 
exchange (CECL, 2003).

Given that the Ertan Reservoir is downstream of the Jinping I Reservoir, the simulated streamflow at Jinping I 
is substituted by the reconstructed release of Jinping I, which is then routed downstream to reconstruct the daily 
inflow of Ertan in the CLHMS model. The above reservoir water balance calculation is then repeated for the 
Ertan Reservoir to reconstruct its historic release at a daily scale.

Averaging the reconstructed reservoir storage and release at different times of the year allows us to derive the 
average reservoir operating patterns that are represented by target storages and target releases. Target storages 
refer to the average storage levels that a reservoir normally reaches at different times of the year, corresponding 
to the average reservoir operation rule curve as illustrated in Figure S4 in Supporting Information S1. Target 
releases refer to the average amount of water that a reservoir normally releases at different times of the year, 
which implicitly represent the downstream water demands. The target storages and releases are derived and 
incorporated into an extended reservoir operation scheme in Section 3.6.1.

3.6. Improving Conceptual Reservoir Operation Models With Remote Sensing

Conceptual reservoir operation models or schemes have been widely used in hydrologic modeling studies to 
approximate the reservoir operation in the real world (Hanasaki et al., 2006; Shin et al., 2019; Voisin et al., 2013; 
W. Wang et al., 2017; Zajac et al., 2017). In this study, we use a calibration-free conceptual reservoir operation 
scheme developed in our previous research to simulate reservoir operation, along with three commonly used 
conceptual operation schemes. These schemes generally introduce parameters that essentially need to be cali-
brated from historic operation data for each individual reservoir and, when such data is unavailable, often yield 
undesirable simulation accuracies. In light of this issue, this study attempts to calibrate these parameters to 
remotely sensed reservoir storages and reconstructed releases to improve the simulations of ungauged reservoirs 
for these schemes.

In particular, our previously developed conceptual operation scheme is extended with a storage anomaly based 
calibration approach, which is tailored to the use of the remotely sensed data that often span periods of only a few 
years and are often available at intervals of 10–30 days. We introduce this as follows.
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3.6.1. Extended Storage Anomaly Based Reservoir Operation Scheme

A conceptual operation scheme originally designed for ungauged reservoirs in our previous research (Dong 
et al., 2022, hereinafter “D22”) is employed and further extended in this study for reservoirs with remotely sensed 
reservoir operation data. The release of reservoirs, 𝐴𝐴 𝐴𝐴𝑡𝑡 , is calculated according to the current water level compared 
with a few reservoir pool storages:

𝑄𝑄𝑡𝑡 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑚𝑚𝑚𝑚𝑚𝑚

(

𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚,
𝑉𝑉𝑡𝑡

Δ𝑡𝑡

)

(𝑉𝑉𝑡𝑡 ≤ 𝑉𝑉𝑑𝑑) (6a)

𝑚𝑚𝑚𝑚𝑚𝑚(𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚, 𝑟𝑟 ⋅ 𝑈𝑈𝑡𝑡) (𝑉𝑉𝑑𝑑 < 𝑉𝑉𝑡𝑡 ≤ 𝑉𝑉𝑐𝑐) (6b)

𝑟𝑟 ⋅ 𝑈𝑈𝑡𝑡 + (𝑄𝑄𝑠𝑠 − 𝑟𝑟 ⋅ 𝑈𝑈𝑡𝑡) ⋅

(

𝑉𝑉𝑡𝑡 − 𝑉𝑉𝑐𝑐

𝑉𝑉𝑓𝑓 − 𝑉𝑉𝑐𝑐

)𝑘𝑘

(𝑉𝑉𝑐𝑐 < 𝑉𝑉𝑡𝑡 ≤ 𝑉𝑉𝑓𝑓 ) (6c)

𝑚𝑚𝑚𝑚𝑚𝑚

(

𝑄𝑄𝑠𝑠,
𝑉𝑉𝑡𝑡 − 𝑉𝑉𝑓𝑓

Δ𝑡𝑡

)

(𝑉𝑉𝑡𝑡 > 𝑉𝑉𝑓𝑓 ) (6d)

 

where 𝐴𝐴 𝐴𝐴𝑡𝑡 , 𝐴𝐴 𝐴𝐴𝑑𝑑 , 𝐴𝐴 𝐴𝐴𝑐𝑐 , and 𝐴𝐴 𝐴𝐴𝑓𝑓 are the water storages of reservoirs at the model time step 𝐴𝐴 𝐴𝐴  , at the dead storage level, 
conservation level, and high flood level, respectively (Figure S4 in Supporting Information S1). The conservation 
level is often higher during the dry season to store water for socioeconomic use (with the corresponding storage 
denoted 𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐 ) and lower in the wet season to create more space for flood control (with the corresponding storage 
denoted 𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐 ). In this study, 𝐴𝐴 𝐴𝐴𝑑𝑑 and 𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐 are collected; 𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐 can be calibrated, while in this study, it is estimated as 
the multi-year median reconstructed storage during the month when the reservoir experiences the largest monthly 
inflow; 𝐴𝐴 𝐴𝐴𝑓𝑓 is assumed the same as 𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐 , because this is the case for most of China's reservoirs. 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum 
release; 𝐴𝐴 𝐴𝐴𝑡𝑡 is the human water demand at the time step 𝐴𝐴 𝐴𝐴  ; 𝐴𝐴 𝐴𝐴  is a parameter to reflect the storage anomaly; 𝐴𝐴 𝐴𝐴𝑠𝑠 is the 
maximum acceptable release; 𝐴𝐴 𝐴𝐴 (𝐴𝐴 𝐴𝐴  ≤ 1) is a flood indicator equal to the ratio of 𝐴𝐴 𝐴𝐴𝑠𝑠 to the inflow.

