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Abstract 11 

The solubilization of arsenic (As) from an ore material (native Arsenic [As, trig.] with 12 

Lollingite [FeAs2, rh.]) was characterized in leaching tests lasting for ≤ 99 days. The 13 

experiments were performed with materials of different particle sizes (≤ 2 mm), in different 14 

waters and under test conditions relevant to As mobilization at near surface contaminated 15 

sites. The impact of dolomite [CaMg(CO3)2], metallic iron (Fe0), and pyrite (FeS2) on As 16 

release was accessed. Two different types of batch experiments were conducted with a 17 

constant amount of the base material and different types of water (deionised, mineral, spring, 18 

and tap water). For comparison parallel experiments were conducted with 0.1M EDTA, 0.1M 19 

Na2CO3 and 0.1M H2SO4. The results indicated no significant effect of carbonate addition on 20 

As solubilization. Fe0 and FeS2 addition essentially slowed the initial As solubilization. 21 

H2SO4 was the sole leaching agent significantly influencing As solubilization from the base 22 

material. The general trend assuming that “the smaller the particle size the quicker the As 23 

release” was not strictly verified because in samples of smaller particle sizes (d < 0.063) As 24 

was partly oxidized to more stable species. 25 
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Introduction 28 

The presence of arsenic (As) in many minerals, mining wastes, industrial wastewater and 29 

waterways is a serious pollution problem [1-4]. The treatment of such contaminated materials 30 

by conventional techniques is often expensive. A recent development to remediate such a 31 

contamination is the implementation of permeable reactive barriers [5-10]. Most of the 32 

current full-scale reactive barriers use metallic iron (Fe0-based alloys widely termed as 33 

zerovalent iron) as treatment medium. An iron reactive barrier can be placed immediately 34 

down gradient of the contaminant source (e.g. mining wastes) to prevent a plume from 35 

developing. Arsenic is leached from mining wastes by infiltrating surface water or flowing 36 

groundwater to the reactive barrier. Therefore, to properly design a treatment wall, it is 37 

essential to characterize the leaching behaviour of natural waters for contaminant source 38 

materials (natural ores, mining wastes). The bicarbonate (HCO3
-) content of subsurface waters 39 

has been controversially discussed in the literature as possible important parameter 40 

controlling their As mobilization capacity as discussed below.  41 

In the last decades substantial efforts were made to elucidate the origin of As in contaminated 42 

groundwaters [1, 11-22]. The univocal result of these efforts is that As mostly originates from 43 

natural background sources. However, the individual processes leading to As release and their 44 

relative importance are yet to be fully elucidated [16, 23-28]. There are three main theories 45 

concerning As release into the environment [29-32]: (i) competitive exchange of bicarbonate, 46 

phosphate or silicate, (ii) oxidation of arsenic-bearing minerals, and (iii) reductive dissolution 47 

of iron and manganese hydroxides. The distribution of arsenic in the environment depends on 48 

the partitioning between the aqueous and solid phase. The main processes controlling the 49 

distribution are: (i) complex formation, (ii) adsorption/desorption, precipitation/dissolution, 50 

(iii) biotic and abiotic oxidation/reduction [18, 22, 29, 33]. 51 

The most common arsenic species in natural water, sediment, and groundwater are: (i) neutral 52 

arsenite (As(OH)3
0), and the negatively charged arsenate (H2AsO4

- and HAsO4
2-). Native As 53 
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(As0) and lower valent As-minerals (As-III and As -I) are stable only under strongly reducing 54 

conditions. Arsenite (AsIII) is more toxic to humans and has higher mobility in the 55 

environment than arsenate (AsV) [27, 34]. The increased attention on the health effects due to 56 

consumption of As contaminated water has prompted a very strict maximum contaminant 57 

level (MCL = 10 µg/L). The mobility of As species and their adsorption by metal oxides and 58 

hydroxides have been reported to be strongly influenced by carbonate ions. This effect is 59 

usually attributed to competitive adsorption of carbonate and anionic AsV species on available 60 

solid surfaces (e.g. ref. 35). However, Kim et al. [16] postulated the formation of AsIII-61 

carbonate complexes, which increases the mobility of arsenic in anoxic aquifers [23, 36]. 62 

Neuberger and Helz [25] confirmed the formation of AsIII-carbonate complexes by measuring 63 

the solubility of As2O3 in concentrated carbonate solutions (up to 720 mM as HCO3
-). 64 

