

711 r

geologischen Specialkarte

von

Preussen

und

den Thüringischen Staaten.

Lieferung 86.

Gradabtheilung 33, No. 22.

Blatt Garnsee.

BERLIN.

In Vertrieb bei Paul Parey, Verlagsbuchhandlung für Landwirthschaft, Gartenbau und Forstwesen, Berlin SW., Hedemann-Strasse 10.

1900.

Blatt Garnsee

nebst

Bohrkarte und Bohrregister.

Gradabtheilung 83, No. 22.

Geognostisch und agronomisch bearbeitet durch

Th. Ebert.+

Mit einem Vorwort von G. Berendt.

Vorwort.

Näheres über die geognostische wie agronomische Bezeichnungsweise dieser Karten, in welchen durch Farben und Zeichen gleichzeitig sowohl die ursprüngliche geognostische Gesammtschicht, wie auch ihre Verwitterungsrinde, also Grund und Boden der Gegend zur Anschauung gebracht worden ist, sowie über alle allgemeineren Verhältnisse findet sich in den allgemeinen Erläuterungen, betitelt "Die Umgegend Berlins, I. der Nordwesten"!) und den gewissermaassen als Nachtrag zu denselben zu betrachtenden Mittheilungen "Zur Geognosie der Altmark"?). Die Kenntniss der ersteren muss sogar, um stete Wiederholungen zu vermeiden, in den folgenden Zeilen vorausgesetzt werden. Ein Gleiches gilt für den dritten Abschnitt dieser Erläuterungen, den analytischen Theil, betreffs der Mittheilungen aus dem Laboratorium für Bodenkunde, betitelt "Untersuchung des Bodens der Umgegend von Berlin"3).

¹⁾ Abhandl. z. Geolog. Specialkarte v. Preussen etc., Bd. II, Heft 3.

⁹) Jahrb. d. Kgl. Geol. L.-A. für 1886, S. 105 u. f.

³⁾ Abhaudl. z. Geolog. Specialkarte v. Preussen etc., Bd. III, Heft 2.

II Vorwort.

Auch in Hinsicht der geognostischen wie der agronomischen Bezeichnungsweise dieser Karten findet sich das Nähere in der erstgenannten Abhandlung. Als besonders erleichternd für den Gebrauch der Karte sei aber auch hier noch einiges darauf Bezügliche hervorgehoben.

Wie bisher sind in geognostischer Hinsicht sämmtliche, auch schon durch einen gemeinsamen Grundton in der Farbe vereinte Bildungen einer und derselben Formationsabtheilung, ebenso wie schliesslich auch diese selbst, durch einen gemeinschaftlichen Buchstaben zusammengehalten. Es bezeichnet dabei:

```
Weisser Grundton = \mathbf{a} = Alluvium,
Blassgrüner Grund = \partial \alpha = Thal-Diluvium<sup>1</sup>),
Blassgelber Grund = \partial = Oberes Diluvium,
Hellgrauer Grund = \mathbf{d} = Unteres Diluvium.
```

Für die aus dem Alluvium bis in die letzte Diluvialzeit zurückreichenden Flugbildungen, sowie für die Abrutsch- und Abschlemm-Massen gilt ferner noch ein **D** bezw. der griechische Buchstabe «.

Ebenso ist in agronomischer bezw. petrographischer Hinsicht innerhalb dieser Farben zusammengehalten:

durch	Punktirung	der	Sandboden
29	Ringelung	,	Grandboden
33	kurze Strichelung	,,	Humusboden
n	gerade Reissung	n	Thonboden
39	schräge Reissung	,,	Lehmboden
,,	blaue Reissung	99	Kalkboden,

so dass also mit Leichtigkeit auf den ersten Blick diese Hauptbodengattungen in ihrer Verbreitung auf dem Blatte erkannt und übersehen werden können.

Erst die gemeinschaftliche Berücksichtigung beider aber, der Farben und der Zeichen, giebt der Karte ihren besonderen Werth als Specialkarte und zwar sowohl in geognostischer, wie in agronomischer Hinsicht. Vom agronomischen Standpunkte aus bedeuten die Farben ebenso viele, durch Bonität und Specialcharakter verschiedene Arten der durch die Zeichen ausgedrückten agronomisch (bezw. petrographisch) verschiedenen Bodengattungen, wie sie vom geologischen Standpunkte aus entsprechende Formationsunterschiede der durch die Zeichen ausgedrückten petrographisch (bezw. agronomisch) verschiedenen Gesteins- oder Erdbildungen bezeichnen. Oder mit andern Worten, während vom agronomischen

¹⁾ Das frühere Alt-Alluvium. Siehe die Abhandlung über "die Sande im norddeutschen Tieflande und die grosse Abschmelzperiode" von G. Berendt, Jahrb. d. Kgl. Geol. L.-A. f. 1880.

Vorwort. III

Standpunkte aus die verschiedenen Farben die durch gleiche Zeichenformen zusammengehaltenen Bodengattungen in entsprechende Arten gliedern, halten die gleichen Farben vom geologischen Standpunkte aus ebenso viele, durch die verschiedenen Zeichenformen petrographisch gegliederte Formationen oder Formationsabtheilungen zusammen.

Auch die Untergrunds-Verhältnisse sind theils unmittelbar, theils unter Benutzung dieser Erläuterungen, aus den Lagerungsverhältnissen der unterschiedenen geognostischen Schichten abzuleiten. Um jedoch das Verständniss und die Benutzung der Karten für den Gebrauch des praktischen Land- und Forstwirthes auf's Möglichste zu erleichtern, wird gegenwärtig stets, wie solches zuerst in einer besonderen, für alle früheren aus der Berliner Gegend erschienenen Blätter gültigen

geognostisch-agronomischen Farbenerklärung

geschehen war, eine Doppelerklärung randlich jeder Karte beigegeben. In derselben sind für jede der unterschiedenen Farbenbezeichnungen Oberkrume- sowie zugehörige Untergrunds- und Grundwasser-Verhältnisse ausdrücklich angegeben worden und können auf diese Weise nunmehr unmittelbar aus der Karte abgelesen werden.

Diese Angabe der Untergrundsverhältnisse gründet sich auf eine grosse Anzahl kleiner, d. h. 1,5 bis 2,0 Meter tiefer Handbohrungen. Die Zahl derselben beträgt für jedes Messtischblatt durchschnittlich etwa 2000.

Bei den bisher aus den Provinzen Brandenburg, Sachsen, Pommern, Posen, West- und Ostpreussen veröffentlichten Lieferungen, sowie in dem gegenwärtig vorliegenden Blatte der geologischen Specialkarte von Preussen und den Thüringischen Staaten sind diese agronomischen Bodenverhältnisse innerhalb gewisser geognostischer Grenzen, bezw. Farben, durch Einschreibung einer Auswahl solcher, meist auf 2 Meter Tiefe reichenden Bodenprofile zum Ausdruck gebracht. Es hat dies jedoch vielfach zu der irrthümlichen Auffassung Anlass gegeben, als beruhe die agronomische Untersuchung des Bodens, d. h. der Verwitterungsrinde der betreffenden, durch Farbe und Grenzen bezeichneten geognostischen Schicht, nur auf einer gleichen oder wenig grösseren Anzahl von Bohrungen.

Dass eine solche meist in Abständen von einem Kilometer, zuweilen sogar noch weiter verstreute Abbohrung des Landes weder dem Zwecke einer landwirthschaftlichen Benutzung der Karte als Grundlage für eine im grösseren Maassstabe demnächst leicht auszuführende specielle Bodenkarte des Gutes entsprechen könnte, noch auch für die allgemeine Beurtheilung der Bodenverhältnisse genügende Sicherheit böte, darüber bedarf es hier keines Wortes.

Die Annahme war eben ein Irrthum, zu dessen Beseitigung die Beigabe der den Aufnahmen zu Grunde liegenden ursprünglichen Bohrkarte zu zweien der in Lieferung XX erschienenen Messtischblätter südlich Berlin seiner Zeit beizutragen beabsichtigte.

**

IV Vorwort.

Wenn gegenwärtig einem jeden Messtischblatte eine solche Bohrkarte nebst Bohrregister (Abschnitt IV dieser Erläuterung) beigegeben wird, so geschieht solches auf den allgemein laut gewordenen, auch in den Verhandlungen des Landes-Oekonomie-Collegiums zum Ausdruck gekommenen Wunsch des praktischen Landwirthes, welcher eine solche Beigabe hinfort nicht mehr missen möchte.

Was die Vertheilung der Bohrlöcher betrifft, so wird sich stets eine Ungleichheit derselben je nach den verschiedenen, die Oberfläche bildenden geognostischen Schichten und den davon abhängigen Bodenarten ergeben. Gleichmässig über weite Strecken Landes zu verfolgende und in ihrer Ausdehnung bereits durch die Oberflächenform erkennbare Thalsande beispielsweise, deren Mächtigkeit man an den verschiedensten Punkten bereits über 2 Meter festgestellt hat, immer wieder und wieder dazwischen mit Bohrlöchern zu untersuchen, würde eben durchaus keinen Werth haben. Ebenso würden andererseits die vielleicht dreifach engeren Abbohrungen in einem Gebiet, wo Oberer Diluvialsand oder sogenannter Decksand theils auf Diluvialmergel, theils unmittelbar auf Unterem Sande lagert, nicht ausreichen, um diese in agronomischer nicht minder wie in geognostischer Hinsicht wichtige Verschiedenheit in der Karte genügend zum Ausdruck bringen und namentlich, wie es die Karte doch bezweckt, abgrenzen zu können. Man wird sich vielmehr genöthigt sehen, die Zahl der Bohrlöcher in der Nähe der Grenze bei Aufsuchung derselben zu häufen 1).

Ein anderer, die Bohrungen zuweilen häufender Grund ist die Feststellung der Grenzen, innerhalb welcher die Mächtigkeit der den Boden in erster Linie bildenden Verwitterungsrinde einer Schicht in der Gegend schwankt. Ist solches durch eine grosse, nicht dicht genug zu häufende Anzahl von Bohrungen, welche ebenfalls eine vollständige Wiedergabe selbst in den ursprünglichen Bohrkarten unmöglich macht, für eine oder die andere in dem Blatte verbreitetere Schicht an einem Punkte einmal gründlich geschehen, so genügt für diesen Zweck eine Wiederholung der Bohrungen innerhalb derselben Schicht schon in recht weiten Entfernungen, weil — ganz besondere physikalische Verhältnisse ausgeschlossen — die Verwitterungsrinde sich je nach dem Grade der Aehnlichkeit oder Gleichheit des petrographischen Charakters der Schicht fast oder völlig gleich bleibt, sowohl nach Zusammensetzung als nach Mächtigkeit.

Es zeigt sich nun aber bei einzelnen Gebirgsarten, ganz besonders bei dem an der Oberfläche mit am häufigsten in Norddeutschland verbreiteten gemeinen Diluvialmergel (Geschiebemergel, Lehmmergel), ein Schwanken der Mächtigkeit seiner Verwitterungsrinde und deren verschiedener Stadien nicht auf grössere Entfernung hin, sondern in den

¹⁾ In den Erläuterungen der Kartenblätter aus dem Süden und Nordosten Berlins ist das hierbei übliche Verfahren näher erläutert worden.

Vorwort.

denkbar engsten Grenzen, so dass von vornherein die Mächtigkeit seiner Verwitterungsrinde selbst für Flächen, wie sie bei dem Maassstab jeder Karte, auch der grössten Gutskarte, in einen Punkt (wenn auch nicht in einen mathematischen) zusammenfallen, nur durch äusserste Grenzzahlen angegeben werden kann. Es hängt diese Unregelmässigkeit in der Mächtigkeit bei gemengten Gesteinen, wie alle die vorliegenden es sind, offenbar zusammen mit der Regelmässigkeit oder Unregelmässigkeit ihrer Mengung selbst. Je feiner und gleichkörniger dieselbe sich zeigt, desto feststehender ist auch die Mächtigkeit ihrer Verwitterungsrinde, je gröber und ungleichkörniger aber, desto mehr schwankt dieselbe, in desto schärferer Wellen- oder Zickzacklinie bewegt sich die untere Grenze ihrer von den atmosphärischen Einflüssen gebildeten Verwitterungsrinde oder, mit anderen Worten, ihres Bodens. Zum besseren Verständniss des Gesagten verweise ich hier auf ein Profil, das bereits in den Allgemeinen Erläuterungen zum NW. der Berliner Gegend 1) veröffentlicht wurde und auch in das Vorwort zu den meisten Flachlands-Blättern übergegangen ist.

Aus diesen Gründen genügen für den praktischen Gebrauch des Land- und Forstwirthes zur Erlangung einer Vorstellung über die Bodenprofilverhältnisse die Bohrkarten allein keineswegs, sondern es sind zugleich immer auch die zu einer Doppelzahl zusammengezogenen Angaben der geognostisch-agronomischen Karte zu Rathe zu ziehen, eben weil, wie schon erwähnt, die durch die Doppelzahl angegebenen Grenzen der Schwankung nicht nur für den ganzen, vielleicht ein Quadratkilometer betragenden Flächenraum gelten, dessen Mittelpunkt die betreffende agronomische Einschreibung in der geognostisch-agronomischen Karte bildet, sondern auch für jede 10 bis höchstens 20 Quadratmeter innerhalb dieses ganzen Flächenraumes.

Die Bezeichnung der Bohrung in der Karte selbst nun angehend, so ist es eben, bei einer Anzahl von 2000 Bohrlöchern auf das Messtischblatt, nicht mehr möglich, wie auf dem geognostisch-agronomischen Hauptblatte geschehen, das Resultat selbst einzutragen. Die Bohrlöcher sind vielmehr einfach durch einen Punkt mit betreffender Zahl in der Bohrkarte bezeichnet und letztere, um die Auffindung zu erleichtern, in 4×4 ziemlich quadratische Flächen getheilt, welche durch A, B, C, D, bezw. I, II, III, IV, in vertikaler und horizontaler Richtung am Rande stehend, in bekannter Weise zu bestimmen sind. Innerhalb jedes dieser sechszehn Quadrate beginnt die Nummerirung, um hohe Zahlen zu vermeiden, wieder mit 1.

Das in Abschnitt IV folgende Bohrregister giebt zu den auf diese Weise leicht zu findenden Nummern die eigentlichen Bohrergebnisse in der bereits auf dem geologisch-agronomischen Hauptblatte angewandten abgekürzten Form. Es bezeichnet dabei, wie auf der zweiten Seite des

¹⁾ Bd. II, Heft 3 der Abhdl. z. geol. Specialkarte von Preussen etc.

VI Vorwort.

betreffenden Bohrregisters zu jedem Blatte ausführlicher angegeben worden ist:

S	Sand	LS	Lehmiger Sand
L	Lehm	SL	Sandiger Lehm
Н	Humus (Torf)	SH	Sandiger Humus
K	Kalk	HL	Humoser Lehm
M	Mergel	SK	Sandiger Kalk
T	Thon	SM	Sandiger Mergel
G	Grand	GS	Grandiger Sand
	HLS = Humoser	leh	miger Sand
	GSM - Grandia	gond	licer Mercel

GSM = Grandig-sandiger Mergel

u. s. w.

LS = Schwach lehmiger Sand

SL = Sehr sandiger Lehm

KH = Schwach kalkiger Humus u. s. w.

Jede hinter einer solchen Buchstabenbezeichnung befindliche Zahl bedeutet die Mächtigkeit der betreffenden Gesteins- bezw. Erdart in Decimetern; ein Strich zwischen zwei vertical übereinanderstehenden Buchstabenbezeichnungen "über". Mithin ist:

Ist für die letzte Buchstabenbezeichnung keine Zahl weiter angegeben, so bedeutet solches in dem vorliegenden Register das Hinabgehen der betreffenden Erdart bis wenigstens 1,5 Meter, der früheren Grenze der Bohrung, welch' letztere gegenwärtig aber meist bis zu 2 Meter ausgeführt wird.

I. Geognostisches.

Oro-hydrographischer Ueberblick.¹)

Auf dem zwischen 36° 30' und 36° 40' östlicher Länge und 53° 36' und 53° 42' nördlicher Breite gelegenen Blatte Garnsee ist im westlichen und nordwestlichen Gebiete Niederung des Weichselthales vorhanden. Nach O. folgt mit SSW.—NNO.-Streichen das bald mehr bald minder steil ansteigende Gehänge des Weichselthales und im östlichen Theile der Karte die Diluvialplatte.

In der Niederung liegt die höchste Fläche im Thalsandgebiete zwischen Rundewiese und Sedlinen bei 60 — 75 Fuss. Von letzterem Orte zieht sich die 60 Fuss-Curve dicht an den Abhang und macht nur in dem Dünensandgebiete südlich Bialken einen kleinen Bogen. Das weiter westliche Gebiet befindet sich bis zu der 45 Fuss-Curve von 45 bis 60 Fuss ansteigend, während in der Nordwestecke des Blattes die Niederung bis 42 Fuss herabgeht.

Der Abfall des Gehänges des Weichselthales am Nordrande der Karte beträgt 180 Fuss (240—60), nach S. steigt er auf 200 Fuss und an einzelnen Stellen noch mehr. Auch auf dem Plateau sind im südlichen Theile die höheren Flächen. Während im N. die Hügelrücken nur bis 300 Fuss steigen, sind im S. Flächen mehrfach über 300 Fuss und die höchste Curve 330 Fuss findet sich bei Seubersdorf, nordwestlich vom Danziger-Berge. Die

¹⁾ Die Erläuterungen sind im Wesentlichen so abgedruckt, wie sie beim Tode des Bearbeiters vorlagen. Zur Ergänzung derselben wird auf die Erläuterungen der Nachbarblätter Roggenhausen und Feste Courbière verwiesen, in denen die petrographische Beschreibung der fast durchweg auf die Nachbarblätter fortsetzenden Diluvial- und Alluvialschichten, sowie manche andere geologische Angaben auch für das Blatt Garnsee volle Geltung haben.

Torfflächen und die Seen wechseln in der Höhe zwischen 251 und 281 Fuss. Der einzige Fluss ist der Liebe-Fluss, welcher, von Marienwerder kommend, bis Boggusch nach S. — mithin der heutigen Richtung der Weichsel entgegengesetzt — fliesst; bei Bialken erreicht er die Weichselthal-Niederung und fliesst nun an deren Ostrande nach N. zurück.

Auf Blatt Garnsee sind Unteres und Oberes Diluvium sowie Alluvium vertreten.

Das Diluvium.

Das Diluvium (Unteres und Oberes zusammengefasst) nimmt den grössten Theil des Plateaus und des Ufergehänges ein. Grössere und ist, wie die Höhencurven zeigen, sehr zergliedert. kleinere Kuppen und Hügelrücken finden sich und dazwischen flache und tiefere Thälchen mit kleineren und grösseren Quell-Der, wie schon erwassern, welche durch dieselben abfliessen. wähnt, einzige Fluss ist der Liebefluss. Auch auf dem Plateau liegen die diluvialen Schichten nicht durchweg eben, sondern sind mehrfach durch Faltungen aufgerichtet. Daher ist die Oberfläche In einer Grube südlich vom Grossen See, sehr wellig. 11 Meter Thon und Thonmergel über Sand aufgeschlossen sind, fallen die Schichten steil nach N. Es ist dies die Stelle, wo durch Auffaltung der Untere Diluvialsand und die oberen Bänke des Unteren Thonmergels an die Oberfläche treten. Auch bei den Ausbauen zu Zigahnen am Grossen Torfbruch ist dies der Fall.

Das Untere Diluvium.

Das Untere Diluvium ist aufgebaut aus Schichten von Unterem Geschiebemergel, Grand, Spathsand, Mergelsand und Thonmergel.

Am Gehänge treten sämmtliche unterdiluviale Schichten auf. Als unterste Schicht lagert meist ein Spathsand unter dem zweiten Unteren Geschiebemergel (dm). An einigen Stellen tritt darunter ein noch älterer Geschiebemergel an die Oberfläche. Es konnte nicht festgestellt werden, ob dieser Geschiebemergel direkt unter dem Sand oder tiefer lagere, da die Grenzlinie durch Thal- oder Dünen-

sand bedeckt ist. Jedoch werden auch hier die Verhältnisse dieselben sein, wie auf Blatt Neuenburg am Steilufer der Weichsel, wo auch der dritte Untere Geschiebemergel unter einem Spathsand liegt, welcher ebenso wie der auf Blatt Garnsee, sehr feinkörnig ist und Glimmerblättchen enthält. Am Steilufer bei Neuenburg liegt zwischen diesem Spathsand und dem zweiten Geschiebemergel ein Thonmergel mit fetten, breiten Streifen, welche mit schmaleren Sandschichten wechseln. Da auf Blatt Garnsee jeder Aufschluss dieser Schichten fehlt, ist das Vorhandensein dieses Thonmergels nicht festzustellen.

Auf dem zweiten Geschiebemergel liegt eine Sandschicht, welche, wie bei Neuenburg, an zwei Stellen ein Kohlenflötzchen enthält. Dann folgen nach oben die unteren Bänke des Unteren Thonmergels, der mächtige Spathsand und der erste Untere Geschiebemergel.

Was nun die Geschiebe betrifft, so sind eruptive und sedimentäre vorhanden. Silurische finden sich vorwiegend auf der nördlichen Hälfte des Blattes und Kreidegeschiebe gleichmässig über das Blatt vertheilt, auf den Thalgehängen des Liebethals häufig senone. Auch ein Cenomangeschiebe mit Versteinerungen habe ich gefunden.

Diluvialfauna fand sich im ersten Unteren Spathsand, im Unteren Geschiebemergel und in dem mächtigen Spathsand; in ersterem Cardium edule L., Cyprina islandica L. und Venus sp., im Geschiebemergel Yoldia arctica Gray, im Spathsand Nassa reticulata L., Dreissensia polymorpha, Ostrea edulis L., Mytilus sp., Yoldia arctica Gray, Cardium edule L. und echinatum L., Cyprina islandica L., Venus sp., Tellina solidula Pult und Mactra Dac. (nach Bestimmung des Herrn Professor von Martens.)

Der erste Untere Geschiebemergel ist meist nicht als eine feste Bank entwickelt, sondern, wie auch auf Blatt Marienwerder, wechseln feste Bänke mit sandigen. Auf dem Gehänge tritt die abweichende Bildung dieses Geschiebemergels hervor. Da nun die festen Bänke auch nur eine geringe Mächtigkeit haben, so sind sicher am Gehänge Rutschungen eingetreten und darauf die geringe Entfernung mehrerer Bänke vom Unteren Thonmergel zurückzuführen. Denn die Spathsandschicht über dem Thonmergel ist sehr mächtig.

Auch der zweite Untere Geschiebemergel liegt am unteren Theile des Gehänges mehrfach an der Oberfläche.

Der Thonmergel (dh). Von diesen liegen zwei Bänke vor. Die Obere ist nur durch Auffaltung am Grossen See und bei den Ausbauen von Zigahnen am Grossen Torfbruch an die Oberfläche gelangt. Die Untere liegt im unteren Theile des Gehänges mehrfach an der Oberfläche, in langem Zuge bei Sedlinen und Rospitz.

Der Spathsand (ds). Von diesem liegen drei Schichten vor. Auf dem Plateau liegt nur der oberste Spathsand, während am Gehänge auch der zweite, mächtige in ausgedehnter Fläche vorhanden ist. Bei beiden wechselt die Farbe von gelb zu weiss, sie sind meist feinkörnig, aber auch grandig, häufig wechsellagernd. Lager von Kies bezw. Grand (dg) finden sich häufig und werden bei Wegebauten benutzt. Der unter dem zweiten Geschiebemergel lagernde Spathsand ist sehr feinkörnig und enthält Glimmerblättchen.

Das Obere Diluvium.

Im Oberen Diluvium haben wir Höhen diluvium und Thaldiluvium zu unterscheiden. Ersteres gliedert sich in Oberen Geschiebemergel und Oberen Sand (Geschiebesand). Der Obere Geschiebemergel (&m) bedeckt den grösseren Theil der Höhenplatte bis zu den grössten Höhen des Blattes, also bis 332 Fuss. In dem unter 210 Fuss Höhe gelegenem Theile des Blattes ist er durch Erosion zerstört. Gleich dem Unteren Geschiebemergel ist er ein Gemisch von Thon, Feinsand, Sand, kleinen und grossen Geschieben und Blöcken mit etwa 10 bis 12 pCt. Kalkstaub, hat aber meist nur gelbbraune Farbe, während der Untere Geschiebemergel gewöhnlich grau ist und nur oberflächlich durch Oxydation die gleiche gelbbraune Farbe annimmt. Oberflächlich ist sowohl der Obere wie Untere Geschiebemergel entkalkt und in Geschiebelehm umgewandelt.

Der Obere Sand (@s), das Verwitterungsprodukt des Oberen Geschiebemergels, ist grandig, mit Geschieben vermengt nördlich von Gross Bandtken. Auf einer grösseren Fläche ebenda lagert Oberer Sand über unterdiluvialen Sand, ebenfalls mit Geschieben.

Der Thalsand (∂as) findet sich am Niederungsrand, von Rundewiese bis Sedlinen in breiter Fläche und in den Erhebungszügen innerhalb des Alluvium. Er ist ein mittelkörniger Sand, vielfach an der Oberfläche humos und zuweilen durch Beimengung von Eisenhydroxyd röthlich gefärbt.

Das Alluvium.

Das Alluvium nimmt den grössten Theil der Niederung ein und ist auf dem Gehänge und Plateau gegenüber den diluvialen Bildungen in geringerem Maasse vertreten mit Ausnahme des Dünensandes, der namentlich in der Königlichen Jammyer Forst weite Flächen bedeckt.

In der Niederung findet sich Schlick nur in kleiner Fläche, Moormergel lagert im grössten Theile derselben und Moorerde über Torf und Sand. In dem Gehänge und dem Plateau ist stellenweise Torf, in kleineren Flächen Moorerde vorhanden. Der Dünensand nimmt vom südlichen Theil des Gehänges die grösste Fläche ein.

Der Schlick (ast) liegt nur in der Nordwestecke des Blattes, an der Oberfläche als Lehm, nach der Tiefe als Thon entwickelt. Er lagert zum Theil auf Torf und Sand.

Der Moormergel (akh) ist meist nur Oberflächenboden, daher ist auf der Karte stets die unterlagernde Schicht angegeben: Torf, Schlick und Spathsand. An einzelnen Stellen wird er mächtiger.

Die Moorerde (ah). Ueber zwei Meter mächtig lagert diese in der Umgebung von Garnsee. Moorerde über Sand ist am westlichen Rande des Thalsandes vorhanden, ausserdem westlich von Gr. Bandtken und Garnsee. Sandige Moorerde über Torf ist in der Niederung sehr verbreitet.

Der Torf (at) ist in der Niederung von Moorerde und Moormergel bedeckt. Unter den Torfablagerungen der Niederung ist der in der Umgegend von Treugenkohl befindliche Torf von Interesse. Von Moormergel bedeckt, nimmt derselbe nach der Tiefe an Kalkgehalt so zu, dass er in Folge der massenhaften Anhäufungen von

Kalkkügelchen zwischen den Pflanzenfasern in trockenem Zustande hellgraue bis weissliche Färbung zeigt. Im Volksmund heisst er deshalb "Weisser Torf". Zwei Gebiete, wo dieser "weisse Torf" vorwiegt, sind auf der Karte als Wiesenkalk eingetragen. Natürlich ist diese Grenze, da sie oberflächlich nicht ist, durch Bohrungen nur annähernd ermittelt. Der "weisse Torf" findet sich in der ganzen Umgebung von Treugenkohl, aber nicht abgrenzbar. Auch bei Ellerwalde findet er sich. Torf an der Oberfläche findet sich in der Niederung bei Rospitz und Sedlinen, am Gehänge und auf dem Plateau vorwiegend.

Der Sand (as) ist an der Oberfläche humos und im Feldchen bei Ruden vorhanden. Sand über thonigem Schlick lagert nördlich vom Vorwerk Hohensee.

Der Dünensand (D) ist an der Oberfläche humos. Bei tieferen Aufschlüssen kann man mehrere humose Horizonte beobachten. Er ist namentlich in dem Südwesttheil des Blattes sehr verbreitet. Auch die bei Ellerwalde und Gr. Paradies aus Torf und Moormergel auftauchenden, in der Längsrichtung des Weichselthales streichenden schmalen und langen Sandrücken, welche auf der Karte als Thalsande verzeichnet wurden, sind (nach Jentzsch) vielleicht als Dünensand zu betrachten.

Die Abrutsch- und Abschlemm-Massen (a) setzen sich durch Herunterschwemmen und Abrutschen der Verwitterungsmasse nach den Thalsohlen ab. Dieselben sind auf den Gehängen des Weichsel- und Liebethals, sowie an den kleinen Einsenkungen innerhalb des Plateaus vorhanden.

II. Agronomisches.

Die Beschaffenheit des Bodens ist eine mannigfaltige; es sind vertreten der Lehm-, Thon-, Grand-, Sand-, Humusund Kalkboden. Den grössten Theil des Blattes nimmt der Lehm- bezw. lehmige Boden des Oberen Geschiebemergels ein.

Der Lehm- bezw. lehmige Boden.

Der Lehm- bezw. lehmige Boden ist im Gehänge und auf dem Plateau vorhanden. Auf dem ersteren ist er vielfach sandig und geht zum Theil in Sand über, dann aber auch humos. liegt nur Lehm vor. Bei den grösseren Flächen, z. B. bei Rospitz, im Klein Ottlauer Waldgebiet, im Belauf Dianenberg und westlich von Gr. und Kl. Bandtken ist die Lehmverwitterung eine geringere und in Folge dessen der Lehm fester. Bei der Wechsellagerung des unterdiluvialen Lehms mit Sand ist der Lehm lockerer und im oberen Theil sandiger. Bohrungen im Klein-Bandtker Wald geben ein gutes Profil. Dieselben befinden sich auf der Bohrkarte im Feld AllI.

Im Klein Ottlauer Wald ist auch ein Profil

Man sieht aus beiden Profilen, dass am Fusse der Gehänge die Mächtigkeit des lehmigen Sandes anwächst, während im Grenzgebiete zum Plateau der feste Lehm vorragt. Durch eine Bohrung und Aufschlüsse sind Ueberlagerungen von Lehm und Mergel über Sand nachgewiesen. Bhrg. B. III85 Bhrg. C. IV (Grube) Bhrg. A. IV (Strasseneinschnitt)

A. IV. 89 Hohlweg

 $\begin{array}{cc} \mathbf{L} & \mathbf{9} \\ \overline{\mathbf{M}} & \mathbf{32} \\ \overline{\mathbf{S}} & \mathbf{20} \end{array}$

Auf dem Plateau ist der Lehmboden durchweg ein guter Boden, dessen Güte indessen je nach der Lage wechselt. An stärker geneigten Flächen tritt der Mergel nahe an die Oberfläche und könnte in Gruben gewonnen werden.

Der Thonboden.

Von dem Thonboden lagert in dem Nordwestgebiete eine grössere Fläche, nämlich Schlick. Es ist ein schwerer Boden, an der Oberfläche humos und zum Getreidebau benutzt.

Der Thonboden des Thonmergels tritt nur als schmales Band am Abhang und im Liebethal bodenbildend an die Oberfläche. Selbst hier ist er nicht als reiner Thonboden vorhanden, sondern theils durch übergerutschte Sandmassen verdeckt, theils verwittert in thonigen Sand, theils überhaupt als sandiger Thon ausgebildet, in allen Fällen mit Thonmergeluntergrund. Da der Thonmergel undurchlässiger Boden ist, so finden sich bei seinem Ausgehenden an der Grenze zum hangenden Sand vielfach Quellen. Als tieferer Untergrund des Sandes beeinflusst er weithin dessen Grundwasserstand und somit auch seine Ertragsfähigkeit.

Eine gauze Reihe von Gruben im Thonmergel bei Rospitz, Bialken, Boggusch, Sedlinen und Rundewiese liefern Material zur Ziegelbrennerei.

Der Sand- und Grandboden.

Der alluviale Sandboden befindet sich stets in verhältnissmässig niedrigerem Gebiete, also ist er frisch und um so mehr ertragsfähig, da seine Ackerkrume einen starken Humusgehalt aufweist. Auf Blatt Garnsee findet er sich bei Rospitz und im Rudener Thälchen.

Der Sandboden des oberdiluvialen Thalsandes ist mittelkörnig, sehr gleichmässig und in der Ackerkrume enthält er Humus, dessen Menge wechselt. Er wird als Kartoffelland benutzt, doch ist der Ertrag wenig ergiebig.

Der unterdiluviale Sandboden ist in der Tiefe kalkhaltig und hat vielfach einen niedrigen Grundwasserstand. Er wird namentlich als Kartoffelboden benutzt, aber auch für Hafer und andere Getreidearten.

Grand boden findet sich am Danziger Berg in der Südostecke des Blattes und am Gniellitzsee.

Der Humusboden.

Der Humusboden, welcher sich sowohl in den Rinnen und Becken findet, als auch in der Niederung, ist grösstentheils als Wiesenland benutzt worden, wozu er sich, seiner niederen und nassen Lage wegen, besonders eignet. In der Niederung wird meist Torf unter demselben angetroffen, nach der Grenze mit dem Thalsand aber auch Sand. Auf der Höhe bilden vorwiegend Sand und Mergel den Untergrund. Dabei schwankt die Mächtigkeit des Humusbodens auf der Höhe wie in der Niederung bedeutend, von zwei Decimetern bis zu fünfzehn und darüber. Theilweise ist der Humusboden als Ackerland benutzt worden und hat namentlich beim Rübenbau Verwendung gefunden. Bei Sedlinen sind Versuche mit Moordammkulturen gemacht.

Der Kalkboden.

Der Kalkboden kommt an der Oberfläche nur in Verbindung mit Humusboden als Moormergel vor. Der Kalkgehalt desselben ist ein sehr wechselnder, ebenso wie die Mächtigkeit. Bald bildet derselbe nur den Oberflächenboden und sein Torf resp. Sanduntergrund ist mit wenigen Decimetern zu erreichen, bald wird er mit zwei Meter nicht durchbohrt. Eine Eigenthümlichkeit auf Blatt Garnsee ist die, dass der Kalkgehalt des Bodens nicht immer mit dem Moormergel abschliesst, sondern sehr häufig noch in den Torfgrund übergeht und sich erst hier nach der Tiefe verliert. In

Blatt Garnsee.

dem ersten Theile dieser Erläuterung habe ich schon diese Kalkbildungen (Kalkkügelchen) im Torf besprochen.

Benutzt wird der Moormergelboden hauptsächlich zum Tabaksbau, dann auch zur Rüben- und Gemüsezucht und dann noch als Wiesen- oder Weideland.

Reiner Kalkboden findet sich nirgends an der Oberfläche und als Untergrund des Moormergels nur an einer Stelle östlich von Boggusch.

III. Analytisches.

Die im Folgenden mitgetheilten Analysen von Bodenarten dieses Blattes und der drei mit ihm zur selben Kartenlieferung 86 gehörigen Nachbarblätter sind im Laboratorium der Königlichen Geologischen Landesanstalt zu Berlin durch Dr. R. Gans ausgeführt, diejenigen der übrigen westpreussischen Blätter daselbst durch Dr. Curt Gagel, Dr. Paul Herrmann, Dr. A. Hölzer und Dr. Georg Lattermann. Durch Dr. A. Jentzsch wurden der Vollständigkeit und des Vergleichs wegen einige ältere Analysen hinzugefügt und Mittelwerthe für die Zusammensetzung der Hauptbodenarten berechnet.

Die Methoden sind beschrieben in "Laufer und Wahnschaffe, Untersuchungen des Bodens der Umgegend von Berlin, Abhandlungen zur geologischen Specialkarte von Preussen, Band III, Heft 2, S. 1—283", wo sich auch die Analysen sämmtlicher Böden der Berliner Umgegend zusammengestellt finden.

Die allgemeineren chemischen Verhältnisse des westpreussischen Bodens, sowie aller älteren Analysen desselben sind behandelt in "Jentzsch, Die Zusammensetzung des altpreussischen Bodens, Schriften der physikalischen ökonomischen Gesellschaft zu Königsberg, 1879, S. 1—60" und betreffs der Torfe in "Jentzsch, Bericht über die Moore der Provinz Preussen, Protokoll der 5. Sitzung der Königlichen Centralmoorkommission zu Berlin am 13. December 1877, und zweiter vermehrter Abdruck in Schriften d. physikal. ökonom. Gesellsch., 1878, S. 91 bis 131", beide in Sonderabzügen bei W. Koch in Königsberg 1878 und 1879 erschienen.

Im Einzelnen ist über die angewandten Methoden Folgendes zu bemerken:

- 1. Die mechanischen Analysen wurden mit 100 Gramm Feinerde vorgenommen, welche durch Sieben von etwa 500 Gramm Gesammtbodens mittels des Zweimillimeter-Siebes erhalten wurde.
- 2. Die Kohlensäure wurde im Gesammtboden, theils aus dem durch Behandeln mit Salzsäure erhaltenen Gewichtsverlust des Bodens in Mohr'schen Apparaten, theils durch volumetrische Messung der Kohlensäure mit dem Scheibler'schen Apparat bestimmt. Erstere Methode wurde bei geringen Mengen Kohlensäure gewählt.
- 3. Die Bestimmung des Humusgehaltes, d. h. des Gehaltes an wasser- und stickstofffreier Humussubstanz geschah nach der Knop'schen Methode. Je 3—8 Gramm bei 110°C. getrockneten Gesammtbodens wurden verwendet und die gefundene Kohlensäure nach der Annahme von durchschnittlich 58 pCt. Kohlenstoff im Humus auf Humus berechnet.
- 4. Bei Ermittelung der verfügbaren mineralischen Nährstoffe wurde nach Wolff, "Anleitung zur chemischen Untersuchung landwirthschaftlich wichtiger Stoffe", Seite 28, gearbeitet. Einstündiges Kochen von 50 Gramm lufttrockenen Bodens mit concentrirter Salzsäure auf dem Sandbade.
- 5. Der Bestimmung der Aufnahmefähigkeit für Stickstoff wurde "Knop, Landwirthschaftliche Versuchsstationen XVI, 1885", zu Grunde gelegt. 50 Gramm Feinerde (unter 0,5 Millimeter Durchmesser mittels eines Lochsiebes erhalten) wurden mit 100 Cubikcentimeter Salmiaklösung nach Knop's Vorschrift behandelt und die aufgenommene Stickstoffmenge auf 100 Gramm Feinerde berechnet. Die Zahlen bedeuten also nach Knop: Die von 100 Gewichtstheilen Feinerde aufgenommenen Mengen Ammoniak, ausgedrückt in Cubikcentimetern des darin enthaltenen und auf 0°C. und 760 Millimeter Barometerstand berechneten Stickstoffs.

6. Der Stickstoffgehalt wurde in dem bei 110° C. getrockneten Boden nach der Vorschrift von Varrentrapp und Will meist durch gleichlaufende Analysen bestimmt. Das durch die Verbrennung mit Natronkalk sich entwickelnde Ammoniak wurde in verdünnter Salzsäure aufgefangen, die Chlorammoniumlösung zur Verjagung überschüssiger Salzsäure und Beseitigung der durch die Verbrennung entstandenen Nebengebilde auf dem Wasserbade bis fast zum Trocknen eingedampft, mit Wasser aufgenommen, filtrirt und wiederum auf etwas weniger als 10 Cubikcentimeter Flüssigkeit eingedampft. Diese Lösung wurde in Knop's, von Wagner verbessertem, Azotometer mit Bromlauge zersetzt und die räumlich gemessene Stickstoffmenge unter Berücksichtigung des Druckes, der Temperatur u. s. w. auf Gewicht berechnet.

I. Aus dem Bereiche der Blätter Neuenburg, Garnsee, Feste Courbière, Roggenhausen.

A. Bodenprofile und Bodenarten.

Höhenboden.

Lehmboden des Unteren Geschiebemergels. Grube am Wege von Marienhof nach Kozielec (Blatt Neuenburg).

R. GANS.

I. Mechanische und physikalische Untersuchung. a. Körnung.

Tiefe der Ent- nahme Decim.	Geognost. Bezeichnung	Gebirgs- art	Agronom. Bezeichnung	Grand über 2 ^{mm}	2—	1— 0,5 ^{mm}		0,2—	0,1— 0,05 ^{mm}	T		Summa.
2		Lehm		1,6			61,8			9	66,6	100,0
2		(Ackerkrume)	L		2,4	6,8	22,0	22,2	8,4	8,6	28,0	
	d m	Sandiger	_	3,3			68,0			2	28,8	100,1
5—10		Mergel (Untergrund)	SM		3,6	7,4	23, 8	23,2	10,0	7,4	21,4	

b. Aufnahmefähigkeit für Stickstoff nach Knop.

Es nehmen auf:	Ackerkr com Stickst	g	Untergrund ccm g Stickstoff	
100 g Feinboden (unter 2mm)		0,1010 0,1127	40,3 45,5	0,0506 0,0572

c. Wasserhaltende Kraft.

100 ccm bezw. 100 g Feinboden (unter 2^{mm}) halten:	Volum- Proc ccm	krume Gewichts- cente g sser	Untergrund Volum- Gewichts- Procente ccm g Wasser		
Nach zwei Bestimmungen ') .	31,8	19,1	29,0	16,8	

¹⁾ Beide Bestimmungen hatten dasselbe Ergebniss.

II. Chemische Analyse.

a. Thonbestimmung.

Aufschliessung der bei 110°C. getrockneten thonhaltigen Theile mit verdünnter Schwefelsäure (1:5) im Rohr bei 220°C. und sechsstündiger Einwirkung.

Bestandtheile		krume nten des	Untergrund in Procenten des		
Destandinerre	Schlemm- products	Gesammt- bodens	Schlemm- products	Gesammt- bodens	
Thonerde*)	12,204 7,909	4,467 2,895	7,978 5,152	2,298 1,484	
Summa	20,113	7,362	13,180	3,782	
*) Entspräche wasserhaltigem Thon	30,869	11,298	20,1 80	5,812	

b. Kalkbestimmung (nach Scheibler).

Kohlensaurer Kalk im Feinboden (unter 2mm):	Untergrund in Procenten
Nach der ersten Bestimmung	9,26 9,12 9,19

Lehmboden des Unteren Geschiebemergels.

Rospitz (Besitzer Corozinski) (Blatt Garnsee).

R. GANS.

I. Mechanische und physikalische Untersuchung. a. Körnung.

Tiefe der Ent- nahme Decim.	Geognost. Bezeichnung	Gebirgsart	Agronom. Bezeichnung	Grand über 2 ^{mm}	2— 1 ^{mm}	1— 0,5 ^{mm}	S a n		0,1— 0,05 ^{mm}	Th	haltige neile Feinstes unter 0,01 ^{mm}	Summa.
2		Lehm		1,9			59 ,4	ļ		3	8,6	99,9
Z		(Ackerkrume)	L		1,6	5,0	18,8	23,2	10,8	9,8	28,8	
	d m	Mergel		1,5			57,2			4	1,2	99,9
5		(Untergrund)	M		1,6	4,2	18,6	20,4	12,4	11,8	29,4	

b. Aufnahmefähigkeit für Stickstoff (nach ${\tt Knop}$) und c. Wasserhaltende Kraft.

	Tiefe	Aufna	hmefähigk	Wasserhaltende Kraft				
Bezeichnung der Schicht	der Ent-	100 g Feinboden 100 g Feiner (unter 2mm) (unter 0,5mm				100 ccm 100 g Feinboden (unter 2 ^m halten Wasser Volumproc. Gewichtspro		
Sement	nahme	1	nehmen au	n auf Stickstoff		nach zwei Bestimmungen		
		cem	g	ccm	g	ccm	g	
Ackerkrume . Untergrund	2 5	89,8 82,3	0,1128 0,1034	96,5 8 7 ,7	0,1212 0,1102	31,4 35,3	19,8 21,9	

II. Chemische Analyse.

b. Nährstoffbestimmung der Ackerkrume.

