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Abstract The volcaniclastic Tepoztlan Formation (TF) rep-
resents an important rock record to unravel the early evolution
of the Transmexican Volcanic Belt (TMVB). Here, a
depositional model together with a chronostratigraphy of this
Formation is presented, based on detailed field observations
together with new geochronological, paleomagnetic, and
petrological data. The TF consists predominantly of deposits
from pyroclastic density currents and extensive epiclastic
products such as tuffaceous sandstones, conglomerates and
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breccias, originating from fluvial and mass flow processes,
respectively. Within these sediments fall deposits and lavas
are sparsely intercalated. The clastic material is almost
exclusively of volcanic origin, ranging in composition from
andesite to rhyolite. Thick gravity-driven deposits and large-
scale alluvial fan environments document the buildup of steep
volcanic edifices. K-Ar and Ar-Ar dates, in addition to eight
magnetostratigraphic sections and lithological correlations
served to construct a chronostratigraphy for the entire Tepoztlan
Formation. Correlation of the 577 m composite magnetostrati-
graphic section with the Cande and Kent (1995) Geomagnetic
Polarity Time Scale (GPTS) suggests that this section
represents the time intervall 22.8-18.8 Ma (6Bn.In-5Er;
Aquitanian-Burdigalian, Lower Miocene). This correlation
implies a deposition of the TF predating the extensive effusive
activity in the TMVB at 12 Ma and is therefore interpreted to
represent its initial phase with predominantly explosive activity.
Additionally, three subdivisions of the TF were established,
according to the dominant mode of deposition: (1) the fluvial
dominated Malinalco Member (22.8-22.2 Ma), (2) the volcanic
dominated San Andrés Member (22.2-21.3 Ma) and (3) the
mass flow dominated Tepozteco Member (21.3—18.8 Ma).

Keywords Magnetostratigraphy - K-Ar Geochronology -
Volcaniclastics - Miocene - Tepoztlan Formation -
Transmexican Volcanic Belt- Central Mexico
Introduction

The transition of magmatism from the Sierra Madre

Occidental to the TMVB has been discussed extensively
during the last several decades (e.g., Mooser 1972; Demant
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1978; Cantagrel and Robin 1979; Nixon et al. 1987).
Recent studies have shown that the TMVB, as a distinctive
geologic province, dates back to the Middle to Late
Miocene, as a result of a counterclockwise rotation of the
magmatic arc of the Sierra Madre Occidental (Ferrari et al.
1999). Little is known about the initial activity of the early
arc because the main focus of previous studies was on
younger volcanism (Marquez et al. 1999; Siebe et al. 2004;
Garcia-Palomo et al. 2002; Verma 2000; Riggs and
Carrasco-Nunez 2004). The remnants of the ancestral
TMVB are found close to the present volcanic front of
the central sector of the arc as stated by several authors,
such as in the Sierra de Mil Cumbres and Sierra de
Angangueo volcanic complexes in the State of Michoacan
(Pasquaré et al. 1991; Capra et al. 1997) and in the
Malinalco area (State of México), where lavas were dated at
19.5 Ma (Ferrari et al. 2003) and 21 Ma (Garcia-Palomo et
al. 2000). These rocks are considered to be part of the initial
Early Miocene activity of the Transmexican Volcanic Belt
(Gomez-Tuena et al. 2007). Another piece of evidence of
the early volcanic activity of the TMVB is the Tepoztlan
Formation, which has been neglected so far in studies on
the initial phase of the Transmexican Volcanic Belt.

The Tepoztlan Formation was mentioned first by
Ordonez (1938) although the name was given much later
by Fries (1960) and De Cserna et al. (1988), describing it
briefly as “massive lahars rich in subrounded porphyritic
andesite clasts intercalated with fluvial deposits”. Further-
more, Fries assigned it as early Miocene in age, supposedly
originating from the volcanic series of Mt. Xochitepec.
Later, De Cserna and Fries (1981) suggested an origin from
the volcanic centre of Zempoala in the State of México.

Haro-Estrop (1985) made the first attempt to establish a
stratigraphical framework for the Tepoztlan Formation,
dividing the formation into three different units based on
the dominating depositional processes: a volcanic-laharic
unit, a fluvial-laharic unit and a laharic-volcanic unit.
Despite these works, it took several years until the first
geological map of the Tepoztlan area was made by Avila-
Bravo (1998). In the same year, Garcia-Palomo (1998)
made a rough estimate of the age of the Tepoztlan
Formation. K-Ar-geochronology of a basaltic andesite,
which underlies the formation at San Nicolas near Mali-
nalco, gave an age of 21.6+£1.0 Ma, and a lava flow of the
Basal Mafic Sequence on top of the formation an age of 7.5+
0.4 Ma, thus confirming the formerly assumed depositional
age within the Miocene (Garcia-Palomo et al. 2000).

Prior to this study, direct radiometric ages and paleomag-
netic studies were lacking and little was known about the
depositional evolution of the Tepoztlin Formation. In the
context of ongoing discussion on the initial activity of
the TMVB, the Tepoztlan Formation represents one of the
most important formations to decipher the evolution of this
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magmatic arc. Here, the chronostratigraphic framework of the
Tepoztlan Formation is presented by means of a combination
of a new K-Ar and Ar-Ar geochronology with paleomagnetic
data as well as a description and interpretation of the major
depositional units with a focus on their origin. The lithofacies
of the studied rocks and depositional processes are examined
and paleomagnetic and geochronological data are compiled to
establish stratigraphic relationships. The combined results are
used to provide an interpretation of the depositional regimes
of the Tepoztlan Formation.

Geological setting

The TMVB is a continental magmatic arc that consists of
nearly 8,000 volcanic structures (e.g., Gomez-Tuena et al.
2007). It was formed as a result of the subduction of the
Cocos and Rivera plates under the North American plate
along the Central American Trench, which was established
during the Middle-Late Miocene (Ferrari et al. 2000). The
TMVB is about 1,000 km long and ranges from 80 to
230 km in width. In contrast to other subduction-related
volcanic belts, running parallel to a deep-sea trench, the
TMVB is oriented in an E-W direction, forming an angle of
ca. 16° with the Middle America Trench (Gémez-Tuena et
al. 2007). The belt consists of a large number of Tertiary
and Quaternary cinder cones, maars, domes, and strato-
volcanoes with predominantly calc-alkaline chemical and
mineralogical composition (Siebe and Macias 2004).