However, their data suggested that AsIII-carbonate complexes will be negligible at HCO3
- 65 

concentrations found in most natural waters (1.3 to 5.5 mM). On the other hand Kim et al. 66 

[19] showed an acceleration of the oxidation of AsIII-carbonate relative to non-complexed 67 

AsIII [As(OH)3
0]. These findings are conflicting with the hypothesis of Kim et al. [16] because 68 

stable AsIII-complexes should impair AsIII oxidation. Therefore, the possibly important role of 69 

AsIII-HCO3
- complexes in natural waters remains to be properly addressed. An approach to 70 

this end is to characterize the solubility of As from a natural mineral containing As-III, As-I, 71 

As0 or AsIII through waters with HCO3
- contents pertinent to natural situations. 72 

The objective of the present work is to contribute to the elucidation of the role of AsIII-HCO3
- 73 

complexes in the process of As transport in the environment. For this purpose, the process of 74 

As release from a natural As-mineral by natural-near waters of various HCO3
- contents under 75 

oxic conditions was characterised. The used As-ore contained mostly native arsenic (As 0) and 76 

Lollingite (As-I - FeAs2). Because As is stable in the aqueous phase as AsIII and AsV and the 77 

experiments are performed under oxic conditions, it is expected that the stability of AsIII-78 

HCO3
- complexes will influence the extend of As solubilization (total dissolved As – next 79 
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section). The advantage of the used As-mineral (proxy for tailings materials) upon sediments 80 

used by for example by Anawar et al. [23] is its relative simple composition. The used waters 81 

content 0.0 to 30 mM HCO3
-. 82 

Background of the experimental methodology 83 

In arsenic tailings and mining wastes the As dissolution process typically involves oxidation 84 

and destabilization of As minerals such as native arsenic (As0) possibly resulting in high 85 

concentrations of species stable under aqueous conditions (AsIII and AsV). The transport of 86 

AsIII-species in natural waters (neutral pH range) has been reported to be influenced by the 87 

carbonate concentration (HCO3
-, PCO2) which forms complexes with AsIII [19, 23, 36]. As III 88 

complexation with HCO3
- should influence the further oxidation to AsV [19]. In particular, in 89 

the presence of limited amounts of HCO3
-, AsIII oxidation to AsV should be impaired if the 90 

complexes are more stable than As(OH)3
0. However, Kim et al. [19] reported on the 91 

acceleration of the oxidation of carbonate-As III complexes in comparison to free AsIII 92 

[As(OH)3
0]. Because AsV species do no form complexes with HCO3

-, the net effect of HCO3
- 93 

ions should be the decrease of As release from used As0-mineral, as excess AsV from oxidized 94 

carbonate-AsIII should precipitate as AsV oxides. Alternatively excess AsV might remain in a 95 

meta-stable solution yielding higher As concentrations. Therefore, the effects of HCO3
- on 96 

As0 release by natural-near waters may be summarized in a simple hypothesis: under oxic 97 

conditions and near-neutral pH value, the extent of As release from native arsenic is 98 

influenced (decreases or increases) by increasing HCO3
- concentrations (Assumption 1). 99 

The used methodology for the investigation of As release from_native arsenic by waters 100 

consists in testing the validity of Assumptions 1 by following the extent of As release (total 101 

As concentration) in the presence of various amounts of HCO3
-. To support the discussion, the 102 

effects of the mineral particle size and that of selected additives (dolomite, metallic iron and 103 

pyrite) on the extent of As release in tap water will be investigated. Therefore, the secondary 104 

aim of this study is the characterization of the influence of a carbonate-bearing mineral 105 
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(dolomite) and the effect of in situ generated iron species on the As release from an ore 106 

material under near-natural conditions. 107 

Materials and Methods 108 

Solid materials 109 

The used As ore material originates from Otto-Stollen in Breitenbrunn/Erzgebirge (Saxony, 110 

Germany). The material was selected on the basis of its high arsenic content (80%). A 111 

qualitative SEM analysis shows the presence of As, Ca, F, Fe, O, S and Si (Fig. SI1 – 112 

Supporting Information). The ore material is primary an hydrothermal vein material and 113 

arsenic occurred as native arsenic (As0) and Loellingite (FeS2 - As-I) [37] in Paragenesis with 114 

hydrothermal vein carbonates (for example Fe-bearing Calcite or Dolomite). The mineral was 115 

ground to the following particle size fractions: 0.063 ≤ d (mm) ≤ 0.125 (d1), 0.200 ≤ d (mm) ≤ 116 