Bestandtheile	Auf lufttrockenen Feinboden berechnet in Procenten
1. Auszug mit concentrirter kochender Salzsäure bei einstündiger Einwirkung.	
Thonerde	3,323
Eisenoxyd	3,384
Kalkerde	0,560
Magnesia	0,744
Kali	0,491
Natron	0,146
Kieselsäure	0,105
Schwefelsäure	0,005
Phosphorsäure	0,122
2. Einzelbestimmungen.	
Kohlensäure (gewichtsanalytisch)	0,064
Humus (nach Knop)	0,442
Stickstoff (nach Will-Varrentrapp)	0,052
Hygroscopisches Wasser bei 105° Čels	2,251
Glühverlust ausschl. Kohlensäure, hygroscop. Wasser,	•
Humus und Stickstoff	2,598
In Salzsäure Unlösliches (Thon, Sand und Nicht-	,
bestimmtes)	85,713
Summa	100,000

b. Thonbestimmung.

Aufschliessung der bei 110° C. getrockneten thonhaltigen Theile mit verdünnter Schwefelsäure (1:5) im Rohr bei 220° C. und sechsstündiger Einwirkung.

Bestandtheile	Untergrund in Procenten des Schlemmproducts Gesammtbodens		
Thonerde*)	10,041 7,826	4,137 3 ,224	
Summa *) Entspräche wasserhaltigem Thon	17,867 25,398	7,361 10,464	

c. Kalkbestimmung (nach Scheibler).

Kohlensaurer Kalk im Feinboden (unter 2 ^{mm}):	Untergrund in Procenten
Nach der ersten Bestimmung	6,63 6,71
im Mittel	6,67

Lehmboden des Unteren Geschiebemergels.

Klein-Bandtken (Blatt Garnsee).

R. GANS.

I. Mechanische und physikalische Untersuchung. Körnung.

Tiefe der Ent-	Geognost. Bezeichnung	Gebirgsart	Agronom. Bezeichnung	Grand über		Sand			Thon Th Staub	Summa.		
nahme Decim.	Geog Bezei		Agr Bezei	2 ^{mm}	2— 1 ^{mm}	1— 0,5 ^{mm}		0,2— 0,1 ^{mm}	0,1— 0,05 ^{mm}	0,05— 0,01 ^{mm}	unter 0,01mm	Sun
4	I THORIGHT		1,0	49,6					49,4		100,0	
*	d m	(Ackerkrume)	•		1,0	2,8	12,6	20,8	12,4	12,0	37,4	
10	Thoniger		2,8	53,8					43,4		100,0	
10		Mergel (Untergrund)	TM		1,2	3,2	13,0	22,0	14,4	12,8	30,6	

II. Chemische Analyse.

a. Thonbestimmung.

Aufschliessung der bei $110^{\,0}$ C. getrockneten thonhaltigen Theile mit verdünnter Schwefelsäure (1:5) im Rohr bei $220^{\,0}$ C. und sechsstündiger Einwirkung.

Bestandtheile		krume enten des	Untergrund in Procenten des		
Destandinerre	Schlemm- products	Gesammt- bodens	Schlemm- products	Gesammt- bodens	
Thonerde*)	12,273 8,388	6,063 4,144	7, 404 4, 81 5	3,213 2,090	
Summa	20,661	10,207	12,219	5,303	
*) Entspräche wasserhaltigem Thon	31,043	15,335	18,728	8,128	

b. Kalkbestimmung (nach Scheibler).

Kohlensaurer Kalk im Feinboden (unter 2 ^{mm}):	Untergrund in Procenten
Nach der ersten Bestimmung	13,56 13,73
im Mittel	13,65

Lehmboden des Oberen Geschiebemergels. Einschnitt im Wege von Vorw. Marienhof nach Kozielec, 700 Schritt hinter Marienhof (Blatt Neuenburg).

R. GANS.

I. Mechanische und physikalische Untersuchung.

a. Körnung.

Tiefe der Ent- nahme	Geognost. Bezeichnung	Gebirgs- art	Agronom. Bezeichnung	Grand über 2 ^{mm}	2	1— 0,5 ^{mm}	S a n 0,5 - 0,2mm	0,2	$^{0,1-}_{0,05^{mm}}$	Th Staub		Summa.
2		Thoniger Lehm	TL	1,5			54,6	;		4	3,8	99,9
		(Ackerkrume)			1,6	4,4	16,8	20,8	11,0	9,0	34,8	
	∂m	Mergel		1,8			58,4	ļ		3	9,8	100,0
4	e in	(Untergrund)			2,0	5,2	18,0	21,6	11,6	10,6	29,2	
	Mergel M		3,2			59,8	}		3	7,0	100,0	
6—8		(Tieferer Untergrund)			1,6	4,4	17,4	23,2	13,2	11,6	25,4	

b. Aufnahmefähigkeit für Stickstoff (nach Knop) und c. Wasserhaltende Kraft.

	Tiefe	Aufna	hmefähigk	Wasserhaltende Kraft				
Bezeichnung der Schicht	der Ent-	(unte	einboden : 2 ^{mm})	(unter	Feinerde 0,5 ^{mm})	100 ccm 100 g Feinboden (unter 2mm) halten Wasser Volumproc. Gewichtsproc. nach zwei		
	nahme nehmen auf Stickstoff						mungen	
Ackerkrume . Untergrund	2 4	81,2 51 ,9	0,1020 0,0652	86,9 55,7	0 1092 0,0699	41,2 37,6	25,3 28, 1	

II. Chemische Analyse.

a. Thonbestimmung.

Aufschliessung der bei 110° C. getrockneten thonhaltigen Theile mit verdünnter Schwefelsäure (1:5) im Rohr bei 220° C. und sechsstündiger Einwirkung.

Bestandtheile		krume enten des	l l	grund enten des	Tieferer Untergrund in Procenten des		
Destandmene	Schlemm- products	Gesammt- bodens	Schlemm- products	Gesammt- bodens	Schlemm- products	Gesammt- bodens	
Thonerde*) . Eisenoxyd .	11,404 8,166	4,995 3,577	6,697 4 662	2,665 1,855	6,829 4,880	2,527 1,806	
Summa	19,570	8,572	11,359	4,520	11,709	4,333	
*) Entspräche wasserhalt. Thon .	28,845	12,634	16,939	6,742	17,273	6,391	

b. Kalkbestimmung (nach Scheibler).

Kohlensaurer Kalk im Feinboden (unter 2 ^{mm}):	Untergrund in Procenten	Tieferer Untergrund in Procenten
Nach der ersten Bestimmung	14,31 14,45 14,38	11,70 11,84 11,77

Mergelboden des Oberen Geschiebemergels. Nordöstlich von Milewken, an der Grenze des Gutes gegen Wlosczinitz (Blatt Neuenburg). R. Gans.

I. Mechanische und physikalische Untersuchung.

a. Körnung.

Tiefe der Ent- nahme Decim.	Geognost. Bezeichnung	Gebirgsart	Agronom. Bezeichnung	Grand über 2 ^{mm}	2	1— 0,5 ^{mm}	S a n	0,2	0,1— 0,05 ^{mm}	Th	haltige neile Feinstes unter 0,01 ^{mm}	Summa.
1		Mergel (Ackerkrume)		2,7	0.0		64,2		14.4		3,0	99,9
		•		2,8	2,2	5,4	64,2	24,6	14,4	12,2	3,0	100,0
3	∂m	Desgl. (Untergrund)	M		2,2	4,8	17,2	26,4	13,6	12,6	20,4	
5		Desgl.		2,5			62,2			3	5,4	100,1
J		(Tieferer Untergrund)			2,6	5,2	16,8	24,0	13,6	12,4	23,0	

b. Aufnahmefähigkeit für Stickstoff (nach ${\tt Knop}$) und c. Wasserhaltende Kraft.

Bezeichnung der	Tiefe	Aufna	hmefähigk	Wasserhaltende Kraft			
	der Ent-	_	einboden 0,2 ^{mm})	_	reinerde 0,5mm)	100 ccm 100 g Feinboden (unter2mm) halten Wasser Volumproc. Gewichtsproc.	
Schicht	nahme	1	nehmen au	nach zwei Bestimmungen			
		ccm	g	ccm	g	ccm	mungen
Ackerkrume . Untergrund	1 8	55,1 —	0,0692 —	59,1 51,7	0,0742 0,649	30,1 33, 8	18,9 19,6

Chemische Analyse.

a. Thonbestimmung.

Aufschliessung der bei 110°C. getrockneten thonhaltigen Theile mit verdünnter Schwefelsäure (1:5) im Rohr bei 220°C. und sechsstündiger Einwirkung.

Bestandtheile		krume enten des	l	grund enten des	Tieferer Untergrund in Procenten des		
Destandinene	Schlemm- products	Gesammt- bodens	Schlemm- products	Gesammt- bodens	Schlemm- products	Gesammt- bodens	
Thonerde*) . Eisenoxyd .	8,174 5,617	2,697 1,854	6,9 40 4,957	2,290 1,636	7,027 4,933	2,488 1,746	
Summa	13,791	4,551	11,897	3,926	11,960	4,234	
*) Entspräche wasserhalt. Thon	20,675	6,823	17,554	5,793	17,774	6,292	

b. Kalkbestimmung (nach Scheibler).

Kohlensaurer Kalk im Feinboden (unter 2mm)	Untergrund in Procenten	Tieferer Untergrund in Procenten
Nach der ersten Bestimmung	9,53 9,67 9,60	10,91 11,19 11,05

Lehmboden des Oberen Geschiebemergels.

Rospitz (Besitzer Corozinski) (Blatt Garnsee).

R. GANS.

I. Mechanische und physikalische Untersuchung.a. Körnung.

Tiefe der Ent- nahme	Geognost. Bezeichnung	Gebirgsart	Agronom. Bezeichnung	Grand über 2 ^{mm}	2_	1— 0,5 ^{mm}		0,2—	0,1— 0,05 ^{mm}	T	haltige neile Feinstes unter 0,01 ^{mm}	Summa.
2		Thoniger Lehm	TL	0,9			57,0)		4	12,2	100,1
2	∂m	(Ackerkrume)	1 L		0,8	3,2	22,4	21,8	8,8	7,2	35,0	
	0111	Thoniger		2,6			41,0)		5	66,4	100,0
6		Mergel (Untergrund)	TM		1,2	3,0	10,2	16,2	10,4	12,2	44,2	

b. Aufnahmefähigkeit für Stickstoff (nach Knop) und c. Wasserhaltende Kraft.

	Tiefe	Aufna	hmefähigk	Wasserhaltende Kraft				
Bezeichnung der Schicht	der Ent- nahme	(unter	einboden : ^{2mm}) nehmen au	Feinerde 0,5mm) ff	halten Volumproc. nach	100 g (unter2 ^{mm}) Wasser Gewichtsproc.		
		ccm	g	ccm	g	Bestimmungen		
Ackerkrume . Untergrund	2 6	78,8 8 9, 8	0,0990 0,1128	82,3 94,3	0,1034 0,1184	37, 9 43,0	22,1 27,8	

II. Chemische Analyse.

a. Nährstoffbestimmung der Ackerkrume.

Bestandtheile											Auf lufttrockenen Feinboden berechnet in Procenten				
1. Auszug m bei	it c										Sal	zsi	iur	e	
Thonerde															2,884
Eisenoxyd .															3,190
Kalkerde															0,396
Magnesia															0,715
Kali															0,563
Natron						•									0,114
Kieselsäure .															0,100
Schwefelsäure															0,006
Phosphorsäure															0,076
	2. E	linz	elt	oes	tin	ımı	un	gen	۱.						
Kohlensäure (gew	ich	tsa	na	lvt	isc	h)	٠.					_		0,022
Humus (nach	Κn	a o)								Ċ			·	0,560
Stickstoff (nac	h V	Vií	ĺ-1	Va	\mathbf{rr}	en	tra	ล เตร	o)						0,066
Hygroscop. W	asse	r t	ei	10	5 0	Ce	ls.	. 1. 1							2,134
Glühverlust au	ssch	ıl. I	ζoł	ıle	nsä	iur	e. l	ıνg	ros	co	r.a	Wa	sse	r.	
Humus und															2,756
In Salzsäure	Unl	ösli	che	98	(T	ho:	a,	Sa	nd	u	nd	N:	ich	t-	,
bestimmtes)															86,418
											-	Sui	nm	9.	100,000

b. Thonbestimmung.

Aufschliessung der bei 110°C. getrockneten thonhaltigen Theile mit verdünnter Schwefelsäure (1:5) im Rohr bei 220°C. und sechsstündiger Einwirkung.

Bestandtheile	Untergrund in Procenten des Schlemmproducts Gesammtbod				
Thonerde*)	9,836 6,656	5,548 3,754			
Summa *) Entspräche wasserhaltigem Thon	16,492 24,879	9,302 14,032			

c. Kalkbestimmung (nach Scheibler).

Kohlensaurer Kalk im Feinboden (unter 2mm):	Untergrund in Procenten
Nach der ersten Bestimmung	8,12 8,29
im Mittel	8,21

Mergelboden des Oberen Geschiebemergels.

Gross-Bandtken an der Chaussee am Kartenrande (Blatt Garnsee).

R. Gans.

I. Mechanische und physikalische Untersuchung. Körnung.

Tiefe der Ent- nahme Decim.	Geognost. Bezeichnung	Gebirgs- art	Agronom. Bezeichnung	Grand über 2 ^{mm}	2—	1— 0,5 ^{mm}	S a n	0,2—	0,1— 0,05 ^{mm}	T	haltige heile Feinstes unter 0,01 ^{mm}	Summa.
2		Mergel		3,8			55,4			4	10,8	100,0
2		(Ackerkrume)			1,2	3,4	15,8	22,4	12,6	11,6	29,2	
	∂m	Desgl.	M	3,5		'	54,4	· · · · · ·		4	12,0	99,9
5		(Untergrund)			1,2	3,0	15,8	21,8	12,6	11,6	30,4	

II. Chemische Analyse.

a. Thonbestimmung.

Aufschliessung der bei 110°C. getrockneten thonhaltigen Theile mit verdünnter Schwefelsäure (1:5) im Rohr bei 220°C. und sechsstündiger Einwirkung.

Bestandtheile	in Proce	krume nten des Gesammt- bodens	Untergrund in Procenten des Schlemm- Gesammt- products bodens		
Thonerde*)	8,842 5,320	3,404 2,171	8,486 5,135	3,564 2,157	
Summa	13,662	5,575	13,621	5,721	
*) Entspräche wasserhaltigem Thon	21,100	8,609	21,464	9,015	

b. Kalkbestimmung (nach Scheibler).

Kohlensaurer Kalk im Feinboden (unter 2 ^{mm}):	Untergrund in Procenten	
Nach der ersten Bestimmung	11,02 11,11	
im Mittel	11,07	

Sandboden des Thalsandes.

Bialken (Blatt Garnsee).

R. GANS.

I. Mechanische und physikalische Untersuchung. a. Körnung.

Tiefe der Ent- nahme Decim	Geognost. Bezeichnung	Gebirgsart	Agronom. Bezeichnung	Grand über 2 ^{mm}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Summa.
2	∂as ∵.	Sand (Ackerkrume)	S	0,0	99,7 0,3 3,4 30,0 58,4 7,8 0,1 0,1 0,2	100,0

b. Aufnahmefähigkeit für Stickstoff (nach Knop) und c. Wasserhaltende Kraft.

	Tiefe	. Aufna	hmefähigl	Wasserhaltende Kraft			
Bezeichnung der	der Ent-		einboden r 2 ^{mm})	Feinerde 100 ccm 100 g Feinboden (unter 2 halten Wasser			
Schicht	nahme	į	nehmen aı	Volumproc. Gewichtsproc. nach zwei			
		ccm	g	ccm	mungen g		
Ackerkrume . 2		4,9	0,0061	7,6	0,0095	32,0	16,8

Nährstoffbestimmung der Ackerkrume.

Bestandtheile	Auf lufttrockener Feinboden berechnet in Procenten
 Auszug mit concentrirter kochender Salzsäure bei einstündiger Einwirkung. 	
	0.455
Thonerde	0,175
Eisenoxyd	0,299
Kalkerde	1,056
Magnesia	0,181
Kali	0,060
Natron	0,090
Kieselsäure	0,027
Schwefelsäure	Spuren
Phosphorsäure	0,036
2. Einzelbestimmungen.	
Kohlensäure (gewichtsanalytisch)	0,551
Humus (nach Knop)	0,031
Stickstoff (nach Will-Varrentrapp)	0,005
Hygroscop. Wasser bei 105 ° Cels	0,063 •
Glühverlust ausschl. Kohlensäure, hygroscop. Wasser, Humus und Stickstoff	0,424
In Salzsäure Unlösliches (Thon, Sand und Nichtbestimmtes)	97,002
Summa	100,000

Niederungsboden.

Thonboden des Schlickes.

Klein-Nebrau, Chaussee nach Schinkenberg, hinter der Besitzung Witt, den Kathen gegenüber (Blatt Neuenburg).

R. GANS.

I. Mechanische und physikalische Untersuchung. a. Körnung.

Tiefe der Ent- nahme Decim.	5 9	Gebirgs- art	Agronom. Bezeichnung	Grand über 2 ^{mm}	2_	1— 0,5 ^{mm}	S a n 0,5— 0,2 ^{mm}	0,2-		Tì	haltige neile Feinstes unter 0,01 ^{mm}	Summa.
2		Thon	,	0,0			18,0			8	2,0	100,0
2		(Ackerkrume)	_		0,0	0,4	1,8	3,8	12,0	34,4	47,6	
	ast	Denel	T	0,0			12,2			8	7,8 ·	100,0
5—10		Desgl. (Untergrund)			0,0	0,0	0,2	1,4	10,6	44,2	43,6	

b. Aufnahmefähigkeit für Stickstoff (nach Knop).

Bezeichnung der Schicht	Tiefe der Ent- nahme	100 g Fo (unter	einboden r 2 ^{mm})		Feinerde 0,5 ^{mm})
Ackerkrume	2	123,9	0,1556	124,1	0,1559
	5—10	116,6	0,1464	116,6	0,1464

a. Nährstoffbestimmung der Ackerkrume.

Bestandtheile										Auf lufttrockenen Feinboden berechnet in Procenten					
1. Auszug mi bei	it c										Sal	zsä	ur	9	
Thonerde										•					3,686
Eisenoxyd															4,385
Kalkerde															0,769
Magnesia															0,972
Kali															0,301
Natron					•										0,155
Kieselsäure .															0,125
Schwefelsäure															0,008
Phosphorsäure															0,184
-	2. E	lins	zell	hes	tin	m	ıın:	CAT	1						· ·
								_							0.070
Kohlensäure (g	YOW.	ıcn	เธล	na.	ıyı.	ISC.	n)	•	٠	•	٠	•	•	•	0,070
Humus 1) (nach	L.A.	no.	P)	•	•	•	٠,	•	•	٠.	٠	•	•	•	1,099
Stickstoff ²) (na	cn	W:	111	- V	ar	re	n t	ra	pр)	•	•	•	•	0,167
Hygroscop. W														•	3,083
Glühverlustaus							э , п	уg	ros	coj	p . \	N a	sse	r,	× 0.00
Humus und					•		•	÷	٠,	•	٠,	:-	٠.	.•	5,372
In Salzsäure		osi	ıch	es	(.)	'hc	n,	Sa	ınd	u	nd	N.	ıch	t-	50.004
bestimmtes)	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	79,624
											-			18	100,000

Im Untergrunde: 1) Humus 0,529 pCt., 2) Stickstoff 0,72 pCt.

b. Thonbestimmung.

Aufschliessung der bei 110°C. getrockneten thonhaltigen Theile mit verdünnter Schwefelsäure (1:5) im Rohr bei 220°C. und sechsstündiger Einwirkung.

Bestandtheile	Untergrund in Procenten des Schlemmproducts Gesammtbodens				
Thonerde*)	8,811 5,165	7,736 4,535			
Summa *) Entspräche wasserhaltigem Thon	13,976 22,286	12,271 19,567			

c. Kalkbestimmung (nach Scheibler).

Mit dem Scheibler'schen Apparate ist sowohl bei der Ackerkrume als auch bei dem Untergrunde kein kohlensaurer Kalk nachweisbar.

Niederungsboden.

Thonboden des Schlickes.

Gross-Nebrau III. B. 88 (Blatt Neuenburg).

R. Gans.

I. Mechanische und physikalische Untersuchung.

a. Körnung.

Tiefe der Ent- nahme Decim.	Geognost. Bezeichnung	Gebirgsart	Agronom. Bezeichnung	Grand über 2 ^{mm}	2— 1 ^{mm}	1— 0,5 ^{mm}		0,2—	0,1— 0,05 ^{mm}	Th Staub	haltige eile Feinstes unter 0,01 ^{mm}	Summa.
2	a st	Schwach sandiger Thon (Ackerkrume)	šт	0,0	0,0	0,8	35 ,4	10,0	21,6	37,2	27,4	100,0
5	ee 50	Desgl. (Untergrund)	51	0,0	0,0	0,2	34,8	9,0	24,6	38,0	5,2 27,2	100,0

b. Aufnahmefähigkeit für Stickstoff (nach Knop).

Bezeichnung der Schicht	Tiefe der Ent- nahme	100 g F (unter	einboden : ^{2mm})		Teinerde 0,5 ^{mm})
Ackerkrume	2	86,1	0,1082	86,7	0,1089
	5	86,1	0,1082	87,0	0,1093

a. Nährstoffbestimmung der Ackerkrume.

Bestandtheile	Auf lufttrockenen Feinboden berechnet in Procenten
 Auszug mit concentrirter kochender Salzsäure bei einstündiger Einwirkung. 	
Thonerde	2,318
Eisenoxyd	2,894
Kalkerde	0,496
Magnesia	0,642
Kali	0,257
Natron	0,146
Kieselsäure	0,106
Schwefelsäure	0,006
Phosphorsäure	0,202
2. Einzelbestimmungen.	
Kohlensäure (gewichtsanalytisch)	0,045
Humus ¹) (nach Knop)	1,009
Stickstoff ²) (nach Will-Varrentrapp)	0,135
Hygroscop. Wasser bei 105 ° Cels	1,767
Glühverlust ausschl. Kohlensäure, hygroscop. Wasser,	•
Humus und Stickstoff	3,400
In Salzsäure Unlösliches (Thon, Sand und Nicht-	,
bestimmtes)	86,577
Summa	100,000

Im Untergrunde: 1) Humus 0,441 pCt., 2) Stickstoff 0,082 pCt.

b. Thonbestimmung.

Aufschliessung der bei 110°C. getrockneten thonhaltigen Theile mit verdünnter Schwefelsäure (1:5) im Rohr bei 220°C. und sechsstündiger Einwirkung.

Bestandtheile	Untergrund in Procenten des Schlemmproducts Gesammtbodens			
Thonerde*)	7,885 4,600	5,141 2,999		
Summa *) Entspräche wasserhaltigem Thon	12,485 19,944	8,140 13,003		

c. Kalkbestimmung (nach Scheibler).

Mit dem Scheibler'schen Apparate ist sowohl bei der Ackerkrume als auch beim Untergrunde kein kohlensaurer Kalk nachweisbar.

Niederungsboden.

Humusboden des Moormergels.

Rundewiese, 100 Schritt östlich von IV. D. 37 (Blatt Neuenburg).

R. GANS.

I. Mechanische und physikalische Untersuchung.a. Körnung.

Fundort	Tiefe der Ent- nahme Decim.	Geognost. Bezeichnung	Gebirgsart	Agronom. Bezeichnung	Sandgehalt
850 Schritte nordwestlich des Gutes (Probe I)	2	akh	Kalkig- sandiger	кѕн	78,60 pCt.
2300 Schritte südwestlich des Gutes (Probe II)	2	акп	Humus	KOII	74,60 pCt.

b. Aufnahmefähigkeit für Stickstoff (nach Knop) und c. Wasserhaltende Kraft.

Bezeichnung der Schicht	Tiefe der Ent- nahme	100 g Fo	hmefähigk einboden 2 ^{nm}) nehmen au	100 g F (unter	Feinerde 0,5 ^{mm})	Wasserhaltende Kraft 100 ccm 100 g Feinboden (unter 2mm) halten Wasser Volumproc. Gewichtsproc. nach zwei	
		ccm	ccm g		g	Bestimmungen g	
Probe I 850 Schritte nord- westlich des Gutes	2	72,3	0,908	74,2	0,0932	60,1	45,8
Probe II 2300 Schritte süd- westlich des Gutes	2	61,6	0,0774	67,1	0,0843	51,8	37,2

a. Kalkbestimmung (nach Scheibler).

Kohlensaurer Kalk im Feinboden (unter 2 ^{mm}):	Probe I in Procenten	Probe II in Procenten
Nach der ersten Bestimmung	5,42	3,57
" " zweiten "	5,51	3,66
im Mittel	5,47	3,62

b. Humusbestimmung (nach Knop).

Humus	ge	hal	t i	m	Fe	inl	ood	len	(u	nte	er :	2m1	n):		In Procenten
Probe	I II			•		•					•	•	•		5, 905 5,022

Niederungsboden.

Humusboden des Moormergels.

Bialken (Blatt Garnsee).

R. GANS.

I. Mechanische und physikalische Untersuchung. a. Körnung.

Tiefe der Entnahme Decimeter	Geognostische Bezeichnung	Gebirgsart	Agronomische Bezeichnung	Sandgehalt
2	akh	Kalkiger Humus	кн	29,2 pCt.

b. Aufnahmefähigkeit für Stickstoff (nach Knop) und c. Wasserhaltende Kraft.

	Tiefe	Aufna	hmefähigk	eit für St	ickstoff		haltende raft
Bezeichnung der Schicht	der Ent- nahme	(unter	einboden : 2 ^{mm}) nehmen at	(unter	Feinerde 0,5 ^{mm}) ff	100 ccm 100 g Feinboden (unter 2mm) halten Wasser Volumproc. Gewichtsproc. nach zwei Bestimmungen	
	jj	ccm	g	ccm	g	ccm	g
Ackerkrume .	2	78,5	0,0986	82,9	0,1041	73,5	64,7

II. Chemische Analyse.
Nährstoffbestimmung der Ackerkrume.

Bestandtheile	Auf lufttrocke Feinboden berechnet in Procenter
1. Auszug mit concentrirter kochender Salzsäure	
bei einstündiger Einwirkung.	
Thonerde	0,423
Eisenoxyd	8,325
Kalkerde	12,720
Magnesia	0,732
Kali	0,157
Natron	0,270
Kieselsäure	0,150
Schwefelsäure	0,126
Phosphorsäure	1,827
2. Einzelbestimmungen.	
Kohlensäure (gewichtsanalytisch)	7,535
Humus (nach Knop)	15,561
Stickstoff (nach Will-Varrentrapp)	1,220
Hygroscopisches Wasser bei 105° Cels	8,729
Glühverlust ausschl. Kohlensäure, hygroscopisches Wasser, Humus und Stickstoff	12,676
In Salzsäure Unlösliches (Thon, Sand und Nichtbestimmtes)	29,549
Summa	100,000

Niederungsboden.

Lehmboden der Abschlemmmasse des Oberen Geschiebemergels über Torf-Untergrund.

Abbau Dossoczyn II. B. 65 (Blatt Roggenhausen).

R. GANS.

I. Mechanische und physikalische Untersuchung.

a. Körnung.

Tiefe der Ent- nahme Decim.	Geognost. Bezeichnung	Gebirgs- art	Agronom. Bezeichnung	Grand über 2mm	2_		S a n	0,2-		T	haltige neile Feinstes unter 0,01 ^{mm}	Summa.
0—5	α	Humoser Lehm (Ackerkrume)	HL	0,0	0,0	0,4	8,2	2,2	4,8	22,4	69,4	100,0
5—15	at	Torf (Untergrund)	Н			1	Nicht 1	unters	ucht.			

b. Aufnahmefähigkeit für Stickstoff (nach Knop) und c. Wasserhaltende Kraft.

	Tiefe	Aufna	hmefähigl	ceit für St	ickstoff		haltende raft
Bezeichnung der Schicht	der Ent- nahme	(unte	einboden r ^{2mm}) nehmen at	(unter	Feinerde $0,5^{\mathrm{mm}}$)	halten Volumproc. nach	100 g (unter2 ^{mm}) Wasser Gewichtsproc. 1 zwei
		ccm	g	ccm	g	ccm	mungen g
Ackerkrume .	0-5	55,1	0,0692	55,4	0,0696	53,8	52,4

a. Gesammtanalyse des Feinbodens der Ackerkrume.

•	
Bestandtheile	Auf lufttrockenen Feinboden berechnet in Procenten
1. Aufschliessung	
mit kohlensaurem Natronkali	j
Kieselsäure	64,363
Thonerde*)	12,238
Eisenoxyd	5,299
Kalkerde	0,887
Magnesia	1,872
mit Flusssäure	
Kali	3,136
Natron	1,412
2. Einzelbestimmungen.	
	0.970
Phosphorsäure	0,279
Kohlensäure (gewichtsanalytisch)	0,216
Humus') (nach Knop)	3,513 0,390
Hygroscopisches Wasser bei 105° Cels	3,120
Glühverlust ausschl. Kohlensäure, hygroscopisches	0,120
Wasser, Humus und Stickstoff	3,722
· · · · · · · · · · · · · · · · · · ·	
Summa	100,447
*) Entspräche wasserhaltigem Thon	30,955
Im Untergrunde: 1) Humus 70,704 pCt., 2) Stickstof	f 2,535 pCt.
b. Kalkbestimmung (nach Scheibler).	
	Untergrund
Kohlensaurer Kalk im Feinboden (unter 2mm):	in Procenten
	1
Nach zwei Bestimmungen	0,44
c. Heizeffect.	
	Wärmecalorien
Heizeffect des Untergrundes (Torf)	3379

B. Gebirgsarten.

Unterer Diluvial-Thonmergel und Unterer Geschiebemergel

als tiefere Schichten des Thalgehänges.

Weichselufer bei Sackrau III. B. 41 (Blatt Feste Courbière).

R. GANS.

I. Mechanische Analyse.

Mächtigkeit a. (und Tiefe der Entnahme)	Geognostische Bezeichnung	Gebirgsart	Agronomische Bezeichnung	Grand über 2 ^{mm}	2— 1 ^{mm}	1— 0,5 ^{mm}	S a n 0,5— 0,2 ^{mm}	0,2-	0,1— 0,05 ^{mm}	T] Staub	haltige neile Feinstes unter 0,01 ^{mm}	Summa.
40 (10-50)	dħ	Kalkiger Thon (Thon- mergel)	кт	0,0	0,0	0,0	4,0	0,8	2,8	9,2	86,8	100,0
30 (50-70)	d m	Mergel	М	10,8	0,4	3,2	60 ,4	22,4	17,6	10,0	18,8	100,0

a. Gesammtanalyse des Feinbodens im Thonmergel.

Bestandtheile	Auf lufttrockenen Feinboden berechnet in Procenten
1. Aufschliessung mit kohlensaurem Natronkali.	
Kieselsäure	48.676 10,903
Eisenoxyd	6,495 9,232 4,518
mit Flusssäure.	ŕ
Kali	3,562 1,511
2. Einzelbestimmungen.	
Phosphorsäure	0,192 5,341 0,958 0,147 3,023
Humus und Stickstoff	5,074
Summa	99,632
*) Entspräche wasserhaltigem Thon	27,578 12,14

b. Thonbestimmung.

Aufschliessung der bei 110°C. getrockneten thonhaltigen Theile mit verdünnter Schwefelsäure (1:5) im Rohr bei 220°C. und sechsstündiger Einwirkung.

Bestandtheile	Geschiel in Proce Schlemmproducts	
Thonerde*)	8,256 4,667	2,378 1,344
Summa *) Entspräche wasserhaltigem Thon	. 12,923 . 20,883	3,722 6,014

c. Kalkbestimmung (nach Scheibler).

Kohlensaurer Kalk im Feinboden (unter 2mm):	Geschiebemergel in Procenten
Nach zwei Bestimmungen	6,95

Unterer Geschiebemergel und Unterer Diluvialgrand.

Grandgrube bei Klodtken II. D. 182 (Blatt Roggenhausen). R. Gans.

I. Mechanische Analyse.

Gebirgs- art Grand Über 2 mm 2 mm 0,5mm 0,2mm 0,1mm 0,05mm 0,01mm 0,01mm 0,01mm	Sur
40 (30) dm Mergel M 2,9 50,4 46,8 1,6 4,8 14,4 16,4 13,2 11,2 35,6	100,1
50 ds Sand S nicht analysirt	
d g Grand G 50,0 49,4 0,6 28,2 14,8 5,2 0,8 0,4 0,2 0,4	100,0

II. Chemische Analyse.

a. Thonbestimmung.

Aufschliessung der bei 110° C. getrockneten thonhaltigen Theile mit verdünnter Schwefelsäure (1:5) im Rohr bei 220° C. und sechsstündiger Einwirkung.

Bestandtheile	Geschiebemergel in Procenten des Schlemmproducts Gesammtboden		
Thonerde*)	10,361 4,317	4,849 2,020	
Summa *) Entspräche wasserhaltigem Thon	14,678 26,207	6,869 12,265	

b. Kalkbestimmung (nach Scheibler).

Kohlensaurer Kalk im Feinboden (unter 2 ^{mm}):	des Mergels in Procenten	des Grandes in Procenten
Nach zwei Bestimmungen	13,08	12,77

Unterer Geschiebemergel.

(Liegt unter Interglacial.)

Aus der Sohle des Gardengathales bei Roggenhausen III. C. 65 (Blatt Roggenhausen). R. Gans.

I. Mechanische Analyse.

Geognost. Bezeichnung	Gebirgsart	Agronom. Bezeichnung	Grand über 2 ^{mm}	2 1 1mm (),5mm	S a n 0,5— 0,2 ^{mm}	-	0,1— 0,05 ^{mm}	T] Staub	haltige neile Feinstes unter 0,01 ^{mm}	Summa.
d m	M er g el	M	1,2	0,8 2,4	31,6	12,4	5,6	13,2	57,2 54,0	100,0

II. Chemische Analyse. Gesammtanalyse des Feinbodens.

1. Aufschliessung mit kohlensaurem Natronkali. Kieselsäure. 8,690 Eisenoxyd 4,315 Kalkerde 6,782 Magnesia 1,510 mit Flusssäure. Kali 2,772 Natron 2,789 2. Einzelbestimmungen. Phosphorsäure - 0,172 Kohlensäure**) (gewichtsanalytisch) 5,550 Humus (nach Knop) 0,545 Stickstoff (nach Will-Varrentrapp) 0,085 Hygrosoep. Wasser bei 105° C. 1,485 Glühverlust ausschl. Kohlensäure, hygroscopisch. Wasser, Humus und Stickstoff	Bestandtheile	Auf lufttrockenen Feinboden berechnet in Procenten
Thonerde*).		
Eisenoxyd	Kieselsäure	63,307
Eisenoxyd	Thonerde*)	8,690
Kalkerde Magnesia 6,782 1,510 mit Flusssäure. 2,772 2,772 2,789 Natron 2,789 2. Einzelbestimmungen. 0,172 2,789 Phosphorsäure . 0,172 Kohlensäure**) (gewichtsanalytisch) . 5,550 1,72 2,789 Kohlensäure **) (gewichtsanalytisch) . 0,545 2,780	Eisenoxyd	4,315
Magnesia 1,510 mit Flusssäure. 2,772 Kali 2,789 2. Einzelbestimmungen. Phosphorsäure 0,172 Kohlensäure**) (gewichtsanalytisch) 5,550 Humus (nach Knop) 0,545 Stickstoff (nach Will-Varrentrapp) 0,085 Hygrosocp. Wasser bei 105° C. 1,485 Glühverlust ausschl. Kohlensäure, hygroscopisch. Wasser, Humus und Stickstoff 2,236 Summa 100,238 *) Entspräche wasserhaltigem Thon 21,980	Kalkerde	6,782
Xali		1,510
Natron 2,789 2,789 2,789	mit Flusssäure.	
2. Einzelbestimmungen. Phosphorsäure	Kali	2,772
Phosphorsäure	Natron	2,789
Kohlensäure **) (gewichtsanalytisch) 5,550 Humus (nach Knop) 0,545 Stickstoff (nach Will-Varrentrapp) 0,085 Hygrosocp. Wasser bei 105° C. 1,485 Glühverlust ausschl. Kohlensäure, hygroscopisch. Wasser, Humus und Stickstoff 2,236 *) Entspräche wasserhaltigem Thon 21,980	2. Einzelbestimmungen.	
Kohlensäure **) (gewichtsanalytisch) 5,550 Humus (nach Knop) 0,545 Stickstoff (nach Will-Varrentrapp) 0,085 Hygrosocp. Wasser bei 105° C. 1,485 Glühverlust ausschl. Kohlensäure, hygroscopisch. Wasser, Humus und Stickstoff 2,236 Summa 100,238 *) Entspräche wasserhaltigem Thon 21,980	Phosphorsäure	0,172
Humus (nach Knop) 0,545 0,085	Kohlensäure**) (gewichtsanalytisch)	5 ,550
Stickstoff (nach Will-Varrentrapp)	Humus (nach Knon)	0,545
Hygrosocp. Wasser bei 105° C. Glühverlust ausschl. Kohlensäure, hygroscopisch. Wasser, Humus und Stickstoff	Stickstoff (nach Will-Varrentrapp)	
Glühverlust ausschl. Kohlensäure, hygroscopisch. Wasser, Humus und Stickstoff	Hygrosoco, Wasser bei 105° C.	1,485
und Stickstoff	Glühverlust ausschl. Kohlensäure, hygroscopisch. Wasser, Humus	
*) Entspräche wasserhaltigem Thon		2,236
*) Entspräche wasserhaltigem Thon	Summa	100,238
) Entoprisono i apportunitorgem a con-	1) The term is the successibal times Then	·
**) kohlensaurem Kalk		12,61

Unterer Geschiebemergel.

(Liegt über Interglacial.)

Roggenhausen III. D. 36 (Blatt Roggenhausen).

R. GANS.

I. Mechanische Analyse.

Geognost. Bezeichnung	Gebirgsart	Agronom. Bezeichnung	Grand über 2mm	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Summa.
d m	Mergel	M	3,7	55,2 41,2 2,4 5,6 17,2 12,8 9,2 32,0	100,1

II. Chemische Analyse.

Kalkbestimmung (nach Scheibler).

Kohlensaurer Kalk im Feinboden (unter 2 ^{mm}):	In Procenten
Nach zwei Bestimmungen	9,29

Unterer Geschiebemergel mit Schalresten.

(Liegt über Interglacial.)

Vorschloss Roggenhausen (Blatt Roggenhausen).
R. Gans.

I. Mechanische Analyse.

Geognost. Bezeichnung	Gebirgsart	Agronom. Bezeichnung	Grand über 2mm	Sand $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Thonhaltige Theile Staub 0.05 — unter 0,01 ^{mm} 0,01 ^{mm}	Summa.
d m	Mergel	M	3,3	2,0 4,8 16,4 18,0 14,8	40,8 8,4 32,4	100,1

II. Chemische Analyse.

Gesammtanalyse des Feinbodens.

Bestandtheile	Auf lufttrockenen Feinboden berechnet in Procenten
1. Aufschliessung mit kohlensaurem Natronkali.	
Kieselsäure	$\begin{array}{c} 69,911 \\ 6,189 \\ 3,330 \\ 6,740 \end{array}$
Magnesia	0,990
Kali	2,247 2,178
2. Einzelbestimmungen.	
Phosphorsäure	0.199 4,201 0,039 0,040 1,066
Glühverlust ausschl. Kohlensäure, hygroscop. Wasser, Humus und Stickstoff	3,184
*) Entspräche wasserhaltigem Thon	100,314 15,654 9,55

Unterer Diluvialsand.

(Interglacial.)

Vorschloss Roggenhausen (Blatt Roggenhausen).

R. GANS.

I. Mechanische Analyse.

Geognost. Bezeichnung	Gebirgs- art	Agronom. Bezeichnung	Grand über 2 ^{mm}		1— 0,5 ^{ուռո}	S a n		0,1— 0,05 ^{mm}	Th	haltige leile Feinstes unter 0,01 ^{mm}	Summa.
d s	Sand	s	0,0			76,0			24	1,0	100,0
us	Sanu	3		0,0	0,8	8,8	26,0	40,4	14,8	9,2	

II. Chemische Analyse.

Gesammtanalyse des Feinbodens.

Bestandtheile	Auf lufttrockenen Feinboden berechnet in Procenten
1. Aufschliessung	
mit kohlensaurem Natronkali.	
Kieselsäure	81,660
Thonerde	4,378
Eisenoxyd	1,633
Kalkerde	3,717
Magnesia	0,578
mit Flusssäure.	
Kali	1,798
Natron	1,579
	1,010
2. Einzelbestimmungen.	
Phosphorsäure	0,136
Kohlensäure*) (gewichtsanalytisch)	2,305
Humus (nach Knop)	0,056
Stickstoff (nach Will-Varrentrapp)	0,016
Hygroscopisches Wasser bei 105° Cels.	0,369
Glühverlust ausschl. Kohlensäure, hygroscop. Wasser, Humus	
und Stickstoff	1,330
Summa	99,555
*) Entspräche kohlensaurem Kalk	5,24

Unterer Diluvialsand,

Grube im Walde am Wege von Marienhof nach Kozielec (Blatt Neuenburg).

R. Gans.

I. Mechanische Analyse.

Geognost. Bezeichnung	Gebirgsart	Agronom. Bezeichnung	Grand über 2 ^{mm}	-	1 — 0,5 ^{mm}	S a n		0,1— 0,05 ^{mm}	Tl Staub	haltige neile Feinstes unter 0,01 ^{mm}	Summa.
d s	Sand	S	9,7	7,5	30,3	88,9	7,7	0,6	0,3	1,4	100,0

II. Chemische Analyse. Kalkbestimmung (nach Scheibler).

Kohlensaurer Kalk im Feinboden (unter 2mm):	In Procenten
Nach der ersten Bestimmung	4,39 4,4 8
im Mittel	4,44

Unterer Thonmergel.

Rospitz (Blatt Garnsee).

R. GANS.

I. Mechanische und physikalische Untersuchung. a. Körnung.

Tiefe der Ent- nahme Decim.	C e	Gebirgs- art	Agronom. Bezeichnung	Grand über	2— 1— 1 ^{mm} 0,5 ^{mm}	S a n 0,5— 0,2 ^{mm}		0,1— 0,05 ^{mm}	Th Staub	haltige neile Feinstes unter 0,01 ^{mm}	Summa.
20	dħ	Kalkiger Thon (Thon- mergel)	кт	0,0	0,0 0,0	2,0	0,7	1,2	8,0	90,0	100,0

b. Aufnahmefähigkeit für Stickstoff (nach Knop) und c. Wasserhaltende Kraft.

100 g F	nahmefahigk einboden · 2 ^{mm}) nehmen au	eit für Sticl 100 g l (unter f Stickstoff	100 ccm Feinboden (unter	tende Kraft 100 g 2 ^{mm}) halten Wasser Gewichtsprocente estimmungen		
ccm	g	ccm ccm	g	ccm	esummungen g	
118,3	0,1486	118,3	0,1486	53,8	45,2	

II. Chemische Analyse.

a. Thonbestimmung.

Aufschliessung der bei 1106 C. getrockneten thonhaltigen Theile mit verdünnter Schwefelsäure (1:5) im Rohr bei 2200 C. und sechsstündiger Einwirkung.

Bestandtheile	Thonmergel In Procenten des Schlemmproducts Gesammtbodens		
Thonerde*)	12,423 12,175 6,725 6,590		
Summa *) Entspiäche wasserhaltigem Thon	19,148 18,765 31,423 30,795		

b. Kalkbestimmung (nach Scheibler).