Our previous studies (Dong et  al.,  2022,  2023) have demonstrated that the storage anomaly based reservoir 
operation scheme of Equation 6 is able to represent the multi-purpose reservoir operation. When reservoir stor-
age is below 𝐴𝐴 𝐴𝐴𝑑𝑑 (Equation 6a), the release is set as a minimum value for downstream ecological and emergency 
socio-economic use, and the water stored in reservoirs is often released through pumping or emergency sluices. 
When the stored water stands between 𝐴𝐴 𝐴𝐴𝑑𝑑 and 𝐴𝐴 𝐴𝐴𝑐𝑐 (Equation 6b), the reservoir releases water in accordance with 
the socio-economic needs. When the stored water stands between 𝐴𝐴 𝐴𝐴𝑐𝑐 and 𝐴𝐴 𝐴𝐴𝑓𝑓 (Equation 6c), the reservoir operation 
attenuates the floods according to the current water storage and the magnitude of incoming floods. At this stage, 
the reservoir release should not be less than the downstream demands and no more than the maximum release 𝐴𝐴 𝐴𝐴𝑠𝑠 
for downstream security. When the stored water rises above 𝐴𝐴 𝐴𝐴𝑓𝑓 (Equation 6d), all floodgates are open and all water 
above 𝐴𝐴 𝐴𝐴𝑓𝑓 is released as soon as possible for dam safety.

Note this scheme was originally designed for ungauged reservoirs, where parameters 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 , 𝐴𝐴 𝐴𝐴𝑠𝑠 , 𝐴𝐴 𝐴𝐴  , and 𝐴𝐴 𝐴𝐴𝑡𝑡 are derived 
empirically without any need for historic reservoir operation data. Specifically, when in-situ data are not available, 

𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐴𝐴 𝐴𝐴𝑠𝑠 are set as the 10th and 99th percentiles of non-exceedance probabilities of simulated daily streamflow, 
respectively. 𝐴𝐴 𝐴𝐴  is derived based on the relative difference between the current storage and the target storage 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 
(i.e., the storage anomaly), and 𝐴𝐴 𝐴𝐴  is expressed as 𝐴𝐴 𝐴𝐴 = 1 + 𝑐𝑐 ⋅ (𝑉𝑉𝑡𝑡 − 𝑉𝑉𝑡𝑡𝑡𝑡𝐴𝐴)∕(𝑉𝑉𝑐𝑐𝑐𝑐 − 𝑉𝑉𝑐𝑐) . Here, 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 is empirically derived 
from linear interpolation between 𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐 at the beginning of dry season and 𝐴𝐴 𝐴𝐴𝑑𝑑 at the beginning of the wet season; 𝐴𝐴 𝐴𝐴 is 
an empirical parameter. More details on parameters 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴𝑡𝑡 are provided in Text S2 in Supporting Information S1.

Here, the reconstructed reservoir operation data have the potential to further improve the estimation of these 
parameters for more accurate representations of reservoir operation. Specifically, the release thresholds 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 and 

𝐴𝐴 𝐴𝐴𝑠𝑠 can be calibrated directly to the reconstructed storages and releases. For the parameter 𝐴𝐴 𝐴𝐴  , a novel parameteri-
zation for calibration is proposed with the use of reconstructed reservoir releases, storages, and average operating 
patterns. The empirical parameter 𝐴𝐴 𝐴𝐴  is calibrated to the reconstructed reservoir storages and releases; and the 
target releases 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 are introduced in replace of human water demand 𝐴𝐴 𝐴𝐴𝑡𝑡 to implicitly represent the multi-year 
averaged downstream water demands at different times of the year. 𝐴𝐴 𝐴𝐴  is then expressed as,

𝑟𝑟 =
𝑄𝑄𝑡𝑡𝑡𝑡𝑟𝑟

𝑈𝑈𝑡𝑡

⋅

(

1 + 𝑐𝑐 ⋅
𝑉𝑉𝑡𝑡 − 𝑉𝑉𝑡𝑡𝑡𝑡𝑟𝑟

𝑉𝑉𝑐𝑐𝑐𝑐 − 𝑉𝑉𝑐𝑐

)

 (7)

Target releases 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 and target storages 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 vary at different times of the year and are derived at daily scales in 
this study. Experiments suggest that daily target releases and target storages corresponding to the 10-day rolling 
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mean of the multi-year median (multi-year mean) daily reconstructed releases and storages generally perform 
well for within-year reservoirs (over-year reservoirs), respectively. An advantage of this parameterization is that 

𝐴𝐴 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 and 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 represent the average reservoir operating patterns and can explicitly account for the key features of 
the reservoir operation rule curves, which can serve to constrain reservoir behaviors in the reservoir operation 
simulations. This relatively simple model structure reduces the number of parameters and hence the need for 
long-term, continuous data for parameter calibration. More sophisticated parameterizations can be developed on 
its basis, if such data are available.

The rationale behind 𝐴𝐴 𝐴𝐴  is to adapt the release to the storage anomalies relative to the target storage—a reservoir 
operation policy frequently adopted by reservoirs worldwide. While some studies (e.g., Wu & Chen, 2012) also 
consider the downstream water demand anomalies at different times of the year as part of the release functions, 
we assume water demand anomalies are a minor factor compared with storage anomalies, which we discuss in 
detail in Section 5.3.

3.6.2. Existing Reservoir Operation Schemes

Three other conceptual reservoir operation schemes widely used in hydrologic models are also selected for 
comparison. The first one is selected from Hanasaki et al. (2006, 2008), hereinafter “H08,” and the release of 
reservoirs in the H08 scheme is,

𝑄𝑄𝑡𝑡 =

⎧

⎪

⎨

⎪

⎩

𝑘𝑘𝑦𝑦 ⋅ 𝑟𝑟𝑚𝑚 (𝑐𝑐 𝑐 𝑐𝑐)

(

𝑐𝑐

𝑐𝑐

)

2

⋅ 𝑘𝑘𝑦𝑦 ⋅𝑄𝑄
′

𝑡𝑡
+

(

1 −

𝑐𝑐

𝑐𝑐

)

2

⋅ 𝐼𝐼𝑡𝑡 (𝑐𝑐 𝑐 𝑐𝑐)

 (8)

with 𝐴𝐴 𝐴𝐴 = 𝑉𝑉𝑚𝑚∕𝐼𝐼𝑎𝑎; 𝑘𝑘𝑦𝑦 = 𝑉𝑉1𝑠𝑠𝑠𝑠∕𝛼𝛼𝑉𝑉𝑚𝑚

𝑄𝑄
′

𝑡𝑡
=

⎧

⎪

⎨

⎪

⎩

𝐼𝐼𝑎𝑎, for non − irrigation reservoirs

𝑓𝑓 (𝑈𝑈𝑡𝑡), for irrigation reservoirs

 

where 𝐴𝐴 𝐴𝐴1𝑠𝑠𝑠𝑠 is the reservoir storage at the ending month of the wet season during a hydrologic year; 𝐴𝐴 𝐴𝐴𝑎𝑎 is the mean 
annual total inflow; 𝐴𝐴 𝐴𝐴

′

𝑡𝑡
 is the provisional release; 𝐴𝐴 𝐴𝐴 (𝑈𝑈𝑡𝑡) is a function of downstream water demand, see Hanasaki 

et al. (2006) for full expressions; 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 are parameters. Hanasaki et al. (2006) did not provide a calibration 
approach for these parameters but instead suggested empirical default values of 𝐴𝐴 𝐴𝐴 = 0.85 and 𝐴𝐴 𝐴𝐴 = 0.5 for all reser-
voirs. In this study, we assume these parameters can also be calibrated when reservoir operation data are available.

