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Abstract Indicator kriging (IK) is a spatial interpolation technique aimed at estimat-
ing the conditional cumulative distribution function (ccdf) of a variable at an unsam-
pled location. Obtained results form a discrete approximation to this ccdf, and its
corresponding discrete probability density function (cpdf) should be a vector, where
each component gives the probability of an occurrence of a class. Therefore, this vec-
tor must have positive components summing up to one, like in a composition in the
simplex. This suggests a simplicial approach to IK, based on the algebraic-geometric
structure of this sample space: simplicial IK actually works with log-odds. Interpo-
lated log-odds can afterwards be easily re-expressed as the desired cpdf or ccdf. An
alternative but equivalent approach may also be based on log-likelihoods. Both ver-
sions of the method avoid by construction all conventional IK standard drawbacks:
estimates are always within the (0, 1) interval and present no order-relation prob-
lems (either with kriging or co-kriging). Even the modeling of indicator structural
functions is clarified.
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1 Introduction

Indicator kriging (IK) is a geostatistical technique used to approximate the condi-
tional cumulative distribution function (ccdf) at each point of a grid based on the
correlation structure of indicator transformed data points (Journel 1983). The major
drawback of IK is that it frequently yields inconsistent estimates, such as negative
probabilities, probabilities larger than one, or a non-monotonic ccdf. In terms of its
associated conditional probability density function (cpdf), such ccdf imply that some
events at the estimated location are attached negative probabilities, or that the integral
(the sum) of the cpdf is not one. Several methods have been developed to reduce the
order relations violation a posteriori. This paper presents an alternative procedure,
which by construction avoids such nonsense estimations, and is as straightforward
as IK.

Existing strategies include: [a] indicator co-kriging with complementary variables,
like probability kriging (Sullivan 1984) and cumulative distribution function of order
statistics kriging (Juang et al. 1998); [b] better characterization of indicator cross-
covariance structures, like indicator principal component kriging (Suro-Perez and
Journel 1991), successive kriging of indicators (Vargas-Guzman and Dimitrakopou-
los 2003) or the use of transition probabilities (Carle and Fogg 1996); and [c] the
Disjunctive Kriging (Matheron 1976, DK) estimation of the cpdf. None of these
methods completely eliminate the order relation problems (Carr and Mao 1993;
Carle and Fogg 1996). Even DK, with its high theoretical complexity, usually yields
negative estimates in the tails of the cpdf. Therefore, several posterior correction
methods of IK results have been implemented, either through trans-Gaussian-type
curves (Carr 1994; Bogaert 1999), or via a logistic regression model (Pardo-Igizquiza
and Dowd 2005). From another field of spatial statistics, the Bayesian-Maximum En-
tropy (BME) alternative to IK (Christakos 1990; Bogaert 2002) is based on assuming
a joint multi-dimensional multinomial model for the desired random function, and
estimates the parameter (in fact, a multidimensional array of probabilities) by a log-
linear model. To the authors’ knowledge, BME is the only alternative to IK working
with a logistic scale for probabilities (though implicitly assumed), and the only one
which by construction does never present order violations. This is achieved at the
price of extensive computations and the loss of the intuitive character of kriging tech-
niques.

Attending to the fact that the discrete estimate of the cpdf must have positive
components summing up to one, Tolosana-Delgado et al. (2005) identify the sample
space of probability vectors, or parameter vectors of a multinomial distribution, with
the simplex (the sample space of compositions), and propose to interpolate them
using any kriging method devised for data from this constrained space (Pawlowsky
1989; Pawlowsky-Glahn and Olea 2004). The present paper presents this simplicial
indicator kriging in depth. From a practical point of view, simplicial IK combines the
easy interpretation and implementation of IK with the capability of directly providing
valid results. As shown in the scheme of Fig. 1, the method is equivalent to applying
conventional linear geostatistics to the coordinates of probability vectors in a given
orthonormal basis of the simplex. Such coordinates are, in fact, (generalized) log-
odds (Lindley 1964), thus presenting a conceptual link with well-grounded, classical
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Fig. 1 Flux diagram of indicator kriging techniques and their relationships

tools of statistical analysis of probability density functions (information measures),
as well as with some of the cited methodologies (Bogaert 2002; Pardo-Igizquiza and
Dowd 2005).