0.355 (d2), 0.355 ≤ d (mm) ≤ 0.630 (d3), 0.63 ≤ d (mm) ≤ 1.00 (d4), and 1.0 ≤ d (mm) ≤ 2.0 117 

(d5). 118 

The used metallic iron (Fe0-based alloy) is a scrap iron from MAZ (Metallaufbereitung 119 

Zwickau, Co.). Its elemental (weight %) conditions are determined as 3.52% C, 2.12% Si, 120 

0.93% Mn, 0.66% Cr, and 92.77% Fe. The materials were fractionated by sieving. The 121 

fraction 1.0-2.0 mm was used without any further pre-treatment. The material was used as As-122 

removing agent. 123 

Pyrite mineral was crushed and sieved and the fraction 0.315 to 0.63 mm was used. The 124 

elemental composition (weight %) is: Fe: 40%, S: 31.4%, Si: 6.7%, Cl: 0.5%, C:0.15% and 125 

Ca <0.01%. The material served as a pH shifting reagent as well as an iron oxide producer 126 

(As-removing agent). 127 

Dolomite mineral was crushed, sieved and the fraction 0.63 to 1.0 mm was used. The 128 

mineralogical composition (weight %) is: SiO2: 1.2%, TiO2: 0.03%; Al 2O3: 0.4%, Fe2O3 129 

0.6%, MgO: 20.24%, CaO: 30.94%, Na2O: 0.04%. Dolomite is a carbonate mineral; it is 130 
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assumed that its dissolution will increase the kinetics of As release [23]. Arsenic adsorption 131 

and co-precipitation with carbonate mineral has also been reported [38, 39]. 132 

Leaching solutions 133 

To mimic natural conditions various waters were used. Dionised water (DW) was used as a 134 

HCO3
- free solution (reference system). Table 1 summarizes the carbonate content and 135 

simulated effects. The used mineral water ([HCO3
-] = 1854 mg/L or 30.4 mM) contains for 136 

instance more than 20 times more HCO3
- than the used tape water ([HCO3

-] = 89 mg/L or 1.4 137 

mM). Three technical leaching solutions (0.1 M) partly used for sequential extraction were 138 

selected and used for comparison: ethylenediaminetetraacetic acid (EDTA), sodium carbonate 139 

(Na2CO3), and sulphuric acid (H2SO4). 140 

The used tap water (TW) of the city of Göttingen (Lower Saxonia, Germany) has a 141 

composition (mg/L) of Cl–: 7.7; NO3
–: 10.0; SO4

2-: 37.5; HCO3
-:88.5; Na+: 7.0; K+: 1.2; Mg2+: 142 

7.5; Ca2+: 36; and an initial pH 8.3. 143 

The used spring water (SW) from the Lausebrunnen in Krebeck (administrative district of 144 

Göttingen) was used as proxy for natural groundwater. Its composition was (mg/L): Cl–: 9.4; 145 

NO3
–: 9.5; SO4

2-: 70.9; HCO3
-: 88.5; Na+: 8.4; K+: 1.0; Mg2+: 5.7; Ca2+: 110.1; and an initial 146 

pH 7.8. 147 

A commercially available mineral water (MW) was used as proxy for HCO3-rich 148 

groundwater. Its composition was (mg/L): Cl–: 129; NO3
–: 0.0; SO4

2-: 37.0; HCO3
-: 1854; 149 

Na+: 574; K+: 14.5; Mg2+: 60.5; Ca2+: 99.0; and an initial pH 6.4. 150 

Arsenic release experiments 151 

Two different types of batch experiments were conducted: 152 

Not homogenized batch experiments: 0.22 g of the As-bearing ore and 0.0 or 0.11 g of the 153 

additive (dolomite, metallic iron or pyrite) were allowed to react in sealed sample tubes 154 

containing 22.0 mL of the leaching solution at laboratory temperature (about 22 °C) for 14 155 

days. The tubes had a graduated capacity of 20.0 mL but were filled to a total volume (22.0 156 
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mL) to reduce the head space. The solid:solution ratios were 10 g/L for the As-mineral and 5 157 

g/L for the additives. After equilibration, 1.0 ml of the supernatant solution was retrieved at 158 

the top of each tube for As analysis. To compare the leaching capacity of the tested waters 159 

some experiments were conducted with 0.1 M EDTA, H2SO4, and Na2CO3. 160 

Air homogenized batch experiments: These experiments were conducted in special reaction 161 

vessels allowing the system to be homogenized by a humid current of air supplied by a small 162 

aquarist pump. The goal was to homogenize the experimental systems at atmospheric pressure 163 