The second one is selected from the WBM model (Wisser et al., 2010), hereinafter “W10,” and the release of 
reservoirs in the W10 scheme is,

𝑄𝑄𝑡𝑡 =

⎧

⎪

⎨

⎪

⎩

𝜅𝜅𝜅𝜅𝑡𝑡 (𝜅𝜅𝑡𝑡 ≥ 𝜅𝜅𝑎𝑎)

𝜆𝜆𝜅𝜅𝑡𝑡 + 𝜅𝜅𝑎𝑎 − 𝜅𝜅𝑡𝑡 (𝜅𝜅𝑡𝑡 < 𝜅𝜅𝑎𝑎)

 (9)

where 𝐴𝐴 𝐴𝐴𝑎𝑎 is the mean annual total inflow; 𝐴𝐴 𝐴𝐴𝑡𝑡 is the inflow at the time step 𝐴𝐴 𝐴𝐴  . Similarly, 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 are parameters 
that can be either calibrated to operation records or set empirically as default values of 0.16 and 0.6 (Wisser 
et al., 2010).

The third one is selected from the LISFLOOD hydrologic model (Zajac et al., 2017), hereinafter “Z17,” and the 
release of reservoirs in the Z17 scheme can be expressed as,

𝑄𝑄𝑡𝑡 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑚𝑚𝑚𝑚𝑚𝑚

(

𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚,
𝑉𝑉𝑡𝑡

Δ𝑡𝑡

)

(𝑉𝑉𝑡𝑡 ≤ 𝑉𝑉𝑑𝑑)

𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 + (𝑄𝑄𝑚𝑚𝑛𝑛𝑛𝑛𝑚𝑚 −𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚)

(

𝑉𝑉𝑡𝑡 − 𝑉𝑉𝑑𝑑

𝑉𝑉𝑐𝑐 − 𝑉𝑉𝑑𝑑

)

(𝑉𝑉𝑑𝑑 < 𝑉𝑉𝑡𝑡 ≤ 𝑉𝑉𝑐𝑐)

𝑄𝑄𝑚𝑚𝑛𝑛𝑛𝑛𝑚𝑚 + 𝑚𝑚𝑚𝑚𝑚𝑚(𝐼𝐼𝑡𝑡 −𝑄𝑄𝑚𝑚𝑛𝑛𝑛𝑛𝑚𝑚, 𝑄𝑄𝑚𝑚𝑑𝑑 −𝑄𝑄𝑚𝑚𝑛𝑛𝑛𝑛𝑚𝑚)

(

𝑉𝑉𝑡𝑡 − 𝑉𝑉𝑐𝑐

𝑉𝑉𝑓𝑓 − 𝑉𝑉𝑐𝑐

)

(𝑉𝑉𝑐𝑐 < 𝑉𝑉𝑡𝑡 ≤ 𝑉𝑉𝑓𝑓 )

𝑚𝑚𝑚𝑚𝑚𝑚

(

𝑄𝑄𝑚𝑚𝑑𝑑,
𝑉𝑉𝑡𝑡 − 𝑉𝑉𝑓𝑓

Δ𝑡𝑡

)

(𝑉𝑉𝑡𝑡 > 𝑉𝑉𝑓𝑓 )

 (10)
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where 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 , 𝐴𝐴 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , and 𝐴𝐴 𝐴𝐴𝑛𝑛𝑛𝑛 are the minimum release, normal release, and non-damaging release, respectively. 
These three parameters can be calibrated if historic reservoir operation records are available. Otherwise, Zajac 
et al.  (2017) suggested empirical default values of the 5th, 30th, and 97th percentiles of the naturalized daily 
streamflow.

3.7. Experimental Design

To explore the synergistic use of satellite remote sensing and hydrologic modeling in improving the reservoir 
parameterizations, two series of reservoir operation simulations are set up and performed in this study.

We first perform the release, storage, and hydropower simulations of the two reservoirs with parameters empiri-
cally set to their default values (see Sections 3.6.1 and 3.6.2, hereinafter “empirical parameters”) for each reser-
voir operation scheme. The hydropower output is calculated according to the release and storage, with formulas 
provided in Text S3 in Supporting Information S1. The simulations both here and in the next paragraph are driven 
by the daily inflow reconstructed from hydrologic modeling (Section 3.5). Given there is no prior knowledge of 
the initial water storage, the reconstructed reservoir storage at the beginning of the simulation period is taken as 
the initial water storage. The subsequent results can serve as a baseline for reservoir operation simulations.