The study area is located along the southern edge of the
TMVB in the states of Morelos and Estado de Mexico
(Fig. 1), where the Tertiary volcaniclastic series of the
Tepoztlan Formation are covered by the Quaternary lavas
and scoria of monogenetic volcanoes of the Chichinautzin
volcanic field. The Tepoztlan Formation crops out in patches
in an area of approximately 850 km? (18°54'-19°01'N lat,
98°57'-99°32'W long) and has an overall maximum thick-
ness of 800 m. The formation is widespread around the
villages of Malinalco and Chalma in Mexico State and
Tepoztlan and Tlayacapan in Morelos. Sparse outcrops are
located east of Tlayacapan and southeast of the Nevado de
Toluca (Capra and Macias 2000; Garcia-Palomo et al. 2002).

A variety of Eocene-Oligocene (Balsas Group) and older
rocks, mostly Cretaceous limestones, underlie the formation.
It is covered by lava flows of Pliocene to Holocene age. Near
Malinalco, the Tepoztlan Formation crops out between the
San Nicolas Basaltic Andesite and the overlying Basal Mafic
Sequence (Garcia-Palomo et al. 2000). In Tepoztlan and the
eastern vicinities it unconformably overlies the Balsas Group
and is covered by the Chichinautzin Formation.

To the west of the city of Cuernavaca, the Tepoztlan
Formation is partly covered by the ca. 150 m thick
Cuernavaca Formation, which is similar in appearance to
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Fig. 1 Location of the study area

the TF and is characterized by alluvial fan deposits,
emanating from the flanks of the Zempoala volcano to the
south. According to Capra et al. (2002), the deposition of
the Cuernavaca Formation was caused mainly by debris
flows after the collapse of the SE-flank of the volcano.
However, sedimentary structures within the deposits show
that sheet flood and fluvial processes were also involved.
The sediments are matrix-supported with clasts ranging
from pebbles to blocks. The major part of the clasts
possesses similar characteristics as the components of the
Tepoztlan Formation but show signs of stronger alteration
and a higher degree of rounding due to further transporta-
tion and re-deposition. To the north, clasts are dominated
by the dark, vesicular lavas of the Zempoala volcano. To
the south the clasts are dominated by eroded bedrock
components of the Cretaceous Morelos Formation.

The Tepoztlan Formation is composed of calc-alkaline
volcanic and sedimentary rocks. The volcanic rocks are
predominantly of andesitic to dacitic composition, but
also include rhyolites. The entire succession is composed
of pyroclastic deposits (fall, surge and flow deposits),
deposits from lahars (debris-flow and hyperconcentrated-
flow deposits) and coarse to fine fluvial and lacustrine
deposits (conglomerates, sandstones and mudstones).
Only a few lava flows and dykes are present. Bedding
within the Tepoztlan Formation is generally flat-lying or
gently dipping up to 10° to N/ NNE. The succession is
disrupted by normal faults and intrusions of probably
post-volcanic origin. Displacements at faults are fre-
quently about half a meter and rarely exceed a few
meters.

Materials and methods
Field work was carried out during several field campaigns

within the states of Morelos and México ca. 70 km south of
Mexico City in an area of approximately 1,000 km?>. Eight
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stratigraphic sections, ranging in thickness from 78 to
378 m, were logged and sampled for petrographical,
sedimentological, geochemical and paleomagnetic analyses
(Fig. 2). The sections provided a large and well-constrained
sample suite covering all major depositional units and
geological characteristics.

The Malinalco section (MAL) is located southeast of
Malinalco (18.93°N, 99.48°W). It is up to 93 m thick and is
mainly composed of tuffaceous sandstones and tuffs with
minor amounts of claystones and siltstones.

The San Andrés 1 section (SAN1) with a thickness of
183 m is located north of the San Andrés village (18.95°N,
99.11°W). The lower part of the section is dominated by
tuffaceous sandstones and conglomerates and breccias
resulting from fluvial and mass flow processes. With
increasing altitude, more primary tuffs enter the system.
The top of the section is dominated by primary tuffs and
minor amounts of their reworked products in the form of
fluvial and debris-flow deposits.

The San Andrés 2 section (SAN2; 18.58°N, 99.06°W),
100 m east of SANI, attains a thickness of 92 m. The lower
and the middle part are almost completely composed of
tuffs, which can be correlated well with the corresponding
strata in SAN1. Again, the top of the section shows an
increase in fluvial deposits.

The Tepozteco section (TEP) is located to the north of
Tepoztlan (18.99°N, 99.10°W). The thickness of this
section is 378 m. The lower part is dominated by
tuffaceous sandstones and conglomerates resulting from
gravel bars and sandy channel fillings. Only minor
amounts of primary volcanic material, deriving from
pumice-and-ash and block-and-ash flows, can be recog-
nized. The upper two-thirds of the section are dominated
by the deposition of coarse tuffaceous breccias, i.e.
debris-flow deposits resulting from lahars. Primary tuffs
constitute only a minor amount in this part of the
section. However, in the upper part, a thick lava flow
can be found. The top of the section is composed
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Fig. 2 Geological map with locations of the sampled sections (red lines). Outcrop locations are: MAL—M alinalco; TEP—Tepozteco; SAN—San
Andrés; SOM—Cerro Sombrerito; TON—Cerro Tonantzin, SAG—San Agustin

primarily of debris-flow deposits with minor amounts of
fluvial tuffaceous sandstones.

The Sombrerito 1 section (SOM1), southwest of Tlaya-
capan (18.94°N, 98.98°W), is up to 78 m thick. The base of
the section forms a thick lava flow with a thickening and
coarsening upward sequence of tuffaceous sandstones and
conglomerates and minor primary tuffs at the top.