Kohlensaurer Kalk im Feinboden (unter 2mm):	In Procenten
Nach der ersten Bestimmung	
im Mittel	15,42

Oberer Geschiebemergel,

örtlich ungewöhnlich kalkreich.

Westlich von Milewken (Blatt Neuenburg).

R. GANS.

Chemische Analyse.

Kalkbestimmung (nach Scheibler).

Kohler	nsaurer Kalk in	Feinboden (unter 2 ^{mm}): In Procen	ıten
	ersten Bestimn zweiten "	ng	
		im Mittel 37,09	

Manganhaltige Nester

im Unteren Diluvialgrand.

Roggenhausen III. D. 39 (Blatt Roggenhausen).

R. GANS.

Chemische Analyse.

В	In Procenten						
Kohlensaurer Kalk wichtsanalytisch Eisenoxyd Manganoxydul Mangansuperoxyd	bes im				•	;e-	7,90 1,387 0,289 1,090

Dünensand.

Jammyer Forst am Mastweg (Blatt Roggenhausen).

R. GANS.

I. Mechanische und physikalische Untersuchung.

a.	Körnung.
----	----------

Tiefe der Ent- nahme Decim.	Geognost. Bazeichnung	Gebirgsart	Agronom. Bezeichnung	Grand über 2mm	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Summa.
10	D	Sand (Ackerkrume)	S	0,0	98,4 1,6 0,4 7,2 53,6 34,4 2,8 0,1 1,5	100,0

b. Aufnahmefähigkeit für Stickstoff (nach Knop) und c. Wasserhaltende Kraft.

	Tiefe der Ent- nahme	Aufna	hmefähigk	Wasserhaltende Kraft			
Bezeichnung der Schicht		100 g F (unter	halten Volumproc.	(unter2 ^{mm}) Wasser Gewichtsproc.			
		ccm	g	ccm	g	ccm	g g
Ackerkrume .	10	3,7	0,0046	4,0	0,0050	27,8	16,3

II. Chemische Analyse.
Gesammtanalyse des Feinbodens.

Bestandtheile	Auf lufttrockenen Feinboden berechnet		
	in Procenten		
1. Aufschliessung			
mit kohlensaurem Natronkali.			
Kieselsäure	93,628		
Thonerde	2,085		
Eisenoxyd	0,802		
Kalkerde	0,290		
Magnesia	0,236		
mit Flusssäure.			
Kali	0,951		
Natron	0,754		
2. Einzelbestimmungen.			
Phosphorsäure	0,092		
Kohlensäure (gewichtsanalytisch)	0,021		
Humus (nach Knop)	0,137		
Stickstoff (nach Will-Varrentrapp)	0,025		
Hygroscopisches Wasser bei 1050 Cels	0,163		
Glühverlust ausschl. Kohlensäure, hygroscop. Wasser,			
Humus und Stickstoff	0,198		
Summa	99,382		

. 17

Schlick.

Stangendorf III, C. 90 (Blatt Neuenburg).

R. GANS.

I. Mechanische und physikalische Untersuchung. a. Körnung.

Tiefe der Ent- nahme Decim.	Geognost. Bezeichnung	Gebirgsart	Agronom. Bezeichnung	Grand über 2 ^{mm}		1— 0,5 ^{mm}	S a n	1	0,1— 0,05 ^{mm}	Th Staub 0,05—		Summa.
15	a st	Thon	т.	0,0	23,0			7	7,0	100,0		
					0,0	0,4	1,8	6,8	14,0	35,2	41,8	

b. Aufnahmefähigkeit für Stickstoff $\mathbf{nach\ Knop.}$

Es nehmen auf:	Stickstoff			
	ccm	g		
100 g Feinboden (unter 2 ^{mm})	107,0 107,4	0,1344 0,1349		

a. Thonbestimmung.

Aufschliessung der bei 110°C. getrockneten thonhaltigen Theile mit verdünnter Schwefelsäure (1:5) im Rohr bei 220°C. und sechsstündiger Einwirkung.

Bestandtheile	In Procenten des				
	Schlemmproducts	Gesammtbodens			
Thonerde *)	9,845 6,044	7,581 4,654			
Summa	15,889	12,235			
*) Entspräche wasserhaltigem Thon	24,903	19,175			

b. Kalkbestimmung (nach Scheibler).

Mit dem Scheibler'schen Apparate ist kein kohlensaurer Kalk nachweisbar.

c. Humusbestimmung (nach Knop).

	In Procenten
Humusgehalt im Feinboden (unter 2mm)	0,847

d. Stickstoff bestimmung (nach Will-Varrentrapp).

y			i	In Procenten
Stickstoffgehalt i	m Feinboden	unter 2mm, .	•, •//	0,112

II. Analysen aus den Nachbarblättern.

Erst bei der Zusammenfassung zahlreicher Analysen ergiebt sich ein einigermassen vollständiges Bild der mannigfachen Schwankungen, denen die Zusammensetzung der auf dem geognostischen Kartenblatte eingezeichneten Bodenarten unterliegt. Es folgt daher in leicht verständlicher Tabellenform eine Uebersicht der aus dem gesammten westpreussischen Aufnahmegebiete vorliegenden Analysen, zusammengestellt durch A. Jentzsch.

In dem Höhenboden ist (mit Ausnahme der kleinen Dünensand-Flächen) die Oberkrume durch Umwandlung des diluvialen Untergrundes entstanden. Achtundzwanzig aus der Weichselgegend untersuchte Profile beleuchten den Gang dieser Umwandlung in acht verschiedenen typischen Bodenarten. Die untersuchten Profile sind folgenden Oertlichkeiten entnommen:

Bodenart	Cultur	Blatt	Ort	No.
∂m Lehmboden als Rinde des Oberen Geschiebemergels	Acker- boden Wald- boden	Münsterwalde Rohdau Riesenburg Freystadt Neuenburg Garnsee Münsterwalde Freystadt	Osterwitt Linken Blonaken Schanzenberge bei Riesenburg KlTromnau GrJauth Marienhof Milewken Rospitz GrBandtken K. Krausenhöfer Forst KlTromnau	I. III. IV. V. VI. VII. IX. X. XII. XIV. XV. XVII.

Analytisches.

Bodenart	Cultur	Blatt	Ort	No.
dm Lehmboden als Rinde des Unteren Geschiebemergels	boden	Pestlin Neuenburg Garnsee	Pestlin Marienhof Rospitz Kl. Bandtken	II. VIII. XI. XIII.
_	Wald- boden	GrKrebs	Brakau	XVI.
∂s und ds Sandboden als Rinde des Oberen und Unteren	Acker- boden	Pestlin Niederzehren	Pestlin-Kollosomp GrTromnau KlTromnau	XVIII. XIX. XX.
Diluvialsandes	Wald- boden	Münsterwalde GrKrebs	K. Krausenhöfer Forst Schrammen	XXI. XXII.
dms Sandiger Boden eines aus abwechs. sandigeren u. thoni- geren Bänkchen aufgebauten Mergelsandes	Wald- boden	Riesenburg	Brunau	XXIII.
dħ Schwarzerde als humificirte Rinde des unterdiluvialen Thonmergels	Acker- boden	Mewe	Obuchs Ziegelei Alt-Janischau Mewe Czierspitz Neudorf	XXIV. XXV. XXVI. XXVII. XXVIII.

Mechanische Analysen genannter Bodenprofile.

	rofil No.	Tiefe Decimeter	Agronom. Bezeichnung	Grand über 2 ^{mm}	2-	1— 0,5 ^{mm}	S a n	0,2—	0,1— 0,05mm	Th Staub 0,05—	haltige neile Feinstes unter 0,01 ^{mm}
	I.	$ \begin{array}{ c c c c c } \hline 0-1,5 \\ 1,5-4 \\ 4-9 \\ 40 \end{array} $	SL L M	2,5 1,4 3,9 2,3	2,0 2,2 3,1 1,9	7,8 6,8 7,2 5,9	22,4 15,7 20,5 16,5	23,4 29,2 22,0 26,8	14,2 12,8 14,1 13,4	3 2	7,7 1,5 9,2 3,9
	III.	0-2 2-8 8-15	ЙLS L М	4,8 2,4 3,0	3,0 1,2 1,7	10,4 3,7 3,7	40,2 12,7 13,8	11,8 16,7 20,1	12,0 11,1 15,9	7,0 15,4 12,2	10,4 35,9 28,6
	IV.	0-2 2-10	HL L	1,5 1,3	1,7 0,9	4,4 2,3	13,2 9,6	17,8 13,7	15,7 10,2	12,8 13,1	32,3 47,9
	v.	$0-5 \\ 19-20$	L L	0,7 1,2	1,5 1,3	0,9 5,5	20,8 18,6	16,4 22,4	19,7 14,3	18,3 7,8	21,9 29,0
∂m Acker- boden	VI.	0-3 3-7 15	LS L M	2,3 1,5 7,2	1,4 1,2 1,5	4,8 3,5 3,1	15,8 15,3 11,7	24,7 22,1 16,9	15,1 13,3 10,0	15,9 16,7 19,8	20,0 26,4 29,8
	VII.	0-5	LS	0,0	0,0	0,6	46,0	42,5	1,0	2,6	7,3
	IX.	2 4 6—8	TL M M	1,5 1,8 3,2	1,6 2,0 1,6	4,4 5,2 4,4	16,8 18,0 17,4	20,8 21,6 23,2	11,0 11,5 13,2	9,0 10,6 11,6	34,8 29,2 25,4
	х.	1 3 5	M M M	2,7 2,8 2,5	2,2 2,2 2,6	5,4 4,8 5,2	17,6 17,2 16,8	24,6 26,4 24,0	14,4 18,6 13,6	12,2 12,6 12,4	20,8 20,4 23,0
	XII.	2 6	TL TM	0,9 2 ,6	0,8 1,2	3,2 3,0	22,4 10,2	21,8 16,2	8,8 10,4	7,2 12,2	35,0 44,2
	XIV.	2 5	M M	3,8 3,5	1,2 1,2	3,4 3,0	15,8 15,8	22,4 21,8	12,6 12,6	11,6 11,6	29,2 30,4
∂m Wald- boden	xv.	0—2 3—4 8 13	HĽS L M M	2,0 1,4 3,0 0,0	2,0 1,0 2,7 2,8	5,7 2,0 5,8 7,6	17,9 6,9 16,1 17,0	24,7 28,5 20,8 16,3	22,9 30,0 16,4 17,5	36 38	1,8 0,2 5,2 3,8
	XVII.	0—2 4—7	ĪS L	1,0 2,5	1,6 1,1	4,5 3,6	17,0 14,2	26,9 19,0	15,9 13,8	14,6 17,4	18,5 28,4

	ofil No.	Tiefe Decimeter	Agronom. Bezeichnung	Grand über 2 ^{mm}	2 — 1 ^{mm}	1— 0,5 ^{mm}	S a n	0,2-	0,1— 0,05 ^{mm}	Tl	haltige neile Feinstes unter 0,01 ^{mm}
	II.	$0-4 \\ 4-20 \\ 20-30$	HSL L M	1,1 0,4 3,2		19,1 11,6 19,2	-	29,6 27,2 27,1	20,2 15,3 14,6	13.8 12,2 10,4	16.4 33,2 25,8
d m Acker-	VIII.	2 5—10	L	1,6 3,3	2,4 3,6	6,8 7,4	22,0 23,8	22,2 23,2	8,4 10,0	8,6 7,4	28,0 21,4
boden	XI.	2 5	L M	1,9 1,5	1,6 1,6	5,0 4,2	18,8 18,6	23.2 20,4	10,8 12,4	9,8 11.8	28,8 29,4
	XIII.	4 10	T L T M	1,0 2,8	1,0 1,2	2,8 3,2	12,6 13,0	20,8 22,0	12,4 14,4	12,0 12,8	37,4 30,6
dm Wald- boden	XVI.	05 5—15 15—20	LS L M	2,5 0,9 3,1	1,7 1,7 3,1	6,7 5,8 7,6	55,6 19,5 21.3	15,2 19,0 15,8	6,8 16,0 13,8	4,6 13,8 11,0	$\begin{array}{c} 6,5 \\ 22,6 \\ 24,3 \end{array}$
	xvIII.	0—4 4—10 10—25	HLGS GS S	2,1 11,5 1,2		43,3 70,8 33,8			9,4 1,5 6,1	7,5 1,6	8,4 5,4 1,3
∂s u. ds Acker- boden	XIX.	0—1 1—3 12	HGS GS GS	13,6 19,6 20,4	6,2 9,8 8,2	13,2 19,2 22,5	21,4 20,0 22,0	29,8 26,9 22,9	7,6 2,6 2,0	4,8 1,0 0.9	3,4 0,9 0,9
	XX.	0—2 2—12	йs s	3,8 0,5	2,8 0,5	6,9 1,5	28,8 26,2	36,8 56,0	8,4 10,6	6,0 2,4	6,5 2,3
ds Wald-	XXI.	0—1 1—2 5 15	H S S S S	0,2 0,5 4,3 0,1	1,4 1,8 3,6 0,4	8,2 8,8 14,0 6,5	26,5 26,5 23,4 34,9	52,5 57,9 46,4 52,4	6,4 2,8 4,1 4,1		4,7 1,4 4,0 1,0
boden	XXII.	0—3 3—10	S	0,8 0,0	$\substack{0,4\\0,2}$	1,8 0,5	21,8 13,6	52,9 56,5	14.8 27,3	4,5 1,8	3,3 0,3
dms Wald- boden	XXIII.	0—2 10	ŬLS T⊗	0,1 0,0	0,4 0,0	5,1 0,1	16,4 1,9	35,6 12,4	30.1 17,7	6,3 46.5	5,8 21,0
d ħ	XXIV.	0—1 5 13	КНТ КНТ НТ	0,0 0,0 0,0	0,5	2,1 1,0 ¹) 0,	4,4 7 ')	7,2 2,0	8,3 7,9 3,0	8	7,5 8.4 7.3
Acker- boden	XXV.	0—3 3—6	H T K T	0,7 —	0,7	2,4	5,2 —	15,3	17,6 —	17,0	40,6
-	XXVIII.	0—1 20	ЙКТ КТ	0,0		15,6 1,9		10,6 4,6	9.4 21,1	16.3 13,8	47,7 57,8

¹) Concretionär.

dh mit humificirter Rinde

XXVI.

Chemische Gesammtanalyse vom Feinboden ($unter\ 2^{mm}$)

Geognost. Bezeichnung	Profil- No.	Tiefe Decimeter	Thon- erde	Eisen- (und Mangan-) Oxyd	Kalk- erde	Magne- sia	Kali						
d h d	A. des Untergrundes, d. h. der tieferen Theile der im Profil aufgedeckten Schicht.												
	I.	40	7,16	2,37	4,57	0,20	2,05						
	VI.	15	8,77	3,29	7,27	1,31	2,46						
∂m	VI.	3—7	8,61	3,63	2,44	0,34	2,42						
	XV.	18	6,79	2,78	5,81	0,98	1,84						
	XVII.	6	10,24	4,11	0,59	0,09	2,87						
	XVIII.	12	3,76	1,28	3,97	0,55	1,69						
	XIX.	1-3	8,27	1,38	4,73	0,80	1,74						
∂s und ds	XX.	8	3,65	1,56	0,40	0,58	1,56						
vs una us	XXI.	15	3,02	1,25	0,40	0,37	2,83						
	XXII.	20			,		•						
	AA11.	20	2,27	1,29	0,21	0,13	1,02						
d ħ	XXIV.	10—20	9,23	10,73	6,18	2,76	3,27						
u 11	XXVIII.	20	3,52	6,52	9,84	1,85	0,89						
		B. de	r Oberkr	ume.									
	III.	0-2	5,24	1,78	0,57	0,36	1,77						
	VI.	0-8	7,76	2,58	0,70	0,37	2,81						
∂m	VII.	23	4,4 0	1,61	0,37	0,35	1,58						
	XVII.	2	7,48	2,81	0,58	0,89	2,89						
	XIX.	0—1	8,43	1,38	2,10	0,85	1,68						
d s	XXII.	0-3	2,82	1,32	0,22	0,15	1,14						

5,17

7,28

1,74

2,30

0,38

0,55

0,79

0,16

0,15

0,16

genannter Bodenprofile, mit Aufschliessung der Silikate.

Natron	Phos- phor- säure	Schwe- fel- säure	Kiesel-, Titan- und Zirkon- säure	Kohlen- säure	Humus	Stick- stoff	Hygro- scop. Wasser	Glüh- verlust (excl. Kohlens. u. Wasser)
				s Untergr				
d	. h. der	tieferen	Theile of	der im P	rofil auf	gedeckte	en Schie	ht.
1,64	0,09	_	77,32	3,54	-	_	1,78	
0,90	0,10		66,36	5,39	0,16	0,01	1,93	2,20
1,03	0,12		75,90	1,16	0,17	0,01	2,08	2,08
1,25	0,16	_	75,54	4,07	<u> </u>		1,33	_
2,12	0,18	_	73,83	0,05	0,31	0,01	3,12	2,90
1,28	0,14		84,20	2,90	_		0,23	0,21
1,49	0,17	_	82,36	3,48			0,27	0,52
1,25	0,10	_	89,74	0,05		_	0,31	0,76
1,17	0,09	_	91,64		_		0,39	_
0,68	0,05	0,01	9 4, 35	0,02	0,07	0,02	0,	34
1,57	0,34	?	51,52	7,74		_	1,80	_
0,17	0,02	0,02	60,67	5,44	0,37	0,06	4,36	6,09
			B . d	ier Oberk	rume.			
1,02	0,12	0,02	85,35	0,03	1,08	0,07	0,87	1,24
0,77	0,05		81,69	0,04	0,75	0,04	1,31	1,74
0,57	0,07		89,73	0,01	0,11	0,01	0,80	1,04
1,43	0,04	_	80,87	0,07	0,81	0,05	1,22	1,67
1,45	0,30	_	84,60	1,53	1,98	0,11	0,55	0,59
0,71	0,09	0,01	93,01	0,00	0,49	0,08		0,57
0,02	0,12	?	91,63	0,00	2,01	0,28	_	_
0.01	0.11	?	88.43	0,22	4,14	0,32	_	_

Nährstoffanalysen der Oberkrume (Auszug mit concentrirter

Geognost. Bezeichnung	Profil- No.	Tiefe Decimeter	Thon- erde	Eisen- (und Mangan-) Oxyd	Kalk- erde	Magne- sia	Kali
∂ m Ackerkrume	I. III. IV. V. VI. VII.	0—15 0—2 0—2 0—5 0—3 0—5 0—2	1,92 1,12 4,14 1,61 2,16 1,40 2,88	1,90 1,31 3,00 1,54 2,28 1,37 3,19	0,57 0,17 0,49 0,17 0,18 0,12 0,40	0,35 0,06 0,80 0,39 0,33 0,25 0,72	0,29 0,24 0,26 0,18 0,30 0,26 0,56
∂m Waldkrume	XV. XVII.	0-2 0-4	0,80 1,86	0,91 2, 00	0,07 0,11	0,17 0,40	0,11 0,28
d m Ackerkrume	II. XI.	0-4 0-2	1,17 3,32	1,51 8,88	0, 21 0,56	0,24 0,74	0,29 0,49
dm Waldkrume	XVI.	0-5	0,84	0,78	0,07	0,12	0,08
∂s und ds Ackerkrume	XVIII. XIX. XX.	0-4 0-1 0-2	0,87 0,51 0,81	0,86 0,90 1,15	0,13 2,10 0,42	0,16 0,28 0,42	0,11 0,14 0,19
ds Waldkrume	XXI.	0—1	0,51	0,48	0,07	0,07	0,04
dms Waldkrume	XXIII.	0-2	0,99	1,13	0,08	0,20	0,19
dħ mit humifi- cirter Rinde Ackerkrume	XXIV. XXVII. XXVIII.	0—1 0—2 0—1	5,16 3,72—x 5,15	5,07 4,95 5,23	0,61 0,56 6,77	1,17 x 1,51	0,14 0,29 1,13

kochender Salzsäure bei einstündiger Einwirkung).

		,						
Natron	Phos- phor- säure	Schwe- fel- säure	Kiesel- säure und un- löslicher Rückstand	Kohlen- säure	Humus	Stick- stoff		Glüh- verlust excl. Kohlens. u. Wasser
0,06	0,11	0,03	90,52	0,18	1,06	0,11	1,05	1,85
0,07	0,12	0,02	98,59	0,03	1,08	0,07	0,87	1,24
0,46	0,07	0,10	83,79	0,08	1,40	0,01	2,39	3,04
0,09	0,08	0,02	92,96		0,25	0,04	0,95	1,74
0,08	0,05	0,005	90,71	0,04	0,77	0,04	1,50	1,55
0,04	0,07	0,005	94,52	0,01	0,11	0,01	0,80	1,04
0,11	0,08	0,006	86,52	0,02	0,56	0,07	2,13	2,76
0,04	0,06	0,02	93,82	_	1,22	0,06	0,55	2,18
0,02	0,03	0,004	91,46	0,08	0,82 0,05		1,37	1,50
0,05	0,11	0,02	91,88	0,03	1,01	0,08	0,97	2,43
0,15	0,12	0,005	85,82	0,06	0,44	0,05	2,25	2,60
0,03	0,10	0,01	96,54	0,03	0,37	0,01	0,48	0,56
0,03	0,10	0,004	94,60	0,02	0,83	0,04	0,65	1,60
0,07	0,12	0,03	90,26	1,53	1,98	0,11	0,78	1,19
0,08	0,09	0,02	93,48	0,19	1,39	0,07	0,65	1,06
0,02	0,03	0,01	91,79	_	4,12	0,12	0,91	1,84
0,12	0,05	0,01	95,02	0,04	0,75	0,02	0,57	0,83
0,03	0,13	?	87,69	?	3,37	3	3	3
0,40	0,39	0,09	75,86	0,44	10,95		4,41	-
0,21	0,16	0,04	61,62	4,92	1,61	0,16	4,78	6,71

Mechanische Analysen nicht (oder wenig) verwitterter Diluvialschichten.

Geognost. Bezeichnung	Blatt	Ort bezw. Profilnummer	Grand über 2 ^{mm}	2_	1— 0,5 ^{mm}	S a n	0,2	0,1 — 0,05 ^{mm}	Staub 0.05—	stes
	 Münsterwalde	I.	2,3	1,9	5,9	16,5	25,8	13,4	3	3,9
	,,	xv.		2,8	1	17,0	16,3	17,5	1	3,8
	GrRohdau	III.	3,0	1,7	3,7	13,8	20,1	15,9	12,2	28,9
	Freystadt	VI.	7,2	1,5	3,1	11,7	16,9	10,0	19,8	29,8
∂m	Neuenburg	Marienhof	3,2	1,6	4,4	17,4	23,2	13,2	11,6	25,4
	39	Nordöstlich von Milewken	2,5	2,6	5,2	16,8	24,0	13,6	12,4	23,0
	Garnsee	Rospitz	2,6	1,2	3,0	10,2	16,2	10,4	12,2	44,2
	_D	GrBandtken	3,5	1,2	3,0	15,8	21,8	12,6	11,6	30,4
	Mewe	Obuch'sZiegelei	2,1	1,5	7,0	16,5	25,8	14,9	32	2,2
	y,	Zuckerfabrik	4,2			10,7	21,6	15,2	13,5	25,1
	Münsterwalde	Weichselufer	1,6	1,2	2,9	6,0	0,1	20,7	41,1	26,4
	Marienwerder	Stürmersberg	3,6	2,8	6,3	9,7	28,3	17,2	15,6	16,5
	Pestlin	II.	3,2		19,2		27,1	14,6	10,4	25,8
	GrKrebs	XVI.	3,1	3,1	7,2	21,3	15,8	13,8	11,0	24,3
	29	Schornsteinm.	1,3	1,3	2,6	9,2	12,1	15,8	22,0	35,2
	GrRohdau	Jacobsdorf	1,5	0,5	2,5	7,1	15,2	14,7	15,1	42 ,9
	Niederzehren	XX.	2,6	1,6	4,0	17,8	19,5	11,6	18,9	24,0
	Freystadt	GrPlauth	16,5	5,8	11,5	19,3	16,9	6,5	8,9	15,5
d m	Neuenburg	Marienhof VIII.	3,3	3,6	7,4	23,8	23,2	10,0	7,4	21,4
	Garnsee	Rospitz XI.	1,5	1,6	4,2	18,6	20,4	12,4	11,8	29,4
	n	KlBandtken XIII.	2,8	1,2	3,2	13,0	22,0	14,4	12,8	30,6
	Feste Courbière	Sackrau	10,8	0,4	3,2	16,8	22,4	17,8	10,0	18,8
	Roggenhausen	Klodtken	2,9	1,6	4,8	14,4	16,4	13,2	11,2	35,6
	29	Roggenhausen III. C.	1,2	0,8	2,4	10,4	12,4	5,6	13,2	54,0
	n	Roggenhausen III. D.	3,7	2,4	5,6	17,2	17,2	12,8	9,2	32,0
	29	Vorschloss Roggenhausen	3,3	2,0	4,8	16,4	18,0	14,8	8,4	32,4

Geognost. Bezeichnung	Blatt	Ort bezw. Profilnummer	Grand über 2 ^{mm}	Sand					Thonhaltige Theile Staub Fein-	
Geog Bezeig				2 1 ^{mm}	1 – 0,5mm	0,5— 0,2 ^{mm}	0,2— 0,1 ^{mm}	0.1— 0,05 ^{mm}	0.05 -	stes unter 0,01 ^{mm}
d g	Niederzehren	KlTromnau	63,9	4,3	8,9	9,0	6,1	2,2	1,8	3,8
	Roggenhausen	Klodtken	50 ,0	28,2	14,8	5,2	0,8	0,4	0,2	0,4
d s	Mewe	Obuch'sZiegelei	_	_	8,0	66,7	24,1	0,7	0,7	0,2
	Münsterwalde	XXI.	0,1	0,4	6,5	34,9	52,4	4,4	1,0	
	Marienwerder	(Brunnen)	0,3	0,3	1,2	42,0	49,6	4,0	1,0	1,4
	<i>y</i> y	Hammermühl			0,1	16,2	76,4	6 ,8	0,1	0,4
	Pestlin	II.	_		0,6		11,2	67,3	18,9	1,7
	,,	XVIII.	1,2		33,8		57,7	57,7 6,1		3
	GrKrebs	XXII.	_	0,2	0,5	13,6	56,5	27,3	1,8	0,3
	Niederzehren	XIX.	20,4	8,2	22,5	22,2	22,9	2,0	0,9	0,9
	,,	XX.	6,7	3,6	18,2	59,2	10,4	0,9	0,3	0,7
	Freystadt	GrPlauth	1,9	1,2	3,4	35,2	56,2	1,6	0,4	0,1
	Neuenburg	Marienhof	9,7	7,5	30,3	42,8	7,7	0,6	0,3	1,1
	Roggenhausen	Vorschloss Roggenhausen			0,8	8,8	26,0	40,4	14,8	9,2
d m s	Münsterwalde	Weichselufer	<u>.</u>	_	2,6		17,5	36,7	33,3	9,9
	Freystadt	VII.	-	-	_	0,1	27,7	38,5	18,1	15,6
	Riesenburg	Neuhäuser				1,3	8,6	25,1	63,4	
	Mewe	XVII.		0,7			_,-	2,0		
dħ	Rehhof	Hexensprind, K. Forst	_	0,1	0,2	0,2	4,7	5,8	19,7	68,4
	n	Warmhof	_	0,2	0,2	0,7	12,8	15,4	7,5	62,2
	Marienwerder	Hammermühl	_	_	0,9	0,1	9,5	4,2	7,4	77,9
	æ	Karschwitz	_		3,9	0,6	16,5	9,4	10,9	57,6
	Pestlin	XXI.	_		1,9		4,6	21,1	13,8	57,8
	Freystadt	VII.	4,8	0,7	0,4	2,8	7,2	7,1	34,0	43,0
	Garnsee	Rospitz	_	-	-	0,1	0,7	1,2	8,0	90,0
	Feste Courbière	Sackrau	-	-	-	0,4	0,8	2,8	9,2	86,8

Chemische Gesammtanalysen nicht (oder wenig) verwitterter Diluvialschichten. Feinboden (unter 2mm) Durchmesser.

Kalkpuppen aus Thonmergel	Q.	dms	ů. S	d m	ô m	Geognostische Bezeichnung	
GrRohdau	Mewe Rehhof Marienwerder Pestlin GrRohdau Freystadt Feste Courbière	Münsterwalde Freystadt	Münsterwalde Marienwerder Niederzehren Freystadt Roggenhausen	GrRohdau Niederzehren Freystadt Roggenhausen	Münsterwalde Freystadt	Blatt	
Jacobsdorf	XVII. Hexensprind,K.Forst Karschwitz XXI. Mienthen VII. Sackrau	Weichselufer VII.	XIV. Hammermühl XII. XII. XIII. GrPlauth VorschlossRoggen- hausen	Jacobsdorf XX. GrPlauth Roggenhausen III. C. VorschlossRoggen- hausen	XV. VI.	Ort bezw. Profilnummer	
1,97	9,23 9,80 8,66 8,52 13,01 11,14 10,90	4,41 6,70	3,02 3,49 3,76 3,79 4,08 4,38	9,66 6,26 6,60 8,69 6,19	7,16 6,79 8,77	Thonerde	
l	10,73 7,25 14,20 6,52 5,31 4,57 6,50	$\frac{1,27}{2,50}$	1,25 0,57 1,28 1,62 1,18 1,63	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2,37 2,78 3,29	Eisenoxydu. Manganoxyd	
1,30 38,26 0,50	6,18 4,89 7,37 9,84 10,05 10,96 9,23	4,24 4,53	0,62 2,11 3,97 4,14 2,93 3,72	7,93 5,37 8,39 6,78 6,74	4,57 5,81 7,27	Kalkerde	
0,50	2,76 2,96 2,55 1,85 1,85 2,47 2,27 4,52	$0,68 \\ 0,97$	0,37 0,33 0,55 0,54 0,11	2,17 0,59 0,63 1,51	0,20 0,93 1,31	Magnesia	
	3,27 4,10 2,44 0,89 2,77 2,95 3,56	$\frac{1,96}{2,15}$	2,33 1,02 1,69 1,42 1,46 1,46	2,76 2,33 1,99 2,77 2,77	2,05 1,84 2,46	Kali	
18,62	1,57 1,57 1,57 1,57 0,17 0,17 1,41 1,51	$^{1,21}_{0,92}$	1,17 0,37 1,28 1,39 0,80	1,05 2,59 1,87 2,79 2,79	1,64 1,25 0,90	Natron	
	51,52 54,14 48,90 60,70 50,90 52,27	81,92 77,50	91,64 91,22 91,22 84,20 84,30 86,83 81,66	63,64 71,20 69,21 63,31 69,91	76,83 75,10 66,36	Kieselsäure (excl. Titansäure n. Zirkonsäure)	
39,35	7,74 8,69 5,78 5,44 7,08 9,07 5,34	3,93	1,01 2,90 2,85 1,58	6,34 4,12 6,21 5,55	3,54 4,07 5,39	Kohlensäure	
	0,0000	0,29 0,11	0,09 0,13 0,14 0,30 0,13	0,11 0,22 0,14 0,17	0,09 0,16 0,10	Phosphor- säure	
1	1,80 1,45 2,14 4,36 2,97 3,10 8,02	0,28 0,87		1,39 1,49 0,92 1,49 1,49	1,78 1,33 1,93	Wasser	
1	4,14 6,80 6,09 4,33 2,64 6,17	0,16 1,03	,45 0,21 0,69 0,46	2,40 1,95 1,23 2,87 2,87	2,20	Glühverlust (excl. Kohlen- säure)	

Bestimmungen des "Kohlensauren Kalkes" im Feinboden nicht (oder wenig) verwitterter Diluvialschichten, berechnet aus der Kohlensäure. 1)

Geognostische Bezeichnung	Westpreussen, Gradabtheilung 33, Blatt	Ort bezw. Profilnummer	Procent	Mittelwerth für das speciell kartirte Gebiet Westpreussens
	Münsterwalde	I. Osterwitt VIII. Krausenhöfer Forst	8,17 8,85	
	GrRohdau	III. Linken Jacobsdorf	9,58 14,41	
∂m	Freystadt	VI. KlTromnau	12,26	10,60
	Neuenburg	Marienhof Milewken	11,77 11,05	
	Garnsee	Rospitz GrBandtken	8,21 11,07	
	Mewe	Zuckerfabrik Obuch's Ziegelei	13,37 19,97	
	Marienwerder	Stürmersberg	7,72	
	GrKrebs	XVI. Brakau Schornsteinmühle	9,57 12,14	
	Niederzehren	XX. KlTromnau	9,10	
d m	Freystadt	GrPlauth	14,12	11,13
ų iii	Neuenburg	Marienhof	9,19	11,10
	Garnsee	Rospitz KlBandtken	6,67 13,65	
	Feste Courbière	Sackrau	6,95	
	Roggenhausen	Klodtken Roggenhausen III. C. " D. VorschlossRoggenhausen	13,08 12,61 9,29 9,55	

¹) Da ein Theil der Kohlensäure an Magnesia gebunden ist, so sind die nach dieser Methode berechneten Zahlenwerthe grösser als die aus der directen Bestimmung des Kalkes (z. B. durch Titriren mit Oxalsäure) berechneten. Vergleichbar sind natürlich nur die nach gleicher Methode berechneten Zahlen, und deshalb ist es wesentlich, darauf hinzuweisen, dass obige Zahlen so berechnet sind, dass sie unmittelbar mit den gewöhnlichen Analysen der landwirthschaftlichen Versuchsstationen wie der Agriculturchemiker überhaupt vergleichbar sind. Ueber die Abweichungen beider Methoden vergl. Jentzsch, Zusammensetzung des altpreussischen Bodens. Schriften der physikal.-ökonom. Gesellschaft, Königsberg 1879, S. 44.

Geognostische Bezeichnung	Westpreussen, Gradabtheilung 33, Blatt	Ort bezw. Profilnummer	Procent	Mittelwerth für das speciell kartirte Gebiet Westpreussens	
d g	Roggenhausen	Klodtken	12,77	12,77	
	· Mewe	Obuch's Ziegelei	0,97		
	Marienwerder	Brunnen Hammermühl	2,84 2,30		
d s	Niederzehren	XIX. XX.	6,92 6,4 8	4,09	
	Neuenburg	Marienhof	4,44		
	Freystadt	GrPlauth	3,58		
	Roggenhausen	VorschlossRoggenhausen	5,24		
d m s	Münsterwalde	Weichselufer	8,93	8,21	
4 111 0	Freystadt	VII. GrJauth	7,48	0,21	
	Riesenburg	Neuhäuser	29,00	-	
	Mewe	XXIV.	19,97		
	Rehhof	Hexensprind, K. Forst Warmhof	19,75 10,21		
d h	Marienwerder	Hammermühl Karschwitz	14,69 13,14		
un	Garnsee	Rospitz	15,42	16,66	
	Pestlin	XXVIII.	12,36		
	GrRohdau	Mienthen	16,05		
	Freystadt	VII. GrJauth	20,60		
	Feste Courbière	Sackrau	12,14		
Kalkpuppen aus dh	Gr. Rohdau	Jacobsdorf	89,43	89,43	

Chemische Theilanalysen.

Thonerde- und Eisenoxyd-Mengen der thonhaltigen Theile, bestimmt nach Aufschliessung mit Schwefelsäure (1:5) im Rohr bei 220° C.

				(- · ·)				
Geognost. Bezeichn.	Blatt	Ort bezw. Profil- nummer	Culturart	Tiefe Decimeter	Agronom. Bezeichn.	In Procenten des Schlemm- products Thon- Eisen- erde oxyd	des Ges bod	centen sammt- lens Eisen- oxyd
	Münster- walde	I. Osterwitt	Acker	$egin{array}{c} 0 - 1,5 \ 1,5 - 4 \ 4 - 9 \ 40 \ \end{array}$	S L L M M	10,61 6,29 13,03 7,34 8,29 4,99 9,24 6,18	4,12 2,41	1,74 2,32 1,46 2,10
	GrRohdau	IV. Blonaken	"	0—2 2—10	H L L	15,54 6,70 17,73 7,97	7.01 10,81	
	Novombung	Marienhof	,,	2 4 6—8	TL M M	11,40 8,17 6,70 4,66 6,83 4,88	5,00 2,67 2,53	1,86
∂m	Neuenburg	NO. Milewken	n	1 3 5	M M M	8,17 5,62 6,94 4,96 7,03 4,93	2,70 2,29 2,49	1,64
		Rospitz	,,	6	TM	9,84 6,86	5,55	3,75
	Garnsee	Gr Bandtken	n	2 5	M M	8,34 5,32 8,49 5,14	3,40 3,56	2,17 2,16
	Münster- walde	XV. Krausen- höfer Forst	Wald	0-2 3-4 8 13	HLS L M M	5,57 2,85 14,25 8,70 8,36 4,49 8,50 5,11	4,30 2,94	0,71 2,63 1,58 1.98
	Nieder- zehren	XX. KlTromnau	Gestein	13 –18	M	9,20 5,30	3,95	2,29
	Mewe	Obuch's Ziegelei	Acker	18	M	6,98 5,80	2,25	1,87
	Münster- walde	Weichselufer	Gestein	viele	M	7,65 4,27	5,16	2,88
	GrKrebs	XVI. Brakau	Wald	$0-5 \\ 15-20$	LS M	8,57 4,12 9,36 5,69	21,68 26,68	
d m	GrKrebs	NO. Schrammen	entkalkter Untergrund	viele	L	14,01 7,07		3,11
	Neuenburg	Marienhof	Acker	2 5—10	L SM	$\begin{array}{c c} 12,20 & 7,91 \\ 7,98 & 5,15 \end{array}$	2,30	2,90 1,48
		Rospitz	"	5	M	10,04 7,83		3,22
	Garnsee	Kl Bandtken	'n	4 10	TL TM	12,27 8,39 7,40 4,82	6,06 3,21	
	Feste Courbière	Sackrau	Gestein	viele	M	8,25 4,67		1,34
	Roggen- hausen	Klodtken	Acker	80	M	10,36 4,32	4,85	2,02

Geognost. Bezeichn.	Blatt	Ort bezw. Profil- nummer	Culturart	Tiefe Decimeter	Agronom. Bezeichn.	des Sci prod	centen nlemm- ucts Eisen- oxyd	In Prodes Ges bod Thon- erde	ammt- ens
d m s	Riesenburg	XXIII. Brunau	Wald	0—2 10	HĽ© T©	9,56 6,93	,	1,16 4,68	0,63 3,01
i		Hexen- sprind, K. Forst	Gestein	viele	кт	8,31	4,90	7,38	4,35
	Rehhof	SO. Warmhof	"	20-30	кт	13,87	6,19	9,83	4,39
d ħ		N. Warmhof	Acker	2	кт	13,75	8,45	6,43	3,95
	Marien- werder	Karschwitz	Gestein	50	кт	10,84	8,50	7,50	5,88
	Garnsee	Rospitz	»	20	кт	12,42	6,73	12,18	6,59
Desgl.	Mewe	XXIV. Obuch's Ziegelei	Acker	0—2 5 13	КНТ КНТ КТ	12,39 16,68 12,52	9,15	9,60 14,74 12,18	5,90 8,09 7,74
cirter Rinde		XXV. Alt- Janischau	29	0—3	нт	9,48	11,81	5,39	6,43
α im Gebiete des ∂m	Lessen	Szczepanken	n	0-2 $2-12$ $12-18$ $18-20$ $20-25$	HLS HSL HSL HKSL HSL	7,98 6,75 6,55 7,65 7,83	5,45 4,46 3,85 4,50 4,40	1,06 1,36 2,29 1,79 2,72	0,72 0,90 1,35 1,05 1,53
al	GrRohdau	Blonaken	Unter Torf	16—20	HL	13,15	5,32	5,99	2,42
a st	Marien- werder	Mittel aus 7	Analysen		T-HT	10,22	4,23	7,91	3,03
(Weichsel- schlick)	Neuenburg	, , 3	n	_	T-HT	8,85	5,27	6,82	4,73

Analytisches.

Physikalische Eigenschaften der analysirten Diluvial-Böden.