(PCO2 = 0.035 %) without breaking down the materials. 10 g/L of the As-bearing ore of 164 

various particle sizes and 0 or 5 g/L of dolomite, metallic iron, pyrite were allowed to react in 165 

sealed vessels containing 100 mL of tap water at laboratory temperature (about 22 °C) for up 166 

to 99 days. At given dates 1.5 ml of the solution was retrieved and diluted for As analysis and 167 

the same volume of tap water was added to the system. 168 

The pH value was recorded at selected dates. The redox potential was not recorded based on 169 

the mineral composition and previous works showing their insignificant variation under the 170 

experimental conditions [40, 41]. 171 

Analytical method 172 

Analysis for As was performed by inductively coupled plasma mass spectrometry (ICP-MS) 173 

at the Department of Geochemistry (Centre of Geosciences, University of Göttingen). All 174 

chemicals used for experiments and analysis were of analytical grade. 175 

The pH value was measured by combination glass electrodes (WTW Co., Germany). The 176 

electrodes were calibrated with five standards following a multi-point calibration protocol and 177 

in agreement with the new IUPAC recommendation [42]. 178 

Not homogenized batch experiments were performed in triplicate. Error bars given in the 179 

figures represent the standard deviation from the triplicate runs. 180 

 181 
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Results and Discussion 182 

Effect of leaching solution (HCO3
- content) 183 

The processes that enable As to be dissolved and leached from the ore body are known and 184 

used in the hydrometallurgy [43, 44]. To access the reactivity of materials for As retention or 185 

removal in the laboratory, many operational leaching solutions have been defined for various  186 

sequential extraction schemes [45-48]. All these solutions are more aggressive than natural 187 

waters. To check the ability of natural waters to leach As from the studied ore material, 188 

parallel experiments were conducted with different waters (Table 1) and the results were 189 

compared with that of 0.1M EDTA, 0.1M Na2CO3 and 0.1M H2SO4. Table 2 and Fig. 1 190 

summarise the results. It can be seen from Tab. 2 that the pH value variation was less than 2 191 

pH units for all waters. Therefore, despite considerable variations in the HCO3
- content (0.0 to 192 

30 mM), the experiments were conducted in the pH range (4.0 to 9.5 - Tab. 2) relevant for 193 

natural systems. It can be seen that As release was fairly constant to 112 mg/L (1.5 mM) as 194 

the HCO3
- contents varies from 0.0 to 30 mM. Therefore, assumption 1 (influenced As release 195 

with increasing HCO3
-) is not verified. Moreover, the leaching behaviour of 0.1 M Na2CO3 196 

(pH > 9.5; 100 mM carbonate) was not significantly different from that of the system without 197 

carbonate (deionised water - Fig. 1a). Assuming that As was fully oxidized to AsV, these 198 

results may suggest that the surface area provided by 0.22 g of As-mineral (d3) could have 199 

been insufficient to significantly influence As solubilization through desorption from the 200 

mineral matrix. Therefore, varying the HCO3
-/CO3

2- content has no impact on As release. To 201 

check the validity of this hypothesis another experiment with a higher As-mineral mass 202 

loading (20 g/L) of a more reactive particle fraction (d1 < d3) was performed; the results are 203 

discussed below. In the experiment with 10 g/L base material, the release efficiency with 204 

particle size d1 was 1.7 times larger than that of d3. In doubling the mineral mass loading (20 205 

g/L) a clearer effect of HCO3
-/CO3

2- on As release is expected. Figure 1a shows that only 0.1 206 

M H2SO4 could significantly enhance As release. Two processes are likely responsible for this 207 
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observation: (i) increased As solubility with decreasing pH, and (ii) the acidic dissolution of 208 

the matrix of the ore material [4]. 209 

The results of the experiment with 20 g/L of the As-mineral (d1) are presented in Fig. 1b. 210 

Depending on the leaching solution the extend of As release was 3.0 to 7.3 times lower that 211 

for As-mineral (d3). The largest decrease of As release was exhibited by the system with 212 