The Sombrerito 2 section (SOM2; 18.56°N, 98.59°W) is
a continuation of SOM1 but with a horizontal shift of
100 m towards the northwest and attains a thickness of
110 m. The lower part is composed mainly of primary
volcanic products resulting from pumice-and-ash and
block-and-ash flows. With increasing altitude, fluvial
deposits become more dominant with increasing amounts
of mass-flow deposits at the top.

The Tonantzin section (TON), in the north of Tlayacapan
(18.97°N, 98.98°W), has a thickness of 79 m. Tuffaceous
sandstones resulting from sheet floods and sandy channel
fills dominate the lower part of the section. In the upper
part, deposits from pumice-and-ash flows and debris flows
are increasingly abundant.

The San Agustin section (SAG) is located to the
northeast of Tlayacapan and to the north of San Agustin
village (18.99°N, 98.96°W). It attains a thickness of 133 m
and is characterized by a steady increase in pyroclastic flow
deposits. Deposits from debris flows are abundant, whereas
fluvial tuffaceous sandstones and conglomerates decrease
with increasing altitude within the section. The top of the
section is characterized by a thick, blocky lava flow.

@ Springer

Petrography and lithology of the Tepoztlin Formation

Following the terminology for volcaniclastic rocks of
McPhie et al. (1993), the Tepoztlan Formation is made up
of tuffs and lavas, tuffaceous sandstones, conglomerates
and breccias, originating as a result of different transporta-
tional and depositional processes during or after volcanic
eruptions (Fig. 3). In order to assign each depositional unit
to a certain mode of transport and deposition, their detailed
petrography and lithologic description is given here. The
modal proportions of phenocrysts are measured for nine
representative samples of volcanic rocks (lava, blocks of
block-and-ash flow deposits, lithoclasts of pyroclastic flow
deposits) by point counting (Fig. 4; Table 1).

Lava

The lavas commonly have a blocky carapace and a dense
core, due to exposure either on the top of mountain ridges
or intercalated between other depositional units. All
analyzed samples have a porphyritic to glomeroporphyritic
texture. For the massive lavas, the total phenocryst content
is 2-60 vol.%. Plagioclase is the most abundant phase with
subordinate K-feldspar, clinopyroxene and amphibole.
Accessory phases consist of mica, abundant titanomagnetite
and other accessories.

The plagioclase phenocrysts of anorthitic composition
(~2,500 um) are euhedral to subhedral and show zonation.
Clinopyroxene of augitic composition (~2,000 um) is the
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Fig. 3 Photograph showing
examples of different
lithologies: a) lava, b) tuff,
¢) tuffaceous breccia,

d) tuffaceous sandstones
and conglomerates,

e) tuffaceous silt- and
claystones

most abundant mafic phase and shows euhedral to subhedral
habitus. Amphibole (magnesioriebeckite; ~2000 pm) occurs
as a minor constituent.

The groundmass shows a hyalophylitic, sometimes
trachytic texture, comprised of plagioclase microlites and
an ore phase (titanomagnetite). The whole-rock SiO,
content of the lavas ranges from 55.9 to 60.6 wt.%,
identifying them as andesites or dacites. With regard to its
chemical composition, the depositional temperature for the
lava is estimated to range between 800 and 1,200°C (Cas
and Wright 1987).

Tuff

There are abundant exposed tuff layers within the study
area. Each unit consists of a massive to finely laminated or
cross-bedded, varicolored, poorly sorted mixture of medi-
um to coarse ash horizons, sometimes rich in lapilli.
Thickness ranges from a few centimeters to several meters.

Based on texture and lithology, fall and pyroclastic density
current deposits can be distinguished. The fall deposits
reach a thickness of up to 10 cm, show mantle bedding and
can be traced for several hundred meters throughout the
outcrops. They consist of layers of coarse ash particles,
showing either normal or inverse grading. The particles are
composed of micropumice and pyroxene crystals.

The deposits of pyroclastic density currents can further
be subdivided into units with stratification (ripples, cross-
bedding, and antidunes), massive pumice-rich units and
blocky tuff breccia units with dense lava blocks. The
depositional temperatures of pyroclastics are usually above
200°C (Fisher and Schmincke 1984). The upper boundary
of the depositional temperatures is estimated to be below
400°C, as the mineral content does not show any signs of
modification due to welding (McArthur et al. 1998).

The stratified tuff layers range from 5 to 10 cm in thickness,
are moderately sorted and are mostly composed of a coarse
ash matrix with minor embedded pumice fragments. Locally,
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Fig. 4 Photomicrographs of
volcanic rocks of the Tepoztlan
Formation. Scale bar is 1 mm, a)
and b) dense lava in the central
part of a lava flow, ¢) and d)
clasts in fluvial deposits, e) and
f) tuff in non-polarized and
polarized light

they show erosional bases and pinch-and-swell structures. The massive pumice-rich tuffs exhibit a wide range of
They are interpreted as being deposited under surge-like  grain-sizes from fine ash to cobble-sized lithic and pumice
depositional conditions from dilute gravity currents or during  clasts (max. 10 cm). The tuff matrix appears unwelded,
windy conditions (Allen et al. 1999). composed of about 50% crystals, 2% lithics and 48% vitrics

Table 1 Modal abundance of representative samples of Tepoztlan Formation volcanic rocks in percent

Lithology Lava Blocks of block-and-ash flow Lithoclasts

Sample No. M210 TL250-1 TL233-12p TES TL233-HO TL250-5p SLI1 SL2 SL3a
Plag. 40.40 0.68 15.74 0.36 2.52 5.84 1.12 4.08 17.10
K-fspar 0.00 0.18 1.19 0.14 0.00 0.59 0.58 0.20 9.63
Amph 5.94 0.00 0.00 0.02 0.15 1.58 0.98 1.29 0.55
Cpx 13.07 0.88 11.88 1.47 0.30 1.88 0.00 0.20 2.45
Mica 0.00 0.12 0.00 0.00 0.00 0.00 2.28 4.18 0.00
Quartz 0.00 0.12 0.59 0.00 0.00 0.00 0.00 0.00 0.00
Fe-Ti 0.59 0.02 0.59 0.02 0.03 0.10 0.04 0.05 0.27
Groundmass 40 98 70 98 97 90 95 90 70

Plag. Plagioclase, K-fspar. K-feldspar, Amph. Amphibole, Cpx Clinopyroxene
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(average from 10 samples). Feldspar is the most dominant
mineral phase. The crystals of plagioclase and K-feldspar
are mostly broken and reach up to 2,500 pm in size.
Subordinate pyroxene (augite) ranges from 400 to
2,000 pm. Quartz crystals are a rare mineral phase but
occur in three samples. Quartz microcrysts reach sizes of
200-500 pm, while plagioclase microcrystals are commonly
40-120 pm in size.