Geognost. Bezeich- nung	Culturart	Ort bezw. Profilnummer	Tiefe	Agronom. Bezeich- nung	Absorption der Feinerde gegen Salmiaklösung Cubikcentimeter	Wasser- haltende Kraft Gewichts-
		I. Osterwitt	Decimeter 0-1,5	SL	Stickstoff 45,7	Procente 29,7
		III. Linken	0-2 2-8 8-15	ЙLS L М	58,9 — —	22,26 29,49 25,48
		IV. Blonaken	0-2 2—10	HL L	93,1	27,35 32,80
		V. Riesenburg	0-5 19—20	L L	54 ,6	20,72 27,20
	Acker	VI. KlTromnau	0-3 3-7 15	LS L M	53,1 88,7 85,0	20,7 21,0 21,3
∂m		VII. GrJauth	0-5	LS	36,3	21,1
		IX. Marienhof	2 4	TL M	8 6 ,9 55,7	25,3 23,1
		X. Milewken	1 3	M	59,1 51,7	18,9 19,6
		XII. Rospitz	2 6	TL TM	82,3 94,3	22,1 27,8
		XV. Krausenhöfer F.	0-2	ЙLS	26,9	26,6
	Wald	XVII. KlTromnau	0-4 4-7	ĪS L	45,4 81,9	20,4 23,9
	Gesteins- probe	Jacobsdorf	viele	M	38,3	28,07
		II. Pestlin	0 - 4 4—20 20—30	ŬSL L M	88,9 — —	25,48 25,34 35,24
	Acker	VIII. Marienhof	2 5—10	L SM	89,7 45,5	19,1 16,8
d m		XI. Rospitz	2 5	L M	96,5 8 7 ,7	19,8 21,9
	Wald	XVI. Brakau	$0-5 \\ 5-15 \\ 15-20$	LS L M	25,2 — —	19,10 22,95 31,26
=	Gesteins- probe	XX. KlTromnau Schornsteinmühle Schrammen	12-19 viele mehrere	M M L	<u>-</u>	22,6 24,99 28,11

Goognasi	<u> </u>			America	Absorption	Wasser-
Geognost. Bezeich-	Culturart	Ort bezw.	Tiefe	Agronom. Bezeich-	der Feinerde gegen	haltende Kraft
nung		Profilnummer		nung	Salmiaklösung Cubikcentimeter	Gewichts-
	Gesteins-		Decimeter	<u> </u>	Stickstoff	Procente
• dg	probe	XX. KlTromnau	19—20	ĽG		12,7
∂as	"	Bialken	2	s	7,6	16, 8
			0—4	ЙLGS	31,8	18,43
	•	XI.	4—10	GS	_	18,06
			10-25	8		20,59
			0-1	нĞS	21,0	16,4
	Acker	XII.	1—3	GS	—	12,8
		-	3-20	GS		14,0
			0—2	йs	29,4	15,6
∂s, ds		XIII.	2-12	s	_	16,1
==			20-60	S	-	16,1
		7777	0-1	ЙS	14,6	35,9
		XIV.	1 - 2	S	9,8	22,3
	Wald		0-3	8	36,0	24,30
		XV.	3-20	S	14,5	22,57
	Gesteins- probe	II.	30—40	8	_	26,28
	Wald	XVI.	0-2	HĽS	36,6	29,2
dms			2—10 ————	T ©		34,2
	Gesteins- probe	VII.	15,5—25	кт⊗	38,2	20,2
		XVII.	0—1	КНТ	118,6	
	Acker	AVII.	5	КНТ	146,0	
d ħ		Rospitz	20	кт	118,3	45,2
	Gesteins- probe	VII.	15—15,5	KT	90,5	28,3
		XVIII.	0-3	нт	86,0	
Desgl.	Acker	Mewe	0-2	нт	112,0	
mit humifi- cirter Rinde	Acker	XXI.	0—1 1—20	ЙКТ КТ	118,5 120,1	33,8 38,1

=
Φ
~
2
.=
=
-
္ဌ
9
<u></u>
700
ä
\overline{z}
.≃
Wei
Š
-
von Weichs
n von
0
5
_
_
ѫ
×
×
nalysen
ಹ
ë
=
_
_
~
=
ပ္
တ
=
chemisc
ø
ž
ᇙ
_
_
=
Ξ
pun
9
_
ပ
Ó
=
=
ಹ
ä
ᇙ
ă
Mect

		mechanische und chemische Analysen von Welchselschnicken.	2011112	ום אוומו	ysell	101	3101130	301110	KOII.				
Ż	#°[¤	Ort		Sand 1)	(₁ p		Thonhaltige Theile	altige ile	nsaur. ber. aus ensäure)	1	Hote	Aufnahme- fähigkeit fiir	hme- keit
	Dian	(bezw. Tiefe in Decim.)	$\begin{vmatrix} 2- \\ 1^{mm} \end{vmatrix} 0, $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,2— n 0,1mm	0,1— 0,05mm	0,05— 0,01mm	unter 0,01mm	Кор јег Корје (1	nwnH	Sticks	Stickstoff nach Knop ccm. gr.	stoff Knop gr.
П		Grabauer Kämpe		6,1	13,8	29,9	35,8	13,6	1,34	1,25	1	61 0	0,0766
63		Eichwalder Kämpe		0,4	4,5	7,3	35,0	51,6	1,48	1,35		79	79 0,0992
အ		Eichwalder Kämpe		1,9	4,3	21,9	57,3	14,0	2,14	1,01		47 0	0,0590
4	Marienwerder	Eichwalde, linkes Ufer	<u>-</u>	1,7 1,9	12,4	41,9	80,8	10,3	1,59	1,81	0,11	47 0	0,0590
70		Zgl. Kurzebrak, 3-10		2,2	3,4	14,9	45,8	32,8	1	1,27	1	123 0,1545	,1545
9		Zgl. Kurzebrak, 13 (humoser Schlick)		ц	nicht bestimm	stimmt				3,31	0,27	147	0,1846
2		Neuhöfen, 6—8		1,8	8,1	17,4	56,7	20,0	0,72	1,81	0,16	69	0,0867
∞	Меwе	Spraudener Niederung (humoser Schlick)		п	nicht bestimmt	stimmt			2,20	3,24	3,24 0,37 110		0,1382
6		KlNebrau, 2	0,0	0,4 1,8	3,8	12,0	34,4	47,6	0,16	1,10	1,10 0,17	124 (0,1556
10	,	Daselbst 5—10	0,0	0,0 0,2	1,4	10,6	44,5	43,6	ı	0,53	0,07	117 (0,1464
=	Neuenburg	GrNebrau, 2	0,0	0,8 3,0	10,0	21,6	37,2	27,4	0,10	1,01	0,14	98	0,1082
12	,	Daselbst 5	0,0	0,2 1,0	0,6	24,6	38,0	27,2	ı	0,44	0,08	98	86 0,1082
13		Stangendorf 15	0,0	0,4 1,8	8,9	14,0	35,2	41,8		0,85	0,11	107	0,1344
1-4		Mittel aus 4 zeitweise durchlüfteten Schlicken der Aussendeiche		3,0	8,8	25,3	39,8	22,4	1,64	1,36	0,11	59 (0,0741
4—13		Mittel aus 9 Schlicken der eingedeichten Niederungen	0,0	0,3 1,6	5,4	16,5	41,7	34.4	0,79	1,51	0,17	108 0,1352	,1352
1—13		Mittel aus 13 Weichselschlicken der Gegend von Graudenz und Marienwerder	0,0	0,4 1,9	9,9	19,8	41,0	30,0	1,21	1,46	0,16	93	0,1164
	Mittel au des	Mittel aus 3 Weichselschlicken des Weichseldeltas?)		2,3	13,8	12,7	85,3	35,6		ĪT			
	1 -2 E 0		•	í								. •	

") Grand fehlt gänzlich. — ?) Nach Jentzsch, Geologische Skizze des Weichseldeltas, in Schriften d. physik.-ökonom. Gesellsch., 1880, S. 183—185.

Nährstoffbestimmung des Gesammtbodens.

Bestandtheile	No. 41)	auf luft- trockenen Schlick um- gerechnet	No. 9	No. 11	Mittel	Mittel aus 14 Analysen Ost- und Westpreus- sischer Wiesen- mergel in Procenten
Aufschliessung mit concentrirter Salzsäure				:		
Thonerde	2,38	2,19	3,69	2,32	2,73	l
Eisen- und Manganoxyd	2,79	2,57	4,89	2,89	3,28	1,7
Kalkerde	1,01	0,98	0,77	0,50	0,73	47,1
Magnesia	0,53	0,49	0,97	0,64	0,70	0,5
Kali	0,09	0,08	0,30	0,26	0,21	0,01
Natron	0,01	0,01	0,16	0,15	0,11	0,09
Schwefelsäure		0,005	0,008	0,006	0,005	0,37
Kohlensäure	0,70	0,64	0,07	0,05	0,25	(ت 37,0
Phosphorsäure	0,12	0,11	0,18	0,20	0,16	0,08
Kieselsäure und Nichtbestimmtes	92,37	84,96	79,75	86,68	83,80	5,7
Humus		1	1,10	1,01	1,05	5,0
Stickstoff	_		0,17	0,14	0,15	0,2
Hygroscopisches Wasser	_	8,02	3,08	1,78	2,48	2,2
Glühverlust ausschl. Kohlensäure, hygr.Wasser, Humus u. Stickstoff			5,37	3,40	4,44	_

¹) No. 4 ist auf den nach Abzug des Glühverlustes bleibenden Mineralboden berechnet.

³) Entspricht 84,1 Procent kohlensaurem Kalk (letzterer schwankt von etwa 10-92 Procent).

Thonbestimmung.

Aufschliessung der thonhaltigen Theile mit verdünnter Schwefelsäure (1:5) im Rohr bei 220° C. und sechsstündiger Einwirkung.

			Eisen	oxyd	Thor	nerde		ne wasser- m Thon
Bezeich	nur	ıg	in Proce	nten des	in Proce	nten des	in Proce	nten des
			Schlemm- products	Gesammt- bodens	Schlemm- products	Gesammt- bodens	Schlemm- products	Gesammt bodens
Schlick	No.	1	4,80	2,33	6,72	3,32	16,99	8,40
,,	"	2	4,19	3,63	14,16	12,26	35,82	31,01
n	n	3	3,87	2,76	6,86	4,89	17,35	12,37
ņ	,,	4	3,80	1,57	7,92	3,26	20,03	8,25
,,	n	5	4,21	3,31	12,35	9,71	31,24	24,56
n	,,	6	3,94		16,76		_	
,,	n	7	4,77	3,66	6,76	5,18	17,10	13,10
,	.,	10	5,17	4,54	8,81	7,74	22,29	19,57
n	n	12	4,60	3,00	7,89	5,14	19,95	13,00
n	,so	13	6,04	4,65	9,85	7,58	24,90	19,18

Chemische Gesammtanalyse

der schwebenden Theile des Weichselwassers, geschöpft im März 1853 bei 15 Fuss Wasserstand zu Kulm, nach Abzug des Wassers und der organischen Theile.')

		В	е	ន 1	a	n	d :	t h	. е	i	l e					In Procenter
Thonerde																15,66
Eisenoxyd	(u	ınd	M	an	gan	ox	yď) .								15,33
Kalkerde .					•		•	•								1,15
Magnesia																0,35
Kali																1,69
Natron .																0,90

¹⁾ Nach G. Bischof, Lehrbuch der chemischen Geologie, 1. Aufl., 2. Bd., S. 1516 bis 1519 und 1590-1592.

Mittelwerthe aus vorstehenden Mechanischen Boden-Analysen.

Geognost. Bezeichnung	Culturart und Tiefen- schieht	Agronom. Bezeich- nung	Zahl der Analysen	Grand	2— 1 ^{mm}	1— 0,5ատ		0.2-	0.1 0,05 ^{mm}	Th	haltige leile Feinstes unter 0,01 ^{mm}
∂m	Ackerkrume Waldkrume Urkrume Untergrund	LS-HL HĽS-ĪS L-TL M	10 2 9 8	2,1 1,5 1,6 3,5	1,5 1,8 1,3 1,8	4,6 5,1 3,9 4,5	23,1 17,5 14,7 14,9	22,8 25,8 21,6 20,5	12,5 19,4 13,9 13,3	10,5 12,8 11,5 12,6	23,2 16,2 31,5 28,7
d m	Ackerkrume Waldkrume Urkrume Untergrund	LS-HL HĽS-ŪS L-TL M	4 1 4 18	1,4 2,5 1,2 3,8	1,6 1,7 1,4 1,9	4,6 6,7 4,2 6,0	16,9 55,6 15,5 13,8	24,0 15,2 23,5 18,1	13,2 6,8 11,7 13,4	11,1 4,6 10,7 14,1	27,7 6,5 31,9 28,4
d g	Untergrund	G-ĽG	2	57,0	16,3	11,8	7,1	3,5	1,3	1,0	2,1
∂s, ds	Ackerkrume Waldkrume Untergrund	ЙGS—ЙS ЙS—S S—ĞS	3 2 12	6,5 0,2 3,4	4,4 0,9 1,9	9,7 5,0 8,2	24,6 24,1 30,7	31,6 52,7 37,6	8,5 10,6 13,5	6,1 3,6 2,8	6,1 2,7 1,2
d m s	Waldkrume Urkrume Untergrund	HĽS T© KT©	1 1 2	0, 1 —	0,4 — —	5,1 0,1 —	16,4 1,9 1,3	35,6 12,4 22,6	30,1 17,7 37,6	6,3 46,5 25,7	5,8 21,0 12,8
d ħ	Ackerkrume (Schwarzerde) Untergrund	йкт—нт кт	3 10	0,2 0,5	0,8 0,1	3,0 0,6	6,4 0,5	11,0 5,8	11,8 7,8	18,4 13,5	48,4 71,2
∂as	Untergrund	S	1	0,0	3,4	30,0	58,4	7,8	0,1	0,1	0,2
D	Untergrund	S	1	0,0	0,4	7,2	58,6	34,4	2,8	0,1	1,5
α im ∂ m Gebiet	Ackerkrume Untergrund	HL—ŬLS ŭs	2 4	4,7 3,4	2,4 1,9	5,1 4,9	14,1 19,6	18,8 22,4	7,2 17,0	14,8 16,5	37,8 11,8
al	Untergrund	н	1	1,3	1,7	6,3	10,2	20,6	13,7	12,3	33,3
a st	Aussendeich Eingedeicht	T THT	4 9	0,0 0,0	0,0 0,0	0,0 0,3	3,0 1,6	8,8 5,4	25,3 16,5	39,8 41,7	22, 4 34,4

Mittelwerthe für die physikalischen Eigenschaften vorstehender Böden.

Geognostische Bezeichnung	Culturart und Tiefenschicht	Agronom. Bezeichnung	Feinerd Salmial Zahl der	tion der e gegen klösung Cubikcm.	Wasserhaltende Kraft Zahl der Gewichts-		
	<u> </u>		Analysen	Stickstoff	Analysen	procente	
∂m	Ackerkrume Waldkrume Urkrume	LS-HL HĽS-ĪS L-TL	9 2 6	60,6 36,2 73,4	9 2 8	23,1 28,5 26,4	
	Untergrund	M	6	64,0	7	23,5	
	Ontergrand	141		04,0		20,0	
	Ackerkrume	LS-HL	3	75,1	3	21,5	
d m	Waldkrume	HĽS—ĪS	1	25,2	1	19,1	
	Urkrume	L—TL	2	93,1	5	16,5	
	Untergrund	М	2	98,1	6	25,5	
d g	Untergrund	ĽG		_	1	12,7	
	Ackerkrume	ЙGS—ЙS	3	27,4	3	16,8	
∂s, ds	Waldkrume		2	25,3	2	30,1	
·	Untergrund	S-ĞS	2	12,2	5	19,1	
	Waldkrume	 нĭs	1	36,6	1	29,2	
dms	Urkrume	те			1	34,2	
	Untergrund	кт⊗	1	38,2	1	20,2	
dħ	Ackerkrume	йкт—нт	4	108,8	1	33,8	
un .	Untergrund	KT	8	109,6	3	37,2	
∂a8	Untergrund	8	1	7,6	1	16,8	
D	Untergrund	S	1	4,0	· 1	16,3	
α im ∂m-Gebiete	Ackerkrume Untergrund	HL-HLS HSL	2	41,1 —	2 4	32,5 19,3	
al	Untergrund	HL	_	_	1	30,4	
ast	Aussendeich Eingedeicht	T T—HT	4 9	59 108	-	_	
akh	Krume	KH-KSH	3	74,7	3	52,2	

Mittelwerthe der chemischen

Geognostische Bezeichnung	Agronomische Bezeichnung	Zahl der Analysen	Thonerde	Eisen- und Mangan- Oxyd	Kalkerde	Magnesia
	a. Lösliche Nährst	toffe der Ot	erkrum	e.		
∂m, dm Acker	LS-HL	9	2,19	2,17	0,29	0,45
" " Wald	HĽS—ĪS	3	1,17	1,23	0,08	0,23
∂s, ds Acker	йgs—йs	3	0,73	0,97	0,88	0,29
" " Wald	йss	1	0,51	0,48	0,07	0,07
dms Wald	ЙLS	1	0,99	1,18	0,08	0,20
dh Acker (Schwarzerde)	ЙКТ —НТ	8	4,42	5,38	2,65	1,15
∂as	8	1	0,18	0,30	1,06	0,18
α im ∂m-Gebiete (Acker)	ЙLS	1	0,89	1,23	1,58	0,32
a st	т—нт	3	2,73	3,28	0,73	0,70
akh	КН	1	0,42	8,88	12,72	0,73
	b. Gesammt-Analy	sen der Ob	erkrume).		
∂m, dm Acker	LS-HL	8	5,80	1,97	0,55	0,86
" " Wald	HĽS—ĪS	1	7,43	2,81	0,58	0,88
∂s, ds Acker	ЙGS—ЙS	1	3,43	1,38	2,10	0,85
" " Wald	йs—s	1	2,82	1,32	0,22	0,15
dh Acker	ЙКТ —НТ	2	6,23	2,02	0,47	0,48
(c. Gesammt-Analys	en des Unte	ergrunde	8.		
∂m	M	8	7,57	2,81	5,88	0,81
d m	M	5	7,48	3,44	7,04	1,18
∂m, dm (Geschiebemergel überh.)	M	8	7,51	3,20	6,61	1,04
ds	S	6	3,59	1,25	2,91	0,41
d m s	KT⊗	2	5,56	1,89	4,39	0,88
dħ	кт	7	9,47	7,87	8,36	2,75
α im ∂m-Gebiete	ЙSL—HL	2	9,34	3,82	0,69	1,35

Analysen vorstehender Bodenarten.

Kali	Natron	Phosphor- säure	Schwefel- säure	Kieselsäure und Unlösliches	Kohlen- säure	Humus	Stickstoff	Hygroscop. Wasser	Glühverlust (excl. Kohlen- säure u. Wasser)
		a	Löslic	he Nährsi	offe de	r Oberk	rume.		
0,32	0,13	-	0,03	90,02	0,05	0,74	0,05	1,44	2,05
0,16	0,04	0,06	0,02	93,16	0,04	0,80	0,04	0,80	1,41
0,15	0,06	0,10	0,02	92,78	0,58	1,40	0,07	0,69	1,28
0,04	0,02	0,03	0,01	91,79		4,12	0,12	0,91	1,84
0,19	0,12	0,05	0,01	95,02	0,04	0,75	0,02	0,57	0,83
0,52	0,21	0,23	0,06	75,06	2,66	5,31	0,16	4,60	6,71
0,06	0,09	0,04	Spur	97,03	0,55	0,03	0,005	0,06	0,42
0,22	0,08	0,11	0,02	92,43	1,08	0,55	0,03	0,57	0,88
0,21	0,11	0,16	0,005	83,80	0,25	1,05	0,15	2,43	4,44
0,16	0,27	1,83	0,13	29,70	7,54	15,56	1,22	8,73	12,68
			o. Gesar	nmt-Analy	sen der	Oberkr	ume.		
1,90	0,79	0,08	0,01	85,59	0,03	0,65	0,04	0,99	1,34
2,39	1,43	0,04	_	80,87	0,07	0,81	0,05	1,22	1,67
1,68	1,45	0,30	_	84,60	1,53	1,98	0,11	0,55	0,59
1,14	0,71	0,09	0,01	93,01	0,00	0,49	0,03		0,57
0,16	0,02	0,12	_	90,08	0,11	3,08	0,28		
		c.	Gesami	nt-Analys	en des	Untergr	undes.		
2,12	1,26	0,12	-	72,76	4,34	-		1,66	0,73
2,40	2,10	0,17	_	67,45	5,28	_		1,27	2,34
2,30	1,79	0,15	_	69,44	4,98	_		1,42	1,74
1,62	1,10	0,16	_	86,76	2,12	_	-	0,25	0,58
2,06	1,07	0,20	_	79,71	3,61	_	_	0,58	0,60
2,98	1,23	0,24	_	52,43	7,00			2,69	5,00
2,72	1,64	0,24	_	73,45	0,12	1,95	0,22	2,01	2,78

Analysen einiger Torfe und Torfböden der Weichselgegend.

					·					
Roggen- hausen	Nieder- zehren	Lessen	GrKrebs		GrRohdau			Rehhof		RI _{att}
Dossoczyn	GrTromnau	Gr Schönbrück	Wella	Blonaken	CHECHE	Stanganharg	Zieglers- huben	Tragheimer- weide	Ç	0
Torf	Torf Torf mit Schneckenschalen	Torf	Torf	Torf Lebertorf	Torfiger Teichschlamm	Teichschlamm	desgl.	Schlickiger Torfboden der Weichselniederung	ровологина	Rozsichnung
5—15	0—9 9—10	$0-2 \\ 10 \\ 20 \\ 23$	(gestochen)	0—8 8—16	0—1 3	0—1 3	0—2	0-4	Decimeter	7:25
١	16,9 22,7	21,9 4,0 2,2 2,6	6,07	2,90 12,95	36,51 26,14	67,39 68,07	51,0	67,42	Asche	P_{Γ}
1		46,07 47,09	54,93	2,90 48,85 2,95 31,50	26,23 31,22	11,82 11,61	l	l	Kohlen- stoff	cente
l	1 1	4,49 — 5,11	5,30	4,08 6,64	1 1	1 1	ı	ľ	Kohlen- Wasser- stoff stoff	Procente der lufttrockenen Substanz
1	2,78	2,32 — 1,61	2,19	1,78 3,16	1,86 2,33	0,79 0,81	2,08	1,44	Stick- stoff	ttrockei z
	1 1	18,28 11,49	14,75	1 1	11		11,85	6,65	Hygro- scop. Wasser	nen
1	20,84 43,37	5,11 48,19 51,60 52,66						ı	in 100 Theilen der Asche	Kalk (CaO)
14,44 " "	12,87 " " 11,48 " "	14,18 Th. Blei 16,75 " " 15,81 " " 17,84 " "	l					ļ	Kohlenstoff reducirt 34,52 Theile Blei) 1 Theil Torf reducirt	Absolut. Wärme- effect n. Berthier

IV. Bohr-Register

zu

Blatt Garnsee.

Theil	IA	Seite 3-4	Anzahl	der	Bohrungen	105
n	ΙB	" 4—6	29	"	"	252
"	IC	, 7	,,	n	n	30
n	ΙD	" 7—8	"	"	77	81
n	II A	" 8—10	,,	n	"	164
"	$\mathbf{H}\mathbf{B}$, 10-11	"	"	"	127
"	II C	, 11—12	"	n	n	44
n	$\mathbf{H}\mathbf{p}$	" 12 — 13	n	n	n	109
n	III A	, 13—14	n	n	,,	101
n	III B	" 1 4 —15	n	,,	'n	91
n	III C	" 15—18	,	n	,,	310
,,	III D	" 19—28	,	n	n	762
"	IV A	" 28—29	n	"	n	47
n .	IA B	" 29	,,	n	"	61
n	IV C	" 30	,,	,,	n	86
"	IAD	" 31—32	,,	n	"	153
					Summa	2523

Blatt Garnsee.

Erklärung

der

benutzten Buchstaben und Zeichen.

```
W = Wasser oder Wässerig
       \left. \begin{array}{l} H \\ \mathfrak{H} \end{array} \right\} = \left. \begin{array}{l} Humus \\ Haidehumus \\ Haidehumus \\ Und Humus \\ Haidehumus \\ Und Humus \\ Und Humus
       S = Sand grob- und feinkörnig (über 0,2 mm) oder Sandig G = Grand (Kies) oder Grandig (Kiesig)
       S = Gerölle und Geschiebe (Steinanhäufung)
        T = Thon
                                                                              oder Thonig
        L = Lehm (Thon+grober Sand), Lehmig
        K = Kalk
       M = Mergel(Lehm+Kalk[>GSSKT), Mergelig
                                                                                 " Eisenschüssig, Eisenkörnig, Eisensteinhaltig
        E = Eisen \begin{cases} Eisenstein \\ Glaukonit \end{cases}
                                                                           " Glaukonitisch, Glaukonitführend
        P = Phosphor(säure)
                                                                                 " Phosphorsauer
         I = Infusorien- (Bacillarien- oder Diatomeen-)Erde oder Infusorienerdehaltig
    BS = Quarzsand mit Beimengung von Braunkohle
                                                                                                HS = Schwach humoser Sand
               - Humoser Sand
   HSſ
   HL = Humoser Lehm
                                                                                                HL = Stark humoser Lehm
                                                                                                 ŠT = Sehr sandiger Thon
  ST = Sandiger Thon
    KS = Kalkiger Sand
                                                                                                 KS = Schwach kalkiger Sand
   TM = Thoniger Mergel (Thonige
                                                                                                \bar{\mathbf{T}}\mathbf{M} = \mathbf{Sehr} thoniger Mergel (Sehr thon.
                    Ausbildg. d. Geschiebemergels)
                                                                                                                  Ausbildg. d. Geschiebemergels)
   KT = Kalkiger Thon (Thonmergel)
                                                                                                \bar{K}T = Stark kalkiger Thon
                                  u. s. w.
                                                                                                                               u. s. w.
                                                                                             HLS = Humoser schwach lehmiger Sand
HLS = Humoser lehmiger Sand
SHK = Sandiger humoser Kalk
                                                                                             SHK = Sehr sandiger humoser Kalk
HSM = Humoser sandiger Mergel
                                                                                             HSM = Schwach humoser sandig. Mergel
                                                                                                                               u. s. w.
                         \begin{bmatrix} S+T \\ \mathfrak{S}+T \end{bmatrix} = Sand- und Thon-Schichten in Wechsellagerung
                           S+G = Sand- und Grand-Schichten "
                              MS - \bar{S}M = Mergeliger Sand bis sehr sandiger Mergel
                                   LS-S = Schwach lehmiger Sand bis Sand
           w = wasserhaltig, wasserführend
                                                                                             l = lehmstreifig
                                                                                               e = eisenstreifig
          \left\{\begin{array}{l} h \\ b \end{array}\right\} = humusstreifig
                                                                                               e = glaukonitstreifig
           b = braunkohlenstreifig
                                                                                               t = thonstreifig
                                                                                                           bezw. thonmergelstreifig
          {s \atop f} = sandstreifig
                                                                                                                           u. s. w.
                       \times = Stein oder steinig \times \times = Steine oder sehr steinig*)
                    Grenze zwischen vorhandenem Aufschluss und Bohrung.
                                         (In der Karte mit besonderer Bezeichnung.)
```

Die den Buchstaben beigefügten Zahlen geben die Mächtigkeit in Decimetern an.

^{*)} Folgt unter ×× noch eine weitere Angabe, so bedeutet solches, dass dieses Ergebniss erst nach zahlreichen, durch Steine vereitelten Bohrversuchen erlangt wurde.

No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil
				Th	eil IA.	<u> </u>			
1	<u>Ť</u> © 7-8	18	H K 7-8	37	HS 2 HK 8	55	ЙS 3 НК 7	74	HK 8 H 2
2	$\frac{\mathfrak{S}T}{\mathfrak{S}}$ 4-5	19 20	KH10 T11-12	38 39	HK20 S 20	56	$\frac{\breve{H}S}{S}$ 8	75 76	HK 10 HK 10
3	$\frac{\mathfrak{S}\mathbf{T}}{\mathbf{S}}$ 2-3	21	H T 12-13	40	$\frac{\text{HS}}{\text{S}} \frac{2-3}{15}$	57	·S 20	77	$\begin{array}{ccc} \mathbf{SH} & 6 \\ \overline{\mathbf{HS}} & 2 \end{array}$
4 5	T 10 S 10	22	HK 10	41	$\frac{\text{HS}}{\text{S}} \frac{3}{4}$	58	$\begin{array}{c c} HS & 8 \\ \hline H & 4-5 \\ \hline S & 3 \end{array}$	78	$\begin{array}{c c} \hline S & 2 \\ \hline HS & 5 \end{array}$
6	ST14 T	23	HK 10-11	42	H 10 HS 3	59	ЙS 2	79	S 5 HK 5
7	$\frac{KT}{T} \stackrel{2-3}{13}$	24	H T 14-15	42	$\begin{array}{c c} \overline{SH} & 3 \\ \hline \overline{SH} & 9 \\ \hline \overline{S} & 6 \end{array}$	60	$ \begin{array}{c c} \overline{KH} & 6 \\ \hline H & 8 & 10 \end{array} $	19	$\frac{\overline{SHK}}{\overline{S}} \frac{3}{3}$
8	$\overline{ m H}$ SL 4-5	25	H HK12-13	43	$\frac{HS}{S}$ 6	61	й ѕ 8	80	$\frac{HK}{S}$ 3
9	Τ̈́Є 15 SHK 4-5	26	H HK10	44	$\frac{\breve{H}S}{S} \frac{4}{6}$	62	HK 2 HS 3	81	HK10
	$\frac{\overline{\bar{S}H}}{L} \begin{array}{c} 3 \\ 6-7 \end{array}$	27	H HK10	45	$\frac{\text{HS } 2-3}{\text{H}} 5$	63	S 7 <u>HS</u> 10	82	HK 8-9 H
10	S 5 HS 4-5	28	$\frac{H}{S}$ 9-10	46	$\frac{\overline{S}}{S}$ 2 SHK 4	64	S 10 HS 6	83	$\frac{\text{HK } 4}{\text{SHK}} \frac{3}{3}$
11	S HS 7-8	29	HK 10	47	HK 16 S 20		$\frac{\overline{H}}{\overline{S}}$ 2	84	$\begin{array}{c} \text{SH} & 4 \\ \overline{\text{HS}} & 3 \end{array}$
12	S KH 9-10 H	30	$\frac{\text{SHK 9}}{\text{S 12}}$	48	$\frac{\breve{H}S}{S}$ 6	65 66	S 10 S 10	0.5	S 3
13	$\frac{\text{SHK} 4-5}{\text{H}}$	32	$\frac{\text{SHK}}{\text{S}} \frac{5-6}{4}$ HS 5	49 50	HK 20 HS 12	67	<u>йs</u> 7	85	HK 3-4 H
14	HS HS 2-3	33	S 5	51	$\begin{array}{c c} \hline & 12 \\ \hline & 8 \\ \hline & 8 \\ \hline & 4 \end{array}$	68	HK 2-3	86	SH 4 HK 6
15	S 10 SHK1-2	99	$\begin{array}{c c} HS & 2 \\ \hline HK & 5 \\ \hline S & 8 \end{array}$	52	HK 6 S 10	. 70	HK 10 HK 10-11 H	87	$\frac{\text{HS}}{\text{S}} \frac{8}{2}$
	KH 8-9 H	34	$\frac{\text{HS}}{\text{S}} \frac{2}{8}$	53	S 10	71	HK 9-10	88	$\begin{array}{cc} \breve{\text{HS}} & 3 \\ \hline \ddot{\text{H}} & 5 \\ \hline \ddot{\text{S}} & 3 \end{array}$
16	HK 7-8	35	HS 2-3 HK 7	54	$\frac{\text{HS}}{\text{SH}} 3$	72	HK 20	89	S 10
17	T 7-8	36	HK 10		$\frac{\overline{H}}{\overline{S}}$ 8	73	HK 9-10	90	<u>H̃S</u> 6 H 4

No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil				
91	$\begin{array}{ c c c }\hline \text{HS} & 5\\\hline \text{HK} & 5\end{array}$	94	ЙS 3 <u>SH</u> 7	97	HK 20 HK 8	100	H	103	HK 12 S 8				
92	S 20	95	S 3 S 20		H	101	HK 9 H 11	104	HK 8 H 12				
93	<u>HS</u> 3-4 HK	96	ЙS 3-4 НК 6	99	$\frac{\text{HK } 18}{\text{H}} 2$	102	HK 9	105	HK 20				
	Theil IB.												
1	HK 8 KH12	15	HK 5 H 5	30	HK 9 H 11	46	HK 6 H 14	62	HK 3-4				
2	HK 8 H 2	16 17	HK10 KH10	31	HK11	47	HK 4 H 6	63	$\frac{\ddot{S}H}{H}$ 2-3				
3 4	HK 10 HK 10	18 19	KH20 HK 3	32	$\frac{\text{SHK 4}}{\text{S}}$ 6	48	HK 2 H 10	64	ŠH 4-5 H 12				
5	HK 8 S 2		ўн 7	33	$\frac{\text{HS}}{\text{S}} \frac{1}{4}$	49 50	H 20 H 20	65	HK 4-5				
6	HK 9 S 4	20	HK 5 <u>ŠH</u> 3	34	$\frac{\text{HS}}{\text{S}} \frac{1-2}{7}$	51	SH 4 HS 6		H				
7	HK 8 H 12	21	HK 8	35	$\frac{\text{SKH } 6}{\text{S}} \frac{2}{2}$	52	S HS 6	66	<u>ўн</u> 1 Н 9				
8 .	нк з	20	H 8 S 4	36	$\frac{HK14}{S}$	53	S 8 HS 4	67	HS 4-5 S 15				
	<u>ўн</u> 4 <u>Н</u> 8	22	$\frac{H}{S} = \frac{17}{3}$	37	$\frac{\text{HK}}{\text{S}}$ 15	54	S 6 HS 8	68	$\frac{\text{HS}}{\text{S}} \frac{2}{18}$				
9	S 5 HK 9	23	$\begin{array}{cc} HK 9-10 \\ \hline H & 4 \\ \hline S & 6 \end{array}$	38	HK 9 H 9		$\frac{\overline{SH}}{S}$ 4	69	HS 3 S 17				
	$\frac{\overline{KH}}{S} \frac{7}{4}$	24	<u>HK</u> 4	3 9	S 2 HS 3-4	55	$\frac{\mathrm{SH}}{\mathrm{H}} \frac{\mathrm{5}}{\mathrm{9}}$	70	$\frac{SH}{\breve{S}H}$ 2				
10	HK 20	25	S 6 HK 3		S		S 6		$\frac{SH}{S}$ 2				
11	$\frac{\text{H K }}{\text{H}}$ 2-3		S 7	40	SKH10 HS 3	56	$\frac{H}{S}$ 16	71	$\frac{\text{SH}}{\text{\breve{S}H}} \begin{array}{c} 2 \\ \end{array}$				
12	<u>š</u> H 2	26	$\frac{\text{HS}}{\text{S}} \frac{4}{15}$		S 7	57 58	H 20		$\frac{\tilde{S}H}{S} \frac{4}{4}$				
13	Н ŠН 2-3	27	$\frac{\text{HS}}{8} \frac{1}{9}$	42 43	SHK 10 HK 9	58 59	H 20 H K 20	72	$\frac{\breve{\mathrm{S}}\mathrm{H}}{\mathrm{H}} \frac{\mathrm{3}}{\mathrm{6}}$				
10	H 2-3	28	HS 1		KH11	60	HK 2		KH 5				
14	$\frac{HK}{H}$ 8	29	S 5 HK 9-10	44 45	НК20 Н 6-7	61	H 8 HK 2	73	S 5 H 15				
	S °	-	8	-	H 13		H 18		$\frac{1}{8}$ 5				

No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil
74	H 20	94	HK10	114	$\frac{\ddot{\mathrm{S}}\mathrm{H}}{\mathrm{H}}{}^3_{12}$	134	HK10	156	$\begin{array}{c c} HS & 3 \\ \hline S & 7 \end{array}$
75	H 20	95	$\frac{\text{HKS}}{\text{S}} \frac{10}{8}$			135	$\frac{SH}{S} \frac{8}{2}$	157	HS 2-3
76	ŠH 4	96	SH 6	115	$\frac{\ddot{S}H}{H}$ 18	136	HS 3	10.	$\frac{15}{8}$ 7
	H 6	"	$\frac{SH}{S}$	116	KH10	100	$\frac{1}{8}$ 7	158	HK10
77	KH 2-3	97	HK10	117	ŠH 4	137	KH15	159	HK10
	ŠH 15		KH10	111	H 16	1	S	160	HK 17
78	HK10	98	HK10	118	SH 3	138	HK 10		S 3
79	$\frac{\text{SH}}{\text{S}} 4-5$		KH10		<u>š</u> H 7	139	HK 4	161	SHK10
80	HS 2-3	99	HK 10 KH 10	119	HK10		H 16		H 10
00	$\frac{115}{8}$ 7	100		120	HK10	140	HK 10	162	$\frac{\text{SKH } 9}{\text{S}}$ 2
81	HS 2	100	$\frac{\text{SH}}{\text{ŠH}}$ 3		KH 10	141	$\frac{\text{SH}}{\text{S}} \frac{8}{2}$	100	
1	ўн 2	101	HS 2	121	HK10	142	HS 5	163	$\frac{\mathrm{HS}}{\mathrm{S}} \frac{2}{8}$
	S 6	101	$\frac{115}{8}$ 8		KH10	142	$\frac{\text{HS}}{\text{S}}$ 5	104	SH 8
82	ЙS 4	102	HS 3	122	HK10	143	SH 4	164	$\frac{SH}{S}$ 2
	S 16		S 7	123	$\frac{\text{SH}}{\text{S}} \frac{12}{8}$	1	H 8	165	HK10
83	HK 10	103	SH 3			144	HS 5	ł	HK10
84	$\frac{\mathrm{HS}}{\mathrm{S}} \frac{4}{6}$		H	124	$\frac{\text{SH}}{\text{S}}$ 2-3		S 5	166	
2.5		104	<u>ЙК</u> 2	125	HS 3	145	$\frac{\text{HS}}{\text{S}}$ 2-3	167	$\frac{\mathrm{SH}}{\mathrm{H}}$ 3
85	$\frac{\text{HS}}{\text{S}}$ 5		H 18	123	$\frac{\text{HS}}{\text{S}}$ 7	146	HK10		ŠH 4
0.0		105	H 20	126	HK 10	147	SKH 4	168	H 16
86	$\frac{SKH}{S}$	106	$\frac{\text{HS}}{}$ 3	1		1 * .	HK 6	169	ŠH 18
87	HS 8		S 17	127	HK10	148	HK10	169	$\frac{5H}{H}$ 12
0.	$\frac{115}{8}$ $\frac{3}{2}$	107	S 20	128	HK 5	149	SH 3	170	SH 2
88	HS 3	108	$\frac{\text{HS}}{\text{S}}$ 2		$\frac{\breve{H}\breve{K}12}{\breve{S}3}$		HK 7	1.0	$\frac{\ddot{\mathbf{SH}}}{\ddot{\mathbf{SH}}} = 6$
-	S 7		8	129	HS 4	150	HS 4-5		H 10
89	HS 7	109	$\frac{\mathrm{SH}}{\mathrm{S}} \frac{3}{7}$	120	$\frac{115}{8}$ 6		S 5	171	SH 3
	S 3	110		130	SH 2	151	HS 2-3		ўН 7
90	<u>HS</u> 8	110	$\frac{\mathrm{SH}}{\mathrm{S}} \frac{6}{4}$		HK 8		HK 7		H
	SH 4	111	SH 7	131	HK 15	152	$\frac{\text{HS}}{\text{G}}$ 3	172	HS 3-4
	S 5	111	$\frac{SH}{S}$ 3		S		S 7		S 6
91	HK10	112	SH 4	132	<u>SH</u> 4	153	SKH10	173	ŠH 3-4
	KH	-1	$\frac{\text{H}}{\text{H}}$ 6		S 6	154	SH 10		H
92	HK10	113	Auf-	133	SH 2		S 10	174	HS 4-5
93	HK 9-10		gefüllter		$\frac{\overline{HS}}{S}$ 2	155	$\frac{\mathrm{HS}}{\mathrm{S}}$ 2-3		$\frac{\overline{\mathtt{SH}}}{\mathtt{H}}$ 8
	S		Boden		S		S 7		п

No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil
175	$\frac{\text{HS}}{\text{\breve{S}}\text{H}}$ 15	193	$\begin{array}{c c} HS & 6 \\ \hline S & 4 \end{array}$	207	S 20 HS 4-5	222	$\frac{\text{SH}}{\text{S}} 6-7$	237	$\begin{array}{c c} \breve{\mathbf{S}}\mathbf{H} & 8 \\ \hline \mathbf{S} & 2 \end{array}$
176	йs 2	194	HK 10		S	223	$\frac{SH}{S}$ 2	238	$\frac{\breve{S}H}{S}$ 8-9
177 178	S 20 S 20	195	HK10 KH10	209	S	224	$\frac{SH}{S}$ 6-7	239	$\frac{\text{SH } 4-5}{\text{S}}$
179	$\frac{\text{HS}}{\text{S}}$ 5	196	HK10 KH10	210	$\frac{\text{HS }4-5}{\text{SH}} 4$	225	šн 8	240	ЙS 3
	T© 2 ŠH	197	$\frac{HK}{H}$ 6		$\frac{\overline{SH}}{\overline{TS}} 3$	226	S 2 HS 3-4	241	S 7 SH 2
180	<u>ŠН</u> 3-4 <u>Н</u> 16	198	\overline{\bar{8}} HK 3-4	211	$\frac{\ddot{\mathbf{S}}\mathbf{H}}{\mathbf{H}}\mathbf{3-4}$	227	S HS 2-3	242	S 8 ŠH 10
181	HK 10 H 10	199	H 16 ŠH 2	212	ŠH 16	228	SH 2		S 4
182	$\frac{\text{HK}}{\text{H}} \;\; 2$	200	H 18 ŠH 2	213	S SH 3-4	220	$\frac{\ddot{\mathbf{S}}\mathbf{H}}{\ddot{\mathbf{S}}} \frac{\mathbf{S}}{\mathbf{S}} \mathbf{S}$	243	$\frac{\mathrm{SH}}{\mathrm{S}}$ 3
183	HK 5-6 HK 14	201	H 14 ŠH 12		$\frac{\overline{H}}{\overline{S}}$ 12	229	ŠH 12	244	$\frac{\text{HS }4-5}{\text{S}}$
184	$\frac{HK}{S}$ 3-4		H 4	214	HK 10 KH 10	230	S HS 4	245	$\frac{\mathrm{HS}}{\mathrm{S}} 5$
185	$\frac{\text{HK}}{\text{H}} \frac{2\text{-}3}{12}$	202	$\frac{\ddot{S}H}{H} \frac{12}{3}$	215	ЙК 20	231	S ŠH 8	246	<u>ŠH</u> 14
186	S H K 20	203	ŠH 6 H 10	216	$\frac{\text{HK } 3-4}{\overline{\text{KH}}}$		S 2	247	HK 20
187	$\frac{\mathrm{HS}}{\mathrm{S}} \begin{array}{c} 6 \\ 4 \end{array}$	204	$\frac{H}{S}$ SH 2	217	HK 4-5 KH 8	232	$\frac{\ddot{S}H}{H} \dot{8}$	248	HK 6-7 H 8
188	HS 10	204	$\begin{array}{c c} \overline{\mathbf{SH}} & \mathbf{Z} \\ \overline{\mathbf{SH}} & 7 \\ \overline{\mathbf{H}} & 7 \end{array}$	218	КН 7 НК 7	233	ŠH 12	249	HK 6-7
189	HK 6 H 4	205	S HS 2		KH	234	S SH 3	950	H 5 ŠH 4
190	ŠH 10		$\frac{\frac{1}{8}}{\frac{5}{8}} \frac{6}{12}$	219	$\frac{H}{S}$ 10		$\frac{\overline{\breve{ ext{S}} ext{H}}}{\overline{ ext{S}}} \frac{5}{12}$	250	H
191	$\frac{\text{HS}}{\breve{\text{S}}\text{H}} \frac{9}{2}$	206	<u>ЙS</u> 4-5 SH 4	220	$\frac{\ddot{\mathbf{S}}\mathbf{H}}{\ddot{\mathbf{H}}}$ 6	235	$\frac{\mathrm{HS}}{\mathrm{S}} \frac{2-3}{7}$	251	$\frac{\ddot{S}H}{H}$ 4
192	S 5 HS 2		$\begin{bmatrix} \overline{\mathbf{S}} & \mathbf{H} \\ \overline{\mathbf{S}} & \mathbf{H} \end{bmatrix} = \begin{bmatrix} \mathbf{I} \\ \mathbf{T} & \mathbf{S} \end{bmatrix}$	221	\overline{S} SH 4-5	236	HS 2-3	252	<u>ŠН</u> 2-3 Н 15
	S 9		S		S		S 7		KH 3

No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil		
				Tl	neil IC.						
1	$\frac{\text{SH}}{\text{ŠH}}$ 2	7	$\frac{\mathrm{SH}}{\mathrm{\breve{S}H}} 2$	13	$\frac{\text{SH}}{\text{S}}$ 7	20	HK 4-5 ŠH 5	25	$\frac{\breve{H}S}{S} 2-3$		
2	H 5 S 10	_	S	14	$\frac{HS}{S}$ 2		H 10	26	$\frac{S}{L}$ 16		
3	S 20	8	$\frac{\mathbf{HS}}{\mathbf{S}}$ 1-2	15	HS 5	21	$\frac{HK}{H}$ 1	27			
4	T 10-11	9	$\frac{SH}{S}$ 3		S	22	ŠH 4-5	21	$\begin{array}{ c c c }\hline S & 14-15\\\hline \overline{L} & \end{array}$		
4	$\overline{\mathbf{M}}$	10	SH 6	16	$\frac{HS}{S}$ 4		H	28	HK 5-6 H 14		
5	$\frac{\text{H S}}{\text{S}}$ 4-5	11	SH 8	17	$\frac{LS}{L} 4-5$	23	$\frac{HK}{H}$ 7	2 9	ŠH 4		
6	ŬS 2		S 2	18	S 20	24	SH 2		H		
	$\frac{\ddot{\mathbf{S}}\mathbf{H}}{\mathbf{S}}$ 5	12	$\frac{HS}{S}$ 2	19	$\frac{S}{L}$ 17-18		$\frac{\overline{\breve{S}H}}{\overline{H}}$ 4	30	S 10-11		
	Theil ID.										
1	<u>ўн</u> 4 Н 16	11	<u>ўн</u> 7 Н 9	18	$\frac{\breve{S}H}{S}$ 4	33	$\frac{S}{L}$ 15	45 46	S 10 S 15		
2	SH 2		$\overline{\mathbf{s}}$	19	S 10	34	S 20	10	$\frac{\tilde{\mathbf{L}}}{\mathbf{L}}$		
	$\begin{array}{c c} \mathbf{\breve{S}H} & 2 \\ \mathbf{\ddot{H}} & 16 \end{array}$	12	$\frac{\ddot{S}H}{H}$ 6	20 21	S 15-16 S 14-15	35 36	S 20 LS 7-8	47	$\frac{LS}{L} 4-5$		
3	$\frac{\mathrm{SH}}{\mathrm{\breve{S}H}} \frac{2}{2}$	13	$\frac{\text{SH}}{\text{\breve{S}H}} \frac{2}{3}$		$\frac{5}{L}$ S 20		M 12 LS 8-9	48	$\frac{\text{HS}}{\text{S}} \frac{2}{17}$		
	H 16		$\frac{5H}{H}$ 15	22 23	L 15	37	L 6-9		HS 1		
4	SH 4-5	14	$\frac{\text{SH}}{\text{\breve{SH}}} 2-3$	24	$rac{ ext{S}}{ ext{LS}} rac{9}{2}$	38	$\begin{array}{c c} LS & 9 \\ \hline L & 4 \end{array}$	49	$\frac{\mathrm{S}}{\mathrm{LS}}$ 18		
5	$\frac{\text{HS}}{\text{S}}$ 6	15	S HS 3-4	25	M S 20	39	S 20	50	S 8		
6	S 20	19	B 3-4	26	S 10	40	S 15-16		$rac{\overline{ ext{LS}}}{ ext{L}} rac{2 ext{-}3}{9}$		
7	$\frac{LS}{L}$ 7-8	16	$\frac{\text{SH}}{\text{\breve{S}H}} \frac{2}{8}$	27	S 10	41	E S 17-18	51	Wege-		
8	S 20		H 4	28 29	S 10 S 10	#1	<u>I</u> ,		böschung S 15		
9	$\frac{\text{HS}}{\text{S}}$ 2	17	S SH 4-5	30	S 20	42	S 20		$\widetilde{\widetilde{\mathbf{S}}}$ 1 $\widetilde{\mathbf{T}}$ 9		
10	SH 8	17	H 13	31	S 20	43	S 10		S 5		
	S 2		S 2	32	S 20	44	S 10		$\overline{ ext{L}}$ 5		

Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil
$\begin{array}{c c} S & 18 \\ \overline{LS} & 2 \end{array}$	60	$\frac{\mathbf{S}}{\mathbf{L}}$ 9	64	Wege- böschung	69	$\begin{array}{c c} S & 4 \\ \overline{LS} & 2 \end{array}$	76 77	S 20 L 15
$\frac{\mathbf{SL}}{\mathbf{L}}$ 1	61	H 4-5		S 14 S 20	70	L H 15	78 79	S 10 S 17
S 10	62	S 9	65	S 20	71	S 10		$\overline{\mathbf{L}}$ 3
		\overline{LS} 2	66	L 15	72		80	×ĭs 3
		L	67	S 10				$\overline{\times}$ LS 2
	63	Wege-			73	S 10		$\frac{\times L}{M}$ 3
			68		74	S 20	81	S 18
$\frac{\Gamma}{\Gamma}$		\widetilde{S} 20		$\frac{\mathbf{SL}}{\mathbf{L}}$	75	S 10		ĬS 2
			Th	eil IIA.				
HK 9-10	13	ŠH 7-8	25	S 10	35	ŠН 14-15	47	SHK 2
		H	26	SH 5-6				S 18
	14	HK 8-9		S 2	36		48	HK20
					.=		49	HK10
8H 10-11			27		37		50	SHK 3
ЙS 20	16			H	38			8 7
	17		28	SH 10		S 7		HK10
M	••	H		H	39	T 10		HK10
$\frac{LS}{S}$ 7.8	18	SHK 8-9	29	$\frac{\text{SH}}{\text{H}}$ 4-5	40	$\frac{LS}{L}$ 6-7	53	$\frac{SHK}{S}$ 2-3
$\frac{LS}{L}$ 15	19	<u>ŠH</u> 9-10	30	SH 10-11 H	41	S 20	54	HK 5-6
	20		31	SH 4-5	42	S 15	55	<u>HK</u> 5
ЙS 8	20	$\frac{\overline{H}}{\overline{LS}}$ 6		$egin{array}{c c} \hline \hline { m S} & 3 \\ \hline reve{ m SH} & 2 \\ \hline \end{array}$	43	$\frac{LS}{S}$ 4-5		$\overline{\frac{H}{HT}}$ 10
<u>ŠH</u> 5-6	21	$\frac{\breve{S}H}{S}$ 10-11	32	HK 5-6	44	Grube T 10	56	$\frac{HK}{\overline{HS}} \frac{5}{8} \frac{4}{9}$
$\frac{1}{8}$	22	šн 10-11	33	HK 5	45	SHK14	57	HK 5
$\frac{\breve{S}H}{2}$ 8		8		H		S 2-3	•	TH 8
1			34	<u>ŠH</u> 6				THS
ŠH 12-13	24	LS 2-3		S 4	46	HS 4	58	HK 3-4
	Profil S 18 LS 2 SL 1 L S 10 S 10 S 20 S 10 LS 3-4 L S H C S H C S T S T S S T S S T S S	Profil No. S 18 60 E	Profil No. Profil S 18 60 S 9 1	Profil No. Profil No. S	Profil No. Profil No. Profil	Profil No. Profil No. Profil No.	No. profil No.	No. profil No.