H2SO4. and the lowest in the system with Na 2CO3. The major reason for decrease As release 213 

with decreasing particle size is (i) either the agglomeration of particles or (ii) the fact that 214 

As0/As-I in the ore material was already oxidized to more stable species (AsIII, AsV) as 215 

discussed below (next section). Fig. 1b also shows that that the leaching behaviour of waters 216 

are very closed (0.4 mM) and higher than the leaching capacity of H2SO4 (0.3 mM). This 217 

result is not surprising because the initial mineral dissolution of the mineral at pH 1 yield 218 

elevated concentration of element from the matrix of the ore material (including Ca, Fe und 219 

Si) which subsequently precipitated as the pH increased to the final value of 5.7. During this 220 

process As is adsorbed, precipitated or co-precipitated [49, 50]. Therefore, the major 221 

mechanism responsible for increased As release in experiments with the coarser ore material 222 

(d3 > d1) is the higher As solubility at lower pH values. The value of the pH at the end of the 223 

experiments (1.4 for d3 and 5.7 for d1) gives an idea of the extend of the dissolution of the 224 

mineral and its matrix (extend of As co-precipitation). Fig. 1b also shows relatively elevated 225 

As released in 0.1 M Na2CO3 in comparison to natural-near waters. This behaviour can be 226 

attributed to the displacement of adsorbed As from the matrix of ore material. This conclusion 227 

is supported by the fact that the extend of As released in 0.1 M Na 2CO3 was very similar to 228 

that in 0.1 M EDTA. EDTA is an unspecific leaching agent which leaches or desorbs metals 229 

and metalloids from contaminated materials [51]. 230 

In conclusion, the effects of H+ (as H2SO4), EDTA and Na2CO3 on the process of As-I, As0 231 

solubilization could be clearly evidenced but no effect of HCO3
- (0.0 to 30 mM) could be 232 
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observed, confirming the results of Neuberger and Helz [25] that AsIII-carbonate complexes 233 

will be negligible in natural waters. 234 

Effect of the ore particle size 235 

Particle size is an important aspect of mineral dissolution [40, 52]. It can be assumed that a 236 

range of particle sizes will have varying dissolution rates. The current assumption is the 237 

smaller the particle size the quicker the dissolution. The <2 mm fractions of the studied As-238 

mineral can be considered as the most “reactive fraction” and five different sub-fractions have 239 

been used for this batch experiments. Figure 2 and 3 summarize the results. 240 

The results from Fig. 2a confirm the general assumption that “the smaller the particle size, the 241 

faster the dissolution rate” [40, 53]. These results were obtained in not homogenised batch 242 

experiments and can be regarded as the initial dissolution rate. Noubactep et al. [41] showed 243 

that under these experimental conditions a steady state (pseudo-equilibrium) is obtained for U 244 

release only after several months (> 500 days). 245 

Figure 2b from air-homogenised batch experiments confirms that this trend is strictly true 246 

only for the first few days of the experiment. During this time readily soluble As from all 247 

particle sizes is released into the solution. Afterwards, powder agglomeration evidently 248 

influence As release behaviour for small particle sizes (di ≤ d2) as no effort was undertaken to 249 

disperse agglomerates. Even when such efforts are made (e.g. sonication) the elimination of 250 

powder agglomeration is never completely achieved [54-57]. Agglomeration effects are 251 

possibly responsible for the lower extent of As release by the particle sizes d1,  d2 and d3 252 

comparatively to d4 and d5 (Fig. 2b). Based on the relative abundance of the fraction d3 it was 253 

used all other experiments. Another argument for decreased As dissolution with decreasing 254 

particle size in air-homogenised experiments is the fact that the more reactive fractions might 255 

have readily oxidized from As-I/As0 which precipitate on the surface of the material and 256 

inhibit As-I/As0 solubilization. Therefore, in air-homogenised experiments with di ≤ d3, the 257 

solubility of As oxides (or that of a mixture of native As and As oxides) was characterized. 258 
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Because As oxides are more stable under oxic conditions that native As, the lesser extend of 259 

As release is not surprising. The behaviour of As release under oxic conditions (air-260 

homogenised experiments) supports the assumption that in non-disturbed experiments As -261 