The present paper presents first this simplicial IK in its most straightforward form.
Afterwards, the relationship between classical IK and the simplicial alternative is
proven (Fig. 1). This helps both simplifying the computations of the simplicial path
(lower one) and clarifying the conditions imposed to indicator covariances in the clas-
sical path (upper one). Finally, typical properties of the estimator are reviewed, and an
interpretation within the framework of information theory and compositional geom-
etry is put forward. A simulated example illustrates the differences and similitudes
between the classical IK and the proposed simplicial alternative. Proofs are collected
in the Appendix.

2 Notation and Preliminary Definitions

2.1 Indicator Functions

Let X € D C R? be a point in a domain D of the space-time real space, with
p €{1,2,3,4}, and Z(X) a regionalized variable with range A = [ap,ap). Let

{ai,...,ap—1} be a set of thresholds, leading to a partition A = Ugl A;, with
A; = [ai_1, a;). Then one may either define a set of cumulative indicator, I(X) =
(11, ..., Ip), or disjunctive vector transformations, J(xX) = (J1, ..., Jp), as
- 1, Z(X) <a, - 1, ZX)eA;, .
I;(xX) = {0, Z@) > ar. Ji(x) = 0. otherwise. ief{l,2,....,D}. (1)
It is well known that these two vectors satisfy =L -J and J =T - I with
1 0 --- 0 1 0O --- 0
1 1 -~ 0 -1 1 - 0
L=1. . . . and T=) . . . .| @
1 1 - 1 o .- -1 1

Using the same set of thresholds, one can also define a generalized indicator function,

R 1—b, Z(X)eA;,
Gi(x)={ b )

i €{1,2,..., D},
DT> otherwise, el ) G)

where b is a parameter fixed by the analyst (its role is discussed below).
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Let z(X1), z(X2), ..., z(Xn) be an observed sample of Z(x) at sampled locations
X1,X2,...,Xy, and Xo an unsampled location. The application of the indicator trans-
forms (1), resp. (3), to the sample yields pseudo-observations fl, ]’2, ey ]'N, resp.
81,82, -, 8N-

Recall that, when applying IK, one looks for the conditional expectation of J(X)
given ;’1, ]’2, ey fN, in the hope that this will give valuable information on the con-
ditional distribution of Z(Xy) given z1,z2, ...,zy (Journel 1983). This is feasible
because, independently of the original distribution of Z, the transformed J follows a
multinomial distribution of a single trial and probability vector p. This applies both
to the stationary, marginal pdf of the random field J(X) (p; = Pr[Z € A;]), and to the
local pdf of J(X¢) conditional on the available data (p; = Pr[Z € A;|z1, ..., zn]).

2.2 Compositional Data Analysis Concepts

Independent of any spatial issues, the probability parameter vector of a multinomial
distribution p = (p1, p2, ..., pp) has positive components (p; > 0) summing up to
one (p1 + p2 + -+ + pp = 1). This is the standard definition of a D-part compo-
sitional datum, and its sample space is called the D-part simplex, denoted by S”
(Aitchison 1986). If the components (p}, p5, ..., pp,) do not fulfill the sum con-
straint, the closure operation C(-) may be applied

1
1 D

Both vectors p’ and p give the relative likelihood of occurrence of each class
A1, ..., Ap. The closure only changes its total sum, but not the odds of any two
categories. This points to the fact that the relevant information for probability vec-
tors is a relative one. This is the reason why they have often been analyzed on a
logarithmic-like scale, with log-linear models, logistic regression, or Shannon infor-
mation measure.