No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil
59	SH 4 S 6	78	$\frac{\text{HS }18}{\overline{\text{SH}}}$	95	HS 2 HK 4	114	$rac{ ext{L}}{ ext{M}} rac{ ext{4-5}}{25}$	131	$\frac{\text{HS}}{\text{S}} 3-4$
60	HK 6	79	S 20		$\frac{\overline{SH}}{H}$ 6	115	$rac{ ilde{ t LS}}{ ilde{ t L}} rac{ ilde{2} ext{-}3}{ ilde{7}}$	132 133	S 20 S 17
61	HK 15	80 81	S 20 S 20	96	HK 10 KH	116	S 20		TM
62	KH 5 HS 8	82	HS 3-4	97	HK 20	117	$\frac{\breve{L}S}{L} = \frac{3}{7}$	134	$\frac{S}{M}$ 5
63	T 12 HS 8-9		$\frac{\overline{S}}{\overline{TM}}$ 4	98	$\frac{HK10}{H}$	118	S 20	135	$rac{ ext{LS}}{ ext{L}} rac{2}{6}$
	TS 12	83	S 20	99	HK 9	119	S 20	136	S 2 S 20
64 65	HK 20 HS 20	84	$\frac{S}{M} \cdot 1$	100	ЙS 5-6	120	$\frac{S}{TM}$ 8	137	S 20
66	HS 9	85	HTS 16		$\frac{\overline{\mathbf{T}}}{\overline{\mathbf{S}}} = 2-3$	121	S 8-9	138 139	S 20 S 20
	$\frac{\overline{M}}{\overline{KTS}} \frac{2}{8}$	86	. Т 4 НТ©20	101	S 20	122	TM S 20	140	S 20
67.	H K 20	87	HLS 9	102	$\frac{{f HS}}{{f TM}}$	123	<u>ŠH</u> 10	141	S 12
68	$rac{ ext{LS}}{ ilde{ t T} ilde{ t K} ilde{ t S}}rac{4}{2}$		TS 8 HTS 2	103	Grube S 1-2		$\frac{H}{S}$ 6-7	142	TM HS 12
	L 4	88	HS 20		$\overline{\mathbf{T}\mathbf{M}}35$	124	ŠH 5-6		8
69	S 10 TM 10	89	$\frac{\text{HS}}{\text{S}} \frac{2}{18}$	104	$\frac{S}{TM}$ 5		$\frac{\overline{HS}}{\overline{S}}$ 4	143	$\frac{\text{HS}}{\text{S}}$ 2
70	LS 10	90	HS 3.	105	$\frac{LHS}{TM}3-4$	125	<u>ŠН</u> 5-6 НЅ 4	144	$\frac{\text{HS}}{\text{\breve{S}}\text{H}}$ 3
	SM 3 TM		$\frac{\overline{\mathbf{SH}}}{\mathbf{H}} 2$	106	LS 4		S		$\frac{31}{H}$ 3
71	$\frac{\text{HS }10}{\text{S}} 4$	91	S 8 SH 4		$\frac{\overline{M}}{\overline{S}}$ 12	126	$\frac{\mathrm{HS}}{\mathrm{S}} \frac{7}{2}$	145	S 20 HS 7
	TM	31	$\frac{\overline{HS}}{\overline{S}} \begin{array}{c} 4 \\ 6 \\ \overline{S} \end{array}$	107	S 20		$rac{\overline{\mathbf{T}}}{\mathbf{T}\mathfrak{S}} rac{4}{5}$	146	ŏH 2
72	HS 10 S 4	92	ŠН 2	108 109	S 20 S 19	127	HK 5	147	H HS 5
73	TM 5 S 20		$egin{array}{ccc} \overline{ m H} & 5 \ \overline{ m S} & 3 \end{array}$		M 1	128	H 5 HK 7		$\frac{\overline{\mathtt{SH}}}{\mathrm{H}} \frac{2}{13}$
74	S 20	93	<u>ўн</u> 2	110 111	S 20 LS 6	120	H H	148	нк 8
75	ŠH 4		$\frac{\overline{H}}{\overline{S}}$ 10		S 14	129	$\frac{\text{SH}}{\text{ŠH}}$ 3-4	1,,0	KH uk c
	$\frac{\overline{H}}{\overline{S}}$ 10	94	$\frac{\mathrm{HS}}{\mathrm{S}} \frac{2}{2}$	112	$rac{ ext{SL}}{ ext{L}}$ 2-3		$\frac{8H}{H}$ 2	149	<u>НК</u> 6 КН
76	S 20		$\overline{\mathrm{HS}}$ 6	113	$rac{ ext{S}}{ ext{L}} rac{ ext{17}}{ ext{3}}$	130	$\frac{\breve{S}H}{S}$ 6	150	$\frac{SH}{H} \frac{4}{16}$
77	HS 20		S 10	.	ப ஒ		D 4		11 10

No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil
151	1	154	S 20	158	S 20	161	HS 4-5	164	Grube
1,,,	КН ЙS 2	155	S 20	159	S 20	i	S	1	$\frac{\text{S}}{\times \text{SL}} \frac{10}{3}$
152	$\begin{array}{c c} HS & 2 \\ \hline SH & 6 \end{array}$	156	HS 3	160	HS 2	162	S 15	1	$\frac{\sim 8L}{M} \frac{3}{6}$
ł	S 2	l	SH 7		S 15	163	S 19		₩ 10
153	S 20.	157	S 20		TS 3		×		S 10
				Th	eil IIB.				
1	S 20	14	ŠН 9	29	HS 4	40	ŠH 2	53	S 20
2	S 20	ĺ	H 3	l	S 10	İ	TS 5	54	S 17
3	S 20		SM ŠH 0		$\frac{\overline{HS}}{\overline{S}} \frac{2}{4}$		S 3	l	LS 3
4	SH 2	15	$\begin{array}{c c} & \overset{\mathbf{S}}{\mathbf{H}} & 2 \\ \hline \mathbf{T} & 11 \end{array}$	30	HS 2	41	$\frac{\text{HS }4-5}{\text{S}}$	55	$\frac{\text{HLS}14}{\text{S}}$
	$\frac{\breve{S}H}{2}$		S	00	S 16	42	ŠĤ 5-6	56	HĽS10
	H 15	16	HS 12		ST 2		H 1-2	96	<u> </u>
5	$\frac{HS}{HS}$ 2		S 10	31	SH 4		$\overline{\mathbf{s}}$	57	LS 2
	$\frac{\text{HS}}{\text{S}} \frac{6}{2}$	17	TM 20		$\frac{\overline{\mathtt{SH}}}{\mathtt{H}} = 8$	43	$\frac{\ddot{\mathbf{S}}\mathbf{H}}{\mathbf{S}}$ 6-7		$\frac{\overline{SL}}{\overline{L}}$ 2
6	S 4	18	$\begin{array}{c c} HS & 3-4 \\ \hline S & 10 \end{array}$	$\begin{vmatrix} & & \\ & 32 & \end{vmatrix}$	н 8	44	S ŠH 4-5		$\overline{ ext{L}}$ SL 2-3
	HS 2		$\frac{3}{\text{SL}}$ 4	"2	ĬI 6	**	$\frac{SH}{S}$	58	$\frac{SL}{S}$
	$\frac{\breve{S}H}{2}$		S	33	H 20	45	<u>ўн</u> 7	59	S 3-4
	H	19	S 8	34	ŠH 2-3		$rac{\overline{S}}{\overline{T}}$ 2		$\overline{\operatorname{SL}}$ 2-3
7	S 20	20	TM S 20		H 6	46	T S 20		<u>s</u>
8	S 20	20	S 20		<u>s</u>	47	ŠH 2-3	60	S 20
9	HS 4	22	S 20	35	<u>ŠH</u> 3-4	^	$\frac{SH}{S}$	61 62	S 20 S 20
	$\frac{\overline{\mathrm{HS}}}{\breve{\mathrm{S}}\mathrm{H}}$ 2	23	L 18		$egin{array}{ccc} \overline{H} & 3 \ \overline{T} & 2 \end{array}$	48	ŠH 5	63	S 20
	$\frac{SH}{H}$		$\overline{\mathbf{s}}$		$\frac{1}{8}$		<u>T</u> 3	64	Grube
10	S 20	24	S 20	36	ŠH 3-4		S 2		LS 5
11	HS 4	25	$\frac{\text{HLS}}{\text{S}}$ 5-6		H 2	49	<u>ŠH</u> 6-7		L 5
11	$\frac{\text{HS}}{\text{ŠH}}$ 2		S 20		$rac{\overline{\mathrm{T}}}{\mathrm{S}}$ 3		H 4	65	S 20
	$\frac{5H}{H}$	26	$\frac{\ddot{S}H}{H} \frac{4}{6}$	0.7		50	$\frac{\breve{S}H}{S}$ 8	66	S 20
12	HS 4	27	й 9-10	37	$\frac{\ddot{S}H}{S}$ 2-3	_	ŠH 5-6	67	S 20 S 20
	ĬН 4	21	TM 4	38	HS 4-5	51	$\frac{8H}{H}$ 4	68 69	S 20
13	HS 3		S 6		S 15	52	šн 8	70	S 16
	ўн 2	28	ŠН 5-6	39	ŠH 2-3	02	TH 2		M 3
	H 5		H	ĺ	8	ŀ	S		s

No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil
71 72	S 20 S 20	81	$\begin{array}{c c} S & 12 \\ \hline LS & 4 \end{array}$	92	Grube ŬS 3	103	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	115 116	S 20 S 17-18
			SM 4	İ	S 2	104	L 15	***	$\frac{1}{L}$
73	$\begin{array}{c c} S & 14 \\ \hline TM & 6 \end{array}$	82	S 20	l	$\overline{\times}$ I 5	105	S 10	117	S 14-15
l _	ŀ	83	S 20	93	LS 3-4	106	HT €8-9		$\overline{\mathbf{L}}$
74	Grube	84	S 15		L	١,	T	118	S 20
	$\begin{array}{ c c c }\hline S & 5 \\ \hline TM & 25-35 \end{array}$	ı	L	94	S 10	107	Grube	119	S 20
	$\frac{1 \text{ M}}{\text{M}} 30-40$		LS 2-3	95	LS 2-3	i	S+G 20	120	LS2-3
	\overline{S} 5		L		$\frac{\overline{L}}{\overline{S}}$ 6-7	108	S 15-16		<u>L</u> 8
75	LS 5	86	S 14-15	96	L 12-13		$\overline{\mathbf{L}}$		$\overline{\mathbf{S}}$
	$\frac{1}{L}$ 3		$\overline{\mathbf{L}}$	97	S 4	109	Grube	121	LS 3-4
	M 7	87	й ѕ з	91	$\frac{5}{LS} \frac{4}{2}$		L+M 1-6		L
	S		S 2	ł	TM		S+G	122	$\frac{LS}{L}$ 5-6
76	S 14		$\overline{ imes L}$ 5	98	LS 6	110	HS 20		
	M	88	Düne		M	111	LS 2-3	123	$rac{ ext{LS}2\text{-}3}{ ext{L}}$
77	L 6		S 4	99	ĽS 3-4		L		
	M 10		Ŝ 20		$\overline{\mathbf{L}}$ 3	112	Grube	124	$rac{ ext{LS}2 ext{-}3}{ ext{L}}$
78	S 14	89	S 3		M		<u>T</u> S3-4		
, ,	$\frac{\ddot{\overline{M}}}{\ddot{\overline{M}}}$ 6		$\frac{\overline{LS}}{L} \frac{6}{1}$	100	H 14-15		$\overline{\frac{\mathbf{T}}{\mathbf{M}}}$ 1-5	125	LS3-4
70	g 14				S				L 14
79	$\frac{S}{M}$ 14	90	S 15	101	<u> </u>	113	$\frac{\text{HS } 3-4}{\text{H}} 12$	126	$\frac{\mathrm{S}}{\mathrm{L}}$ 15
			M		S		$\frac{\mathrm{H}}{\mathrm{S}}$ 12		
80	S 18-19 M	91	$\frac{LS6-7}{M}$	102	$\frac{LS}{TM}$ 7	114	S 20	127	$rac{ ext{LS}}{ ext{L}}$ 2-3
	M		JAT		1 ML	114	5 20		
				Th	eil II C.				
1	LS 5-6	6	Grube	10	S 15	15	S 10-11	21	ЙS 2
1	$\frac{15}{L}$	J	L 5	10	$\frac{5}{L}$	10	$\frac{5}{L}$	21	$\frac{\text{HS}}{\text{S}}$ 7
				11	S 10-11	16	S 9		$\overline{\mathbf{L}}$ 1
2	LS 6-7	7	LS 4-5	11	T T		$\frac{\tilde{\mathbf{L}}}{\mathbf{L}}$	22	S 18
	L		L	12	Wege-	17	L 5		L
3	S 10	8	<u>S</u> 15	12	böschung	18	, S 20	23	S 9-10
	L		$\overline{\mathbf{L}}$		<u>S</u> 3	19	LS 3		$\overline{\mathbf{L}}$
4	S 14-15				Ī. 4		$\frac{10}{L}$ 7	24	L 14
	$\overline{\mathbf{L}}$	9	Wege- böschung	13	S 20	20	S 2		S 2-3
5	Grube		S 2	14	S 7-8		$\overline{\overline{SL}}$ 2		Ī.
	L 6		<u>L</u> 5		$\overline{\mathbf{L}}$		L 6	25	L 10

No	Boden- profil	Ńο.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil
26 27	S 20 S 20	31 32	S 20 S 20	36	$\frac{\mathbf{S}}{\mathbf{L}}$ 17	39	$\frac{S}{L}$ 18	42	· S 20
28	S 20	33	S 20	37	$\frac{\mathbf{S}}{\mathbf{L}}$ 16	40	$\frac{\mathbf{S}}{\mathbf{L}}$ 19	43	$\frac{LS}{L}$
29 30	S 20 S 20	34 35	S 20 S 20	38	$\frac{LS}{L}$ 8	41	$\frac{S}{L}$ 16	44	$\frac{LS}{L}$
-	J 20	100	1 5 20,	(M)	ļ	<u> </u>			
				Th	eil IID.				
1	$\frac{LS}{L}$ 4.5	16	S 20	31	$rac{ ext{S}}{ ext{L}}$ 5	47	$rac{ ext{S L}}{ ext{L}}$ 2-3	59	L 15
2	LS 4-5	17	$\frac{S}{L}$ 17	32	S 20	48	ŠH 4	60	$\frac{ ext{HS}}{ ext{L}} \frac{18}{2}$
3	L S 16-17	18	$\frac{S}{L}$ 18	33	$\frac{LS}{S} \frac{5-6}{10}$		$\frac{\widetilde{\mathtt{SL}}}{\mathtt{SL}} $	61	$\frac{\mathrm{S}}{\mathrm{HS}} \frac{11}{9}$
	$\frac{\overline{LS}}{L}$ 2	19	S 20	34	LS9-10 HLS 2	49	LS 6	62	$\frac{\text{HS 7-8}}{\text{S}}$
4	$\begin{array}{c c} S & 10 \\ \overline{LS} & 2 \end{array}$	20	$\frac{S}{L}$ 17		L 6	50	L 4 HLS6-7	63	S ĽS 7-8
	L	21	$\frac{S}{M}$ 15	35 36	H 20 S 5		$rac{ ext{L}}{ ext{LS}}$ 5-6	.,	L LS 7-8
5	$\frac{S}{L}$ 10	22	$\frac{S}{L} \frac{18}{1-2}$	37	I. S 10-11	51	$\frac{LS}{SL} \frac{4}{2}$	64	$\frac{LS}{L} \frac{10}{10}$
6	$\frac{8}{L}$ 15		$\overline{\mathbf{s}}$	38	L S 10-11	52	LS 3-4	65	S HS 6-7
7	S 20	23	$rac{ ext{S}}{ ext{L}}$ 5-6		$\overline{\mathbf{L}}$		L	66	SL H 10
8 9	S 20 S 15	24	$\frac{\text{LS}}{\text{L}}$ 10-11	39	$\frac{\mathrm{S}}{\mathrm{L}}$ 15	53	$rac{ ext{LS}}{ ext{L}}$ 3-4	67	H 4-5
10	L 5 S 20	25	LS 5-6	40	$\frac{\mathrm{S}}{\mathrm{L}}$ 10	54	$\frac{\text{LS}}{\text{L}}$ 2-3	68	HS S 20
11	Grube S 40-50	26	L 12 S 20	41	$\frac{\text{SL}}{\text{S}}$ 4-5	55	S 16	69	$\frac{\text{LS}}{\text{S}}$ 10
12	$\frac{\mathbf{S}}{\mathbf{L}} \frac{8}{12}$	27	S 18	42	S 10	56	HS 4 LS 9		$\overline{ extbf{L}}$ 4
13	HS 10	28	$egin{array}{cccc} ar{ ext{SL}} & 2 & & & \\ ext{LS} & 4 & & & & \end{array}$		$rac{\overline{\mathbf{L}}}{\mathbf{S}}$ 3-4		$\frac{\overline{S}}{\overline{L}}$ 6	70	$\frac{LS}{LS}$ 14
	$\frac{\overline{S}}{\overline{L}}$ 4		<u>I</u> 8	43 44	S 20 L 5-6	57	S 8-9	71	$\frac{LS}{L}$ 6-7
14	$\frac{S}{L}$ 15		$\overline{\mathbf{S}}$ 2		$\overline{\mathbf{s}}$		T 1 H 11	72	LS 2-3
15	Aufschluss S 6-7	29	$\begin{bmatrix} S & 8 \\ \overline{L} & 12 \end{bmatrix}$	45	$\frac{LS}{L}$ 9	58	LS 4-5 L 4	73	LS 10
	$\frac{5}{L}$ 30	30	S 10	46	L 20		$\frac{2}{8}$		L

<u></u>	Boden-	T	Boden-	T.,-	Boden-	T.,	Boden-	Ī	Boden-
No.	profil	No.	profil	No.	profil	No.	profil	No.	profil
74	TH 6	81	$\begin{array}{c c} LS & 7 \\ \hline L & 3 \end{array}$	88	$\begin{array}{ c c c c c }\hline HS & 8 \\\hline \hline S & 7 \\\hline \end{array}$	94	$\begin{array}{c c} HS & 2 \\ \overline{LS} & 8 \end{array}$	102	S 20
	$\frac{\ddot{\mathbf{S}}\mathbf{H}}{\mathbf{L}}$ 2	82	LS 4	ł	$\frac{5}{L}$ $\frac{7}{2}$	95	SH 4	103	H 20
75	LS 10	02	$\frac{L_0}{L}$		$\overline{\overline{\mathbf{M}}}$ 3	33	$\frac{SH}{LS}$ 2	104	$\begin{array}{c c} \mathbf{\check{L}S} & 8 \\ \mathbf{\check{L}} & 6 \end{array}$
'"	$\frac{1}{L}$	83	HLS10	89	HS 3-4	l	8 6		$\frac{\mathbf{L}}{\mathbf{S}}$ 6
76	LS 15		ĽS 10		LS 5		SL 8	105	HLS2-3
	L	84	LS 3		S	96	ĽS 8		LS 7
77	<u>SH</u> 1-2		$\frac{\overline{S}}{\overline{SL}}$ 7	90	$\frac{LS}{L}$ 8	97	L		L 4
	$\overline{\frac{\mathbf{T}}{\mathbf{H}}}$ 10	85	SL 5 LS 8	0.		91	$\frac{LS}{L}$ 1	106	$\frac{LS}{L} 6-7$
	$\frac{\mathbf{L}}{\mathbf{L}}$		$\frac{115}{L}$ 2	91	$\frac{\mathring{S}H}{H} \frac{2}{4-5}$	98	L 10-11	107	LS 3-4
78	Š Н 5		SL 6		$\overline{ ext{L}}$ 2		M 10	101	$\frac{115}{8}$ 5-6
	SL 4	86	$\begin{array}{c c} \mathbf{LS} & 9 \\ \mathbf{\overline{SL}} & 6 \end{array}$		$egin{array}{cccc} \overline{ ext{LS}} & 8 \ \overline{ ext{L}} & 3 \ \end{array}$	99	$\frac{S}{L}$ 10		$\overline{\mathbf{L}}$
	L 11		$\frac{\overline{SL}}{L}$ 6	00	1		1	108	LS 2
79	$\frac{LS}{L}$ 13	87	LS 9	92	$\frac{LS}{L} 4-5$	100	$\frac{S}{LS}$ 5		$egin{array}{cccc} \overline{\mathbf{S}} & 6 \\ \overline{\mathbf{L}} & 2 \end{array}$
80	LS 3-4		$egin{array}{cccc} \overline{\mathbf{L}} & 2 \ \overline{\mathbf{SL}} & 6 \end{array}$	0.0			$\frac{L_0}{L}$ 11	109	LS 7
80	LS 3-4		$\frac{\mathbf{SL}}{\mathbf{M}} 6$	93	$\begin{array}{c c} \mathbf{LS} & 7 \\ \overline{\mathbf{L}} & 3 \end{array}$	101	S 20	109	L _D '
	<u>'</u>		<u> </u>	The	il III A.	<u> </u>	<u>' </u>	<u> </u>	'
	1	·		1111					
1	$\frac{\mathbf{S}}{\mathbf{L}}$ 15	9	S 15-16	20	<u> </u>	28	L 5-6	38	HST 3-4
_		10	HS 5-6		$\frac{\mathbf{\breve{S}H}}{\mathbf{G}}$ 6	20	<u>s</u>		T 10
2	$\frac{\ddot{S}H}{S}$ 3-4	11	S 14 S 20	01	S 4	29	Grube S 30	39	$\frac{LS}{L}$ 6-7
3	S 20	11 12	S 20 ŠH 10-11	21	$rac{ ext{LS}}{ ext{L}}$ 1-2	30	S 15	40	S 20
4	ŠН 8-9	.14	SH 10-11	22	<u>TS</u> 4-5		$\overline{\mathbf{T}}$	41	S 8-9
_	8	13	ĞТ 10-11		T	31	$\frac{\mathrm{HS}}{\mathrm{T}}10-11$	41	$\frac{5}{L}$ 8-9
5	SL 1-2		T	23	$\frac{\mathbf{S}}{\mathbf{T}}$ 10	32	S 20	42	ЙS 5
	$\frac{\overline{L}}{\overline{G}}$ 15	14	$\frac{\text{HS}}{\text{T}}$ 14	24	TS 5-6	33	LS 2-3		HK 4
	<u>s</u>	15	T L 6-7	-	T	-	L		H 1
6		10	!	25	S 20	34	LS 2-3	1	TH 10
1	S 10 LS 2-3		S	t			-		
	$\begin{array}{c c} S & 10 \\ \hline{LS} & 2-3 \\ \hline{L} & 5 \end{array}$	16	S S 20	26	Abhang		$\frac{\overline{L}}{8}$ 4	43	HK 20
7	LS 2-3	16 17		t	$\begin{array}{c} \textbf{Abhang} \\ \textbf{S} \ \textbf{20-25} \\ \overline{\textbf{T}} \end{array}$	9.5	s	43 44	ЙS 18
7	$rac{\overline{ ext{LS}}}{ ext{L}} rac{ ext{2-3}}{ ext{5}}$	ŀ	S 20	t	S 20-25	35	S 20		<u>йз</u> 18
7 8	$ \begin{array}{c c} \overline{LS} & 2-3 \\ \overline{L} & 5 \end{array} $ $ \underline{S} & 4-5 $	17	S 20 T 10	26	S 20-25 T	35 36 37	s		ЙS 18

No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil
46	$ \begin{array}{c c} $	56 57	S 15 LS 5-6	67 68	L 10 LS 3-4	78 79	$\begin{array}{c c} & \mathbf{S} & 15 \\ \hline \mathbf{T} & \\ & \mathbf{S} & 20 \end{array}$	90	$\begin{array}{c c} \mathbf{L} & 8 \\ \mathbf{\overline{S}} & 10 \\ \mathbf{\overline{L}} & 2 \end{array}$
47	LS 2-3	58	$\frac{\text{LS }5-6}{\text{L}}$	69 70	S 20 S 11-12	80	<u></u> <u> </u>	91 92	L 10 S 14
48 49	S 20 S 20	59	LS 1-2 L	71	<u>L</u> <u>S</u> 12-13	81	HS 4-5 S 15	93	
50	<u>ŠH</u> 6-7 T 10	60 61	$\begin{array}{c c} S & 20 \\ \underline{LS} & 2-3 \\ \hline L & \end{array}$	72	<u>E</u> 10-11	82 83	S 20 S 20	94 95	$\begin{bmatrix} & S & 20 \\ & \frac{S}{L} & 8-9 \end{bmatrix}$
51 52	ŠH 6-7 T⊗ 13 HK-HK10-11	62 63	S 20 LS 5-6	73	$\frac{\overline{\mathbf{L}}}{\mathbf{S}}$ 8-9	84 85	S 20 LS 8-9	96 97	S 20 LS 6-7
53	K HK-KH14-15	64	$\frac{\overline{L}}{L}$ $\frac{LS}{L}$ 6-7	74	$\frac{LS}{L} \frac{6-7}{4}$	86 87	S 20 L 20	98 99	LS 4-5
54	$\frac{\mathrm{SL}}{\mathrm{L}}$ 4-5	65 66	S 20 S 10	75	S 20	89 89	L 20 Hohlweg L 8-9	100	L S 20
55	$\frac{LS}{L} 3-4$		$\overline{ t LS}$ 3	76	S 20		$\overline{\underline{M}}$ 30-32	101	<u>S</u> 10-11
	и		M 7	77	T 16		S 20		L
	<u> </u>		M 7		eil IIIB.	<u> </u>	S 20		L
1	H 5-6	11	LS 8-9			29	LS 2-3	39	H 6-7
2	$\begin{array}{c c} H & 5-6 \\ \hline \overline{S} \\ LS & 7-8 \\ \hline L \end{array}$	12	LS 8-9 L H9-10 S	Tho 20 21	S 11-12 T S 15	29 30 31	LS 2-3	39	Н 6-7
	H 5-6 S LS 7-8		LS 8-9 L H9-10 S 20 LS 7-8	Tho 2 0	S 11-12 L S 15 LS 1-2 L	30	LS 2-3 L S 16 S 20 S 20 S 20	40 41 42	H 6-7 S 8-9 L H 10 S 20
3	$\begin{array}{c} \frac{H}{S} \ 5\text{-}6 \\ \hline \frac{LS}{S} \ 7\text{-}8 \\ \hline \frac{LS}{L} \ 6\text{-}7 \\ \hline \frac{SL}{S} \ 2 \\ \hline \frac{LS}{L} \ 4\text{-}5 \\ \hline \end{array}$	12 13	LS 8-9 L H9-10 S S 20	Tho 20 21 22	S 11-12 \bar{L} S 15 \bar{LS} 1-2 \bar{L} \bar{L} S 4-5 \bar{L} S 4-5	30 31 32	LS 2-3 L S 16 S 20 S 20 S 20 LS 1-2 L 4-5	40 41 42 43	H 6-7 S 8-9 L H 10 S 20 S 7 L 13
2 3 4 5	$\begin{array}{c} \frac{\text{H } 5\text{-}6}{\text{S}} \\ \frac{\text{LS } 7\text{-}8}{\text{L}} \\ \frac{\text{LS } 6\text{-}7}{\text{SL } 2} \\ \frac{\text{LS } 4\text{-}5}{\text{L}} \\ \frac{\text{LS } 3\text{-}4}{\text{L}} \end{array}$	12 13 14 15	$\begin{array}{c} LS & 8-9 \\ \hline L \\ \hline L \\ H9-10 \\ \hline S \\ S & 20 \\ \hline LS & 7-8 \\ \hline L \\ S & 15-16 \\ \hline L \\ S & 12-14 \\ \hline L \end{array}$	Tho 20 21 22 23	S 11-12 LS 15 LS 1-2 LS 4-5 L	30 31 32 33	LS 2-3 L S 16 S 20 S 20 S 20 LS 1-2	40 41 42 43 44 45	H 6-7 S 8-9 L H 10 S 20 S 7 L 13 S 20 S 20 S 20
2 3 4 5 6 7	$\begin{array}{c} H \ 5-6 \\ \hline S \\ \hline LS \ 7-8 \\ \hline L \\ S \ 6-7 \\ \hline \hline SL \ 2 \\ \hline L \\ LS \ 4-5 \\ \hline L \\ S \ 20 \\ S \ 15 \\ \end{array}$	12 13 14 15 16	LS 8-9 H 9-10 S 20 LS 7-8 L S 15-16 C S 12-14 C LS 7-8 L S 7-8	Tho 20 21 22 23 24	S 11-12 L S 15 LS 1-2 LS 4-5 L S 9-10	30 31 32 33 34	LS 2-3 L S 16 S 20 S 20 S 20 LS 1-2 L 4-5 S LS 7-8	40 41 42 43 44	H 6-7 S 8-9 L H 10 S 20 S 7 L 13 S 20 S 20 S 20 S 20 LS 7-8
2 3 4 5 6	$\begin{array}{c} H \ 5-6 \\ \hline S \\ \hline LS \ 7-8 \\ \hline L \\ S \ 6-7 \\ \hline SL \\ \hline L \\ S \ 4-5 \\ \hline L \\ LS \ 3-4 \\ \hline L \\ S \ 20 \\ \end{array}$	12 13 14 15	LS 8-9 \overline{L} 8-9 \overline{H} 9-10 \overline{S} 20 \overline{L} 5-8 \overline{L} 5-16 \overline{L} 5-12-14 \overline{L} LS 7-8	Tho 20 21 22 23 24 25	S 11-12 E S 15 LS 1-2 LS 4-5 LS 9-10 E S 20 LS 2-3	30 31 32 33 34	LS 2-3 L S 16 S 20 S 20 S 20 LS 1-2 L 4-5 S LS 7-8 L S 7-8	40 41 42 43 44 45 46	$\begin{array}{ c c c c }\hline H & 6-7 \\\hline S & 8-9 \\\hline L \\\hline H & 10 \\S & 20 \\S & 7 \\\hline L & 13 \\\cdot & S & 20 \\S & 20 \\S & 20 \\\end{array}$

No.	Boden- ' profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil
50 51 52 53 54 55	S 14 T̃ ⊗ 3 T̃ ⊗ 4 HLS 10-11 L 15-16 L 10 S 12 L 2 M 6 S 15 L 1 S 2 L 2 S 12-13	57 58 59 60 61 62 63 64 65 66	S 12-13 L LS 6-7 L S 17 S 15 S 20 L 15 S 10 S 20 L 10 L 10 S 7-8	67 68 69 70 71 72	$\begin{array}{c c} L & 10 \\ \hline S & 19 \\ \hline L & 1 \\ \hline S & 16-17 \\ \hline L \\ \hline S & 10 \\ \hline L \\ \hline S & 8-9 \\ \hline L \\ \hline S & 5-6 \\ \hline S & 5 \\ \hline L \\ \hline S & 8 \\ \hline S & 1-2 \\ \hline \end{array}$	74 75 76 77 78 79 80 81 82	$\begin{array}{c c} HLS & 8 \\ \hline S & 6 \\ \hline L \\ \hline S & 14-15 \\ \hline L \\ S & 20 \\ \hline LS & 4-5 \\ \hline L & 7-8 \\ \hline S & 14-15 \\ \hline L \\ S & 20 \\ \hline S & 15 \\ \hline L \\ \hline S & 7 \\ \hline L \\ \end{array}$	83 84 85 86 87 88 89	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	L		Ī	The	eil III C.		L	91	S 15
1 2	S 14-15 L L 10-12	15 `16	L 10 S 15	28	$\frac{\mathrm{SL}}{\mathrm{L}}$	37 38	L 18 S 13-14	48 49	$rac{ ext{LS}}{ ext{L}}$ 5
3 4	S 20 L 2-3	17 18	L 18 S 20	30	$ \begin{array}{c} \text{HLS } 3 \\ \text{L} & 3 \end{array} $ $ \begin{array}{c} \text{LS } 12 \\ \text{L} \end{array} $	39 40	L 14-15 S 10-11 L	50	LS 8 SH 3
5 6	S L 10 S 20	19 20 21	L 10 L 10 S 20	31 32	$egin{array}{c c} \mathbf{SL} & 2 \\ \overline{\mathbf{L}} & 3 \\ \mathbf{SL} & 1 \\ \end{array}$	41 42	$\begin{array}{c} \mathbf{L} 10 \\ \mathbf{S} \mathbf{15-16} \\ \mathbf{\overline{L}} \end{array}$	51 52	L HLS10 <u>HS</u> 12
7 8 9	S 15 L 10 S 11-12 L	22 23	HS 14-15 L 18	33	$\begin{array}{c c} \overline{L} & 3 \\ \overline{M} & 4 \\ \hline SL & 1 \\ \overline{L} & 3 \\ \end{array}$	43 44 45	$\begin{array}{c} \mathbf{L} & 15 \\ \mathbf{SL} & 1 \\ \overline{\mathbf{L}} \\ \mathbf{SL} & 4 \end{array}$	53 54	LS 3 L 17 M 9 LS 6
10 11 12 13	S 20 L 10 L 15 S 20	24 25 26	$rac{{ m S}}{{ m L}}$ 15-16 $ m L$ 10 $ m S$ 20	34 35	$\begin{array}{ccc} \mathbf{SL} & 6 \\ \mathbf{\overline{L}} & 2 \\ \\ \mathbf{\overline{L}S} & 4 \\ \mathbf{\overline{L}} & 3 \end{array}$	46	$\begin{array}{ccc} \overline{LS} & 4 \\ \overline{L} & 2 \\ \underline{LS} & 5 \\ \overline{L} \\ \end{array}$	55 56	$\begin{array}{c cc} \overline{L} & 4 \\ \underline{LS} & 6 \\ \overline{L} & 2 \\ \underline{LS} & 2 \\ \end{array}$
14	$rac{ extbf{T}}{ extbf{H}}$	27	Ab- schlemm- masse	36	$rac{ ext{SL}}{ ext{L}} rac{2}{2}$	47	$\frac{\mathbf{LS}}{\mathbf{L}}$ 5		$\begin{array}{c c} \overline{\mathbf{S}} & 13 \\ \overline{\mathbf{L}} & 3 \end{array}$

No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil
57	$\frac{\breve{\mathbf{H}}\mathbf{S}}{\mathbf{L}} 11$	75	HS 4 LS 6	91	HS 4 LS 4	108	$\frac{\breve{S}H}{S}$ 6	125	$\begin{array}{c c} LS & 4 \\ \hline L & 3 \end{array}$
58	$\begin{array}{c c} \mathbf{LS} & 10 \\ \overline{\mathbf{L}} & 2 \end{array}$	76	S 8 SL 2	92	SL 12 LS 6	109	LS 5-6	126	$\begin{array}{c c} LS & 6 \\ \hline L & 2 \end{array}$
59	LS 9	77	L 4 HLS 6	93	LS 7	110	L 14 L 14	127	$\frac{LS}{L}$ 4
60	$\frac{\mathbf{LS}}{\mathbf{L}}$ 6	78	L SL 12	94	LS 10	111	f M 6 LS 5	128	$\frac{LS}{L}$ 7
61	$\frac{\mathbf{LS}}{\mathbf{L}}$ 2	79	L 3 HLS 2	95	LS 7	112	SM 5 LS 2	129 130	LS 12 HL 10
62	L 10		$\frac{\overline{S}}{\overline{L}}$ 6	96	f L 3 LS 6		$\frac{\mathbf{LS}}{\mathbf{LS}}$ 2		ĬS 5
63	S 14-15 L	80	<u>ĽS</u> 10		$\frac{115}{L}$ 2		L 3	131	$\begin{array}{c c} \mathbf{LS} & 9 \\ \hline \mathbf{L} & \end{array}$
64	L 15	81	LS 12	97	$egin{array}{ccc} \mathbf{LS} & 4 \\ \overline{\mathbf{SL}} & 2 \end{array}$	113 114	L 10 S 14	132	$\frac{LS}{L}$ 7-8
65 66	L 10 S 20		L 8	98	LS 7	***	$\frac{5}{L}$	133	HLS 6
67	L 14	82	$\frac{LS}{L}$ 6		<u>L</u> 3	115 116	S 20 S 15-16		LS 3 L 4
68	M HS 7	83	$rac{\mathbf{LS}}{\mathbf{L}}$ 3-4	99	$egin{array}{ccc} rac{\mathbf{H}}{\mathbf{S}} & 8 \\ rac{\mathbf{S}}{\mathbf{L}} & 1 \end{array}$		$\overline{\mathbf{L}}$	134	LS 10
	$\frac{S}{LS}$ 3	84	$\frac{LS}{L}$ 6-7	100	LS 3	117	Hohlweg L 40	135	LS 9 L 11
69	L 6 HLS 2	85	$\frac{LS}{S} \frac{4-5}{10}$		L 12 M 5	118	$\frac{\text{HS}}{\text{S}} 8$	136	$rac{ ext{SL}}{ ext{L}} \hspace{0.1cm} ext{6}$
	LS 4 L 4	86	$\overline{ ext{L}}$	101	$\frac{LS}{L} \frac{7}{8}$		$egin{array}{ccc} \overline{\overline{L}} & 1 \ \overline{\overline{S}} & 2 \ \overline{\overline{L}} & 5 \ \end{array}$	137	$\frac{\text{LS}}{\text{L}} \frac{8}{2}$
70	HS 4 HLS16		$\frac{\overline{S}}{\overline{L}}$ 7	102	$\frac{\mathrm{HS}}{\mathrm{LS}}$ 2	119	ы 5 ŠН 3-4	138	HLS 7-8
71	$\frac{\mathtt{LS}}{\mathtt{L}} \;\; 8$	87	S 20	103	$egin{array}{cccc} \overline{\mathbf{L}} & 2 & & \\ \mathbf{LS} & 5 & & & \end{array}$	120	I. HS 6	139	Ab- schlemm- masse
72	HS 6-7	88	$\frac{LS}{S} \frac{6}{14}$		L 7		Ī. 4		šн
73	LS 3 HS 7	8,9	LS 4	104	$rac{ extbf{LS}}{ extbf{L}} \; \; 5$	121	$\frac{\text{SL}}{\text{L}}$ 6	140	$\frac{LS}{L}$ 6-7
เจ	$\begin{array}{ccc} \overline{LS} & 6 \\ \overline{LS} & 2 \end{array}$		$egin{array}{c c} \overline{L} & 2 \\ \overline{S} & 1 \\ \overline{L} & 6 \\ \hline \end{array}$	105	$\frac{\mathrm{HS}}{\mathrm{HLS}} \frac{6}{10}$	122	$\frac{LS}{L}$ 2	141	$\frac{LS}{L}$ 12
	L 5		S 4	106	S 4 LS 20	123	$\frac{\text{LS}}{\text{L}}$ 8	142	$\frac{LS}{L}$ 7
74	$egin{array}{ccc} reve{ ext{HS}} & 4 \ \hline ar{ ext{LS}} & 6 \ \hline ar{ ext{L}} & 3 \ \end{array}$	90	$egin{array}{c c} \mathbf{LS} & 4 \\ \hline \mathbf{SL} & 4 \\ \hline \mathbf{L} & 2 \\ \hline \end{array}$	107	$\frac{LS}{L}$ 8	124	$\frac{\text{SL}}{\text{L}}$ 2	143	$\frac{\text{SL}}{\text{L}} 2$
	по		ыz		'n		'n		п

17

Bohrregister.