I/As0 is oxidized to AsIII and AsV. 262 

Figure 3 depicts the evolution of the pH as the function of the time in air-homogenised batch 263 

experiments. It can be seen that, as a rule, the pH value uniformly decreases with increasing 264 

reaction time. The initial value is close to 8.3 and the value at the end of the experiment is 265 

close to 6.0. The evolution of the system with pyrite is an exception and will be discussed 266 

later. 267 

Effect of additives 268 

Another way to qualitatively characterize the effect of reactive material on As release 269 

consisted in mixing the rock and an additive in the so-called “air-homogenized batch 270 

experiments”. Figure 4 summarizes the results of the variation of the As concentration. 271 

Figure 4 (a and b) clearly shows that As release was significantly influence by the presence of 272 

metallic iron (Fe0), dolomite and pyrite (FeS2). All additives lower the extent of As release. In 273 

particular the presence of dolomite (HCO3
--bearing mineral) does no increase As release. 274 

Noubactep et al. [41] reported a substantial increased of U release from a natural rock while 275 

using the same dolomite mineral and the same experimental conditions. The retardation of As 276 

release by dolomite is due to (i) As adsorption onto used mineral and dolomite, (ii) As co-277 

precipitation with dolomite mineral [38, 39]. As discussed above AsIII-carbonate complexes 278 

which would have competed with adsorption and co-precipitation to enhance mineral 279 

dissolution (as reported for uranium) should be regarded as negligible. Therefore, decreased 280 

As0 solubilization in the presence of dolomite can be regarded as a confirmation of the results 281 

of Neuberger and Helz [25] that As III-carbonate complexes are negligible in natural waters.  282 

The primary mechanism responsible for the retardation of As release in the presence of Fe0 283 

and FeS2 is adsorption onto and co-precipitation with FeII/FeIII oxyhydroxides from FeII 284 
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oxidation [49, 58, 59]. FeIII results from FeS2 and Fe0 oxidation. As removal by Fe0 carriers 285 

has been widely discussed in the recent literature [6-10, 61] and will not be repeated here. The 286 

mechanism of the retardation of As release through FeS2 will be discussed in some details. 287 

Figure 3 shows a pH decrease in the initial phase of the experiment with pyrite. This is due to 288 

pyrite oxidation that normally increases the As solubility as discussed above for H2SO4. 289 

Under the experimental conditions (neutral pH, oxic), however, dissolved FeII ions from 290 

pyrite lead upon oxidation by dissolved oxygen to Fe(OH)3(am) precipitates that are excellent 291 

sorbents for As [35]. This fact explains the low As concentration in the initial phase of the 292 

experiment (Fig. 4b). After this initial phase (4–5 days), the As concentration progressively 293 

increased. From Fig. 3 it can be seen that once the acidification capacity of the pyrite is 294 

consumed [61] and the pH of the system progressively increased. After about 3 weeks, the As 295 

concentration start to increase continuously, suggesting that the adsorptive capacity of in situ 296 

produced Fe(OH)3(am) and that of pyrite by-mineral are consumed while the As-mineral 297 

continues to release As into the solution (Fig SI2 – Supporting Information). 298 

 299 

Conclusions 300 

This study reiterates that the presence and abundance of bicarbonates ions (HCO3
-) does not 301 

have any significant influence on the leaching behaviour of natural waters (6.0 ≤ pH ≤ 9.5) for 302 

arsenic. Therefore, conflicting results reported for As leaching from sediments [23] may be a 303 

misinterpretation of processes occurring in the sediment and yielding increased As release 304 

with increasing HCO3
-/CO3

2- concentration. Identifying/discussing these processes was not 305 

the aim of this study. Rather, it is shown how the improper consideration of the chemistry of a 306 

system may yield troublesome result interpretation which could be propagated in the 307 

literature. Therefore, caution may be paid while referencing published results. In particular, 308 

the experimental designs and their appropriateness to consistently solve the posed problem 309 

should be checked for individual works. In this regard, it should be noticed that Anawar et al. 310 
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[23] used 100 mM solutions of BaCO3, Na2CO3, MnCO3, and NaHCO3 (and one gram of 311 

sediment) to achieved their results. The carbonates concentration were thereby 3 to 60 times 312 

higher as those used in the present work and up to 18 times larger as the concentration of 313 

natural waters (≤ 5.5 mM). 314 

Since the leaching behaviour of near-natural waters for As is very similar it can be 315 

emphasized that the site-specificity for As leaching and transport will mostly depend on the 316 

presence of natural organic chelating agents (humic substances) in the aquifer. Furthermore, 317 

the composition of the matrix of the As-bearing phase or mineral has to be considered. For 318 

example if the matrix contents abundant level of pyrite, its dissolution will yield iron oxides 319 

which inhibit/retard As transport within the source area. The most possible precise knowledge 320 

of the composition of the matrix and the accurate estimation of the As amount within it will 321 

help to properly design a reactive wall for successful remediation. 322 
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Table 1: pH value, HCO3-content and simulated conditions of the used waters (n.d.: not 478 

determined). 479 

 480 

Water Code  pH [HCO3
-]  