Cognate lithic clasts are composed of grey to red
porphyritic rocks of dacitic to andesitic composition
(58.5-66.5 vol.% SiO,). Plagioclase crystals (up to 2 mm)
form the dominant mineral phase, accompanied by
K-feldspars (sanidine and microcline, ~2 mm). Subordinate
minerals are amphibole (up to 2 mm) and clinopyroxene
(augite, ~800 pm). Dark mica (biotite, ~1 mm) is present
only in a few samples.

Pumice clasts range from creamy white to pale yellow in
color. They are relatively dense to finely vesicular and
usually porphyritic, containing predominantly augite and
plagioclase as phenocrystals. Pumice clasts usually do not
exceed diameters of 6 mm within the matrix. However, in
pumice concentration zones, on top of single units, clasts
can reach up to 10 cm in diameter. Due to transportation
and abrasion they appear subrounded to rounded.

In some ignimbrites, rare accessory clasts were found,
which originated in the subvolcanic basement, brought to
the surface during the eruption. These consist of red clay-
siltstones and grey carbonate rocks. Under the microscope,
the red clay-siltstone shows a proportion of 15% crystals in
a clayey, in parts, still glassy matrix. The crystals consist of
quartz, plagioclase and pyroxene as broken phenocrysts.
Yellow, red and green particles suggest an alteration of
pumice pieces. The appearance of the rock fragments points
to an origin from the underlying Balsas Group.

The carbonates are light to dark grey in color. They are
described as pack- or wackestones after Dunham (1962)
with a calcitic-detritic matrix and supposedly originating
from the underlying Morelos Formation. There are no
macroscopic signs of fossil wood or other plant material.
There are, however, microscopic fragments of charcoal and
various palynomorphs (Lenhardt 2009).

The poorly sorted, blocky tuff breccia appears massive
and matrix-supported. Grading patterns are absent. The
angular, dense lava clasts are pre-dominantly block-sized,
hexagonal-shaped and derived from columnar jointing in
lava flows. These deposits are interpreted as block-and-ash
flow deposits.

The clasts are of andesitic composition (~59 vol.%
Si0,). The dominant mineral phase among the phenocrysts
is plagioclase (0.5-7 mm) with amphibole (0.1-4 mm),
augite (0.1-4 mm) and rare K-feldspars (0.5-5 mm) as
subordinate minerals. The groundmass is composed of
plagioclase, Fe-Ti magnetites and abundant glass.

The matrix of the tuff breccia possesses a similar
composition as the embodied lava clasts, pointing out to a
co-genetic origin. It is made up of glass shards, lava
fragments and abundant phenocrysts resembling the crystal
content of the clasts.

Tuffaceous breccias

In association with the primary volcaniclastic deposits a wide
variety of reworked products are found within the study area.
Among them, the mass-flow deposits are characterized by
tuffaceous breccias, originating from debris flows or hyper-
concentrated flows. Debris-flow deposits are sheet-like, show
no signs of grading or sorting and reach a thickness of up to
10 m. The hyperconcentrated-flow deposits, however, show
erosional basal surfaces, normal or inverse grading and
occasionally diffuse sedimentary structures. These deposits
reach approximately 4 m in thickness within the study area.
The mass-flow deposits are composed of angular to
subangular clasts in a pinkish red matrix of fine to medium
sand. The clast usually are pebbles and cobbles in size, not
exceeding diameters of 20 cm; however, single outsized
clasts of 2 m in diameter were also observed. The clasts
within the mass-flow deposits have similar characteristics
and compositions as the primary deposits described above,
suggesting an origin due to reworking of the latter. The
prevalence of angular to subangular intermediate volcanic
clasts implies a local source, and thus contemporaneous
volcanism and sedimentation. The matrix of the mass-flow
deposits is commonly composed of 30% lithic and pumice
fragments (up to 1.2 mm), 10% crystals and 60% glass
shards, showing significant alteration to clay minerals. The
fragments do not show any alignment within the matrix.
Plagioclase (600 um) and amphibole (800 um) phenocrysts
are subhedral and commonly broken while amphiboles
show signs of alteration. The rare quartz phenocrysts reach
sizes of up to 800 um. The tuffaceous breccias were
deposited under ambient air temperature conditions.

Tuffaceous sandstones and conglomerates

The grey, cross-bedded, fine- to medium-grained sand-
stones and pebbly to bouldery conglomerates within the
study area are interpreted as fluvial deposits. They appear in
sheets as manifested in channels and gravel bars or as
lenses as a result of filling of scours. The matrix dominantly
consists of sand grains, resembling small clasts of lava,
pumice or reworked ash particles. Based on composition,
presence of crystals and absence of basement material, the
original fragmentation process and components support an
initial pyroclastic origin. However, the sedimentary struc-
tures indicate significant reworking of either primary
pyroclastic material or material previously reworked by
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lahars. Clast abrasion in streams was rather inefficient as
shown by the subangular to subrounded shapes. The
tuffaceous sandstones and conglomerates were deposited
under ambient air temperature conditions.

Tuffaceous silt- and claystones

Several thin strata of red to purple tuffaceous siltstones and
claystones are recognized within the study area. They
appear massive or laminated and rarely exceed thicknesses
of one or two cm. However, at some locations such as near
Malinalco, silt- and claystones reach a thickness of several
meters. Thin sheet- or lens-shaped deposits are interpreted
as waning flood sediments. The purple color probably
represents subaerial alteration. However, no paleosols were
found throughout the whole sequence. Near Malinalco and
in the east of the village of Santo Domingo in the State of
Morelos (19.00°N, 99.03°W), siltstones, which are several
meters thick and coarsening-upward, are interpreted to be
lacustrine deposits. This coarsening upward is thought to be
a result of near-shore deposition with steady accumulation
of sediment in a progradational setting. The tuffaceous silt-
and claystones were deposited under ambient air tempera-
ture conditions.