No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil
144	$\frac{\mathrm{SL}}{\mathrm{L}}$ 8	162	$\frac{LS}{L}$ 6	182	$\frac{LS}{L}$ 5	197	$\frac{\mathbf{SL}}{\mathbf{L}} 8$	213	$\frac{\breve{\mathtt{S}}\hspace{0.5mm}\mathrm{H}}{\breve{\breve{\mathtt{S}}}\hspace{0.5mm}\mathrm{H}}\hspace{0.5mm}4\text{-}5$
145	$\frac{\mathrm{SL}}{\mathrm{L}}$ 6	163	$\frac{LS}{L}$ 6-7	183	$\frac{\mathrm{LS}}{\mathrm{L}}$ 6 4	198	$rac{ ext{LS}}{ ext{SL}} rac{2}{1}$		$\frac{\overline{L}}{\overline{S}}$ 5
	$rac{\overline{\mathbf{S}}}{\mathbf{L}}$ 4	164 165	L 15 L 15	184	$\frac{\text{LS}}{\text{L}} \frac{4}{5}$	199	LS 1	214	LS 11
146	$\frac{\mathrm{SL}}{\mathrm{L}}$ $\frac{\mathrm{3}}{\mathrm{6}}$		$\frac{1}{8}$	185	HLS 2	200	LS 2	215	$\frac{\text{HLS } 3}{\text{LS } 11}$
147	$\frac{LS}{L}$ 3	166	$\overline{\mathbf{L}}$	186	$\frac{S}{L}$ 6 LS 5	201	$\frac{10}{L}$ 7 LS 9	216	$\overline{\operatorname{SL}}$ SH 3
148	$\frac{\text{HS}}{\text{S}} 6$	167 168	S 20 S 14		$\overline{ ext{L}}$ 2		L 10		$ \frac{\ddot{\mathbf{S}}\mathbf{H}}{\mathbf{L}} 15 $
	L	169	$\overline{\mathbf{L}}$ $\underline{\mathbf{S}}$ 11-12	187	$\begin{array}{cc} LS & 6 \\ \hline L & 4 \\ \hline LS & 10 \end{array}$	202	$\frac{\breve{L}S}{L}$ 12	217	HS 9
149 150	HS 10	170	LS 7	188	ЙS 5	203	LS 2		$\frac{\ddot{\mathbf{S}}\mathbf{H}}{\mathbf{L}\mathbf{S}}$ 1-2
151	I. 7 HS 4	171	L LS 20	189	LS 6	204	LS 3-4	218	SH 5 L 15
	$\frac{\overline{S}}{\overline{L}}$ 5	172	$\frac{LS}{L}$ 7		$ \begin{array}{c c} \overline{L} & 1 \\ \overline{SL} & 3 \\ \overline{L} & 10 \end{array} $	205	L HLS 5	219	$\frac{\text{H } 4.5}{\text{\breve{S}H}} 6$
152	$\frac{\mathbf{\check{S}H}}{\mathbf{L}}$ 9	173	$\frac{\mathbf{L}\mathbf{S}}{\mathbf{L}}$	190	$\frac{LS}{L}$		$egin{array}{cccc} \overline{T} & 4 \ \overline{\overline{H}} & 4 \ \overline{\overline{L}} \end{array}$	220	LS 3
153	$\frac{\mathrm{HS}}{\mathrm{L}}$ 3	174	ĽS 20	191	HS 5	206	<u>T</u> 8	221	LS 6-7
154	$\frac{\text{HS}}{\text{S}} \frac{6}{14}$	175	$\frac{\text{HS}}{\text{S}} \frac{4}{10}$	192	HLS10		L 6	222	L SL 4
155	$\frac{\mathbf{LS}}{\mathbf{L}}$ 9	176	$\overline{ ext{L}}$ LS 4		$\frac{\overline{S}}{\overline{L}}$ 3	207	$\frac{\mathbf{LS}}{\mathbf{L}} 10$	223	LS 7
156	$\begin{array}{c c} \mathbf{LS} & 6 \\ \hline \mathbf{S} & 4 \end{array}$	177	L 4 LS 7	193	$\frac{LS}{L}$ 6	208	$\begin{array}{c c} LS & 2 \\ \overline{SL} & 2 \end{array}$	224	L 13 LS 4-5
157	LS 2		$rac{\overline{S}}{\overline{L}}$ 2	194	SH 2	209	LS 8	225	THS7-8
158	S 20	178	$\begin{array}{c c} LS & 4-5 \\ \hline L & 6 \end{array}$		ŠH 4		L 2	226	T 9
159	$\begin{array}{c c} \mathbf{LS} & 4 \\ \overline{\mathbf{S}} & 8 \\ \overline{\mathbf{L}} & 8 \end{array}$	179	LS 5	195	L ŠH 4	210	LS 7		HT 1 SH 3
160	LS 3	180	LS 3		$\frac{\overline{S}}{LS}$ 6	211	$\frac{LS}{L}$ 7		$\begin{array}{c c} \frac{\overline{SL}}{\overline{L}} & 1 \\ \hline L \end{array}$
161	LS 2	181	I. ŬS 16	196	$\frac{\ddot{S}H}{S} \frac{4}{10}$	212	$\frac{\text{H } 4-5}{\text{\breve{S}H}} 5$	227	$\frac{LS}{L} \frac{4-5}{4}$
	<u>L</u> 10		L 4		$\frac{5}{L}$ 2		SI SI		$\frac{2}{8}$ 11

No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil
228	$\begin{array}{c c} S & 16 \\ \hline SL & 4 \end{array}$	244	$\begin{array}{ c c c }\hline LS & 1\\\hline L & 5\end{array}$	262	$\begin{array}{c c} & \breve{\mathbf{S}} \mathbf{H} & 2 \\ \hline \mathbf{H} & 3 \end{array}$	279	$\begin{array}{c c} HS & 5 \\ \hline T & 2 \end{array}$	295	$\frac{\breve{L}S}{S} \frac{6-7}{13}$
229	$\begin{array}{c c} \mathbf{LS} & 6 \\ \mathbf{\overline{SL}} & 3 \\ \mathbf{\overline{L}} \end{array}$	245 246	$\begin{array}{c c} \mathbf{LS} & 8 \\ \overline{\mathbf{L}} & 2 \\ \mathbf{S} & 10 \end{array}$	263	$\begin{array}{c c} \overline{LS} & 5 \\ \overline{HS} & 5 \\ \overline{L} & 5 \end{array}$	280	$\begin{array}{c c} \overline{HL} & 3 \\ \underline{HS} & 6 \\ \overline{L} \end{array}$	296	$\begin{array}{c c} LS & 4-5 \\ \hline L & 4 \\ \hline S & 11 \\ \end{array}$
2 30	$\frac{\text{HLS } 3-4}{\text{L}}$	240	$\begin{array}{ c c c }\hline \frac{\mathbf{LS}}{\mathbf{LS}} & 7 \\\hline \mathbf{L} & 3 \\\hline \end{array}$	264	$\begin{array}{c c} LS & 5 \\ \hline L & 15 \end{array}$	281	$egin{array}{cccc} rac{ ext{S}}{ ext{L}} & 6 \ \hline ext{L} & 2 \ \end{array}$	297	· HS 5-6 ŠH 8
231	<u>šн</u> 7	247	$\begin{array}{c c} \mathbf{SH} & 8 \\ \hline \mathbf{L} & 5 \end{array}$	265	$\begin{array}{c c} LS & 2 \\ \hline \underline{S} & 15 \end{array}$	282	HS 4	298	LS 7
232	$\frac{\text{HS}}{\text{SH}} \frac{2}{9}$	248	$\begin{array}{c c} \mathbf{\breve{S}H} & 2 \\ \mathbf{\overline{T}} & 2 \end{array}$	266	$egin{array}{cccc} \overline{\mathbf{L}} & 3 \ \overline{\mathbf{LS}} & 7 \ \overline{\mathbf{L}} & 3 \end{array}$	283	$\begin{array}{c c} \ddot{\mathbf{H}} \mathbf{S} & 9 \\ \hline \mathbf{S} & 6 \\ \hline \mathbf{L} & 2 \end{array}$	299	LS 5
233	L ŠH 8	249	$egin{array}{cccc} \overline{H} & 11 \\ \overline{L} & 5 \\ SL & 5 \\ \end{array}$	267	$\begin{array}{c c} LS & 5 \\ \hline L & 4 \end{array}$	284	$egin{array}{c c} \mathbf{L} & 2 \\ \hline \mathbf{S} & 3 \\ \mathbf{HS} & 2 \\ \end{array}$	300	$\begin{array}{c c} \overline{L} \\ \underline{LS} \ 4-5 \\ \overline{L} \ 6 \end{array}$
234	S 12 HS 10 L	250	L 4 S 10	268	$\frac{\mathrm{HS}}{\mathrm{L}} $	201	$\begin{array}{c c} \hline HL & 5 \\ \hline L & 4 \\ \hline \end{array}$		$\frac{\overline{M}}{\overline{S}}$ 3
235	$\frac{\mathbf{SL}}{\mathbf{L}} \stackrel{2}{8}$	251	$rac{f LS}{L} rac{8}{2}$	269	$ \frac{\overline{S}}{\overline{SL}} $ $ \frac{5}{5} $ $ \frac{5}{5} $ $ \frac{5}{5} $	285	$\frac{\text{SH } 2\text{-}3}{\text{L}}$	301 302	$\begin{array}{c} \text{S} 20 \\ \underline{\text{HLS}} 4 \\ \underline{\text{HL}} 6 \end{array}$
236	$\frac{\mathbf{LS}}{\mathbf{SL}}$ 10	252 253	$\begin{array}{cc} \mathbf{S} & 20 \\ \mathbf{SL} & 7 \\ \hline \mathbf{S} & \mathbf{S} \end{array}$	200	$egin{array}{ccc} ar{ ext{LS}} & ar{2} \ ar{ ext{L}} & ar{3} \ \end{array}$	286 287	$ \begin{array}{c c} \underline{LS} & 10 \\ \hline{L} & 8 \\ SL & 2-3 \end{array} $	303	$\begin{array}{c c} \mathbf{HL} & 0 \\ \mathbf{L} \\ \mathbf{LS} & 16 \end{array}$
237	$ \begin{array}{ccc} \underline{LS} & 10 \\ \underline{SL} & 4 \\ \underline{L} & 6 \end{array} $	254	$egin{array}{cccc} \overline{\mathbf{S}} & 3 \\ \overline{\mathbf{LS}} & 6 \\ \overline{\mathbf{L}} & 4 \\ \end{array}$	270	$\frac{\breve{\mathbf{S}}\mathbf{H}}{\ddot{\mathbf{S}}} \frac{2\text{-}3}{6}$	288	$\frac{5L}{L}$ LS 4	304	$\begin{array}{c c} \overline{L} \\ \underline{SL} & 2 \\ \overline{H} & 16 \end{array}$
238	ĽS 10	255	$rac{\mathbf{S}}{\mathbf{L}}$ 9	271	LS 1	289	LS 5-6		$\begin{array}{c c} \mathbf{H} & 16 \\ \overline{\mathbf{L}} & 2 \end{array}$
239	$rac{ extbf{LS 4.5}}{ extbf{L}}$	256	$\frac{LS}{L}$ 4	272	$egin{array}{ccc} \overline{\mathbf{L}} & 6 \\ \overline{\mathbf{HS}} & 5 \\ \overline{\mathbf{L}} & 5 \\ \end{array}$	200	$\frac{\overline{SL}}{L}$ 2	305	HLS 6
240	$\begin{array}{c c} \mathbf{\breve{S}H} & 8 \\ \hline \mathbf{HL} & 6 \\ \hline \mathbf{M} \end{array}$	257	ŠH 2 H 9	27 3	$egin{array}{ccc} ar{L} & 5 \ \hline LS & 2 \ \hline L & 3 \ \end{array}$	290	$\begin{array}{cc} \operatorname{HS} & 3 \\ \overline{\operatorname{T\mathfrak{S}}} & 5 \\ \overline{\operatorname{S}} & 2 \end{array}$	306	$\begin{bmatrix} \overline{SL} \\ \underline{LS} & 14 \\ \overline{L} & 2 \end{bmatrix}$
241	$\frac{LS}{S} \frac{1}{10}$	258	$egin{array}{ccc} ar{ m L} & 6 \\ ar{ m HS} & 3 \\ ar{ m L} & 10 \\ \end{array}$	274	$\frac{LS}{L}$ 4	291	S 2 ŠH 3 TS 2	307	$\begin{bmatrix} \mathbf{L} & \mathbf{Z} \\ \mathbf{SL} & 3 \end{bmatrix}$
242	$egin{array}{c c} ar{\mathbf{L}} & 4 & 8 \\ \mathbf{S} & 9 & 8 \end{array}$	259	S 12	275	$rac{ extbf{LS}}{ extbf{L}}$ 3		S 5	308	LS 6
1	L	260	LS 5	276	$\frac{LS}{L}$ 2	292	$\frac{\text{HLS } 2}{\text{LS } 4}$	309	L 6 HLS3-4
243	ŠH 1		$\overline{\mathbf{L}}$ 2	277	SL 1	909	L 4		L 15
	$\begin{bmatrix} \overline{S} & 1 \\ \overline{H} & 9 \end{bmatrix}$	261	$\frac{\text{HLS}}{\text{S}}\frac{2}{2}$	278	L HS 4	293	$rac{ ext{LS}}{ ext{L}}$	310	HLS 6 ŠH 1
	<u>L</u> 8	-	$\vec{\overline{L}}$ 6		<u>L</u> 6	294	S 20		$\frac{51}{LS}$ 6

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	$\frac{S}{L}$ 15	14		27		41	$rac{\mathbf{S}}{\mathbf{L}} = rac{4}{6}$	54					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\overline{\mathbf{L}}$	15	SL 7	28		42		55	8 3				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\overline{\mathbf{L}}$	16	LS 10	2 9	S 2	43	$\overline{ m L}$ 2	56	HS 2				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\overline{\mathbf{L}}$	17	LS 6	30	SL 6	44	L 5		$rac{\overline{ ext{HL}}}{ ext{L}} \;\; rac{2}{2}$				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	SH 5		<mark>šн</mark> 5	31	LS 5	45	HS 2		$\overline{ m L}$ 2				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	L 11	18	БН 1	32		16	L 2	58	<u>s</u> 1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$egin{array}{c c} \overline{ ext{LS}} & 3 \\ \overline{ ext{L}} & 5 \\ \hline \end{array}$	19	S 10	33			$\overline{\mathbf{L}}$	59	H 8-9				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		L	20	L	34			S 2		$\overline{\mathbf{L}}$ 6				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ย	$\overline{\mathbf{SL}}$ 3		HTS 1	35		48	S 8		H 7				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	İ		T 14	36	S 3	40	$\overline{ extbf{M}}$ 5	61	H 6				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			99	L				<u>L</u> 5	62	<u>ŠH</u> 2				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11	$\overline{\mathrm{SL}}$ 3		L 8	37	LS 3		L 6	63					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	M 4	24	<u>s</u> 9	38			L 8	64	$\frac{LS}{L}$ 3				
		L 4	25	\overline{L} 4	39	S 8		S 4	65					
$ egin{bmatrix} egin{array}{ c c c c c c c c c c c c c c c c c c c$		$\overline{\mathrm{H}}$ 1	26	H 10	40	ĽS 8	53	SL 2	66	L\$ 6				

^{*)} Bei den eng zusammen und in Reihen liegenden Bohrungen sind auf der Karte öfter nur die erste und die letzte Zahl geschrieben.

No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil
67	$\frac{\mathbf{SL}}{\mathbf{L}}$ 3	86	$\frac{\text{SH}}{\text{\breve{S}H}} \frac{6}{10}$	100	SH. 2 S 9	116	$\begin{array}{c c} & \overset{\circ}{\text{S}} & 14 \\ \hline & \overset{\circ}{\text{S}} & 14 \end{array}$	133	$\frac{\mathrm{HS}}{\mathrm{HL}}$ 6
68	$\begin{array}{c c} LS & 4 \\ \hline L & 6 \end{array}$	87	S 4 HLS 2	101	$\overline{\mathbf{L}}$ \mathbf{HS} 6	117	M 4 S 2		$\frac{\overline{L}}{\overline{S}}$ 4
69	$\frac{LS}{L}$ 2	88	LS 6		$\begin{array}{ c c c }\hline {\rm HLS} & 8 \\ \hline {\rm L} & 5 \\ \hline \end{array}$		$\begin{array}{c c} \overline{L} & 9 \\ \overline{M} & 9 \end{array}$	134	$ar{ ext{L}}$ 2 HS 2
70	$\frac{\breve{\mathbf{L}}\mathbf{S}}{\mathbf{L}} 2$	89	$\frac{1}{L}$	102	$\begin{array}{c c} HS & 9 \\ \hline S & 5 \end{array}$	118	$\begin{array}{c c} \mathbf{LS} & 8 \\ \overline{\mathbf{L}} & 2 \end{array}$		$\frac{LS}{L}$ 4
7,	\overline{S} 4	00	$\frac{\text{HL}}{\text{HL}} = 5$	103	L HS 7	119	$\begin{array}{c c} \mathbf{LS} & 6 \\ \overline{\mathbf{L}} & 4 \end{array}$	135	$\frac{\mathrm{SH}}{\mathrm{HL}}$ 6
71	LS 4-5	90	$\frac{\text{HLS } 3}{\text{HSL } 3}$		$\frac{\overline{\mathbf{S}}\mathbf{H}}{\mathbf{H}}$ 1	120	$\frac{\mathrm{LS}}{\mathrm{L}}$ 2	136	$\frac{LS}{L}$ 3
72	LS 14	91	S 14 LS 6-7	104	$\frac{\text{HS}}{\text{L}}$ 1	121	$\frac{\mathrm{LS}}{\mathrm{L}}$ 7	137	$\frac{LS}{L}$ 4
73	$\frac{LS}{S} \frac{3}{17}$		$\overline{ m L}$ 3	105	$\frac{\text{HS }13}{\text{L}}$	122	$\frac{\text{LS}}{\text{L}} \frac{8}{2}$	138	$rac{ ext{LS}}{ ext{L}}$ 3
74	L 5-6 M	92	$rac{ ext{S}}{ ext{L}}$ 11-12	106	$\frac{LS}{L}$ 6	123	$\frac{\mathbf{LS}}{\mathbf{L}} 6$	139	$\frac{\mathrm{HS}}{\mathrm{L}} \begin{array}{c} 6 \\ 4 \end{array}$
75 76	S 20 ĽS 6	93	$egin{array}{ccc} oldsymbol{\check{L}S} & 4 \ \hline S & 3 \end{array}$	107	HLS 8	124	S 20	140	<u>ŠH</u> 3-4
77	L 4 S 20	94	$rac{\overline{\mathbf{L}}}{\mathbf{L}}$	108	L 7 SH 2	125	ŠН 1 НТ 8	141	ŠH 4
78	LS 1	J4	$\begin{array}{c c} \overline{\operatorname{SL}} & 7 \\ \overline{\operatorname{S}} & 2 \end{array}$	109	HL 8 LS 10		$egin{array}{ccc} \overline{\mathbf{L}} & 3 \\ \overline{\mathbf{M}} & 8 \end{array}$		H 10 L 6
	$egin{array}{ccc} \mathbf{L} & 4 \ \overline{\mathbf{M}} & 6 \ \overline{\mathbf{S}} \end{array}$	95	$f \overline{L}$ 5 SL 1	110	$\frac{\overline{L}}{L}$ 8	126	$\begin{array}{cc} \frac{\breve{\mathbf{S}}\mathbf{H}}{\mathbf{H}} & 1 \\ \frac{\breve{\mathbf{K}}}{\mathbf{K}} & 1 \end{array}$	142	$\begin{array}{cc} \mathbf{LS} & 3 \\ \overline{\mathbf{L}} & 11 \\ \overline{\mathbf{M}} \end{array}$
79	$rac{ extbf{LS}}{ extbf{L}} $	96	S 9 HS 6	111	$\frac{S}{L} \frac{11}{9}$	127	\overline{M} 2 HL 14	143	$\frac{\mathrm{SL}}{\mathrm{L}}$ 1
80	S 20		$egin{array}{c c} \hline \hline S & 2 \\ \hline \hline L & 3 \\ \hline \end{array}$	112	LS 2	121	M 6		M 4
81	L 20		$\overline{\mathbf{SL}}$ 5		$egin{array}{cccc} \overline{\mathbf{S}} & 5 \ \overline{\mathbf{L}} & 3 \end{array}$	128	$\frac{LS}{S} \frac{15}{5}$	144	$\frac{\text{SL}}{\text{L}}$ 5
82	$\begin{bmatrix} ext{LS} & 6 \\ ext{L} & 4 \end{bmatrix}$	97	HS 2	113	$\frac{\text{HS}}{\text{S}} \frac{2}{4}$	129	$\frac{\text{HLS}}{\text{L}} \frac{8}{7}$	145	$\frac{\mathrm{SH}}{\mathrm{L}} \frac{7}{4}$
83	$\frac{LS}{L} \frac{6}{4}$		$egin{array}{c c} egin{array}{c c} reve{\mathbf{S}}\mathbf{H} & 4 \\ \hline \mathbf{L}, & 4 \end{array}$		$rac{\overline{ ext{SL}}}{ ext{L}}$ 2	130	$\frac{LS}{L} \frac{5}{5}$		$\begin{bmatrix} \overline{M} & 3 \\ \overline{SM} & 6 \end{bmatrix}$
84	<u>ŠН</u> 9 LS 11	98	$\frac{\mathbf{SL}}{\mathbf{L}}$ 6	114	$\frac{\mathbf{LS}}{\mathbf{L}} 3$	131	$\frac{LS}{L}$ 3	146	$\frac{\breve{\mathbf{S}}\mathbf{H}}{\mathbf{T}} \begin{array}{ccc} 1 \\ 2 \end{array}$
85	$ \begin{array}{c c} $	99	$\begin{array}{c c} \underline{SH} & 1 \\ \underline{\overline{S}} & 4 \\ \overline{L} & 5 \end{array}$	115	$\begin{array}{c c} HS & 2 \\ \hline S & 6 \\ \hline L & 2 \end{array}$	132	$\begin{array}{cc} \text{HS} & 5 \\ \overline{\text{LS}} & 2 \\ \overline{\text{L}} & 10 \end{array}$	147	$ \begin{array}{c c} \overline{H} & 17 \\ \underline{\tilde{S}H} & 4 \\ \overline{H} & 6 \end{array} $

No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil
148	$\frac{\text{HS}}{\text{\breve{S}H}} \frac{3}{8}$	165	$rac{ ext{LS}}{ ext{L}} ext{6-7}$	181	$\begin{array}{c c} LS & 4 \\ \hline L & 2 \\ \hline \end{array}$	195	$\begin{array}{c c} \breve{H}S & 2\\ \hline S & 2 \end{array}$	211	$\begin{array}{c c} LS & 8 \\ \hline L & 2 \end{array}$
	L 5	166	$\frac{LS}{L}$ 15	100	M	100	Ī.	212	HLS 5-6
149	$\frac{\mathrm{HLS}}{\mathrm{L}}$ 6	167	HLS 4	182	$\frac{\text{SH}}{\text{\breve{S}H}} = 8$	196	$\frac{\mathrm{SH}}{\mathrm{L}}$ 5		$\frac{\ddot{\mathbf{S}}\mathbf{H}}{\mathbf{L}}$ 3
150	$\frac{\mathbf{LS}}{\mathbf{L}}$ 5		$\frac{\overline{LS}}{\overline{L}}$ 5		$egin{array}{ccc} \overline{T} & 1 \ \overline{H} & 2 \end{array}$	197	$\frac{\ddot{S}H}{L}$ 12	213	<u>ўн</u> 10 11
151	SL 2	168	SH 3-4		$\overline{\mathbf{s}}$	198	Б 3 ВН 2	214	LS L 10
	$\frac{1}{L}$ 2		$\frac{\overline{\mathtt{SH}}}{\overline{\mathtt{HS}}} \hspace{0.1cm} 0.1c$	183	$\frac{\mathrm{HS}}{\mathrm{LS}} \frac{6}{4}$	100	$\frac{\mathrm{SH}}{\mathrm{H}}$ 8	215	LS 3-4
152	<u>HS</u> 5	169	LS 16	184	$oxed{LS} oxed{4} \ oxed{HS} oxed{2}$	199	SH 4	1210	$\frac{25}{8}$
153	L 10 SL 7		$\frac{\overline{\mathbf{L}}}{\overline{\mathbf{S}}}$ 2		LS 2-3		$egin{array}{ccc} \overline{\mathbf{S}} & 4 \ \overline{\mathbf{L}} & 2 \end{array}$	216	$\frac{HS}{S} \frac{4}{4}$
	$\overline{\mathbf{L}}$	170	LS 8	185	$egin{array}{cccc} ar{f L} & 5 \ f L & 2 \end{array}$	200	ŠН 2		$\frac{5}{L}$ 12
154	$\frac{\text{HSL }9}{\text{L }10}$		$\frac{L}{\overline{M}}$ 10	186	LS 5		$\frac{\overline{\text{KSH}}}{\overline{\text{M}}} \frac{5}{3}$	217	<u>ŠH</u> 2
155	HSL10	171	LS 6		L 5	201	ŠH 4		$egin{array}{cccc} \overline{H} & 3 \\ \overline{T} & 3 \end{array}$
	L	150	S 14	187	$\frac{\text{LS}}{\text{L}}$ 9		H 15		KT 1
156	$\frac{\mathbf{SL}}{\mathbf{L}}$ 9	172	$\frac{\mathrm{LS}}{\mathrm{L}} \frac{4}{4}$	188	LS 4	202	$f L$ 1 $f \check{S}H$ 3		$\frac{\overline{S}}{\overline{M}}$ 10
157	и ИS 8		$rac{\overline{\mathrm{M}}}{\overline{\mathrm{S}}} = 4$		L	202	$\frac{\text{SH}}{\text{H}}$ 3	218	šH 1
	L 11	173	LS 3-4	189	$rac{ ilde{L}S}{L}$ 17	203	Н 10	ļ	$\frac{\overline{\mathrm{H}}}{\mathrm{HL}}$ 3
158	$\frac{HS}{S}$ 8		L	190	ĽS 2	204	$\frac{\text{HS}}{\text{\breve{S}H}} \frac{8}{2}$		$\frac{HL}{M}$ 2
li	$egin{array}{cccc} \overline{\mathbf{S}} & 7 \\ \overline{\mathbf{L}} & 5 \\ \end{array}$	174	$\frac{\mathrm{LS}}{\mathrm{L}} \frac{2}{10}$		$\frac{\overline{S}}{\overline{L}}$ 6		$\overline{\mathrm{H}}$ 5	219	H 15
159	SL 7		$\overline{\mathbf{S}}$	101	HLS 3-4	205	Ī.		$egin{array}{ccc} \overline{ ext{LS}} & 3 \ \overline{ ext{L}} & 2 \ \end{array}$
	L 4	175	$rac{ ext{LS}}{ ext{L}} rac{2}{5}$	191	LS 8	205	$\frac{\mathrm{HS}}{\mathrm{M}} \frac{10}{6}$	220	S 7
160	$\frac{\breve{L}S}{S} \frac{2}{13}$		$\overline{\mathbf{S}}$		L	000	\overline{S} 3		$\overline{ ext{SL}}$ 3
	$\frac{\ddot{\mathbf{L}}}{\mathbf{L}}$ 5	176	HS 10 S 10	192	$\frac{\text{HLS}}{\text{LS}} \frac{2-3}{4}$	206 207	S 20 LS 5	221	$\frac{\mathrm{HS}}{\mathrm{S}} \frac{2}{13}$
161	$\frac{\text{LS}}{\text{C}}$ 14	177	S 15		L	_ ,	$\overline{ extbf{L}}$ 12		$\overline{\mathrm{SH}}$ 2
	$\frac{\overline{S}}{\overline{L}}$ 14		LS 5	193	$rac{ ext{HS}}{ ext{L}} rac{6}{2}$	208	$\overline{\mathbf{S}}$ 2 LS 8		$\frac{\overline{S}}{\overline{L}}$ 1
162	LS 6	178	$\frac{S}{LS}$ 9		\overline{LS} 3	200	$\frac{L}{L}$ 8	222	ĽS 2
	L 4		$\overline{ ext{L}}$ 4		L 9	209	$\frac{S}{T}$, $\frac{4}{9}$		S 7
163	$\frac{\text{HLS 7-8}}{\text{L}}$	170	S 7 S 10	194	$\frac{SH}{SH}$ 2	/	$rac{\overline{\mathbf{L}}}{\mathbf{S}}$ 3	000	Ī 11
164	ы 2 ўн 7	179 180	S 10 S 7		$\frac{\breve{S}H}{S} \frac{6}{4}$	210	LS 7	223	$\frac{\mathrm{HS}}{\mathrm{S}} \frac{2}{13}$
	$\frac{\mathrm{JII}}{\mathrm{L}}$	100	LS 3		$\overline{\overline{\mathbf{L}}}$ 8		L 2		$\overline{\mathbf{L}}$ 5

No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil
224	HS 4 HLS 1	241	HT©15 ŠH 5	260	$\begin{array}{c c} LS & 20 \\ \hline M & 2 \end{array}$	277	$\frac{\breve{S}H}{T}$ 5	291	HLS11 H 8
225	$\begin{array}{c c} \hline L & 3 \\ \hline LS & 7 \\ \hline L \end{array}$	242	LS 15	261 262	LS 12 SL 3	278	$\begin{array}{c c} T & 2 \\ \hline S & 2 \\ L & 3-4 \end{array}$	292	$egin{array}{c c} \overline{L} & 1 \\ \underline{HS} & 2 \\ \overline{L} & 2 \\ \hline \end{array}$
226	$\begin{array}{c c} \mathbf{HS} & 1 \\ \hline \mathbf{L} & 19 \end{array}$	243	$\frac{LS}{L} \cdot \frac{4}{L}$	263	LS 2-3	279	S L 3-4		$\begin{array}{c c} & 2 \\ \hline SL & 13 \\ \hline L & 3 \end{array}$
227	$\frac{LS}{L}$ 6	244	$ \begin{array}{c c} LS & 4-5 \\ \hline L & 5 \\ HS & 7-8 \end{array} $	264	$\begin{array}{c c} \overline{S} & 7 \\ \underline{LS} & 4 \\ \overline{L} \end{array}$	280	$\frac{\overline{S}}{LS10-11}$	293 294	Н 20 ЙS 7
228	$\frac{LS}{L}$ 8	246	$\frac{HS}{S}$ HS 2	265	$\frac{HS}{S} \frac{2}{13}$	281	$\frac{ ext{LS } 3-4}{ ext{L}}$	295	L 3 SL 4
229	$\frac{LS}{L} \frac{8}{2}$		$egin{array}{ccc} \overline{\mathrm{S}} & 2 \\ \overline{\mathrm{H}} & 5 \end{array}$	266	$\overline{ ext{L}}$ $\overline{ ext{5}}$ HS 2	282	$\frac{2}{8}$ HLS 9	296	L 6 HLS 4
230	$\begin{array}{c c} \mathbf{LS} & 2 \\ \mathbf{LS} & 3 \\ \hline \mathbf{L} \end{array}$	247	$\begin{array}{cc} HS & 2 \\ \overline{\breve{S}H} & 1 \\ \overline{H} & 3 \end{array}$	267	$egin{array}{c c} \hline S & 17 \\ \hline L & 1 \\ LS & 2 \\ \hline \end{array}$		$ \begin{array}{c c} & 3 \\ & \overline{\text{HS}} & 4 \end{array} $	297	$egin{array}{cccc} \mathbf{L} & 6 \\ \mathbf{SL} & 2 \\ \overline{\mathbf{L}} & 5 \\ \end{array}$
231	$\frac{\text{HS}}{\overline{\text{SH}}}$ 8	248	$\frac{11}{S}$ 3 S 20	201	$\begin{array}{ccc} \overline{L} & 5 & 2 \\ \overline{L} & 6 & \\ \overline{M} & 3 & \end{array}$	283	$\begin{array}{c c} \overline{M} & 2 \\ \underline{LS} & 4 \\ \overline{S} & 12 \end{array}$	298	$\overline{ ext{M}}$ 3 LS 3
232	$\begin{array}{c c} LS & 7 \\ \hline L & 2 \\ \hline \overline{G} & 3 \end{array}$	249 250	S 10 S 20	268	$\frac{\mathrm{HS}}{\mathrm{HS}} \frac{2-3}{7}$	284	$\frac{5}{L}$ $\frac{12}{4}$ LS 3	000	S 7 L 6
233	$egin{array}{c c} \overline{\mathbf{S}} & 6 \\ \overline{\mathbf{L}} \\ \mathbf{LS} & \mathbf{3-4} \end{array}$	251	$\frac{S}{L}$ $\frac{5}{4}$	269	$\frac{LS}{L}$ 3		L 6 M 2	299	$\begin{array}{ccc} LS & 7 \\ \overline{L} & 1 \\ \overline{M} & 2 \end{array}$
234	L HLS 6	252 253	M 11 S 10 LS 2	270 271	$rac{\mathrm{SL}}{\mathrm{L}}$ 2 HS 8	285	Grube L 10-11 S	300 301	LS 15 HS 3
	$\frac{\ddot{\mathrm{S}}\mathrm{H}}{\mathrm{L}}$ 2-3	200	$\begin{array}{c c} \hline SL & 2 \\ \hline SL & 2 \\ \hline S & 11 \end{array}$	272	$\frac{\mathrm{H}\mathrm{S}}{\mathrm{L}}$ SH 2	286	$\frac{\mathrm{LS}}{\mathrm{L}}$ 6		$egin{array}{c c} oxed{ar{ ilde{ ilde{S}L}}} & 1 \ oxed{L} & 6 \end{array}$
235	$\frac{\mathrm{\breve{S}H}}{\mathrm{H}}$ 5-6	254 255	S 20 S 15		$\frac{\overline{\mathtt{SH}}}{\mathtt{L}} \begin{array}{c} 2 \\ 3 \end{array}$	287	$\frac{\text{HS}}{\text{SH}} \frac{7}{2}$	302	$\begin{array}{c c} HLS & 4 \\ \hline HS & 8 \\ \hline SL & 4 \end{array}$
236	$\frac{\ddot{S}H}{L}$ 8	256	LS 5 LS 4	273	LS 3		$egin{array}{c c} \overline{\mathrm{HL}} & 4 \\ \overline{\mathrm{L}} & 2 \\ \overline{\mathrm{M}} & 5 \\ \end{array}$	303	$\frac{LS}{L} \frac{1}{7}$
237	$\frac{LS}{L}$	25-	$\frac{\overline{L}}{\overline{S}}$, 8	274	LS 2	288	HT 1 H 19	304	$\frac{\text{LS } 3-4}{\text{SL}}$ 3
239	HLS 4-5 L	257	LS 1 L 9	975	$\frac{I}{I}$	289	L 2-3 M 7	305	LS 4
240	ILS 7-8	258	$egin{array}{c c} \mathbf{LS} & 9 \\ \hline \mathbf{LS} & 2 \\ \hline \mathbf{L} & 7 \\ \hline \end{array}$	275	$egin{array}{c c} \mathbf{L}\mathbf{S} & 2 \\ \mathbf{L} \\ \mathbf{H}\mathbf{S} & 4 \\ \end{array}$	290	$\frac{\text{HS}}{\overline{\text{LS}}} = 7$	306	SI 6 LS 10
240	$\frac{LS}{L}$ 6	259	LS 12	210	t		$\begin{array}{c c} \hline S & 7 \\ \hline \hline M & 3 \\ \end{array}$	307	$\begin{array}{c c} \mathbf{SL} & 2 \\ \hline \mathbf{L} & 10 \end{array}$

No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil
308 309	LS 10 LS 5	325	SH 2 S 10	340	<u> Й</u> S 18 <u>LHS</u> 2	356	$\begin{array}{c c} \breve{H}S & 4 \\ \hline S & 12 \end{array}$	371 372	L 5-6 LS 5-6
310	LS 2	326	$ \begin{array}{c c} \overline{L} & 3 \\ \underline{HS} & 1 \\ \overline{S} & 3 \end{array} $	341	$\begin{array}{c c} \underline{HS} & 6 \\ \underline{L} & 2 \\ \underline{\overline{M}} & 2 \end{array}$	357	$\frac{\breve{H}S}{\overset{3}{\underline{S}}} \overset{3}{15}$	373	L 4 HLS 8
311	$\begin{array}{c c} \overline{S} & 18 \\ \underline{\breve{S}H} & 4 \\ \overline{L} & 6 \end{array}$	327	$\frac{\overline{S}}{L}$ HS 5	342	$ \begin{array}{c c} M & 2 \\ \underline{HS} & 18 \\ \underline{L} & 2 \end{array} $	358	$egin{array}{cccc} \overline{\mathbf{T}} & 0,5 \\ \overline{\mathbf{S}} & 2 \\ \mathbf{LS} & 10 \end{array}$	374	$\begin{array}{c c} L & 10 \\ \underline{LS} & 5-6 \\ \overline{L} & 4 \end{array}$
312	$\begin{array}{c c} LS & 7 \\ \hline L \end{array}$	328	S 5 H 10	343	SLH 4 HLS 5	359	$\begin{array}{c c} LS & 10 \\ \hline S & 10 \\ LS & 10 \end{array}$	375	LS 5-6 L 4
313	$\frac{LS}{L}$ 1	329	$\overline{\mathbf{L}}$ LS 8	344	HLS 6	360	S 10 SL 1	376	$\frac{\breve{\mathbf{L}}\mathbf{S}}{\mathbf{L}} \frac{8}{2}$
314	$\frac{\text{HLS}}{\frac{\text{S}}{\text{L}}} \stackrel{3}{9}$		$\begin{array}{c c} \overline{L} & 2 \\ \overline{S} & 4 \\ \overline{L} & 1-2 \end{array}$	345	$egin{array}{ccc} \mathbf{L} & 4 \\ \mathbf{HS} & 6 \\ \overline{\mathbf{L}} & 2 \end{array}$	361	S 9 LS 20	377	LSH 8-9 L 10
315	$\frac{\ddot{\mathbf{S}}\mathbf{H}}{\mathbf{L}} 5$	330	$\frac{L}{M}$ 4	346	$\frac{1}{M}$ 2 HLS 6	362	$\frac{LS}{S}$ 13	378	$egin{array}{cccc} ar{L} & 8 & \ \hline{L} & 2 & \ SH & 8 & \ \end{array}$
316	$\frac{\text{HS}}{\text{S}} \frac{2}{6}$	331	L 9 ŠH 7	347	L 4 HĽS 5	363	$\begin{array}{cc} \mathbf{LS} & 10 \\ \mathbf{\overline{S}} & 8 \\ \mathbf{\overline{LS}} & 2 \end{array}$	379 380	SH 8 SL 2 T 5-6
317	$rac{\overline{\mathbf{L}}}{\mathbf{SL}}$ 4		$\overline{\frac{\mathbf{H}}{\mathbf{L}}}$ 8	348	$\begin{array}{c c} \mathbf{L} & 5 \\ \mathbf{LS} & 4 \\ \mathbf{\overline{L}} & 6 \end{array}$	364	$\frac{\text{SL}}{\underline{L}} \frac{3}{11}$	381	HSL 8
318	$\frac{HS}{S} 1$	332	$\frac{\ddot{S}H}{H} \frac{8}{2}$	349	$\frac{\text{LS}}{\text{LS}}$ 3	365	$egin{array}{ccc} \overline{\mathbf{S}} & 6 \\ \mathbf{SL} & 4 \\ \overline{\mathbf{M}} & 6 \end{array}$	3 82	HL 12 LS 6 L 4
	$rac{\overline{ ext{HS}}}{ ext{L}}$ 6	333 334	ŠН 10 НS 2	350	M 5 HLS 4	366	$\begin{array}{c} LS & 15 \\ \overline{L} & 3 \end{array}$	383	LS 6 SL 4
319	$\frac{\text{HLS}}{\overset{\bullet}{\text{HS}}} \begin{array}{c} 2 \\ 6 \\ \hline 1 \end{array}$	335	S 9 HS 6 S 4	351	$egin{array}{cccc} \overline{L} & 2 \\ \overline{M} & 4 \\ HLS & 8 \\ \end{array}$	367	$\overline{\mathrm{HL}}$ 2 HL 12	384	$\frac{5L}{L}$
320	SL 2 SL 6-7	336	LS 10 HS 20	352	$\frac{\text{HLS 8}}{\text{M}} 2$ LS 5	368	L 6 HL 3	385	$egin{array}{cccc} ar{ extbf{T}} & ar{ extbf{5}} & & & & \\ extbf{LS} & ar{ extbf{4}} & & & & & \end{array}$
321	$egin{array}{cccc} ar{ m L} & 3 \ L & 12 \ \end{array}$	337	ŠH 7 SH 3		$egin{array}{ccc} \overline{\mathbf{SL}} & 5 \\ \overline{\mathbf{L}} & 8 \\ \overline{\mathbf{M}} & 2 \\ \end{array}$	0.00	$\frac{\mathbf{L}}{\overline{\mathbf{M}}}$ 2	386	S 6 LS 4
322	M 5 LS 8	338	$\frac{\mathrm{HS}}{\mathrm{L}}$ 3	353	$\frac{\mathbf{LS}}{\mathbf{L}} 10$	369	$egin{array}{ccc} ext{SL} & 2 \ ext{L} & 4 \ ext{SL} & 3-4 \ \end{array}$	387	SL 6 LS 8
323	L 2 LS 12	339	M 12	354	HS 5 L 7	370	S 10 L 6-7	388	S 12 S 18
324	SL 6 SH 2		$\begin{array}{c c} \hline S & 10 \\ \hline SL & 3 \\ \hline ST & 3 \end{array}$	355	M 8 <u>HS</u> 14 M 5		$\frac{\overline{M}}{\overline{S}}$ 1	389	TS 2 LS 2 S 18
324				355				389	