On this basis, we derive the target storage and release for the extended D22 scheme, and calibrate the parameters 
of all four reservoir operation schemes to the reconstructed reservoir storage and release. Here, the reconstructed 
storage and releases used for calibration are 10-day averaged values instead of daily values. This is because the 
daily release and storage are essentially derived from linear interpolation from the 10-day altimetric data and do 
not really contain useful information but instead may introduce noises within the 10-day interval that are unfa-
vorable to calibration. Therefore, the reconstructed daily release and storage at the 10-day interval (Section 3.5) 
are averaged over a 10-day period, consistent with the date and interval of the altimetric data. For Jinping I 
Reservoir, we select 2015–2016 for calibration and 2017–2018 for validation; for Ertan Reservoir, given that the 
upstream Jinping I Reservoir was put into operation in 2014, we select 2010–2011 for calibration and 2012–2013 
for validation. Thus, a total of 73 storage-release data pairs are used for calibration for both reservoirs. The param-
eters employed for calibration include 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 , 𝐴𝐴 𝐴𝐴𝑠𝑠 , and 𝐴𝐴 𝐴𝐴  of the extended D22 scheme, 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 of the H08 scheme, 

𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 of the W10 scheme, and 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 , 𝐴𝐴 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , and 𝐴𝐴 𝐴𝐴𝑛𝑛𝑛𝑛 of the Z17 scheme. For each scheme, 10,000 parameter 
sets are generated randomly, and the parameter set that gives the maximum average Nash-Sutcliffe Efficiency 
(NSE) value of the simulated storage and release as compared with the reconstructed 10-day reservoir storage 
and release is chosen as the best one, hereinafter “calibrated parameters.” A sensitivity test is provided in Text S4 
in Supporting Information S1.

Here, the reservoir operation simulations of the Ertan Reservoir are split into two sub-periods, that is, 2010–2013 
and 2015–2018, which correspond to the periods before and after the full operation of the upstream Jinping I 
Reservoir (mid-2014), respectively. Evaluating the simulated storage, release, and hydropower production against 
the in-situ data during the two sub-periods allows us to specifically investigate the reliability of the four reservoir 
operation schemes under streamflow variations for long-term scale application.

In addition to the above experiments, to better demonstrate the applicability of the extended D22 to a wider 
range of reservoirs, additional release and storage simulations are carried out on several other reservoirs as 
independent test cases. The relevant details and results are provided in Appendix A and in Text S5 in Supporting 
Information S1.

4. Results
4.1. Calibration and Validation of the CLHMS Model

To reproduce the natural flow regime of the YRB, the CLHMS model without any reservoirs is calibrated (vali-
dated) against the daily streamflow of Yajiang station for 2006–2008 (2009–2013) and Ertan station for 2001–
2009 (2010–2013). Three parameters of the CLHMS model are calibrated, including the direct runoff parameter 

𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 , the channel roughness 𝐴𝐴 𝐴𝐴𝑜𝑜 , and the groundwater-surface water exchange coefficient 𝐴𝐴 𝐴𝐴 . For each station, 
1,000 parameter sets are sampled using Latin Hypercube sampling, and the parameter sets with the highest NSE 
are chosen as the optimal set.

Figure  3 presents the calibration and validation results with the percentage bias (PB) and the daily NSE. It 
shows that the performance of the CLHMS model with no account of reservoirs is satisfactory, with most NSE 
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values over 0.80 and RB values less than ±5% during the calibration and validation period. Notably, the NSE 
in the period of 2015–2018 at the Ertan station (0.4) is considerably lower than that in the calibration period of 
2001–2009 (0.83) and that in the validation period of 2010–2013 (0.80). This could be explained by the fact that 
the Jinping I Reservoir in the YRB was put into operation around 2014, yet the model here is unable to account 
for the impact of reservoirs on the streamflow during this period.

4.2. Evaluation of Reconstructed Reservoir Storages and Releases

Figure 4 depicts the water area-level relationship, the storage and release of Ertan Reservoir and Jinping I Reser-
voir reconstructed from satellite altimetry, GSW remote sensing images, and hydrologic modeling. The water 
level shows a strong linear correlation with the water area for both reservoirs (𝐴𝐴 𝐴𝐴

2 ≥ 0.85 ). The reconstructed 

Figure 4. Remotely sensed 10-day storages and reconstructed 10-day releases (left), and the area-level relationship established from the altimetric water level and 
global surface water water area (right) of (a) Ertan Reservoir and (b) Jinping I Reservoir.

Figure 3. Daily streamflow simulations at (a) Yajiang station and (b) Ertan station, without accounting for reservoirs.
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storage (release) matches well with in-situ observations, with 10-day NSE values of 0.97 (0.83) and 0.99 (0.80) 
for Ertan Reservoir and Jinping I Reservoir, respectively. In terms of the hydrologic extremes, the relative bias of 
the annual maximum (minimum) 10-day reconstructed release is 0.7% (−11%) for Jinping I Reservoir and −6% 
(5%) for Ertan Reservoir, respectively. This suggests that our approach in Section 3.5 can reconstruct the reservoir 
storage and release remotely under hydrologic extremes with a sufficient accuracy at a shorter time scale. The 
reconstructed reservoir storage and releases are provided in Dong (2022).

To illustrate the effect of reservoir masks and the corresponding reservoir water area on the reconstruction of 
reservoir water storage, we compare our generated reservoir mask with the GRanD reservoir boundary mask for 
the two reservoirs (Figure 1b). Results indicate that our generated masks are 69% larger for the Ertan Reservoir 
and 50% larger for the Jinping I Reservoir than the GRanD polygons. Correspondingly, the relative bias of the 
reconstructed water storage of both reservoirs reduces from 4% to 5% with the GRSAD water area (i.e., based on 
the GRanD mask) to around 2% with the derived GSW water area (i.e., based on our DEM-based reservoir mask). 
More details are provided in Figure S1 in Supporting Information S1.

Another factor that may affect the accuracy of storage and release reconstruction is the precipitation and evapo-
ration on the reservoir water surface. Our results indicate that the mean annual precipitation and evaporation are 
1,032 and 975 mm for the Jinping I Reservoir, respectively, and are 1,101 and 1,404 mm for the Ertan Reservoir, 
respectively. The mean annual net water loss (i.e., evaporation minus precipitation) is thus 19 million m 3 (−4.2 
million m 3) for the Ertan Reservoir (Jinping I Reservoir), accounting for 0.42% (−0.07%) of the mean water 
storage and 0.04% (−0.01%) of the mean annual inflow. On a daily scale, the net water loss generally accounts for 
less than 2% of the inflow on all days of the study period, with the mean value around 0.1% for both reservoirs 
(Figures S2 and S3 in Supporting Information S1). These results indicate that, in our case study, the reservoir 
precipitation and evaporation are unlikely to have a notable impact on the reservoir water balance at daily to 
annual scales and during different periods of the year. However, in arid areas where evaporation overwhelms 
precipitation, the net water loss cannot be neglected.