Geochronology
Sample selection/ sampling

The new “°K/*°Ar and “’Ar*°Ar dates were obtaind for
different dacitic to andesitic lava samples, collected within
the sections TEP, SOM1 and SAG (TES5, SO14, TL250-5p,
TL233-12p). Two more samples were taken close to MAL
and SAN1 (M210, SAC) and their results were interpolated
into the stratigraphic sections. Furthermore, one dyke
(DY1) was sampled. The mineral contents of these samples
are listed in Table 1.

Analytical procedure for K/Ar dating

Samples were carefully cleaned and selected in order to
avoid altered parts or veins. The selected pieces were
broken and gently milled in a ball mill to reach a grain size
of approx. 100 um to prevent the loss of Ar caused by the
preparation.

The samples investigated suffer from a trapped atmo-
spheric contamination (up to 90% of the *°Ar), which is
unavoidable in most modern volcanic rocks (see discussion
in McDougall and Harrison 1999). Therefore, errors
amount to 15% (20). Earlier Ar-Ar ages, published by
Lenhardt (2004), were obtained from bulk rock analysis in
a commercial laboratory.
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The argon isotopic composition was measured in a pyrex
glass extraction and purification line coupled to a VG 1200
C noble gas mass spectrometer operating in static mode.
The amount of radiogenic *’Ar was determined by an
isotope dilution method using a highly enriched **Ar spike
from Schumacher, Bern (Schumacher 1975). The spike is
calibrated against the biotite standard HD-B1 (Fuhrmann et
al. 1987). The age calculations are based on the constants
recommended by the TUGS quoted in Steiger and Jager
(1977).

Potassium was determined in duplicate by flame pho-
tometry using an Eppendorf Elex 63/61. The samples were
dissolved in a mixture of HF and HNO; according to the
technique of Heinrichs and Herrmann (1990). CsCl and
LiCl were added as ionisation buffers and internal stand-
ards. The analytical error for the K/Ar age calculations is
given on a 95% confidence level (20). Details of Ar and K
analyses for the laboratory in Goéttingen are given in
Wemmer (1991).

Results

The radiometric ages obtained (Tables 2 and 3) for the
Tepoztlan Formation range between 24.1+£3.6 Ma and 19.8+
0.8 Ma. This corresponds to the initial phase of the TMVB
as stated by Goémez-Tuena et al. (2007). Because of the
described errors, individual age dates are not significant.
This shortcoming, however, can be counterbalanced by the
correlation with the results from the paleomagnetic analysis
and the lithology that follows.

Paleomagnetic analysis
Sampling

A total of 1087 cores were sampled from the described
sections for this study, 174 in the MAL section, 236 in the
two SAN sections, 171 in the TEP section, 289 in the two
SOM sections, 64 in the TON section and 152 in the SAG
section. Three to 12 cores were collected per horizon in
average intervals of 10 m. The samples were collected from
tuffs, tuffaceous sandstones, the matrix of tuffaceous
breccias and lava. While sampling sediments, zones with
fine matrix were drilled to eliminate problems due to big
grain sizes (e.g., Barbera et al. 2001). The most common
way to extract drill cores is with the aid of a gasoline-driven
drilling machine with diamond-studded drill heads. The
diameter of the drill cores is usually 2.5 cm but drill cores
with 1.2 cm diameter were also used. After drilling to a
depth of 6-12 cm, an orientation platform is slipped onto
the sample while the latter is still attached to the
surrounding rock. The orientation platform contains an
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Table 2 Data base of K—Ar age determinations

Sample Spike [No.] K>,0 [Wt. %] 40 Ar * [nl/g] STP 40 Ar * [%] Age [Ma] 26-Error [Ma] 2 & -Error [%]
M 210 3763 0.66 0.447 10.03 20.9 3.1 14.8
TE 5 3747 1.31 0.822 16.76 19.4 1.2 6.2
SO14 3752 0.74 0.557 6.62 24.1 3.6 14.9
TL 250-5p 3759 1.16 0.752 2091 20.0 1.0 5.0
TL 233-12p 3743 1.33 0.853 28.48 19.8 0.1 0.4

inclinometer to determine the inclination of the solid axle. It
also contains a magnetic compass and a sun compass for
the determination of the azimuths of the solid axle. The
error of the directional reference is about +2°. After
orientation, the drill core is labeled and taken to the
laboratory for further treatment.

Laboratory methods

The natural remanent magnetization (NRM) of all samples
was analyzed using an AGICO JRS5 induction magnetometer.
A total of 189 samples were demagnetized using a stepwise
alternating field (AF) treatment in field amplitudes up to
100 mT using an AGICO LDA instrument. Another 64
selected samples were thermally demagnetized using an ASC
scientific model TD48 furnace. Remanence components were
identified from orthogonal demagnetization plots (Zijderveld
1967) and best fits were determined using principle
component analysis. Site mean directions were calculated
using Fisher (1953) statistics (Table 4; electronic supple-
mentary material).

Results

NRM intensities range between 0.00059 A/m (lowest) and
81.16 A/m (highest; average: 1.47 A/m). The ferromagnetic
minerals within the samples are predominantly titanomag-
netites with a relatively low content of titanium as
previously observed during SEM studies (Lenhardt 2004)
and from the AF and thermal demagnetization experiments.

Remanence acquisition for lava (depositional temperature
above 600°C) and tuff (depositional temperature between 200
and 400°C) was through (partial) thermoremanent magneti-
zation (TRM), and is acquired by a rock during cooling from a

Table 3 Data base of Ar-Ar age determinations

temperature above the Curie temperature in an external
magnetic field (Merrill et al. 1998). Fluvial and mass-flow
deposits (deposition at ambient air temperature) are charac-
terized by detrital or depositional remanent magnetization
(DRM), acquired by sediments when grains settle in water in
the presence of an external magnetic field (Merrill et al.
1998).