No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil
390	$\begin{array}{c c} LS & 5 \\ \hline L & 7 \end{array}$	405	$\frac{\text{HS}}{\text{S}} \frac{2}{1-2}$	421	$\frac{\text{HS } 12}{\text{L}} 6$	435	$\frac{\text{SLH } 6}{\text{L}}$	452	S 20
391	$\begin{array}{c c} \overline{S} & 8 \\ \underline{LS} & 2-3 \\ \overline{L} & 7 \end{array}$	406	$egin{array}{ccc} ar{ ext{SH}} & 6 \ \hline ext{LS} & 6 \ \hline ext{L} & 2 \ \end{array}$	422 423	$\begin{array}{c c} \mathbf{SL} & 2 \\ \overline{\mathbf{L}} \\ \mathbf{LS} & 2\text{-}3 \end{array}$	436	$ \begin{array}{c c} \hline $	453 454	$ \begin{array}{c c} \underline{LS} & 6 \\ \underline{L} & 4 \\ \underline{LS} & 8 \\ \underline{S} & 20 \end{array} $
392	<u>TKS+T8-9</u> S 2 LS 4	407	$rac{\overline{M}}{L}$ 2 $rac{LS}{L}$	424	S 15 M 5	437	$ \begin{array}{c c} \hline	455 456	ĽS 10 S 10 ĽS 9
	<u>LS</u> 4	408	$\frac{\text{LS}}{\text{L}} \frac{8}{2}$	425	$\begin{array}{c c} HS & 2 \\ \underline{\breve{S}H} & 4 \end{array}$	438	$\frac{\text{HLS}}{\text{L}} \frac{5}{5}$	457	$\frac{LS}{L}$ $\frac{TS}{L}$
393	$\begin{array}{c c} \mathbf{\breve{LS}} & 6 \\ \hline \mathbf{S} & 10 \\ \hline \mathbf{HS} & 3 \end{array}$	409	$rac{f LS}{f LS}$	426	HS 5	43 9	$\frac{\text{HS}}{\text{S}} \frac{4}{6}$	458	LS 12 L S 20
394	IS 8	410	$\frac{LS}{L}$ 3	427	SL 5 HS 6 S 4	44 0	$\stackrel{\sim}{L}$ 10 HS 4	459	$\frac{\text{LS}}{\text{L}} \frac{8}{2}$
	$\frac{\overline{S}}{\overline{L}}$ 5	411	$\frac{\text{HS}}{\text{L}}$ 6		$\begin{array}{c c} \hline{LS} & 9 \\ \hline{S} & 1 \end{array}$		$\frac{\overline{LS}}{S}$ 10	4 60	HS 8-9 HLS 10
395	$rac{ ext{LS}}{ ext{L}} rac{7}{3}$	412	$\frac{\text{HS} \ 6}{\text{HLS} \ 4}$ $\frac{\text{SH} \ 4}{\text{SH} \ 4}$	428	$rac{ ext{LS}}{ ext{L}} rac{8}{2}$	441	HS 10 LS 6	461	$egin{array}{ccc} ext{LS} & 3 \ \hline ext{SL} & 3 \end{array}$
396	$\frac{LS}{L}$ 3		$\frac{\overline{S}}{\overline{L}}$ 2	429	$\frac{\text{HS}}{\text{M}}$ 5	442 443	S 20 S 6		$\frac{\overline{S}}{\overline{L}}$ 4
397	$\begin{array}{cc} LS & 6 \\ \hline S & 8 \\ \hline LS & 4 \end{array}$	413	$\frac{\mathbf{LS}}{\mathbf{L}}$ 6	430	$\frac{\text{HS}}{\text{S}} \frac{2}{13}$	444	$egin{array}{cccc} \overline{\mathbf{L}} & 4 \ \mathbf{SL} & 2 \ \overline{\mathbf{L}} & 2 \end{array}$	462	$\begin{bmatrix} \mathbf{L} & 2 \\ \overline{\mathbf{M}} & 8 \end{bmatrix}$
398	$egin{array}{cccc} \cdot \overline{ ext{L}} & 4 \ ext{LS} & 5 \end{array}$	414	$\frac{\mathrm{SL}}{\mathrm{L}}$ 3	431	$\begin{array}{c c} \overline{LS} & 3 \\ \hline L \\ HS & 4 \\ \end{array}$	445	M 4	463	$\frac{\text{LS 4-5}}{\text{HSL}} 5$
399	$rac{ ext{LS}}{ ext{L}}$ 15	415	$\frac{\text{HS}}{\overline{\text{LS}}} \stackrel{4}{\text{2}}$	101	$\begin{array}{c c} \overline{\mathbf{S}} \overline{\mathbf{L}} & 2 \\ \overline{\mathbf{L}} & 6 \end{array}$		$\begin{array}{cc} S & 18 \\ \hline LS & 2 \end{array}$	464	$\begin{array}{c c} \mathbf{LS} & 2 \\ \mathbf{\overline{L}} & 8 \end{array}$
400	$\frac{\overline{\mathbf{L}}}{\mathbf{L}}$ 6 HS 2	416	$egin{array}{cccc} \overline{L} & 4 & \\ HS & 6 & \\ \overline{LS} & 2 & \\ \end{array}$		$\begin{array}{c c} \overline{LS} & 3 \\ \hline \overline{S} & 2 \\ \hline \end{array}$	446	LS 2 S 18	465	SH 2-3 H 10
401	L 8 HS 5	417	$\frac{LS}{SL}$ LS 8	432	\overline{L} 3 \overline{LS} 10	447	$rac{ ext{LS}}{ ext{L}} rac{ ext{G}}{4}$		$egin{array}{c c} \overline{L} & 2 \\ \overline{LS} & \end{array}$
402	L 6 SLH 4	418	$\frac{LS}{L}$ 2		$egin{array}{cccc} \overline{ ext{LS}} & 5 \ \overline{ ext{LS}} & 4 \ \overline{ ext{L}} \end{array}$	448 449	S 20 S 20	466	H 8 M 10
403	S 16 H 8	T10	$\frac{\overline{LS}}{\overline{L}} \stackrel{1}{1}$	433	$\frac{\text{HLS 4}}{\text{L}} \frac{4}{6}$	450	$rac{ ext{S}}{ ext{T}}$ 3	467	HS 4-5 SH 4
	$\frac{\overline{\mathtt{S}}\overline{\mathtt{H}}}{\mathtt{S}}$ 7	419	$\frac{\mathrm{HS}}{\mathrm{S}}$ 2	434	™ 5 ЙS 5	451	$\frac{\breve{L}S}{T}$ 11		$\frac{\overline{SH}}{\overline{SH}}$ 8
404	$\frac{\text{HS}}{\text{\breve{S}}\text{H}}$ 2	420	$\frac{\mathrm{HS}}{\mathrm{L}}$ $\frac{6}{5}$		$egin{array}{ccc} ar{\mathbf{L}} & 4 \ ar{\mathbf{M}} & 6 \end{array}$		$\frac{\overline{\mathrm{TS}}}{\mathrm{T}} \frac{3}{3}$	468	$\begin{bmatrix} LS & 3 \\ \hline L & 7 \end{bmatrix}$

				1				1 1	
No.	Boden-	No.	Boden-	No.	Boden-	No.	Boden-	No.	Boden-
	profil		. profil		profil		profil		profil
469	ĽS 14	486	LS 3	500	HS 3	515	LS 4	530	LHS 4
	L		\overline{L} 7		LS 4	020	$\overline{\mathbf{L}}$ 6		ŠH 5
470	S 20	487	SH 3		$\overline{\mathbf{L}}$	516	LS 6		LS
471	LS 3		$\overline{\mathrm{HL}}$ 6	501	S 16		$\frac{\overline{SL}}{SL}$ 4	531	HS 4
	$\overline{ ext{L}}$ 4		S 3		LS 4		$\overline{ ext{LS}}$ 6		ŠH 12
	$\overline{\mathbf{M}}$ 3		$\overline{\mathbf{L}}$ 8	502	S 16		$\overline{\mathbf{L}}$ 4		L 4
472	<u>S</u> 16	488	LS 6		$\frac{\overline{LS}}{M}$ 2	517	LS 3	532	LS 2-3
	$\frac{\overline{L}}{\overline{L}}$ 1	400	L 4		M 2		L 7		L
	M 3	489	$\frac{\text{LS}}{\text{L}} \frac{6}{6}$	503	S 20	518	LS 4	533	HS 3
473	S 20			504	$\frac{\mathrm{S}}{\mathrm{L}}$ 18		L 7		ŠH 5
474	$\frac{\mathrm{S}}{\mathrm{L}}$ 8	490					S 2-3		<u>T</u> 3
	$\frac{\mathbf{L}}{\mathbf{M}}$ 6		$\frac{\overline{\mathbf{SL}}}{\overline{\mathbf{M}}} = 3$	505	$rac{ ext{S}}{ ext{L}} rac{ ext{8}}{12}$		$\overline{\mathbf{L}}$ 6		$\overline{\mathbf{L}}$ 6
475	LS 7	401	SL 6	506	LS 4	519	HS 2	534	$\frac{\text{SLH 4}}{\text{H}} \frac{4}{16}$
110	$\frac{\mathbf{L}}{\mathbf{L}}$ 3	491	$\frac{\mathbf{SL}}{\mathbf{L}} 6$	000	$\frac{\mathbf{L}}{\mathbf{L}}$ 6		$\frac{\overline{\text{HLS}}}{\overline{\text{L}}} \frac{4}{4}$	-0-	
476	T 17	400			$\overline{ t LS}$ 5			535	$rac{ ext{LS}}{ ext{L}} rac{7}{3}$
477	LS 7	492	$rac{ ext{LS}}{ ext{L}} rac{6}{4}$		$\overline{ m L}$ 5	520	$\frac{\mathrm{HS}}{\mathrm{T}}$ 10	526	LS 5
	$\overline{\mathtt{SL}}$ 4	493		507	LS 3		L 18	300	$\frac{1}{L}$
	L 9	495	$\frac{\mathrm{HS}}{\mathrm{LS}} \frac{4}{2}$		L	521	$\frac{\mathrm{H}}{\mathrm{L}}$ 10	537	LS 8
478	<u>LS</u> 7		$\frac{\mathbf{L}}{\mathbf{L}}$ 4	508	LS 4				$\overline{\mathbf{L}}$ 2
	$\frac{\overline{\mathbf{L}}}{\overline{\mathbf{M}}}$ 2	494	LS 8		$egin{array}{ccc} \overline{\mathbf{S}} & 3 \\ \overline{\mathbf{LS}} & 1 \end{array}$	522	$\frac{\mathrm{H}}{\mathrm{SL}} \frac{9}{2}$	538	HS 3
	M 8	101	$\frac{\mathbf{LS}}{\mathbf{L}} = \frac{3}{3}$		$rac{ ext{LS}}{ ext{L}} rac{1}{2}$		$\frac{\mathbf{SL}}{\mathbf{L}} 2$		$\overline{\mathbf{H}}\mathbf{S}$ 8
479	$rac{ ext{LS}}{ ext{L}} rac{6}{2}$	495	HLS 3	,,,,		.00		l	SL 8
	$\frac{\mathbf{L}}{\mathbf{S}}$	430	$\frac{\text{LS}}{\text{LS}}$ 5	509	$\frac{\text{LS}}{\text{L}} \frac{4}{6}$	523	$\frac{\mathrm{SH}}{\mathrm{L}}$ 4	539	SH 2
480	SL 2		$\frac{1}{L}$ 2					ļ	šн 7
100	$\frac{\text{SL}}{\text{L}}$ 13	496	HS 4	510	$\frac{\mathrm{SL}}{\mathrm{L}}$ 5	524	$\frac{\text{SH}}{\text{L}} \frac{3}{17}$	İ	M
	$\overline{ ext{M}}$ 5	100	\overline{LS} 1					540	HS 8
481	ĽS 14		$\overline{ m L}$ 2	511	HS 2	525	H 20	1	· L 10
	$\overline{\mathtt{SL}}$ 4		M 4		$\overline{\overset{\mathbf{LS}}{\mathbf{LS}}}$ 8 $\overline{\overset{\mathbf{LS}}{\mathbf{LS}}}$ 5	526	HS 4	541	ŠH 4
	$\overline{ extbf{L}}$ 2	497	HLS 4		$\frac{Ls}{L}$ 5		$\frac{\overline{\mathrm{HL}}}{\mathrm{S}} \frac{7}{2}$	l	S 16
482	$\underline{\mathtt{LS}}$ 6		2	510			$\frac{5}{\text{HL}} \frac{2}{5}$	542	$\frac{\text{HS } 7-8}{\text{L}}$
	$\overline{\mathbf{L}}$ 4		M	512	$rac{ ext{LS}}{ ext{L}} rac{4}{6}$	527	ĽS 15	543	
483	$\frac{LS}{L}$ 3	4 98	SL 2-3	513		321	$\frac{\text{LS}}{\text{LS}} \frac{13}{2}$	040	$\frac{\text{HLS 2}}{\text{S 10}}$
404	L 6		L	910	$rac{ ext{LS}}{ ext{L}} rac{ ext{4}}{3}$		<u>L</u> 3	l	$\frac{5}{L}$ 6
484	$\frac{\text{LS}}{\text{L}}$ 3	499	$\frac{\text{HS}}{\text{G}}$ 5		$\frac{\mathbf{n}}{\mathbf{M}}$ 3	528	ĽS ′ 6	544	LS 8
405			$\frac{\overline{S}}{L}$ 10	514	LS 4		$\frac{1}{L}$ 4		$\frac{\overline{\mathbf{L}}}{\mathbf{L}}$ 2
485	$\frac{\mathrm{HS}}{\mathrm{SL}}$ 3		$\frac{\mathbf{L}}{\mathbf{LS}}$ 1	011	$\frac{\overline{LS}}{LS}$, 2	529	LS 4	545	LS 7-8
	$\frac{\mathbf{SL}}{\mathbf{L}} 4$		$\frac{\mathbf{L}}{\mathbf{L}}$		$\frac{115}{L}$, $\frac{2}{4}$		$\frac{\mathbf{L}}{\mathbf{L}}$ 6		$\frac{\mathrm{L}}{\mathrm{L}}$ 2
		<u> </u>				<u> </u>		<u> </u>	

No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil
_	1 -	 	• 	┼─	 	 	1	 	<u> </u>
546	$\begin{array}{c c} LS 2-3 \\ \hline L & 7 \end{array}$	562	HS 10 HLS 8	577	<u> Й</u> S 6 <u>L</u> 10	594	$\begin{array}{c c} LS & 3 \\ \hline L & 5 \end{array}$	609a	$\frac{\text{HLS } 8}{\text{SL } 2}$
547	$\begin{array}{c c} LS & 2 \\ \hline S & 13 \end{array}$	563	L HS 2	578	$\begin{array}{c c} LS & 4 \\ \hline L & 6 \end{array}$	595	<u>ŠH</u> 4-5	610	$\frac{\text{HLS 8}}{\text{S}} \frac{8}{4}$
548	$\begin{array}{c cccc} \overline{L} & 4 \\ \cdot & 8 & 30 \end{array}$		$\frac{\overline{LS}}{\overline{SL}} \frac{4}{4}$	579	$\begin{array}{c c} \mathbf{LS} & 3 \\ \overline{\mathbf{SL}} & 3 \end{array}$	596	T 8		$\frac{\overline{\text{HLS}}}{\overline{\text{L}}}$ 4
549	SL 3	564	$egin{array}{ccc} ar{ ext{T}} & 2 \ ar{ ext{H}} & 4 \end{array}$		L		$\frac{\mathbf{\breve{S}H}}{\mathbf{T}} 1$	611	$\frac{\breve{L}S}{L}$ 4-5
	$\begin{array}{c c} L & 8 \\ \hline \overline{S} & 9 \end{array}$	565	LS 4	580	$\begin{array}{c c} HS & 7 \\ \hline S & 1 \\ \hline \end{array}$	597	Н В́Н 5	612	SL 4
550	$\begin{array}{c c} \mathbf{L} & 4 \\ \mathbf{\bar{S}} & 6 \end{array}$		L 6	581	$egin{array}{cccc} ar{ ext{SL}} & 2 \ ar{ ext{HS}} & 7 \end{array}$		H 15	613	L HS 6
551	S 15	566	$\frac{\mathrm{LS}}{\mathrm{L}}$ 3	582	L H 14	598	$egin{array}{c c} \mathbf{LS} & 8 \\ \overline{\mathbf{L}} & 2 \end{array}$		$\begin{array}{c c} \hline S & 4 \\ \hline LS & 10 \\ \hline \end{array}$
552	$\begin{array}{c c} \overline{\mathbf{SL}} & 5 \\ \mathbf{S} & 7 \end{array}$	567	$\frac{\text{LS}}{\text{L}} \frac{4}{6}$		$\overline{\mathbf{L}}$	599	$\frac{\text{LS}}{\text{L}} \frac{3}{4}$	614	ĽS 4
	TS 3	568.	HS 4 T⊗ 5	583	$\frac{\text{HS}}{\text{S}} \frac{1}{4}$	600	$\frac{\text{HLS}}{\text{L}} \frac{5}{5}$	615	LS 4
553	Ľs s		1 € 5		$\frac{\overline{\mathtt{S}}\overline{\mathtt{H}}}{\overline{\mathtt{S}}}$	601	$\frac{\text{HLS}}{\text{S}} \frac{8}{3}$	616	$egin{array}{c c} \hline \mathbf{L} & 6 \\ \mathbf{LS} & 3 \\ \hline \end{array}$
	$\frac{\overline{S}}{\overline{T}}$ 8 $\frac{\overline{T}}{\overline{S}}$	569	$\frac{HS}{T}$ 3	5 84	LS 6 S 15		$\overline{\mathbf{L}}$ 5	617	$\begin{bmatrix} \frac{15}{L} & 6 \\ LS & 3 \end{bmatrix}$
554	LS 3-4	F	$\overline{\mathbf{H}}$ 8	585	ĽS 5	602	$\frac{\mathbf{LS}}{\mathbf{L}} 3$		L 7
555	L 16	570	$\frac{LS}{L}$ 3		$\frac{S}{L}$ 16	603	$\frac{\mathrm{HS}}{\mathrm{LS}} \frac{20}{5}$	618	$\frac{\text{HS}}{\text{S}} \frac{4}{3}$
555	$\frac{\text{HS}}{\text{T}} \frac{6}{10}$	571	$\frac{\ddot{S}H}{H} \frac{2}{16}$	586	$rac{ ext{LS}}{ ext{L}}$ 6	604	$\frac{\mathrm{HS}}{\mathrm{L}} \stackrel{3}{7}$	619	$egin{array}{c c} \overline{\mathbf{L}} & 3 \\ \mathbf{S} & 15 \\ \end{array}$
556	S 14 HLS 1	572	L 2 'SH 3⋅4	587	$\frac{LS}{L}$ 6	605	$\frac{\text{HLS } 3}{\text{L}} \frac{3}{3}$	620	M 4 S 18
557	L 5		$\frac{\ddot{\mathbf{S}}\mathbf{H}}{\ddot{\mathbf{H}}} = 2$	588	$\frac{HS}{L} \frac{4}{8}$	606	LS 5		M 2
557	LS 6 <u>ŤK⊗</u> 8		$\overline{\mathbf{s}}$	589	HS 4	607	ŠL 5 HLS15	621	$\frac{\text{HS}}{\text{S}} \frac{2}{10}$
558	L 6 ĽS 6	573	$\frac{\mathbf{S}}{\mathbf{L}} 8$	590	LS 3	001	L 5	622	$\frac{\text{HS}}{\text{S}} \begin{array}{c} 3 \\ 12 \end{array}$
	M 4	574	$\frac{\text{LS}}{\text{L}}$ 6	591	L 7 HLS 6	608	$\frac{\text{HLS}}{\breve{\text{SH}}} \frac{4}{3}$		SL
559	$\frac{\text{SL}}{\text{M}} 16$	575	$\frac{\mathrm{LS}}{\mathrm{L}} \;\; rac{8}{2}$	592	LS 9		$\frac{\overline{L}}{\overline{S}}$ 4	623	$\frac{\text{SHL}}{\text{L}} \frac{5}{5}$
560	$\frac{\mathrm{SL}}{\mathrm{L}}$ 4	576	HS 6		L 4	200	$\overline{\mathbf{L}}$	624	$\frac{\mathrm{HS}}{\mathrm{L}} \begin{array}{c} 6 \\ 4 \end{array}$
561	LS 7		$\frac{\overline{LS}}{\overline{L}}$ 6	593	$\begin{array}{c c} LS & 2 \\ \hline L & 1 \\ \hline \end{array}$	609	LH 4 HL 6	625	LS 6
	L 3	•	S 2		M 5		L 10		L 4

No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil
626	$ \begin{array}{c cc} & LH & 7 \\ \hline \hline S & 2 \\ \hline SL & 2 \\ \hline S & 6 \end{array} $	641 642	HLS 15 LS 10 T© 5	653	$ \begin{array}{c c} & \text{IILS 5} \\ \hline T & 1 \\ \hline TH 5 \\ \hline L 4-5 \end{array} $	6 6 7	ĽS 8 ŠH 9 S SH 3-4	681	$\begin{bmatrix} \underline{\check{\mathbf{L}}} & 3 \\ \underline{\overline{\mathbf{S}}} & 2 \\ \underline{\overline{\mathbf{L}}} \end{bmatrix}$
627	$\begin{array}{c c} \overline{L} & 3 \\ \underline{HS} & 4 \\ \overline{L} & 4 \end{array}$		H 1 TS 3 H TS H H H H H H H H H	654	S HLS 4-5 LH 3	000	$ \begin{array}{c c} \hline L & 4 \\ \hline \overline{SL} & 2-3 \\ \hline M & 7 \end{array} $	682 683	$\begin{array}{c c} LS & 4 \\ \hline L & 6 \\ \hline LS & 7 \\ \end{array}$
628	HS 4 L 14	643	LS 16 HLS 2	655	$\begin{array}{c cccc} \overline{\mathbf{L}} & 2 \\ \underline{\mathbf{LS}} & 8 \\ \overline{\mathbf{L}} & 2 \end{array}$	66 9	HLS 4 LS 5-6	684	LS 6
629	$egin{array}{c c} \mathbf{LS} & 6 \\ \overline{\mathbf{L}} & 4 \\ \mathbf{LS} & 5 \end{array}$		$\frac{T}{S}$ 1	656	$\frac{\text{L 2}}{\text{S}} \frac{2}{12}$	670	L 8 SH 5-6	205	$egin{array}{c c} \overline{\mathrm{SL}} & 2 \ \overline{\mathrm{L}} & 2 \ \end{array}$
630 631	$\begin{array}{c c} \mathbf{LS} & 5 \\ \overline{\mathbf{L}} & 5 \\ \mathbf{LS} & 7 \end{array}$	644	$ \begin{array}{c c} LHS & 4 \\ \hline LS & 6 \\ \hline SL & 5 \end{array} $	657	$\overline{ ext{SL}}$ 2 LHS2-3	671	LS 9	685 6 96	$\begin{array}{c c} \mathbf{LS} & 6 \\ \overline{\mathbf{L}} & 12 \\ \mathbf{LS} & 5 \end{array}$
632	$\frac{\mathbf{L}}{\mathbf{L}}$ 3 \mathbf{L} \mathbf{S} 6	645	LS 16		$ \begin{array}{c c} \hline{LS} & 6 \\ \hline{SH} & 6 \\ \hline{L} \end{array} $	672	$egin{array}{cccc} L & 1 \ \overline{M} & 5 \ & & & & \\ SL & 1-2 \ & & & \end{array}$	687	LS 4
co2	$ \begin{array}{c c} \overline{S} & 10 \\ \overline{L} & 4 \\ LH & 4 \end{array} $	646	$ \begin{array}{c c} \hline{L} \\ \underline{LS} & 12 \\ \hline{S} & 2 \end{array} $	658	$\frac{\text{HLS}}{\text{LS}} \frac{4}{3}$	012	$ \frac{\overline{L}}{\overline{L}} \begin{array}{c} 3 & 4 \\ \overline{M} & 4 \end{array} $	688	$\begin{array}{c c} \overline{L} & 5 \\ \underline{HLS} & 4 \\ \overline{L} & 6 \end{array}$
633 634	$\frac{\mathrm{LH}}{\mathrm{L}}$ 6 HS 5		$\begin{array}{ccc} \frac{\mathbf{S}}{\mathbf{L}} & 2 \\ \overline{\mathbf{L}} & 4 \end{array}$	659	ŠH 3 LS 9	673	$rac{ ext{SL}}{ ext{S}} rac{3}{0,5}$	689	$egin{array}{ccc} ext{LS} & 3 \ ext{L} & 3 \ \end{array}$
	$\frac{\overline{\mathtt{S}}\overline{\mathtt{H}}}{\overline{\mathtt{L}}}$ 4	647	$\frac{LS}{LS}$ 10	660	ŠH 2-3 H 17	674	$\begin{array}{c} \mathbf{LS} & 8 \\ \overline{\mathbf{LS}} & \mathbf{2-3} \end{array}$	6 90	$\begin{array}{c} \text{HS} & 4 \\ \overline{\text{TH}} & 2 \\ \overline{\text{L}} & 3 \end{array}$
635	$\begin{array}{cc} LS & 4 \\ \hline S & 2 \\ \hline L & 4 \end{array}$	648	L 5 <u>ŠH</u> 8	661	$\frac{LS}{\breve{S}H} = 6$	675	$ \begin{array}{ccc} \overline{L} & 9 \\ SL 2-3 \end{array} $	691	$\frac{L}{SL}$ HS 3
636	$\begin{array}{cc} LS & 4 \\ \hline L & 3 \\ \hline \end{array}$	649	\overline{L} 2 \underline{HS} 4	662	$ \begin{array}{c c} \overline{M} & 4 \\ LS & 2-3 \\ \overline{L} & 9 \end{array} $	676	LS 2	6 92	S 7 HS 3
637	$rac{\overline{M}}{SL}$ 5	050	$\frac{\overline{S}}{\overline{L}}$ 4	66 3	\overline{M} 8 SL 7	677	S 18 LS 3-4 L	6 93	TH 3
638	$\frac{\text{HLS 6}}{\text{LS 4}}$	650	$\frac{\text{HLS } 8-9}{\frac{\text{L}}{\text{S}}}$	664	L 3 SL 8	6 78	ŠH 6 LS 10	694	$ \begin{array}{c c} \overline{SH} & 4 \\ \overline{HS} & 3 \\ SL & 3 \end{array} $
639	$\frac{ ext{LS}}{ ext{L}} 5$	651	$\frac{\breve{\mathbf{S}}\mathbf{H}}{\mathbf{L}}$ 10	665	$\begin{array}{c} LS & 10 \\ \overline{LS} & 5 \\ \overline{HSL} & 2 \end{array}$	679	H 12	695	T. SH 4
640	8 10 8H 4	652	$\begin{array}{ccc} LS & 4 \\ \hline S & 6 \\ \hline \end{array}$	666	L 3	680	SL 8 HS 4		$\begin{bmatrix} \overline{\breve{\mathbf{S}}} \mathbf{H} & 2 \\ \overline{\mathbf{S}} & 2 \end{bmatrix}$
	$\begin{array}{c c} \overline{LS} & 2 \\ \hline S & 4 \end{array}$		TS 5 TH 5		$\frac{\overline{\text{HLS}}8-9}{\overline{\text{S}}}$		$\frac{\mathbf{LS}}{\mathbf{L}}$ 3		$\frac{\overline{LS}}{S}$ 2

No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil				
6 96	$\begin{array}{c c} HS & 3 \\ \hline S & 14 \end{array}$	708	$\begin{array}{c c} LS & 5 \\ \hline L & 5 \end{array}$	720	$\begin{array}{c c} LS & 4 \\ \hline L & 6 \end{array}$	735	$\frac{LS}{L}$ 9	748	$\frac{\mathrm{HS}}{\mathrm{S}} \frac{8}{10}$				
697	\overline{L} 3 HS 2-3	709	HS 4 LS 13	721	LS 15 L 3	736	$\frac{\mathbf{LS}}{\mathbf{L}}$ 9	749	$\frac{\mathbf{LS}}{\mathbf{L}} \frac{9}{8}$				
	$\begin{array}{c c} \overline{LS} & 7 \\ \overline{S} & 4 \end{array}$	710	L 3 HS 1	722 723	H 20 LS 2	737	$\frac{LS}{L}$ 11	750	$\begin{array}{c c} \mathbf{LS} & 4 \\ \mathbf{\overline{L}} & 6 \end{array}$				
202	$\frac{\overline{L}}{\overline{S}}$ 4		$\begin{array}{c c} \hline S & 13 \\ \hline \hline LS & 4 \\ \hline \end{array}$		$\frac{\overline{S}}{\overline{SL}}$ 15	738	$\frac{S}{LS}$ 16	751	$\begin{array}{c c} \mathbf{LS} & 3 \\ \overline{\mathbf{L}} & 12 \end{array}$				
698	HT© 4	711	LS 4	724	$\begin{array}{c c} LS & 2 \\ \hline S & 18 \end{array}$	739	$\frac{S}{LS}$ 12	752	$egin{array}{cccc} \overline{ extbf{M}} & 5 \ ext{LS} & 2 \ \end{array}$				
699	$\frac{\text{HT}\mathfrak{S}}{\frac{\text{LS}}{\text{L}}} \frac{3}{3}$	712	L 6 HLS 4	725	$\begin{array}{c c} \mathbf{LS} & 2-3 \\ \hline \mathbf{S} & 10 \\ \hline \mathbf{L} & \mathbf{S} \end{array}$	740	LS 2		L 11 M 7				
700	HS 3		LS 4 L 3	726	$\begin{array}{c c} \mathbf{L} \mathbf{S} & 7 \\ \overline{\mathbf{L}} & 13 \end{array}$		$\frac{LS}{L}$ 13	75 3	$rac{ ext{LS}}{ ext{L}} rac{ ext{4}}{ ext{5}}$				
701	$\frac{S}{S}$ 7 $\frac{HLS}{S}$ 8	713	$\frac{\text{HS}}{\text{L}}$ 8	727	$\begin{array}{c c} \mathbf{LS} & 7 \\ \hline \mathbf{L} & 13 \end{array}$	741	LS 9-10 L 10	754	$\frac{LS}{L}$ 5				
702	S LS 16	714	$\frac{HS}{S} \frac{2}{14}$	728	LS 3-4 L 6	742	$\frac{LS}{L}$ 8	755	$\frac{\text{HLS}}{\text{LS}} \frac{2}{8}$				
703	L 4 S 10	51.F	$egin{array}{ccc} \overline{ ext{SL}} & 2 \ \overline{ ext{L}} & 2 \ \end{array}$	729	LS 2 L 9	743	M 5 LS 6	756 757	S 20 LS 8				
704	$\frac{\text{HLS}}{\text{L}} \frac{5}{5}$	715	$\begin{array}{c} \frac{\text{HS}}{\text{S}} & 2 \\ \frac{\text{S}}{\text{M}} & 2 \end{array}$	730	$\frac{\text{HLS}}{\text{L}}$ 8	744	LS 15	758	$egin{array}{c c} \hline L & 2 \\ LS & 3 \\ \hline \end{array}$				
705	$rac{ ext{LS}}{ ext{L}}$ 5	716	$\frac{\text{LS}}{\text{L}}$ 3	731	$\frac{\text{SH}}{\text{H}} \frac{2-3}{10}$ $\frac{\text{SL}}{\text{SL}}$		$egin{array}{cccc} ar{ ext{S}} & 3 & & & \\ ar{ ext{S}} & 2 & & & & \\ \end{array}$	759	LS 5				
706	$\frac{\text{HS}}{\text{LS}} 6$	717	$\frac{\mathrm{HS}}{\mathrm{L}} \begin{array}{c} \mathrm{8} \\ \mathrm{2} \end{array}$	732	$\frac{\ddot{S}H}{H} \frac{3-4}{6}$	745 746	S 20 HS 4-5	760	$\begin{bmatrix} \frac{15}{L} & 5 \\ SL & 3 \end{bmatrix}$				
	$\begin{array}{cc} \overline{S} & 6 \\ \overline{LS} & 1 \\ \overline{S} \end{array}$	718	$\frac{\text{HLS}}{\text{L}} \stackrel{5}{\stackrel{5}{{}{}{}{}{$	733	$\frac{\text{SH}}{\text{M}} \frac{6}{10}$		$\frac{H}{S}$ 8	761	$\begin{array}{c c} \hline{L} & 17 \\ \hline{S} & 20 \end{array}$				
707	$\begin{array}{ccc} \mathbf{LS} & 4 \\ \overline{\mathbf{L}} & 3 \end{array}$	719	$\begin{array}{ccc} \mathbf{LS} & 4 \\ \mathbf{\overline{L}} & 6 \end{array}$	734	HLS 10 M 5	747	$\begin{array}{c c} H & 15 \\ \hline LS & 3 \\ \hline L & 2 \end{array}$	762	HS 4				
	Theil IVA.												
1	L 11-12	3	<u>ĽS</u> 6-7	5	LS 6-7	7	LS 7-8	10	S 20				
2	M 6 LS 7-8	4	L LS10-11	6	LS 2-3	8	L S 20	11	S 20				
	L		L		L	9	L 10	12	S 15				

No.	Boden- profil	Νo.	Roden- profil	No	Boden- profil	No.	Boden- profil	No.	Boden- profil			
13	$\frac{LS}{L}$ 4-5	20	Strassen- einschnitt LS 2-3	27 28	L 10 S 20	33	$\begin{array}{c c} LS & 2-3 \\ \hline L & 7 \end{array}$	40	S 15-16 L 10			
14	$\frac{LS}{L}$ 6-7		$ \begin{array}{c c} \hline L 20-22 \\ \hline S & 10 \end{array} $	29	$\frac{L}{S}$ 16	34	$\frac{LS}{L}$ 3-4	42	L 11-12 M 8			
15	Grube S 20	21	$\begin{array}{c c} SL & 1-2 \\ \hline L & & \\ \hline L & & \\ \end{array}$	30	$\begin{array}{c c} G & 8-9 \\ \hline SL & 1 \end{array}$	35	Wege- einschnitt	43	L 13-14 M 6			
16	Grube S 20	22	$\begin{array}{ c c }\hline LS & 1-2\\\hline L\\ LS & 3-4\\\hline \end{array}$		<u>S</u> 5-6		$\begin{array}{c c} I. & 10 \\ \hline S & 15 \\ \hline L \end{array}$	44	Hohlweg L 24			
17	S 14-15	24	LS 3-4 L 6 S 15	31	<u>8</u> 10-11	36	L 15-16	45	M 6 L 20			
18	LS 4-5	25 26	L 16 LS 3-4	32	L SL 2-3	37	$\frac{\mathrm{S}}{\mathrm{L}}$ 15	46	LS 10-11			
19	$\frac{.\breve{S}H}{S}$ 14	20	$\begin{array}{c c} \mathbf{\overline{S}} & 9 \\ \mathbf{\overline{L}} \end{array}$		$\frac{\overline{L}}{S}$ 10	38 3 9	L 10 L 17	47	$\frac{S}{L}$ 15-16			
	Theil IV B.											
1 2	L 15 L 10	12	L 10	21	HLS 10-11	34	$\frac{\mathrm{S}}{\mathrm{L}}$ 9	49	LS 3-4 L 10			
3	LS 5-6	13 14	L 15 L 10-11	22	S 20	35	S 11 S 10-11	50	S L 3-4			
4	LS 6-7	15	M 8 LS 6-7	23	$\frac{\text{HLS}}{\text{S}} 8-9$	36	E HLS 5-6	51	$\frac{1}{S}$ Grube			
	$ \begin{array}{c c} \overline{SL} & 2-3 \\ \hline \overline{G} & 4-5 \\ \hline \overline{S} & 5 \end{array} $		$\frac{\overline{L}}{\overline{S}}$ 8-9	24 25	S 20 S 20	37	L 15		$\begin{array}{c c} \mathbf{L} & 0-1 \\ \hline \mathbf{S} & 20 \end{array}$			
5	G 10	16	$rac{ ext{S}}{ ext{L}}$ 3	26	$egin{array}{ccc} \mathbf{L} & \mathbf{6-7} \\ \overline{\mathbf{M}} & 13 \end{array}$	38	L 20	52 53	L 15 L 10			
6	$\begin{array}{c c} \overline{S} & 10 \\ \underline{L} & 7-8 \end{array}$	17	LS 3-4	27 28	S 15 S 20	39 40	S 20 S 20	54	L 10			
7	S H 6 = 6	18	L 13 Hohlweg	29	H 6-7 HS	41 42	S 20 L 20	55	LS 1 L 15			
8	L ŠH 17-18		$\begin{array}{c c} \mathbf{L} & 10 \\ \overline{\mathbf{S}} & 20 \end{array}$	30	$\frac{\mathrm{LS}}{\mathrm{L}} \frac{2}{10}$	43	L 15	56 57	L 20 L 15			
9	T 18	19	$\frac{LS}{L} \frac{2-3}{10}$	21	S 6	44 45	L 20 L 20	58 59	L 14-15 LS 8-9			
10	TS 3-4	20	$\overline{ ext{S}}$ LS 3-4	31 32	L 10 L 10	46	L 10		S			
11	H 8 L 10		$\frac{\overline{L}}{S}$ 2-3	33	$\frac{LS}{L}$ 7-8	47 48	L 15 L 15	60 61	S 20 L 15			

No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil				
	Theil IV C.												
1	LS 3-4 S 15-16	20	$\frac{\text{L}}{\text{S}}$ 5-6	37	$egin{array}{c c} \operatorname{LS} & 4 \ \operatorname{L} & 3 \ \end{array}$	56	$\begin{array}{ c c c }\hline LS & 3-4 \\\hline L & 4 \\\hline \end{array}$	70	$\frac{LS}{L}$ 8				
2	$\frac{\mathbf{S}}{\mathbf{L}} \mathbf{15-16}$	21	$\frac{\text{LS } 2-3}{\text{SL}}$ 3	38	$\begin{array}{c c} \overline{S} & 3 \\ \underline{LS} & 8 \end{array}$	57	S LS 4-5	71	$\begin{array}{c c} \underline{\mathbf{SL}} & 2 \\ \underline{\underline{\mathbf{L}}} & 4 \end{array}$				
3	$\frac{L}{S}$ 2-3			39	S 2 S 10	58	LS 6	72	M 14 SL 4				
4	$\frac{S}{L}$ 14	22	$\frac{S}{L}$ 15	40	I. S 10		$\frac{\overline{L}}{\underline{LS}}$ 1		$\frac{\overline{M}}{\overline{S}}$ 3				
5	LS 3-4	23	$\frac{LS}{L}$ 4-5	41	S 12-13		$\begin{array}{c c} \overline{\mathbf{S}} & 5 \\ \overline{\mathbf{LS}} & 2 \\ \overline{\mathbf{L}} & 1 \end{array}$	73	$\frac{\mathrm{SL}}{\mathrm{L}}$ 6				
6	$\frac{S}{L}$	24	$\frac{1}{S}$	42	$\begin{array}{c c} HS & 3 \\ \hline T & 5 \\ \hline \breve{S}H & 2 \\ \end{array}$	5 9	$\frac{1}{S}$ LS 17	74 75	S 10 LS 4-5 L 7-8				
8	LS 1-2 L	25 26	S 20 LS 3-4	43	$\begin{array}{c c} & \text{ §H } 2 \\ & \text{ §H } 2 \\ \hline \text{ H } 2 \end{array}$	60	$\begin{array}{c c} \frac{LS}{L} & 3 \\ LS & 8 \end{array}$	76	$\frac{L}{S}$ HS 2				
9.	S 9-10 E S 10-11	27	LS 2-3	44	$\begin{array}{c c} \mathbf{H} & 2 \\ \hline \mathbf{S} \cdot & 8 \\ \mathbf{S} & 15 \end{array}$		$rac{\overline{ ext{HS}}}{ ext{L}}$ 6		$\frac{\overline{\text{HT}}}{\overline{\text{S}}} \frac{2}{2}$				
10	L 20	- ' ',	$\frac{\overline{L}}{\overline{S}}$ 12	45	L 3-4	61	\overline{S} LS 5-6	77	HS 9				
11	L 20	28 29	S 10 S 20	46	$\begin{array}{c c} \cdot \overline{S} & 6 \\ SL 4-5 \end{array}$	6 2	LS 10	78	$\begin{array}{cc} LS & 2 \\ \hline S & 7 \end{array}$				
12	S 15-16	30	$\frac{LS}{L} \frac{4-5}{10}$	47	S 5 Grube		$\frac{\overline{L}}{\overline{S}}$ 4	79	I 4 S 10				
13	$\frac{L}{S}$ 3.4	31	$\frac{LS}{L} \frac{3-4}{3}$	40	L+M 20-30 S 10	63	LS 6-7 L	80	$\frac{\mathbf{S}}{\mathbf{L}}$ 18				
14	$\frac{L}{S}$ 12	32	S 3 S 20	48 49	S 10 S 10	64 65	ĽS 10 _LS 9	81 82	S 15 LS 3-4				
15	Schürfung I. 1	33	$\frac{LS}{LS}$ 6	50	L 5-6 M 4		$\frac{\overline{\mathrm{HSL}}}{\mathrm{L}}$ 2-3		$\frac{\overline{L}}{\overline{S}}$ 6				
16	S 5 L 8	34	L 2 S 20	51 52	HS 8	66	LS 3-4 L 16	83	$\frac{LS}{L}$ 3-4				
17	\overline{S} S 15	35	$\begin{array}{c c} HS & 2 \\ \hline LS & 4 \\ \hline \end{array}$	53	H 2 LS 10	67	$\frac{LS}{L}$ 3-4	84	S 20				
18	$rac{ ext{S}}{ ext{L}}$ 15 L 18		$\frac{\overline{L}}{\overline{S}}$ 3	54	$\frac{LS}{L}$ 5	68	$\frac{LS}{L}$ 6-7	·85 8 6	S 20 LS 2-3				
19	S 20	36	$\frac{LS}{L}$ 6	55	$\frac{\mathrm{S}}{\mathrm{L}}$ 8-9	69	$\frac{LS}{L}$ 10		$\frac{\overline{L}}{\overline{S}}$ 7				