4.3. Evaluation of Reservoir Operation Simulations Under Streamflow Alterations

4.3.1. Reservoir Simulations With Parameters Empirically Set to Their Default Values

Quantitative metrics of the four sets of simulated reservoir operations with parameters set to their default values 
in terms of storage, release, and electricity generation are detailed in Figure 5 (blue markers). The model perfor-
mance results are further illustratively assessed by comparing the daily variations of the simulated storage, 
release, and electricity generation of the Jinping I Reservoir for 2015–2018 in Figure 6 and those of the Ertan 

Figure 5. Performance metrics of daily storage, release, and electricity generation simulated by four reservoir operation schemes with parameters calibrated to the 
reservoir operation data reconstructed from remote sensing (yellow) and parameters empirically set to default values (blue) of (a) Jinping I Reservoir and (b) Ertan 
Reservoir, as compared with in-situ observations. D – D22; H – H08; W – W10; Z – Z17.
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Reservoir for 2012–2018 with the in-situ operation data in Figure 7, which allows to jointly visualize the reservoir 
operations with respect to the regional water-energy nexus.

Results indicate that the performances of empirical parameters vary among different schemes. Take the Jinping 
I Reservoir, for example, the average daily NSE of the reservoir storage and release ranges from −0.18 to 0.58, 
and the NSE of the simulated hydropower output ranges from 0.63 to 0.71. Among all investigated schemes with 
the empirical parameters, the D22 scheme can comparably better capture the storage variation of Ertan Reservoir 
during the entire period, with the average daily NSE of simulated release and storage higher than 0.6 over the 
entire period. Specifically, the simulation accuracy is not significantly impacted by the operation of the upstream 
Jinping I Reservoir, with the NSE only ∼0.1 lower after 2014 than before 2014.

4.3.2. Reservoir Simulations With Parameters Calibrated to Reconstructed Operation Data

In this section, we repeat the reservoir operation simulations in Section  4.3.1 but calibrate these parameters 
against the remotely sensed reservoir operation data in the four investigated schemes. The model performances 
for the Ertan Reservoir and Jinping I Reservoir are assessed again with the quantitative metrics in Figure  5 
(yellow markers) and with the time series plots in Figures 6 and 7. The comparison of the quantitative metric 
values (yellow markers vs. blue markers in Figure 5) and the daily variations of the simulated storage, release, and 
electricity generation in the empirical parameters simulations with those in the calibrated parameters simulations 
(Figures 6 and 7) allows to assess the validity of calibrated parameters in simulations of ungauged reservoirs, and 
thereby to jointly visualize the benefits of the synergistic use of satellite remote sensing and hydrologic modeling.

In comparison to the simulations with the empirical parameters, all of the schemes with the calibrated parameters 
show improved simulation accuracies to a varying degree (Figure 5). For example, for Jinping I, the average daily 
NSE of the reservoir storage and release is 0.58, 0.27, −0.18, and 0.21 for D22, Z17, W10, and H08 schemes with 
the empirical parameters, and increases to 0.79, 0.62, 0.64, and 0.70 with the calibrated parameters. Similarly, 
for the Ertan Reservoir, most of the NSE values are higher with the calibrated parameters than with the empirical 
parameters for the same period (blue markers vs. yellow markers in Figure 5b).

Figure 6. Daily storage (left), release (middle), and electricity production (right) simulations of the Jinping I Reservoir (2015–2018) using (a) D22, (b) H08, (c) Z17, 
and (d) W10 reservoir operation schemes with the parameters calibrated to the reservoir operation data reconstructed from remote sensing (blue) and the empirical 
parameters set to their default values (pink), respectively, as compared with in-situ observations.
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A more detailed comparison between different operation schemes is also performed. For Jinping I Reservoir, the 
accuracy of the operation simulation is rather satisfactory for all conceptual schemes, mostly with a daily NSE 
of the simulated release and storage larger than 0.6 and a daily NSE of the simulated electricity production larger 
than 0.55 over the entire period (Figures 5a and 6). For Ertan Reservoir, the daily NSE over the calibration (vali-
dation) period is 0.85 (0.80) for our extended D22 scheme, and the NSE in the post-Jinping I period (0.72) is not 
much lower than that in the pre-Jinping I period (0.82) (Figures 5b and 7). Likewise, the NSE of the simulated 
hydropower output of the Ertan Reservoir is 0.7 (0.64) in the pre-Jinping I (post-Jinping I) period. This suggests 
that our extended D22 scheme calibrated to the reconstructed storage and release has the potential to reproduce 
and predict the release, storage, and hydropower production of the Ertan Reservoir, especially under the changing 
streamflow regimes of the YRB before and after the operation of Jinping I.

On the other hand, the calibrated H08, W10, and Z17 scheme can capture the storage variation of Ertan Reservoir 
in 2010–2013 well but fail to reproduce it from 2015 onwards (Figures 5b and 7), in much coincidence with the 
operation of the upstream Jinping I Reservoir. The average daily NSE of the simulated release and storage fall 
quickly from ∼0.7 in the pre-Jinping I period to ∼0.2 in the post-Jinping I period for the H08, W10, and Z17 
schemes (Figure 5b). Similarly, the NSE of the simulated hydropower output decreases from 0.65 to 0.75 in the 
pre-Jinping I period to 0.4–0.6 in the post-Jinping I period for the H08, W10, and Z17 schemes at daily scales 
(Figure 5b). This suggests that fixed values of parameters in these three schemes may not be suitable under 
streamflow regime changes, and they may require re-calibration for a more accurate simulation after 2015.