Typical examples of AF demagnetization diagrams are
shown in Fig. 5 as orthogonal projections of magnetization
vectors. The NRM of the samples mainly consists of one
dominating magnetization component with a small unstable
contribution, which is removed during the first AF demag-
netization steps (020 mT). If more than two magnetization
components were observed, then the characteristic direction
was determined by taking into account the overall behavior
of samples from the entire outcrop. All characteristic
directions were defined using principal component analysis
(Kirshvink 1983). The examples shown in Fig. 5 are from
the main depositional environments, and the quality of the
demagnetized data is clearly related to the temperature
during deposition. The lava sample SO67-76 exhibits a
strong univectorial thermoremanent magnetization compo-
nent. All other samples, in comparison, are demagnetized
faster at initial AF steps, and their directional behavior along
the demagnetization process is also more dispersed. Never-
theless, in most cases a characteristic remanence direction
may be determined with sufficient precision to assign a
magnetic polarity.

These characteristic remanent magnetization directions
were used to calculate site-mean directions and virtual
geomagnetic poles (VGP). Often, the in-site dispersion of
directions was large, with confidence limits ogs between
2.3° and almost 90°. Large dispersion was related to large
grain sizes of the sampled rock. It was also observed that

Sample J Weight (mg) MSWD YA SAr % °Ar used Age (Ma)
SAC 0.001020+0.000008 124.0 0.18/ 2.63 449.84+12.89 61.7 21.86+0.20 Ma
DY1 0.001014+0.000010 88.0 0.41/3.83 319.32£16.3 8.5 15.83£1.31 Ma

J is the irradiation parameter, MSWD is the mean square weighted deviation (Wendt and Carl 1991), which expresses the goodness-of-fit of the

isochron (Roddick 1978)

@ Springer



826

Bull Volcanol (2010) 72:817-832

(a) SO 1-13 (lava)

N, Up

E.Up

0.7]

0.56

(b) CLV 1-7 (ash-flow deposit)

(@)

S, Down

(c) T6-1 - 6-7 (debris-flow deposit)
N, Up

w, Down

Intensity
o =3
) '
o0 N

o
e
>

22 44 66 88 110
Demagnetizing Field [mT]

Intensity
=) =) =)
o N w o
o H N S

e
1=
@

10 20 30 40 50 60 70 80 90
Demagnetizing Field [mT]

100

(d) TL 58-64 (channel fill)

E, Up 0.4

(c)

0.32.

0.24

Intensity

0.16-

0.08-

0 10 30 50 70 90 110 130 150
Demagnetizing Field [mT]
0.06: (d )
0.05
20.04
2
]
£
0.02
0.01
0 10 30 50 70 90 110 130 150

Demagnetizing Field [mT]

Fig. 5 Examples of orthogonal vector (Zijderfeld) plots of four samples undergoing alternating-field demagnetization. Each plot shows the
projection of the magnetization vector endpoint on two perpendicular planes, one in the horizontal plane (solid symbols) and one vertical (open
symbols). Numbers give strength of the demagnetizing field in milliTeslas (mT). To the right, intensity plots of the samples are shown

part of the samples showed well grouped magnetic
directions, while several other samples showed clearly
divergent and more random directions. This is interpreted
to reflect the lateral and vertical variability within one
sampling site of grain sizes and depositional processes
involved, mainly in the fluvial sediments. Here, the
inclusion of up to granule-sized particles, which are not
oriented by the geomagnetic field, may produce a stable
remanence direction deviating from the ambient field
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direction, which is not removable by demagnetization
techniques. Site mean directions with confidence limits
Xg9s higher than 40° were thus considered as unconfined
and were not subject to further analysis. Within the
remaining samples, dispersion is lowest in lavas (mean
X9s 9.7°) and highest in mass-flow deposits (mean oos
21°). Fluvial deposits (mean o5 17.5°) and tuffs (mean oos
17.4°) have similar values, taken into account that the
fluvial material mostly consists of reworked tuffs.
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Geomagnetic polarity was determined by the VGP
latitude, being normal (reverse) for positive (negative)
latitude. Sites with latitudes between +30° were considered
as intermediate and no polarity was assigned to them.
Intermediate latitudes may have been produced by the
geomagnetic field during excursions or reversals, but also
tectonic processes like tilting of strata could have the same
effect. According to field observations it can be assumed
that tilting has not affected the studied rocks by more than
10°. In several places it is observed that intermediate
directions are similar and occurred over several consecutive
sites within the succession, while below and above
directions were clearly reverse or normal, e.g. SO77 to
SO126. This may suggest that these strata did not tilt and
that the intermediate directions indeed may reflect short-
lived but abnormal geomagnetic field conditions.

Comparison of the data before and after demagnetization
shows that often the dispersion of the paleomagnetic data is
enhanced by the treatment. Figure 6 shows examples for four
sites of different lithologies, where the largest enhancement
is seen in the case of lava flow SO1-13. Here, some samples
were clearly affected by lightning-induced secondary mag-
netizations, which was probably due to the topographic
exposure of this flow. These secondary components were

Fig. 6 Examples of equal area
plots of paleomagnetic direc-
tions for different lithologies,
before and after thermal and af
demagnetization. Closed/open
symbols define positive/negative
inclinations, stars with ellipses
the site-mean direction with o5
confidence limits

Lava flow

effectively removed by the demagnetization process. Never-
theless, the polarity of magnetization did not change after the
cleaning, and this is also the case in most other sites that
were demagnetized, like pyroclastic flows TL28-33 and TL7,
and the fluvial deposit TL 59-64 (Fig. 6). Therefore, it is
assumed that the undemagnetized samples, producing rea-
sonably well defined site mean NRM directions, may indeed
be used for magnetostratigraphy purposes, a reasonable
assumption based on detailed demagnetization experiments
on about one-fourth of all recovered samples. In view of the
large amount of samples collected and the time limitation
associated with this study, only one sample per site for about
three-fourth of the locations was demagnetized based on the
general stable NRM directions. Major directional changes
were not observed.