No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil	No.	Boden- profil				
	Theil IV D.												
1	LS 5	17	$egin{array}{c c} \underline{\mathbf{S}} & 7 \\ \overline{\mathbf{L}} & 3 \end{array}$	36	$\begin{array}{ c c c }\hline LS & 4-5\\\hline \overline{SL} & 3\\\hline \end{array}$	52	An der Grenze der Schürfung	6 8	$\begin{array}{c c} \mathbf{SL} & 3 \\ \overline{\mathbf{L}} & 2 \end{array}$				
2	$\frac{\text{HLS}}{\text{L}}$	18	$egin{array}{c c} \underline{S} & 6 \\ \overline{L} & 4 \end{array}$	37	$\begin{array}{c c} \overline{L} \\ \underline{L} & 8 \\ \overline{S} & 2 \end{array}$		$\frac{L}{S} \frac{20-30}{10}$		$\frac{\overline{M}}{\overline{S}}$ 13				
3	$rac{ ext{LS}}{ ext{L}}$ 3	19 20	L 10 SL 2	38	Grube L+M 2-20	53	$\frac{S}{L}$ 15-16	69 70	S 10 S 10				
4	Grube S 30		$\begin{array}{c c} \overline{L} & 8 \\ \overline{S} & 2 \end{array}$	39	S 40 S 10-11	54 55	S 10 S 10	71	$\begin{array}{c c} LS & 8 \\ \hline L & 1 \\ \hline \end{array}$				
5 6	S 10 L 7-8	21 22	S 10 S 10	40	$rac{\overline{\mathbf{L}}}{\mathbf{LS}}$	56	$\frac{\mathrm{HS}}{\mathrm{S}} \;\; \frac{2}{8}$	72	$ \begin{array}{c c} \overline{M} \\ LS 4.5 \\ \overline{SL} 12 \end{array} $				
7	$\begin{array}{c c} \overline{S} \\ S & 10 \\ \overline{L} \end{array}$	23	$\frac{\mathbf{LS}}{\mathbf{S}} 8$		$\begin{array}{c c} \overline{S} & 2 \\ \overline{L} & 5 \end{array}$	57	Grube tM 20	73	$\begin{array}{c c} SL & 12 \\ \hline S & \\ LS & 2 \end{array}$				
8	S 7	24 · 25	S 10 S 10	41	$\begin{array}{c c} \mathbf{LS} & 6-7 \\ \overline{\mathbf{SL}} & 2 \\ \overline{\mathbf{S}} & 1 \end{array}$	58	$\frac{LS}{L}$ 3		$\begin{array}{c c} \underline{\mathbf{LS}} & 2 \\ \underline{\mathbf{LS}} & 5 \\ \underline{\mathbf{L}} & 3 \end{array}$				
9	Sandgrube S	26 27	S 10 LS 11-12	42	$\begin{array}{c c} S & 1 \\ \underline{SL} & 5 \\ \hline S & 9 \end{array}$	59	S 17-18	74	$\frac{LS}{S} \frac{2}{10}$				
	$\begin{array}{c c} \overline{H} \\ \overline{S} & 4-5 \end{array}$ 20	00	$\frac{L}{S}$ 6-7	43 44	L 10 LS 4-5	60	$\begin{array}{c c} LS & 3-4 \\ \hline L & 4 \\ \hline LS & 2-3 \end{array}$	75	$\frac{LS}{L} \frac{4-5}{1}$				
	$\frac{H}{S}$	28	$ \begin{array}{c} LS 3-4 \\ \overline{L} 2-3 \\ \overline{S} 15 \end{array} $	45	$\frac{\text{LS } 23}{\text{LS } 2-3}$	61	$\begin{array}{c c} \hline & \hline & \hline & \hline & \hline & \hline & \hline & \hline $	76	M SL 10				
10	$\begin{array}{c c} \underline{SLH} & 3 \\ \hline \underline{SH} & 4 \\ \hline \overline{HLS} & 2 \end{array}$	29 30	S 10 S 10-11	~0	$egin{array}{ccc} \overline{L} & 3 \ \overline{S} & 2 ext{-}3 \end{array}$	62	$\begin{array}{c c} LS & 2 \\ \hline S & 4 \end{array}$	77	$\frac{\text{LS}}{\text{L}} \frac{8}{2}$				
11	$\begin{array}{c c} \mathbf{L} & \mathbf{3-4} \\ \hline \mathbf{S} & \end{array}$	90	$\begin{bmatrix} \overline{LS} & 2-3 \\ \overline{L} & \end{bmatrix}$	46	$\overline{\mathbf{L}}$ $\underline{\mathbf{HLS}}$ 6-7		$egin{array}{ccc} \overline{\operatorname{SL}} & 2 \ \overline{\operatorname{L}} & 2 \end{array}$	78 79	L 10 ŠH 5				
12	$\frac{S}{L}$ 9-10	31	$\frac{LS}{L}$ 2-3	47	H LS 2-3	63	$\begin{array}{c c} LS & 7 \\ \hline L & 2 \\ \hline \overline{S} & 1 \\ \end{array}$	80	S 7 LS 2				
13	$egin{array}{ccc} f S & 8 \ f L & 2 \end{array}$	32	M 16 S 12-13	48	$ \begin{array}{c c} L & 7 \\ LS & 2-3 \\ \hline S & 6 \end{array} $	64 65	S 1 L 10 LS 7	81	S 10 SL 2				
14	$\begin{array}{c c} \mathbf{LS} & 1 \\ \overline{\mathbf{S}} & 5 \\ \overline{\mathbf{L}} & 4 \end{array}$	33	$\frac{\overline{L}}{S}$ 4-5	49	$egin{array}{cccc} ar{ ext{L}} & ar{ ext{2}} \ ext{LS 2-3} \end{array}$	00	$\begin{array}{c c} \mathbf{LS} & 1 \\ \hline \mathbf{L} & 2 \\ \hline \mathbf{S} & 1 \end{array}$		$egin{array}{ccc} oxed{ar{ ilde{ ilde{S}L}}} & 4 \ oxed{ ilde{L}} & 4 \end{array}$				
15	LS 9	34	S 15 LS 4-5	50	$\overline{ ext{L}}$ LS 3-4	66	$\begin{bmatrix} \mathbf{LS} & 4 \\ \mathbf{L} & 6 \end{bmatrix}$	82	$rac{\mathbf{L}}{\mathbf{M}}$				
16	L 7 S 10	95	$\begin{bmatrix} \overline{\text{SL}} & 3 \\ \overline{\text{L}} & 2 \\ \end{bmatrix}$	51	$ \begin{array}{c c} \hline S & 6 \\ SL & 1 \\ \hline T & 0 \end{array} $	67	$\begin{array}{c c} LS & 2 \\ \hline L & 2 \\ \hline M & 6 \\ \end{array}$	83	SL 1-2 L 8 M 8				
	$\overline{\mathbf{L}}$ 4	35	L 5		L 8		M 6		M 8				

No.	Boden- profil	No	Boden- profil	No.	Boden- profil	No.	Boden- profil	No	Boden- profil
84 85	S 10 S 10	102 ·	$\frac{\text{LS }6-7}{\text{L}}$	116	$\frac{LS}{L} 6-7$	128	$\frac{\text{SL}}{\text{M}} \frac{3-4}{16}$	142	$\frac{\text{LS}}{\text{L}} \frac{3}{3}$
86	S 10	103	$rac{ ext{LS}}{ ext{L}} rac{5}{3}$	117	LS 5 L 4	129	$\frac{\mathrm{S}}{\mathrm{L}}$ 6		$\frac{\overline{M}}{\overline{S}}$ 3
87	$\frac{\mathrm{SL}}{\mathrm{L}}$ 2		$\frac{\overline{S}}{\overline{LS}}$ 6		S 5	130	<u>L</u> 4	143	SH 5 H 15
8 8 8 9	S 10 S 2-3	104	$\frac{S}{M}$ 18	118	L 5 SHL 9	131	M 16 S 10	144	S 6 HS 3
90	$egin{array}{cccc} \overline{\mathbf{L}} & 7 \\ \mathbf{S} & 8 \end{array}$	105	$\frac{\text{S}}{\text{L}}$ 14-15		$\begin{array}{c c} \hline \underline{\mathbf{SL}} & 3 \\ \hline \underline{\mathbf{L}} & 4 \end{array}$	132	$\frac{LS}{S} \frac{4-5}{1-2}$		$\frac{\overline{H}}{\overline{H}}$ 6 \overline{H} 3
	LS	106	HS 6-7	120	LS 2-3 S 12		$\overline{ extbf{L}}$ 3	145	$rac{ ext{LS}}{ ext{LS}}$
91 92	S 10 S 10-11		$egin{array}{c c} \overline{\mathbf{L}} & 8 \ \hline \overline{\mathbf{SL}} & 5 \end{array}$		$\overline{\mathbf{L}}$	133	$\frac{\text{LS}}{\text{L}}$ 1	145	HLS 8
93	L S 10	107	HS 8 TS 1	121	$\frac{ ilde{L}S}{ ilde{L}}$ 10	134	$\frac{LS}{L} \frac{4-5}{5-6}$		$\frac{\ddot{S}H}{LS}$ 4
94	HL 10		©T 3 S 8	122	M 5 LS 6	105	<u>s</u> .	146 147	S 20 SL 4
95 9 6	S 20 S 10-11	108	HS 5		\overline{L} 4	135	$\frac{LS}{L}$ 10		$\frac{\overline{M}}{\overline{S}}$ 14
	$\overline{\mathbf{L}}$		$\frac{\breve{\mathtt{S}}\mathtt{H}}{\mathtt{L}} $	123	$\frac{LS}{L} 5$	136	$\frac{\text{SL}}{\text{S}}$ 3-4	148	$rac{ ext{L}}{ ext{S}}$ 3-4
97	L 18	109	S 20	124	$\frac{\mathrm{HLS}}{\mathrm{L}} \frac{5}{5}$	137	S 15	149	L 10
98	$\frac{\mathbf{LS}}{\mathbf{L}} \ \ 8$	110 111	S 20 S 7-8	125	Н 8 3	138	S 10	150	$\frac{HS}{S}$ 6
99	$\frac{LS}{L}$ 5-6		$\overline{ extbf{L}}$ 2		$rac{\overline{ ext{SL}}}{ ext{L}} rac{3}{4}$	139	$\frac{S}{M}$ 4	151	$\frac{\overline{SL}}{S}$
100	LS 10	112 113	L 10 L 10	126	$\frac{\text{HS}}{\text{S}} \frac{3}{17}$	140	S 20	152	S 12-13
101	LS 7	114	L 15	127	S 15	141	$rac{ ext{S}}{ ext{L}} rac{ ext{14}}{2}$	153	$fordsymbol{\overline{M}}$ L 2-3
	L	115	G 10		M 5		M 4		$\overline{\mathbf{M}}$

Veröffentlichungen der Königl. Preussischen geologischen Landesanstalt.

Die mit † bezeichneten Karten und Schriften sind in Vertrieb bei Paul Parey hier, alle übrigen bei der Simon Schropp'schen Hof-Landkartenhandlung (J. H. Neumann) hier erschienen.

1. Geologische Specialkarte von Preussen und den Thüringischen Staaten. Im Maaßstabe von 1:25000.

			III Manstage von 1.20000.	
		1	für das einzelne Blatt nebst 1 Heft Erläuterungen 2 Mark.	
		Preis	, , Doppelblatt der mit obigem + bez. Lieferungen , , , , , , librigen Lieferungen , ,	
		1	,,,,,, ibrigen Lieferungen4 ,,	
T : . C	1			Mark
Lieferun	ıg 1.	Blatt	Zorge 1), Benneckenstein 1), Hasselfelde 1), Ellrich 1), Nordhausen 1),	10
	•		Stolberg 1)	12 —
"	2.	"	Buttstedt, Eckartsberga, Rosla, Apolda, Magdala, Jena 1)	12 —
"	3.	"	Worbis, Bleicherode, Hayn, Nieder-Orschla, GrKeula, Immenrode	12 —
"	4.	"	Sömmerda, Cölleda, Stotternheim, Neumark, Erfurt, Weimar	12 —
"	5.	"	Gröbzig, Zörbig, Petersberg	6 —
"	6.	"	Ittersdorf, "Bouss, "Saarbrücken, "Dudweiler, Lauterbach, Emmers-	
	_			20 —
,,	7.	"	GrHemmersdorf, *Saarlouis, *Heusweiler, *Friedrichsthal, *Neun-	
	_		kirchen (darunter 4 * Doppelblätter)	18 —
17	8.	"		12 —
11	9.	"	Heringen, Kelbra (nebst Blatt mit 2 Profilen durch das Kyffhäuser-	
			gebirge sowie einem geogn. Kärtchen im Anhange), Sangerhausen,	
			Sondershausen, Frankenhausen, Artern, Greussen, Kindelbrück,	
			Schillingstedt	20 —
"	10.	"	Wincheringen, Saarburg, Beuren, Freudenburg, Perl, Merzig	
"	11.	" †	Linum, Cremmen, Nauen, Marwitz, Markau, Rohrbeck	12 —
11	12.	**	Naumburg, Stössen, Camburg, Osterfeld, Bürgel, Eisenberg	12 —
"	13.	,,,	Langenberg, Grossenstein, Gera 1), Ronneburg	
,,	14.	"†	Oranienburg, Hennigsdorf, Spandow	6 —
,,	15.	"	Langenschwalbach, Platte, Königstein, Eltville, Wiesbaden, Hochheim	12 —
,,	16.	••	Harzgerode, Pansfelde, Leimbach, Schwenda, Wippra, Mansfeld .	12 —
"	17.	"	Roda, Gangloff, Neustadt, Triptis, Pörmitz, Zeulenroda	12 —
"	18.	"	Gerbstedt, Cönnern, Eisleben, Wettin	8 —
"	19.	"	Riestedt, Schraplau, Teutschenthal, Ziegelroda, Querfurt, Schafstädt,	
			Wiehe, Bibra, Freiburg	18 —
"	20.	,, †	Teltow, Tempelhof, *GrBeeren, *Lichtenrade, Trebbin, Zossen	
			(darunter 2 * mit Bohrkarte und Bohrregister)	
"	21.	"	Rödelheim, Frankfurt a. M., Schwanheim, Sachsenhausen	8 —
"	22.	,, †	Ketzin, Fahrland, Werder, Potsdam, Beelitz, Wildenbruch	12 —
17	23.	"	Ermschwerd, Witzenhausen, Grossalmerode, Allendorf (die beiden	
			letzteren mit je 1 Profiltafel und 1 geogn. Kärtchen)	10 —
"	24.	"	Tennstedt, Gebesee, Gräfen-Tonna, Andisleben	8 —
"	25.	"	Mühlhausen, Körner, Ebelehen	6 —
"	26.	,, †	Cöpenick, Rüdersdorf ¹), Königs-Wusterhausen, Alt-Hartmannsdorf,	
			Mittenwalde, Friedersdorf	12 —
17	27.	"	Gieboldehausen, Lauterberg, Duderstadt, Gerode	8 —
**	28.	"	Osthausen, Kranichfeld, Blankenhain, Kahla, Rudolstadt, Orlamünde	12 —
,,	2 9.	,, †	Wandlitz, Biesenthal, Grünthal, Schönerlinde, Bernau, Werneuchen,	
			Berlin, Friedrichsfelde, Alt-Landsberg. (Sämmtlich mit Bohrkarte	
	•		und Bohrregister)	27 —
"	30.	"	Eisfeld, Steinheid, Spechtsbrunn, Meeder, Neustadt an der Heide,	
			Sonneberg	12 —
"	31.	"	Limburg, Eisenbach (nebst 1 Lagerstättenkarte), Feldberg, Kettenbach	
			(nebst 1 Lagerstättenkärtchen), Idstein	12 —

1) Zweite Ausgabe.

				Mark
Lieferun	g 32.	Bla	t † Calbe a. M., Bismark, Schinne, Gardelegen, Klinke, Lüderitz.	
			(Mit Bohrkarte und Bohrregister)	18 —
"	33.	"	Schillingen, Hermeskeil, Losheim, Wadern, Wahlen, Lebach	12 —
"	34.	"	† Lindow, Gross-Mutz, Klein-Mutz, Wustrau, Beetz, Nassenheide.	
			(Mit Bohrkarte und Bohrregister)	18 —
22	35.	"	† Rhinow, Friesack, Brunne, Rathenow, Haage, Ribbeck, Bamme,	
			Garlitz, Tremmen. (Mit Bohrkarte und Bohrregister)	27 -
"	36.	"	Hersfeld, Friedewald, Vacha, Eiterfeld, Geisa, Lengsfeld	12 —
,,	37.	"	Altenbreitungen, Wasungen, Oberkatz (nebst 1 Profiltafel), Meiningen,	
,,		•	Helmershausen (nebst 1 Profiltafel)	10 —
"	38.	"	+ Hindenburg, Sandau, Strodehne, Stendal, Arneburg, Schollene.	
,,		• • •	(Mit Bohrkarte und Bohrregister)	18 —
,,	39.	"	Gotha, Neudietendorf, Ohrdruf, Arnstadt (hierzu eine Illustration)	8 —
	40.		Saalfeld, Ziegenrück, Probstzella, Liebengrün	8 —
"	41.	"	Marienberg, Rennerod, Selters, Westerburg, Mengerskirchen,	
"		"	Montabaur, Girod, Hadamar	16 —
	42.	,,	Montabaur, Girod, Hadamar	
"		"	Genthin, Schlagenthin. (Mit Bohrkarte und Bohrregister)	21 -
	43.		† Rehhof, Mewe, Münsterwalde, Marienwerder. (Mit Bohrkarte und	
"	10.	"		12 —
	44.		Coblenz, Ems (mit 2 Lichtdrucktafeln), Schaumburg, Dachsen-	
"	77.	"	hausen, Rettert	10 —
	45.		Melsungen, Lichtenau, Altmorschen, Seifertshausen, Ludwigseck,	10 -
"	40.	"	Rotenburg	19
	A C			10 —
"	46.	**	† Heilsberg, Gallingen, Wernegitten, Siegfriedswalde. (Mit Bohrkarte	10
**	47.	"	T neusberg, Gainingen, wernegitten, Siegirieuswalde. (Mit Domkarte	12 —
	40		und Bohrregister)	12 —
"	48.	"	Trarey, Parchen, Karow, Burg, Theessen, Ziesar. (Mit Bonrkarte	10
	40		und Bohrregister)	18 —
"	49.	"	Gelnhausen, Langenselbold, Bieber (hierzu eine Profiltafel), Lohrhaupten	8
**	50.	"	Bitburg, Landscheid, Welschbillig, Schweich, Trier, Pfalzel	
• • • • • • • • • • • • • • • • • • • •	51.	,,	Gemünd-Mettendorf, Oberweis, Wallendorf, Bollendorf	8 —
"	52.	"	Landsberg, Halle a.S., Gröbers, Merseburg, Kötzschau, Weissenfels,	
	E 0		Lützen. (In Vorbereitung).	14 —
,,	53.	"	† Zehdenick, GrSchönebeck, Joachimsthal, Liebenwalde, Ruhlsdorf,	10
	- 1		Eberswalde. (Mit Bohrkarte und Bohrregister)	18 —
"	54.	**	† Plaue, Brandenburg, Gross-Kreutz, Gross-Wusterwitz, Göttin, Lehnin,	07
			Glienecke, Golzow, Damelang. (Mit Bohrkarte und Bohrregister)	27 —
"	55.	"	Stadt Ilm, Stadt Remda, Königsee, Schwarzburg, Gross-Breiten-	10
	F 0		bach, Gräfenthal	12 —
"	56.	"	Themar, Rentwertshausen, Dingsleben, Hildburghausen	8 —
"	57.	,,	Weida, Waltersdorf (Langenbernsdorf), Naitschau (Elsterberg),	
			Greiz (Reichenbach)	8 —
11	58.	"	† Fürstenwerder, Dedelow, Boitzenburg, Hindenburg, Templin, Gers-	
			walde, Gollin, Ringenwalde. (Mit Bohrkarte und Bohrregister).	24 —
"	59.	"	† GrVoldekow, Bublitz, GrCarzenburg, Gramenz, Wurchow, Kasimirs-	
			hof, Bärwalde, Persanzig, Neustettin. (Mit Bohrkarte u. Bohrregister)	27 —
"	60.	"	Mendhausen - Römhild, Rodach, Rieth, Heldburg	8 —
"	61.	"	+ GrPeisten, Bartenstein, Landskron, GrSchwansfeld, Bischofstein.	
,,		• • •		15 —
••	62.	,,	Göttingen, Waake, Reinhausen, Gelliehausen	8 —
. "	63.	"	Schönberg, Morscheid, Oberstein, Buhlenberg	8 —
"	64.			12 —
"	65.	"	+ Pestlin, Gross-Rohdau, Gross-Krebs, Riesenburg. (Mit Bohrkarte	
"		"		12 —
•-	66.	22	und Bohrregister)	
"	J.,	77	Bietikow, Gramzow, Pencun. (Mit Bohrkarte und Bohrregister)	27 —
	67.		† Kreckow, Stettin, Gross-Christinenberg, Colbitzow, Podejuch, Alt-	
"		"		18 —
•-	68.	_	† Wilsnack, Glöwen, Demertin, Werben, Havelberg, Lohm. (Mit	
"	٠٠.	??	Bohrkarte und Bohrregister)	18 —
			PONTEMIC UNI DUNIEGISCOI)	- U

				Mark
Lieferu	ing 69.	Blat	t † Wittstock, Wuticke, Kyritz, Tramnitz, Neu-Ruppin, Wusterhausen, Wild-	
			berg, Fehrbellin. (Mit Bohrkarte und Bohrregister)	24 —
"	70.	"	Wernigerode, Derenburg, Elbingerode, Blankenburg. (In Vorbereitung)	8 —
"	71.	"	Gandersheim, Moringen, Westerhof, Nörten, Lindau	10 —
"	72.	,,	Coburg, Oeslau, Steinach, Rossach	8 —
"	73.	"	† Prötzel, Möglin, Strausberg, Müncheberg. (Mit Bohrkarte und Bohrregister)	12 —
	74.		† Kösternitz, Alt-Zowen, Pollnow, Klannin, Kurow, Sydow. (Mit	12 —
."		"	Bohrkarte und Bohrregister)	18 —
,,	75.	,,	† Schippenbeil, Dönhoffstedt, Langheim, Lamgarben, Rössel, Heilige-	
	7.0		linde. (Mit Bohrkarte und Bohrregister).	18 —
**	76.	"	† Woldegk, Fahrenholz, Polssen, Passow, Cunow, Greiffenberg, Angermünde, Schwedt. (Mit Bohrkarte und Bohrregister)	24
	77.		Windecken, Hüttengesäss, Hanau-GrKrotzenburg	6
"	78.	"	Reuland, Habscheid, Schönecken, Mürlenbach, Dasburg, Neuenburg,	0
"	10.	"	Waxweiler, Malberg. (In Vorbereitung)	16 —
	79.	,,	Waxweiler, Malberg. (In Vorbereitung)	10
"		"	(In Vorbereitung)	12 —
"	80.	"	† Gross-Ziethen, Stolpe, Zachow, Hohenfinow, Oderberg. (Mit Bohr-	
"	•••	"	karte und Bohrregister)	15 —
"	81.	,,	+ Wölsickendorf, Freienwalde, Zehden, Neu-Lewin, Neu-Trebbin,	
,,		,,	Trebnitz. (Mit Bohrkarte und Bohrregister.) (In Vorbereitung).	18 —
1)	82.	,,	Trebnitz. (Mit Bohrkarte und Bohrregister.) (In Vorbereitung). † Altenhagen, Karwitz, Schlawe, Damerow, Zirchow, Wussow.	
				18 —
"	83.	,,	(Mit Bohrkarte und Bohrregister) † Lanzig mit Vitte, Saleske, Rügenwalde, Grupenhagen, Peest. (Mit	
	0.4		Bohrkarte und Bohrregister)	15 —
"	84.	"	† Gross-Schöndamerau, Theerwisch, Babienten, Ortelsburg, Olschienen,	10
	0.5		Schwentainen. (Mit Bohrkarte u. Bohrregister.) (In Vorbereitung)	18 —
"	85.	"	† Niederzehren, Freystadt, Lessen, Schwenten. (Mit Bohrkarte und Bohrregister)	12 —
	86.		† Neuenburg, Garnsee, Feste Courbière, Roggenhausen. (Mit Bohr-	12
"	00.	"	karte und Bohrregister)	12 —
"	87.	,,	† Thomsdorf, Gandenitz, Hammelspring. (Mit Bohrkarte und Bohr-	
"		,,	register.) (In Vorbereitung)	9 —
,,	88.	,,	† Wargowo, Owinsk, Sady, Posen. (Mit Bohrkarte und Bohrregister)	12 —
"	89.	"	+ Greifenhagen, Woltin, Fiddichow, Bahn. (Mit Bohrkarte u. Bohrregister)	12 -
"	90.	"	† Neumark, Schwochow, Uchtdorf, Wildenbruch, Beyersdorf. (Mit Bohr-	
"		"	karte und Bohrregister)	15 —
"	91.	,,	Gross-Freden, Einbeck, Dransfeld, Jühnde	8 —
	92.		Wilhelmshöhe, Cassel, Besse, Oberkaufungen. (In Vorbereitung).	8 —
"	93.	"	† Paulsdorf, Pribbernow, Gr. Stepenitz, Münchendorf, Pölitz, Gollnow.	
"	00.	"	(Mit Bohrkarte und Bohrregister)	18 —
"	94.	"	+ Königsberg i. d. Nm., Schönfliess, Schildberg, Mohrin, Wartenberg,	
,,		"	Rosenthal. (Mit Bohrkarte und Bohrregister.) (In Vorbereitung)	18 —
"	95.	,,	+ Bärwalde, Fürstenfelde, Neudamm, Letschin, Quartschen, Tamsel.	
•		,,	(Mit Bohrkarte und Bohrregister.) (In Vorbereitung)	18 —
"	96.	"	+ Gülzow, Schwessow, Plathe, Moratz, Zickerke, GrSabow. (Mit	
		-	Bohrkarte und Bohrregister). (In Vorbereitung) · · · · ·	18 —
,,	97.	"	† Graudenz, Okonin, Linowo, GrPlowenz. (Mit Bohrkarte und	10
	00		Bohrregister.) (In Vorbereitung) Willenberg Onglenietz	12 —
"	98.	"	† Gr Schiemanen, Lipowietz, Liebenberg, Willenberg - Opalenietz,	15 —
	99		GrLeschienen. (Mit Bohrkarte und Bohrregister.) (In Vorbereit.) † Obornik, Lukowo, Schocken, Murowana-Goslin, Dombrowka, Gurtschin.	-0
"	99.	"	(Mit Bohrkarte und Bohrregister.) (In Vorbereitung)	18 —
	100.	•	Seesen, Zellerfeld, Osterode, Riefensbeck. (In Vorbereitung)	8 —
77		"	, , , , , , , , , , , , , , , , , , , ,	

II. Abhandlungen zur geologischen Specialkarte von Preussen und den Thüringischen Staaten.

Mark 8 -	Rüdersdorf und Umgegend, eine geognostische Monographie, nebst 1 Taf. Abbild. von Verstein., 1 geog. Karte und Profilen; von Dr. H. Eck	eft 1.	, He	Bd. 1				
2,50	. Ueber den Unteren Keuper des östlichen Thüringens, nebst Holzschn. und 1 Taf. Abbild. von Verstein.; von Prof. Dr. E. E. Schmid	. 2.	"					
12 —	. Geogn. Darstellung des Steinkohlengebirges und Rothliegenden in der Gegend nördl. von Halle a.S., nebst 1 gr. geogn. Karte, 1 geogn. Ueber- sichtsblättehen, 1 Taf. Profile und 16 Holzschn.; von Dr. H. Laspeyres	3.	,,					
8 —	Geogn. Beschreibung der Insel Sylt, nebst 1 geogn. Karte, 2 Taf. Profile, 1 Titelbilde und 1 Holzschn.; von Dr. L. Meyn	, 4.	"					
20 —	Beiträge zur fossilen Flora. Steinkohlen-Calamarien, mit besonderer Berücksichtigung ihrer Fructificationen, nebst 1 Atlas von 19 Taf. und 2 Holzschn.; von Prof. Dr. Ch. E. Weiss	eft 1.	, Не	Bd. II,				
3	†Rüdersdorf und Umgegend. Auf geogn. Grundlage agronomisch bearb., nebst 1 geognostisch-agronomischen Karte; von Prof. Dr. A. Orth	2.	,,					
3 —	† Die Umgegend von Berlin. Allgem. Erläuter. zur geognagronomischen Karte derselben. I. Ber Nordwesten Berlins, nebst 12 Abbildungen und 1 Kärtchen; von Prof. Dr. G. Berendt. Zweite Auflage	3.	**					
24 —	Die Fauna der ältesten Devon-Ablagerungen des llarzes, nebst 1 Atlas von 36 Taf.; von Pr. E. Kayser	4.	"					
. 5 —		ft 1.	, He	l. II	В			
9 —	† Mittheilungen aus dem Laboratorium f. Bodenkunde der Kgl. Preuss. geolog. Landesanstalt. Untersuchungen des Bodens der Umgegend von Berlin; von Dr. E. Laufer und Dr. F. Wahnschaffe	, 2.	"					
10	Die Bodenverhältnisse der Prov. Schleswig-Holstein als Erläut. zu der dazu gehörigen Geolog. Uebersichtskarte von Schleswig-Holstein; von Dr. L. Meyn. Mit Anmerkungen, einem Schriftenverzeichniss und Lebensabriss des Verf.; von Prof. Dr. G. Berendt	3.	"					
14 —	Geogn. Darstellung des Niederschlesisch-Böhmischen Steinkohlen- beckens, nebst 1 Uebersichtskarte, 4 Taf. Profile etc.; von Bergrath A. Schütze	4.	,,					
6 —	Die regulären Echiniden der norddeutschen Kreide. I. Glyphostoma (Latistellata), nebst 7 Tafeln; von Prof. Dr. Clemens Schlüter	eft 1.	, Не	l. IV	В			
9 —	Monographie der Homalonotus-Arten des Rheinischen Unterdevon, mit Atlas von 8 Taf.; von Dr. Carl Koch. Nebst einem Bildniss von C. Koch und einem Lebensabriss desselben von Dr. H. v. Dechen	2.	"					
24 —	Beiträge zur Kenntniss der Tertiärsora der Provinz Sachsen, mit 2 Holzschn., 1 Uebersichtskarte und einem Atlas mit 31 Lichtdrucktafeln; von Dr. P. Friedrich	3.	17					
16 —	Abbildungen der Bivalven der Casseler Tertiärbildungen von Dr. O. Speyer nebst dem Bildniss des Verfassers, und mit einem Vorwort von Prof. Dr. A. v. Koenen	4.	**					
4,50	T	ft 1.	, He	d. V	ı			
24 —	Beiträge zur fossilen Flora. III. Steinkohlen-Calamarien II, nebst 1 Atlas von 28 Tafeln: von Prof. Dr. Ch. E. Weiss	2.	"					

Bd. V,	Heft	3. †	Die Werder'schen Weinberge. Eine Studie zur Kenntniss des märkischen Bodens. Mit 1 Titelbilde, 1 Zinkographie, 2 Holzschnitten und 1 Bodenkarte; von 1)r. E. Laufer	6 —
	"	4.	Ucbersicht über den Schichtenaufbau Ostthüringens, nebst 2 vorläufigen geogn. Uebersichtskarten von Ostthüringen; von Prof. Dr. K. Th. Liebe	6 —
Bd. VI,	Heft	1.	Beiträge zur Kenntniss des Oberharzer Spiriferensandsteins und seiner	
			Fauna, nebst 1 Atlas mit 6 lithogr. Tafeln; von Dr. L. Beushausen	7 —
	"	2.	Die Trias am Nordrande der Eifel zwischen Commern, Zülpich und dem Roerthale. Mit 1 geognostischen Karte, 1 Profil- und 1 Petrefactentafel; von Max Blanckenhorn	7 —
	"	3.	Die Fauna des samländischen Tertiärs. Von Dr. Fritz Noetling. I. Theil. Lieferung I: Vertebrata. Lieferung II: Crustacca und Vermes. Lieferung VI: Echinodermata. Nebst Tafelerklärungen und zwei Texttafeln. Hierzu ein Atlas mit 27 Tafeln	20 —
	"	4.	Die Fauna des samländischen Tertiärs. Von Dr. Fritz Noetling. II. Theil. Lieferung III: Gastropoda. Lieferung IV: Pelecypoda. Liefer. V: Bryozoa. Schluss: Geolog. Theil. Hierzu ein Atlas mit 12 Taf.	10 —
Bd. VII,	Heft	1.	Die Quartärbildungen der Umgegend von Magdeburg, mit besonderer Berücksichtigung der Börde. Mit einer Karte in Buntdruck und 8 Zinkographien im Text; von Dr. Felix Wahnschaffe	5 —
	"	2.	Die bisherigen Aufschlüsse des märkisch-pommerschen Tertiärs und ihre Uebereinstimmung mit den Tiefbohrergebnissen dieser Gegend. Mit 2 Tafeln und 2 Profilen im Text; von Prof. Dr. G. Berendt	3 —
	"	3.	Untersuchungen über den inneren Bau westfälischer Carbon-Pflanzen. Von Dr. Johannes Felix. Hierzu Tafel I—VI. — Beiträge zur fossilen Flora. IV. Die Sigillarien der preussischen Steinkehlengebiete. I. Die Gruppe der Favularien, übersichtlich zusammengestellt von Prof. Dr. Ch. E. Weiss. Hierzu Tafel VII—XV (1—9). — Aus der Anatomie lebender Pteridophyten und von Cycas revoluta. Vergleichsmaterial für das phytopalaeontologische Studium der Pflanzen-Arten älterer Formationen. Von Dr. H. Potonié. Hierzu Tafel XVI—XXI (1—6)	. 20 —
	"	4.	Beiträge zur Kenntniss der Gattung Lepidotus. Von Prof. Dr. W. Branco in Königsberg i. Pr. Hierzu ein Atlas mit Tafel I—VIII	12 —
Bd. VIII	ī, Hef	t 1.	† (Siehe unter IV. No. 8.)	
	"	2.	Veber die geognostischen Verhältnisse der Umgegend von Dörnten nördlich Goslar, mit besonderer Berücksichtigung der Fauna des oberen Lias. Von Dr. August Denckmann in Marburg. Hierzu ein Atlas mit Tafel I—X	10 –
	"	3.	Geologie der Umgegend von Haiger bei Dillenburg (Nassau). Nebst einem palaeontologischen Anhang. Von Dr. Fritz Frech. Hierzu 1 geognostische Karte und 2 Petrefacten-Tafeln	3 —
	"	4.	Anthozoen des rheinischen Mittel-Devon. Mit 16 lithographirten Tafeln; von Prof. Dr. Clemens Schlüter	12 —
Bd. IX,	Heft		Die Echiniden des Nord- und Mitteldeutschen Oligocans. Von Dr. Theodor Ebert in Berlin. Hierzu ein Atlas mit 10 Tafeln und eine Texttafel	10 —
	"	2.	schriftlichen Nachlasse des Verfassers bearbeitet von K. 141e bei.	10 —
	"	3.	Die devonischen Aviculiden Deutschlands. Ein Beitrag zur Systematik und Stammesgeschichte der Zweischaler. Von Dr. Fritz Frech. Hierzu 5 Tabellen, 23 Textbilder und ein Atlas mit 18 lithograph. Taf.	20 —

				Mark
Bd	. IX,	Heft	4. Die Tertiär- und Diluvialbildungen des Untermainthales, der Wetterau	
			und des Südabhauges des Taunus. Mit 2 geolog. Uebersichtskärtchen und 13 Abbild. im Text; von Dr. Friedrich Kinkelin in Frankfurt a.M.	10 —
Bd.	X, He	ft 1.	Das Norddeutsche Unter-Oligorän und seine Mollusken-Fauna. Von Prof. Dr. A. v. Koenen in Göttingen. Lieferung I: Strombidae — Muricidae — Buccinidae. Nebst Vorwort und 23 Tafeln	20 —
	,	. 2.	Das Norddeutsche Unter-Oligorän und seine Mollusken-Fauna. Von Prof. Dr. A. v. Koenen in Göttingen. Lieferung II: Conidae — Volutidae — Cypraeidae. Nebst 16 Tafeln	16 —
	,	, 3.	D N 11 / N 11 / A10 # 1 1 W 11 1 B	15 —
	,	4.	Prof. Dr. A. v. Koenen in Göttingen. Lieferung IV: Rissoidae — Littorinidae — Turbinidae — Haliotidae — Fissurellidae — Calyptraeidae — Patellidae. II. Gastropoda Opisthobranchiata. III. Gastropoda Polyplacophora. 2. Scaphopoda — 3. Pteropoda —	11 —
	,,	5.	Das Norddeutsche Unter-Oligocan und seine Mollusken-Fauna. Von Prof. Dr. A. v. Koenen in Göttingen. Lieferung V: 5. Pelecypoda. — I. Asiphonida. — A. Monomyaria. B. Heteromyaria. C. Homomyaria. — II. Siphonida. A. Integropalliala. Nebst 24 Tafeln	20 —
	>1	6.	Das Norddeutsche Unter-Oligocan und seine Mollusken-Fauna. Von Prof. Dr. A. v. Koenen in Göttingen. Lieferung VI: 5. Pelecypoda. II. Siphonida. B. Sinupalliata. 6. Brachiopoda. Revision der	12 -
	"	7.	Das Norddeutsche Unter-Oligorän und seine Mollusken-Fauna. Von Prof. Dr. A. v. Koenen in Göttingen. Lieferung VII: Nachtrag, Schlussbemerkungen und Register. Nebst 2 Tafeln	4 —
			Neue Folge.	
			(Fortsetzung dieser Abhandlungen in einzelnen Heften.)	
Heft	1. Di	e F Mit	auna des Hauptquarzits und der Zorger Schiefer des Unterharzes. t 13 Steindruck- und 11 Lichtdrucktafeln; von Prof. Dr. E. Kayser.	Mark 17
Heft	2. Di	e Si Bei Dr.	gillarien der Preussischen Steinkohlen- und Rothliegenden-Gebiete. träge zur fossilen Flora, V. II. Die Gruppe der Subsigillarien; von E. Weiss. Nach dem handschriftlichen Nachlasse des Verfassers vollendet	25 —
Heft	3. Di	e Fo	raminiferen der Aachener Kreide. Von Ignaz Beissel. Hierzu ein	
Heft	4. Di	e F Na		10 —
Heft	5. Di	e reş Mit	gulären Echiniden der norddeutschen Kreide. II. Cidaridae. Salenidae. 14 Tafeln; von Prof. Dr. Clemens Schlüter	15 —
Heft	6. Ge	ogno	stische Beschreibung der Gegend von Baden-Baden, Rothenfels, Gerns-	20 —
Heft	7. Di	e Br	aunkohlen-Lagerstätten am Meissner, am Hirschberg und am Stellberg. 3 Tafeln und 10 Textfiguren; von Bergassessor A. Uthemann.	_
Heft	8. D a	s Ro	thliegende in der Wetterau und sein Anschluss an das Saar-Nahegebiet; A. v. Reinach	5 — 5 —

		Mark
Heft 9.	und Henry Potonié. I. Theil: Zur Geologie des Thüringischen Roth- liegenden: von F. Beyschlag. (In Vorbereitung.)	
	II. Theil: Die Flora des Rothliegenden von Thüringen. Mit 35 Tafeln; von H. Potonié	16 —
	Das jüngere Steinkohlengebirge und das Rothliegende in der Provinz Sachsen und den angrenzenden Gebieten; von Karl von Fritsch und Franz Beyschlag	12 —
Heft 11.	† Die geologische Specialkarte und die landwirthschaftliche Bodeneinschätzung in ihrer Bedeutung und Verwerthung für Land- und Staatswirthschaft. Mit 2 Tafeln; von Dr. Theodor Woelfer	4 —
Heft 12.	Der nordwestliche Spessart. Mit 1 geologischen Karte und 3 Tafeln; von Prof. Dr. H. Bücking	10 —
Heft 13.	Geologische Beschreibung der Umgebung von Salzbrunn. Mit einer geologischen Specialkarte der Umgebung von Salzbrunn, sowie 2 Kartentafeln und 4 Profilen im Text; von Dr. phil. E. Dathe	6 —
Heft 14.	Zusammenstellung der geologischen Schriften und Karten über den ostelbischen Theil des Königreiches Preussen mit Ausschluss der Provinzen Schlesien und Schleswig-Holstein; von Dr. phil. Konrad Keilhack	4 —
Heft 15.	Das Rheinthal von Bingerbrück bis Lahnstein. Mit 1 geologischen Uebersichtskarte, 16 Ansichten aus dem Rheinthale und 5 Abbildungen im Text; von Prof. Dr. E. Holzapfel	12 —
Heft 16.	Das Obere Mitteldevon (Schichten mit Stringocephalus Burtini und Maeneceras terebratum) im Rheinischen Gebirge. Von Prof. Dr. E. Holzapfel. Hierzu ein Atlas mit 19 Tafeln	20 —
Heft 17.	Die Lamellibranchiaten des rheinischen Devon. Von Dr. L. Beushausen. Hierzu 34 Abbildungen im Text und ein Atlas mit 38 Tafeln	30 —
Heft 18.	Säugethier-Fauna des Mosbacher Sandes. I. Von H. Schröder. (In Vorber.)	
	Die stratigraphischen Ergebnisse der neueren Tiefbohrungen im Oberschlesischen Steinkohlengebirge. Von Prof. Dr. Th. Ebert. Hierzu ein Atlas mit 1 Uebersichtskarte und 7 Tafeln	10 —
Heft 20.	Die Lagerungsverhältnisse des Tertiärs und Quartärs der Gegend von Buckow. Mit 4 Tafeln. (Separatabdruck aus dem Jahrbuch der Königl. preussischen geologischen Landesanstalt für 1893). Von Prof. Dr. F. Wahnschaffe.	3 —
	Die floristische Gliederung des deutschen Carbon und Perm. Von H. Potonié. Mit 48 Abbildungen im Text	2,50
	Das Schlesisch - sudetische Erdbeben vom 11. Juni 1895. Mit 1 Karte. Von Dr. E. Dathe, Landesgeologe	8 —
	Ueber die seiner Zeit von Unger beschriebenen strukturbietenden Pflanzen- reste des Unterculm von Saalfeld in Thüringen. Mit 5 Tafeln. Von H. Grafen zu Solms-Laubach	4 —
Heft 24.	Die Mollusken des Norddeutschen Neocom. Von A. v. Koenen. (In Vorber.)	
Heft 25.	Die Molluskenfauna des Untersenon von Braunschweig und Ilsede. I. Lamelli- branchiaten und Glossophoren. Von Dr. G. Müller. Hierzu ein Atlas mit, 18 Tafeln	15 —
	Verzeichniss von auf Deutschland bezüglichen geologischen Schriften- und Karten-Verzeichnissen. Von Dr. K. Keilhack, Dr. E. Zimmermann und Dr. R. Michael	4 —
Heft 27.	Der Muschelkalk von Jena. Von R. Wagner	4,50
Heft 28.	Der tiefere Untergrund Berlins. Von Prof. Dr. G. Berendt unter Mitwirkung von Dr. F. Kaunhowen. (Mit 7 Taf. Profile u. einer geognost. Uebersichtskarte)	4 —

		Mark
Heft 29	D. Beitrag zur Kenntniss der Fauna der Tentaculitenschiefer im Lahngebiet mit besonderer Berücksichtigung der Schiefer von Leun unweit Braunfels. Mit 5 Tafeln. Von H. Burhenne	3 —
Heft 30	. Das Devon des nördlichen Oberharzes. Von Dr. L. Beushausen. (In Vorbereit.)	
	. Die Bivalven und Gastropoden des deutschen und holländischen Neocom. Von Dr. A. Wollemann	12 —
Heft 32	Geologisch-hydrographische Beschreibung des Niederschlags-Gebietes der Glatzer Neisse (oberhalb der Steinemündung), bearbeitet von A. Leppla- Mit 7 Tafeln und 3 Textfiguren	15 —
Heft 33	Beiträge zur Kenntniss der Goldlagerstätten des Siebenbürgischen Erzgebirges. Mit 36 Abbildungen im Text. Von Bergassessor Semper	6 —
1	II. Jahrbuch der Königl. Preussischen geologischen Landesanstalt und Bergakademie.	Mark
la baba	ch der Königl. Preussischen geologischen Landesanstalt und Bergakademie	27.001 16
Jaurou	für das Jahr 1880. Mit geognostischen Karten, Profilen etc	15 —
	pe für die Jahre 1881—1891, 1894 und 1898. Mit dergl. Karten, Profilen etc., à Band	
	pe für die Jahre 1892, 1893, 1895, 1896 und 1897 à Band	15 —
	, , , ,	
	Will first taken to Localities, principles and	
	IV. Sonstige Karten und Schriften.	Mark
1. II	öhenschichtenkarte des Harzgebirges, im Maassstabe 1:100000	8 —
	eologische Uebersichtskarte des Harzgebirges, im Maassstabe 1:100 000; zusammengestellt von Dr. K. A. Lossen	22 —
	us der Flora der Steinkohlenformation (20 Tafeln Abbildungen der wichtigsten Steinkohlenpflanzen mit kurzer Beschreibung); von Prof. Dr. Ch. E. Weiss.	3 —
	r. Ludewig Meyn. Lebensabriss und Schriftenverzeichniss desselben; von Prof. Dr. G. Berendt. Mit einem Lichtdruckbildniss von L. Meyn	2 —
	eologische Karte der Umgegend von Thale, bearbeitet von K. A. Lossen und W. Dames. Maassstab 1:25 000	1,50
	cologische Karte der Stadt Berlin im Massstabe 1:15 000, geolog. aufgenommen unter Benutzung der K. A. Lossen'schen geologischen Karte der Stadt Berlin durch G. Berendt	3 —
	eognostisch-agronomische Farben-Erklärung für die Kartenblätter der Umgegend von Berlin, von Prof. Dr. G. Berendt	0,50
·	deologische Vebersichtskarte der Umgegend von Berlin im Maassstabe 1:100 000, in 2 Blättern. Herausgegeben von der Königl. Preuss. geolog. Landesanstalt. Hierzu als "Bd. VIII, Heft 1" der vorstehend genannten Abhandlungen: Geognostische Beschreibung der Umgegend von Berlin, von G. Berendt und W. Dames unter Mitwirkung von F. Klockmann	12 —
9. G	eologische Vebersichtskarte der Gegend von Halle a. S.; von F. Beyschlag	3 —
10. H	öhenschichtenkarte des Thüringer Waldes, im Maassstabe 1:100000; von F. Beyschlag	6 —
	cologische Uebersichtskarte des Thüringer Waldes im Maassstabe 1:100000; zusammengestellt von F. Beyschlag	16 —
12. Ei	nführung in die Benutzung der Messtischblätter von Prof. A. Schneider in Berlin	1 —

C. Feister'sche Buchdruckerei, Berlin N.,
Brunnenstrasse 7.