To further investigate the ability of the extended D22 scheme and other reservoir operation schemes in capturing 
the hydrologic extremes, the multi-year averaged maximum and minimum 1-day (MAX1/MIN1), 3-day (MAX3/
MIN3), 7-day (MAX7/MIN7), 30-day (MAX30/MIN30), and 90-day (MAX90/MIN90) releases simulated by 
the four schemes are compared with the in-situ release for the two reservoirs. Figure 8 depicts the relative bias 
of these hydrologic extreme indicators with the four schemes. The relative bias is smaller than 20% for most of 
the indicators and most of the schemes. For example, the relative biases of the Jinping I Reservoir (Ertan Reser-
voir) are around 10% (−3%) for high flows and around 0% (5%) for low flows with the extended D22 scheme, 

Figure 7. As in Figure 6 but for the Ertan Reservoir (2012–2018). Pre-Jinping I and Post-Jinping I represent the time period before and after the operation of Jinping 
Reservoir.
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respectively. For the D22 scheme, the lower-than-actual simulated peak flows for the Jinping I Reservoir can be 
attributed to the underestimation of water storage by ∼9% around early September 2016, which leads to a larger 
flood control storage and the corresponding reservoir release of ∼35% smaller than actual. The higher-than-actual 
simulated low flows for the Ertan Reservoir are attributed to the highly fluctuating in-situ reservoir releases, 
which sometimes drop to ∼200 m 3/s (e.g., in mid-2015 and 2016) as compared to the minimum 1-month average 
release of ∼700 m 3/s. These fluctuations can be hardly represented by the schemes, especially for the other three 
schemes that do not characterize a storage-release relationship.

These results indicate that the reconstructed reservoir operation releases and storage, despite at a relatively low 
temporal resolution of 10 days, can contribute to the simulations of high flows and low flows over 1-day to 
90-day time scales. When operation data with a higher temporal resolution are available, more accurate model 
simula tions of extreme-flow conditions are expected.

In general, our evaluations in Sections 4.3.1 and 4.3.2 with respect to the calibrated parameters and the empir-
ical parameters suggest that the remote sensing can improve the parameter estimation of the four investigated 
reservoir operation schemes for ungauged reservoirs, thereby improving the simulations for all selected schemes 
(Figure 5). It is also noted that, despite the reconstructed reservoir storage and release are at a 10-day frequency, 
they can be combined with these reservoir schemes to derive fairly accurate high flows and low flows from 1-day 
to 90-day scales. Comparably, by incorporating time-varying target storages and releases, our extended D22 
scheme can better reproduce the storage, release, and electricity production under streamflow alterations, which 
is further discussed in Section 5.2. On the other hand, the H08, W10, and Z17 schemes can simulate the reservoir 
operation under the hydrologic stationarity well, but they perform less desirably under a changing inflow regime 
(blue vs. yellow markers in Figure 5), which could limit their applications over long-term time scales.

4.4. Improvements of Streamflow Simulations Considering Reservoirs

In Section 4.1, the model shows a degraded performance at the Ertan station during 2015–2018, in coincidence 
with the upstream reservoir operation. To further examine if the lack of reservoir operation is the major cause 
of the degraded model accuracy in this period, we perform a series of CLHMS simulations by coupling the four 
reservoir operation schemes with the calibrated parameters and the empirical parameters, respectively. These 
simulations are then compared with the CLHMS simulation without reservoirs in Section 4.1 for an in-depth 
analysis.

Figure 8. Reservoir release simulations with respect to the hydrologic extremes using the D22, H08, Z17 and W10 schemes with parameters calibrated to reconstructed 
operation data.
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As indicated in Figure 9, we find that integrating reservoirs in the CLHMS can improve the streamflow simu-
lations during 2015–2018 for all schemes. Among the schemes, our extended D22 scheme with the calibrated 
parameters makes one of the most significant improvements in the streamflow simulation, as the daily NSE at the 
Ertan hydrologic station increases from 0.4 to 0.75. For example, the simulated streamflow without (with) reser-
voirs at the Ertan station is 10.6% (−1.5%) higher than the in-situ streamflow during the wet season and 29.8% 
(4.9%) lower than the in-situ streamflow during the dry season. The simulated annual maximum 1-day flood 
also shows improvements, as the relative error decreases from 20% without reservoirs to 9% with reservoirs. The 
D22 scheme with the empirical parameters can also improve the streamflow simulation but to a lesser degree, 
with the NSE increasing to 0.65. For other schemes, streamflow and annual maximum flood simulations are also 
improved for both the calibrated parameters and the empirical parameters.

The above results indicate that the degraded model accuracy in the post-Jinping I period (Section 4.1) can be 
largely explained by the reservoir impact. The daily NSE can be enhanced to a maximum value of 0.75 after inte-
grating the reservoir operation, which is not much lower than the value of 0.80 in the validation period. In addi-
tion to reproducing the dynamics of the two reservoirs well, these validation results at the Ertan station suggest 
that (a) integrating reservoirs into CLHMS, (b) estimating reservoir surface area and water level from remotely 
sensed data, and (c) our extended storage anomaly based operation scheme all enable the accurate quantification 
of the hydrological impact of two ungauged reservoirs in the YRB.

5. Discussion
5.1. Satellite Altimetry as a Promising Tool for Reservoir Impact Assessment and Predictions

As an estimated 2.8 million reservoirs have been constructed globally, recent research efforts in improving the 
representations of reservoir operation in hydrologic models are flourishing through the development of reservoir 
operation schemes (Boulange et al., 2021; Zhou et al., 2016). Most of these schemes require detailed reservoir 
operation rules or historic operation data to determine the optimal structure and parameters (Coerver et al., 2018; 
Ehsani et al., 2017; Yang et al., 2019). Reservoir operation rules formulated by local water agencies can be used to 
infer the model structure and parameters directly, which often dictates the desirable reservoir storage and release 

Figure 9. Daily streamflow simulations at the Ertan hydrologic station averaged over the validation period of the coupled land surface-hydrologic model (CLHMS) 
(2011–2018) before and after integrating reservoirs with (a) D22, (b) H08, (c) Z17, and (d) W10 schemes in the CLHMS model, as compared with in-situ observations.
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under different hydrologic conditions. However, these rules are often not made available to the public, and where 
these rules are available, it may not be an easy task to have them directly parameterized in hydrologic models 
for immediate applications. This is because these rules in many cases provide only guidance and constraints 
with flexibility in meeting the socio-economic demands, and are not always strictly followed by dam operators. 
In addition, the in-situ operation data are less frequently shared beyond local scales (Wada et al., 2017). These 
factors limit the accuracy of reservoir operation simulations in ungauged locations.