(mg/L) 

Simulated conditions Example 

Deionized DW 5.8 n.d. HCO3-poor Water  Rain water  

Tap  TW 8.3 89 Current groundwater Infiltrating R-water 

Spring SW 7.6 112 Current groundwater Groundwater 

Mineral MW 6.4 1854 HCO3-rich G-water HCO3-rich GW 

 481 

 482 

Table 2: Variations of the pH value in the three systems of not homogenized batch 483 

experiments using a rock material particle size d3 (0.355 ≤ d (mm) ≤ 0.630). 484 

System 2 and 3 were performed with spring water (pHi ~7.8). pHi = initial pH 485 

value and pHf = pH value at the end of the experiment. ∆pH = pHf - pHi. 486 

 487 

System 1 System 2 System 3 

Solution pHi pHf ∆pH di ∆pH Additive ∆pH 

    (mm)    

TW 8.33 7.16 -1.17 d1 -0.43 pyrite -0.48 

SW 7.84 7.60 -0.24 d2 -0.42 Fe0 carrier -0.26 

DW 5.77 7.71 1.94 d3 -0.37 dolomite -0.19 

MW 6.39 7.12 0.73 d4 -0.29 reference -0.35 

 488 

489 
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Figure 1 489 
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Figure 2 495 
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 502 

Figure 3 503 
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Figure 4 508 
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Figure Captions 513 

Figure 1: 514 

Arsenic release (mg/L) from the As-mineral by different leaching solutions for 14 days in not 515 

homogenised batch experiments: (a) 10 g/L of As-mineral d3 and (b) 20 g/L of As-mineral d1. 516 

Error bars provide standard deviations of triplicate experiments. The values in the bars 517 

represent the final pH value of individual leaching solutions. 518 

Figure 2: 519 

Arsenic release (mg/L) from the base material as function of the rock particle sizes (di ≤ 2 520 

mm): (a) in not homogenised batch experiments for 14 days, and (b) in air-homogenised batch 521 

experiments. The values on the bars indicated the final pH (initial pH 7.8). Error bars provide 522 

standard deviations (triplicate experiments). The values in the bars represent the pH value at 523 

the end of the experiment (day 14). The lines are not fitting functions, they simply connect 524 

points to facilitate visualization. 525 

Figure 3: 526 

Time dependence variation of the pH value in air-homogenised batch experiments addressing 527 

the effect of the rock particle sizes (initial pH 8.3). The lines are not fitting functions, they 528 

simply connect points to facilitate visualization. The data for the system with pyrite (FeS2) are 529 

included. 530 

Figure 4: 531 

Arsenic release (mg/L) as a function of additive material: (a) for 14 days in spring water (not 532 

homogenised batch experiments), and (b) for ≤ 19 days in tap water (air-homogenised batch 533 

experiments). The values in the bars represent the pH value at the end of the experiment (day 534 

14). The not homogenised batch experiments were conducted in triplicate. Error bars give 535 

standard deviations. The lines are not fitting functions, they simply connect points to facilitate 536 

visualization. 537 

538 
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Supporting Information 538 

Figure SI1 539 

 540 

 541 

Figure SI1: Typical SEM spectrum of the surface of the used As-material. The mineral is 542 

primary an hydrothermal vein material and arsenic occurred as native arsenic. 543 

544 
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Figure SI2 544 
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 546 

Figure SI2: Impact of pyrite (FeS2) on the evolution of As concentration as function of time 547 

in an air homogenized batch experiments for 99 days. PCO2 is the atmospheric 548 

partial pressure of CO2 (open system). The particle size of used materials was: 549 

0.315 ≤ d (mm) ≤ 0.63. The represented lines are not fitting functions, they just 550 

joint the points to facilitate visualization. 551 

 552 