Figure 7 shows all site-mean directions that are not of
intermediate polarity and that have an ags<40°. There are
79 sites of normal/reverse polarity with a reasonably well
defined antipodal distribution. This lends confidence to the
assumption that these rocks indeed recorded the geomag-
netic field during their deposition.

Local magnetic polarity stratigraphies (LMPS) were
constructed for the individual sections, which are compiled
into a single composite section covering a net of ~577 m of

TL7 thermal
demag —

TL7 NRM

af demag

TL59-64
[ [ I A |
NRM af demag

Fluvial deposit
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Fig. 7 Equal area plot of paleomagnetic directions, showing all
accepted non-intermediate site-mean directions. Closed/open symbols
define positive/negative inclinations

strata. Correlation between the combined sections MAL,
SANI1, SAN2, TEP, SOM1, SOM2, TON and SAG yields a
composite LMPS containing 14 reversals. These reversals
are correlated to the age models of Cande and Kent (CK95;
1995). Considering the age constraints given by K-Ar and
Ar-Ar geochronology (including their errors), this allows a
correlation to (sub)chrons 6Bn.In—5Er, covering a time
span of ~3.97 Ma for the entire deposition of the Tepoztlan
Formation (Fig. 8).

Discussion
Chronostratigraphic implications

Radiometric dating of dacitic lavas within the Tepoztlan
Formation yielded ages between 24.1+3.6 Ma and 19.8+
0.8 Ma. Given the low potassium content of these rocks, it
is difficult to say which of the K-Ar and Ar-Ar ages are
more precise and reliable. However, combined with palae-
omagnetic data, the chronostratigraphic study of the
Tepoztlan Formation gives much better age constraints for
its time of deposition. Considering the radiometric ages
together with their errors, the best possible correlation of
the composite LMPS is provided fitting to the CK95 GPTS.
This correlates the sections to chrons 6Bn.1n—S5Er in the
early Miocene and encompasses a time of deposition
between 22.8 and 18.8 Ma (22.8-22.2 Ma for MAL
section, 22.8-21.3 Ma for SAN1 and SAN2 sections,
21.8-18.8 Ma for TEP section, 22.2-20.1 Ma for SOM1
and SOM2 sections, 21.8-20.5 Ma for TON section and
20.1-18.8 Ma for SAG section; see Fig. 6). Where
individual sections overlap via lithostratigraphic correlation
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the polarity zones are coincident (e.g. SAN1 and SAN2,
SOM1 and SOM2). This agreement of reversals in nearby,
lithostratigraphically correlated sections reinforces the
robustness of the local (<500 m) correlations and of the
LMPS itself.

The resulting ages coincide with the time of the initial
activity of the Transmexican Volcanic Belt as proposed by
Ferrari et al. (2003) and Garcia-Palomo et al. (2000). This
study shows that the time of deposition of the Tepoztlan
Formation fits into the time-frame provided by these
authors; as such, the time of deposition of the Tepoztlan
Formation can be defined more precisely. The formation of
the San Nicolas Basaltic Andesite at 21.6+1.0 Ma (Garcia-
Palomo 1998), underlying the Tepoztlan Formation in the
Malinalco area, suggests a contemporaneous deposition of
both formations within the study area. However, closer field
relationships between both formations are yet to be studied.
The post-depositional history of the Tepoztlan Formation is
characterized by the emplacement of various dykes,
yielding ages as young as 15.83+1.31 Ma, which corre-
sponds to a period of plutonic to subvolcanic body
emplacement and large fissure eruptions with widespread
lava plateaus between the states of Nayarit and Veracruz
(Ferrari and Rosas-Elguera 2000; Ferrari 2004; Ferrari et al.
2005), suggesting a genetic relationship between the
younger volcanic activity and the dyke-emplacement.

Sedimentary implications

The stratigraphy of the Tepoztlan Formation obtained by this
study shows that, due to a misinterpretation of certain deposits
and a lack of time markers to correlate the stratigraphic
sections, Haro-Estrop’s (1985) subdivision of the formation
needs revision. With the new age constraints and according
to the dominant mode of deposition new subdivisions of the
Tepoztlan Formation can now be proposed. The following
lithostratigraphic names are suggested according to the type
localities (Fig. 9): (1) a fluvial dominated lower unit
(Malinalco Member; 22.8-22.2 Ma), (2) a volcanic domi-
nated middle unit (San Andrés Member; 22.2-21.3 Ma) and
(3) a mass flow dominated upper unit (Tepozteco Member;
21.3-18.8 Ma). Sediments near the SAG section that were
formerly described by Haro-Estrop (1985) as part of the
fluvial-laharic unit belonging to the middle part of the
sedimentary sequence are now assigned to the youngest
sediments within the succession.

The Malinalco Member of the succession (22.8—
22.2 Ma), represented by sections SAN1 and MAL, shows
a predominance of gravel bars and sandy channel fills,
indicating deposition in a high-energy braided river system.
The volcanic sandstones and conglomerates are a result of a
sudden influx of voluminous pyroclastic debris derived
from explosive eruptions. This is also seen in the few



Bull Volcanol (2010) 72:817-832

829

Composite LMPS

VGP

e - 4 San Agustin
Legend: VeGP
Tepozteco TEP ste SAG sitvdo 1 04
:I Pyroclastics = 198408 g 4 g
[ Lava £ 'E
19.048
- Mass-flow deposit .
e
[ Fluvial deposit LICRRLY | &
3. .
-Lacustrine deposit 5a JE: —
’ ; 20.131 20 o 20.131
@ O Drill location 5 ol )
(normal/ reverse/ 2518 ¥ I Sombrerito
intermediate sAndn
Bokit with } 20.725 i in? OMZV Tanshtzin
L Point wi " g F TON
K-Ar/ Ar-Ar data | - I ; vep 20518
20.996 - b | Sile latitude -
mmm 50m i A \
fanan . 200 +-1.0) 130 b Nz ;
_somue | o 5
San Andrés SAN2 a 8T Ieek (=
21.320 e A= i - b ‘: - 21.320
i Site _ latitude i Py HE %-stu
Malinalco 21.768 i L d Q == b | : 21,768
ki SAN1 g !I L | 241 +- 36,45 sham
MAL 21.859 TGF = ;’ |
|atitude: o =
— m
22151
J
Tz - 22.248
= 218
{ S * Distances between stratigraphic sections:
R 22.588 Malinalco - San Andrés ~ 39.0 km
San Andres - Tepozteco 3.7 km
Tepozteco - Sombrerito  13.4 km
Sombrerito - Tonantzin -~ 2.8 km
Tonantzin - San Agustin =~ 3.6 km
22.750