To address this problem, we systematically investigate and demonstrate the potential of readily available remote 
sensing for improving the accuracy of reservoir operation simulations and hydrologic predictions. The reser-
voir operation simulations and downstream hydrologic simulations all experience an enhanced accuracy through 
calibration against the reservoir operation data reconstructed from the synergistic use of satellite remote sens-
ing and hydrologic modeling (Sections 4.3 and 4.4). While these reconstructed reservoir storages and releases 
can be embedded with errors and uncertainties, we demonstrate that they can improve model parameterizations 
and accuracies (Figures 5–7). Although we present a local case study with two reservoirs, our proposed frame-
work assumes in-situ operation data and operation rules are unknown, which has the potential to be applied to 
predictions in ungauged basins (PUB) (Blöschl et al., 2019). Our framework can also be used to improve current 
large-scale hydrologic models, as our results demonstrate the possibility of deriving more reasonable parameter 
values of generic reservoir operation schemes with remote sensing data that are readily available at large scales.

Despite the potential use of satellite altimetry in reservoir operation simulations, we also note that the large-scale 
applications of satellite altimetry in this aspect may be limited by the large footprint size and wide ground track 
spacing of the satellites. For example, most of the current studies have focused the use of satellite altimetry 
on large reservoirs, yet smaller reservoirs have been less studied because of their small surface water extent as 
compared to the ground track spacing and footprint size of altimetric satellites such as Jason, Sentinel, and Cryo-
sat (Bonnema & Hossain, 2017, 2019; Han et al., 2020). Notably, the ground track spacing and footprint size 
of recent satellite altimetry projects, such as ICESat and Surface Water and Ocean Topography (SWOT), have 
dramatically decreased to a magnitude of kilometers and meters, respectively, and have the potential to detect the 
water level of smaller reservoirs (Cooley et al., 2021). These sensors will hopefully extend the applicability of our 
framework to small reservoirs in the near future.

5.2. Model Structure as a Key Factor in the Applicability of Reservoir Operation Schemes

In this study, we extended and tailored our previously developed reservoir operation scheme to the use of remotely 
sensed reservoir operation data in ungauged basins. A major advantage of our extended scheme is its relatively 
simple model structure as compared with some of the existing conceptual and data-driven operation schemes. 
The target storages and target releases introduced in the scheme that constrain reservoir behaviors can be directly 
inferred from remotely sensed operation data (Equation 8). These reduce the number of parameters and hence the 
need for long-term, continuous data for parameter calibration. In turn, this allows the scheme to be calibrated and 
validated against remotely sensed reservoir operation data that often span for a short period (e.g., a few years) and 
are available at a relatively low frequency (e.g., 10–30 days). In our study, the parameter calibration data for both 
reservoirs consist of a total of 73 data points, yet the calibrated D22 scheme yields relatively satisfactory storage 
and release simulations during not only the entire period (Figures 6 and 7) but also during extreme hydrologic 
events (Figure 8). In comparison, data-driven reservoir operation models are often trained against thousands of 
daily, continuous operation data (Dong et al., 2023; Yang et al., 2019). While it may be possible to train these 
models using daily values interpolated from remotely sensed operation data, its feasibility and accuracy require 
future investigation.

Another major advantage of our extended scheme is that it establishes a time-dependent relationship between 
water storage and release with the introduction of remotely sensed target storages and target releases, making the 
reservoir operation more consistent with the reality. In reality, reservoir operation is often guided by prescribed 
reservoir operation rules that can be illustrated by a set of reservoir operation curves in a reservoir operation chart 
(see Figure S4 in Supporting Information S1) (Han et al., 2020; Y. Zhao et al., 2021). When the current storage 
rises above an operation rule curve, the release tends to increase, preventing storage overfilling at an inappropri-
ate time, and vice versa. Our extended operation scheme can explicitly depict such a storage-oriented operation 
policy by adapting the release to the target storages (i.e., average reservoir operation rule curve) at different 
periods over a year. In contrast, this cannot be automatically achieved by other schemes investigated in our study. 
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For example, the H08 and W10 schemes in our study are mostly a linear function of the weighted average of the 
mean annual inflow and the current inflow, with their parameters serving as weights. Adjusting the weights alone 
according to the reservoir operation data may not be enough to account for the dynamic release-storage relation-
ship consistent with the reservoir operation rules. Even though the Z17 scheme employs storage as part of the 
release function, the release is essentially determined by a few release thresholds 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 , 𝐴𝐴 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 , and 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 that do not 
change over time. While these reservoir operation schemes can exhibit improved performance when calibrated 
against remotely sensed operation data (blue vs. yellow markers in Figure 5), these disadvantages may mask their 
potential shortcomings and bring a challenge for these schemes to simulate the reservoir operation with a higher 
accuracy.

In particular, the above discrepancies in the model structure among reservoir operation schemes can have a more 
obvious impact on the reservoir operation simulations when the reservoir is subject to inflow regime variations. 
Notably, the operation of Jinping I Reservoir leads to a 92% increase in the average inflow of Ertan Reservoir 
during January and March and a 30%-decrease during June and July (see Figure S5 in Supporting Informa-
tion S1). The monthly Ertan inflow sees a relative variation ranging from −35% to +117%. For four out of the 
12 months a year, the 90 percentile monthly inflow during the pre-Jinping period becomes lower than the 10 
percentile release during the post-Jinping period. Despite the parameters are well-calibrated pre-Jinping, the 
post-Jinping release is not well adapted to the significant increase in the inflow during January and March due 
to the lack of time-dependent coordination between releases and storage in H08, Z17, and W10, as noted earlier. 
This can be one of the major reasons for the storage overfilling during this period under these schemes.

In this study, we found that the extended D22 scheme performs better than other schemes under the upstream 
dam construction, which is a common driver of streamflow regime alterations in the context of dam construction 
worldwide (Richter, 1996). For other drivers of streamflow alterations, such as climate and land use changes, 
the extended D22 scheme may also have the potential to be applied for adapting to future climate and land-use 
conditions. However, given the different time scales between the impacts of dam construction and climate/land 
use changes, there is a need for another set of experiments to test the validity of reservoir operation models under 
different climate and land-use conditions.

Future work should include parameterizations of jointly operated cascade reservoirs, which currently remain 
challenging. For example, there can be multiple joint operation modes of a reservoir system, many of which may 
occur infrequently or last only for a short period, making it difficult to parameterize and achieve satisfactory 
calibration results of relevant parameters.