Fig. 8 Lithostratigraphic sections of the Tepoztlan Formation with paleomagnetic and radio-isotopic analysis results and magnetostratigraphic
correlation to the geomagnetic polarity time scale of Cande and Kent (CK95; 1995)

Fig. 9 Chronostratigraphical
correlation of the stratigraphic
sections together with their
predominant lithologies

g Cerro Cerro
~ |Chrono- Malinalco |San Andrés| Tepozteco | Sombrerito | Tonantzin [San Agustin
% stratigraphy  (MAL) (SAN) (TEP) (SOM) (TON) (SAG)
18.8
£
5
®
>
T |o,
19.8 S 85
@ §§
&=
20.8
<
s [2
t |53
218| £ |<E
s g4
oG =
o
24
228 §§

| Lava Pyroclastic Deposit [ Mass-flow Deposit[llll Fluvial Deposit

@ Springer



830

Bull Volcanol (2010) 72:817-832

pyroclastic-flow and debris-flow deposits within this
section. The prevalence of intermediate clasts and their
relatively large sizes are consistent with a limited distance
from the source via a high-energy transport system and thus
suggest contemporaneous volcanism and sedimentation. In
the San Andrés Member (22.2-21.3 Ma) a sudden increase
in volcanic activity is noticed, associated with the deposi-
tion of massive ignimbrites in sections SAN1 and SAN2
and a thick lava flow in SOMI. The eruptions were
vulcanian to subplinian events that generated few ash falls
and relatively small pyroclastic density currents, probably
extending not more than a few kilometers from their vents.
Deposits from a block-and-ash flow in SAN1 and the lava
in SOMI point to proximal small vents. There are only
minor amounts of primary volcaniclastics in MAL, which is
dominated by thick sheets of gravel bars and sandy channel
fills. However, lacustrine sediments found in MAL and near
the village of Santo Domingo point to the development of
lahar-dammed lakes after partial covering of the former
river bed by volcanic activity.

Within the Tepozteco Member (21.3-18.8 Ma), a signifi-
cant change from fluvial to prevailing mass-flow deposits can
be noticed, especially within TEP. The debris-flow and
hyperconcentrated-flow deposits in addition to high-energy,
stream-dominated gravel bars are collectively lithofacies
associations inherent to proximal alluvial fans (Mack and
Rasmussen 1984). The transport distance for the clasts is in
the order of kilometers, possibly less, as indicated by the
clast size, angularity, the nature of the deposit (e.g. debris
flow) and the local derivation of clasts. The debris-flow
deposits seemingly reflect the increasing height of the
volcanic edifices leading to steep slopes and increase of
gravitational mass movement. This interpretation coincides
with modern alluvial fans in volcanic settings (Vessel and
Davies 1981; Pierson et al. 1990). The large-scale outcrop
architecture of the Tepozteco Member together with the
alternation of fluvial and gravitational transport modes can
be interpreted as a large-scale alluvial fan, whose center was
north of Tepoztlan. In contrast, the other sections (SOMI,
SOM2, TON) were not or only partially affected by
deposition from the alluvial fan, showing that they originated
in a marginal setting. Sheet-flood deposits within these
sections were interpreted to originate at the alluvial fan front,
at the transition to the river system. The dominance of sandy
to gravely sediments indicates a continuation of the braided-
river system in these areas, where the fluvial transport is
occasionally disrupted by explosive eruptions in the near
surroundings and high supply of pyroclastic materials. The
deposition of SAG was influenced by another volcanic
center very close to the section itself that is presently covered
by lavas of the Chichinautzin Formation. The section is
characterized by massive ignimbrites and an exposed lava
dome emphasizing the closeness to the vent area.
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Conclusions

The presented paleomagnetic and geochronological data are
the basis for a first chronostratigraphy of the Lower
Miocene volcaniclastic Tepoztlan Formation, producing a
reliable magnetostratigraphy, which is correlated to the
Geomagnetic Polarity Time Scale (GPTS) of Cande and
Kent (1995). The time of deposition of the Tepoztlan
Formation ranges between 22.8 and 18.8 Ma (6Bn.1n-5Er),
implying that the studied formation represents the initial
phase deposits of the TMVB. Reinforcing the robustness of
the paleomagnetic and lithological correlations of nine
individual sections, a detailed overall stratigraphic frame-
work has been established. The results are consistent with
the origin of the TMVB as stated by Ferrari et al. (2003)
and Gomez-Tuena et al. (2007). Together with the San
Nicolds Basaltic Andesite in Malinalco (Garcia-Palomo et
al. 2000), the Zitacuaro Volcanic Complex in Michoacéan
(Capra et al. 1997) and the volcanic rocks in the deepest
part of the Mexico City Basin (Ferrari et al. 2003), the
Tepoztlan Formation thus belongs to the few remnants of
the ancestral TMVB.

In this study we suggested to subdivide the Tepoztlan
Formation into three members according to the dominant
mode of deposition: (1) the fluvial dominated Malinalco
Member (22.8-22.2 Ma), (2) the volcanic dominated San
Andrés Member (22.2-21.3 Ma) and (3) the mass flow
dominated Tepozteco Member (21.3-18.8 Ma). The central
part of the study area (SANI1, SAN2, TEP) and SAG was
strongly affected by the deposition from a volcanically
induced alluvial fan, which implies that the main build-up
phase of the TF took place in that time interval. Sections
MAL, SOM1, SOM2 and TON are, in contrast, character-
ized by the deposition in the fringe areas of the alluvial fans
and are dominated by braided-river sediments.
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