5.3. Consideration of Storage Anomalies Versus Water Demand Anomalies in Reservoir Representations

In the extended D22 scheme, the multi-year average socio-economic water demand at different times of the year 
is implicitly represented by the target release, which is then adjusted with the current water storage anomalies 
to determine the final release. While adapting releases to storage anomalies is a common operation practice for 
reservoirs worldwide, the socio-economic water demand may not always stand at the multi-year average value 
during a specific period of the year (Shah et al., 2019), and the water demand anomalies may also be a consider-
ation when dam operators determine the release during that specific period. However, at ungauged sites (e.g., in 
this study), the detailed water demand data are often not available and are, consequently, difficult to incorporate 
in the scheme. To circumvent this challenge, several studies have attempted to infer reservoir water demands from 
relevant hydrologic variables. For example, Wu and Chen (2012) used the inflow anomalies for the past 30 days 
as an indicator of the downstream water demand anomalies. Soil moisture anomalies are also a commonly used 
indicator of irrigation water demand in hydrologic modeling (Yin et al., 2020).

As an attempt to explore the potential of these water demand indicators in improving reservoir operation simula-
tions, we perform two separate experiments by incorporating the inflow anomalies and soil moisture anomalies 
into the extended D22 scheme, respectively, in a similar manner to storage anomalies (see details in Text S6 in 
Supporting Information S1). We found that doing so can increase the NSE values of storage and release only 
by 0.0–0.02 for Ertan, Jinping I and the other 9 reservoirs considered in our study. This suggests that these 
readily available water demand indicators may not help improve the performance of the extended D22 scheme 
in ungauged situations. Moreover, through reservoir operation simulations on the other nine reservoirs with irri-
gation and water supply as a main purpose, we show that the current version of the extended D22 scheme is 
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generally able to well reconstruct the release and storage variations for most of these reservoirs (see Appendix A 
and Figure S11 in Supporting Information S1). These results suggest that considering water demand anomalies 
may not be mandatory for achieving satisfactory reservoir operation simulations. Therefore, the current study 
excludes the water demand anomalies from the development of the extended D22 scheme. Further improvements 
may be required in this respect. For example, with process-based water demand modules as in global hydrologic 
models, explicit water demand volumes instead of water demand indicators can be considered and tested for 
improved reservoir parameterizations. This will be one of our future research directions.

6. Conclusions
Driven by two open research questions with respect to reservoir representations in hydrologic simulations, we 
propose a synergistic framework to predict the release, storage, and hydropower production of ungauged reser-
voirs that combines remotely sensed reservoir operation data with conceptual reservoir operation schemes within 
a coupled land surface-hydrologic model. A previously developed conceptual operation scheme for ungauged 
reservoirs (Dong et al., 2022) is specifically extended and tailored to the use of the remotely sensing data that 
often spans only for a few years and are available at a temporal resolution of 10–30 days. Three other commonly 
used conceptual reservoir operation schemes are also included in the framework and the subsequent comparative 
analysis.

By applying the framework to the YRB in China, we found that the reservoir operation simulations of the four 
schemes and the downstream hydrologic simulations all experience an enhanced accuracy with the synergistic 
use of satellite altimetry, remote sensing images, and hydrologic modeling. However, hydrologic non-stationarity 
can degrade the accuracy of reservoir simulation for most of these schemes, which could result in unreliable 
assessment of water resources and hydropower production. As compared to a few existing conceptual reservoir 
operation schemes, our extended operation storage anomaly based scheme is more adaptative to hydrologic vari-
ations. Hence, it could be more applicable for long-term simulations, possibly because it explicitly establishes a 
time-variable storage-release relationship as often prescribed in the reservoir operation rules.

As a final remark of this study, our presented framework has implications for hydrologic modeling from regional, 
continental to global scales, as our results demonstrate the possibility of deriving more reasonable parameter 
values of generic reservoir operation schemes using remote sensing data that is readily available in many areas 
globally. With the successful launch of SWOT, the combination of satellite altimetry, hydrologic modeling, and 
storage anomaly based reservoir representations can serve to better understand the co-evolution of the hydrologic 
cycle and the reservoir operation at finer spatiotemporal scales.

Appendix A: Additional Evaluation of the Extended D22 Reservoir Operation 
Scheme
To investigate the applicability of our extended D22 scheme in a wider range of reservoirs, the historic in-situ 
inflow, release, and storage data of another nine reservoirs, namely, Three Gorges, Danjiangkou, Longyangxia, 
Fosi, Baishi, Tuanjie, Hongmen, Liujiaxia, and Xiluodu, are collected and used for calibration and evaluation of 
this reservoir operation scheme. Reservoir information and details on the calibration and validation periods are 
given in Table S2 in Supporting Information S1. Figure A1 depicts the simulated reservoir releases and storage 
as compared with the in-situ data.

In general, the daily release and storage simulations are in good agreement with in-situ observations for most of 
the reservoirs. The daily NSE values of the simulated storage (releases) are higher than 0.8 (0.6) for around 80% 
of the reservoirs (Figure S11 in Supporting Information S1). Reservoirs with irrigation or water supply as one 
of the major functions, such as Three Gorges, Tuanjie, Liujiaxia, Danjiangkou and Baishi, mostly show a fairly 
satisfactory simulation accuracy. Among all, Baishi and Fosi are generally subject to a relatively lower accuracy 
of release simulations (daily NSE <0.5), and one of the main reasons could be that the inflow and hence release 
of the two reservoirs are small on average (less than 10 and 1 m 3/s, respectively), yet with very strong, sudden 
fluctuations during the study period. This makes it difficult to precisely capture the release variations on a daily 
scale. Despite that, the storage simulations of both reservoirs show a satisfactory accuracy of daily NSE >0.80.
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Data Availability Statement
The modeling results and codes of the extended D22 scheme, along with in-situ and satellite-based reservoir oper-
ation data and other supporting information, are provided by Dong (2022), available at https://doi.org/10.5281/
zenodo.7190469. The JRC global water surface data are provided by JRC (2016), available at https://global-sur-
face-water.appspot.com/download. The data set of GRSAD global reservoir surface area is provided by Gao and 
Zhao (2019), available at https://doi.org/10.18738/T8/DF80WG. The Jason-2/3 altimetry data are provided by 
AVISO CNES Data Center (2018), available at the left column of https://aviso-data-center.cnes.fr/ (registration 
required).
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