The simplex of D parts (SP) admits an Euclidean space structure (Billheimer
et al. 2001; Pawlowsky-Glahn and Egozcue 2001) with the following operations. The
Abelian group operation, called perturbation and equivalent to Bayes updating, is
given by p ® q = C(p1g1,..., ppgp)’. The scalar multiplication, or powering, is

given by @ © p =C(p{, ..., p})". The inner product and associated distance are
given by
B aa=—=Y 2 w% 2 g = iz(m& —lnﬂ>2 @)
k] a D i<j p] qj ’ a ’ D i<j pj q] E}

where p, q € SP, o € R, and the superindex ¢ marks transposition. In this structure,
known as Aitchison geometry, orthonormal coordinates may be computed with

x=WV-Inp, 5)
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where W is a (D — 1) x D matrix with rows forming a set of orthonormal vectors (as
stated in Property 1 in the Appendix). The vector p can be recovered by applying the
coordinates to the basis, giving

p=C(exp(¥ - x)). (6)

It is useful to notice here that each and every possible coordinate may be expressed as
a (generalized) log-odd (Lindley 1964), also known as log-contrast (Aitchison 1984),
like 77; = In(([ [, pif’ “/1y p‘dl”'d)), where the sum of the powers affecting parts in
the numerator ), ¥;, must equal the sum of those in the denominator ), ¥;4. The
Aitchison geometry of the simplex captures all the relative information of probability
vectors.

According to Pawlowsky-Glahn (2003), whenever a meaningful Euclidean geom-
etry is available, one should represent observations in any orthonormal basis accord-
ing to this geometry and apply any desired statistical method to the coordinates in
that basis. Results describing objects of the original Euclidean space may then be
applied to the basis used to obtain final estimates. Geostatistics is not an exception
(Tolosana-Delgado 2006; Tolosana-Delgado and Pawlowsky-Glahn 2007).

3 Simplicial Indicator Kriging (I): Interpolating Log-Odds

Assume first that the studied random field is just p(X). One has thus observations
of the vectors of probabilities p(X,) = p, at several locations X,, n =1,2,..., N.
In this case, given that p, are space-dependent compositions, they might be interpo-
lated with any method devised for this kind of constrained data (Pawlowsky 1989;
Pawlowsky-Glahn and Olea 2004). However, such probability vectors are actually
not observed. Instead, one estimates them using observations of Z(X), a regionalized
variable. Classical IK estimates the p, by j, (see (1)). But the presence of zeroes
in this vector precludes the computation of log-odds, and thus the application of the
Aitchison geometry.

Whenever the analyst admits a certain degree of uncertainty, probability vectors
p» may be estimated by g, (see (3)), depending on a parameter b. This parameter
accounts for the (subjective) uncertainty regarding the true value of Z(X,): observing
72(X,) € A; means that Pr[Z(X,) € A;] =1 — b. By using the generalized indicator
transform, one obtains a probability vector with no zeroes, which fully respects the
log-odd geometry. Thus, one may compute for every location the vector of coordi-
nates 7 (Xo) (5) and treat the obtained coordinates with conventional geostatistics.
Finally, the kriging results, denoted & g, might be applied to the basis in use, repre-
sented by the matrix ¥ (6), to recover the true kriged probability vector, px . Three
objections might appear at this point:

Basis dependence. Do results obtained with this methodology depend on the choice
of the orthonormal basis? (i.e. of the matrix ¥). The next sections show that the
whole co-kriging procedure is independent of it.

The uncertainty parameter. Regarding the value of b, one can show that it does not
influence the covariance estimation and co-kriging procedures. It is nevertheless an
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important parameter in the obtention of the final prediction for p(x): for the moment,
consider it a small value, say 0.05 or 0.1, depending on the actual number of classes
involved and the degree of uncertainty admitted for Z(X) (both factors favor a higher
value of b). It is not reasonable to take b > (D — 1)/ D, as this would imply that the
observed class is less probable than the non-observed ones. A thorough discussion
of the role of b is given afterwards.

Adequacy of probability estimates through indicator functions. The third issue re-
lates to the adequacy of the generalized indicator function (3) as an estimator at the
sampled locations X,, for the true discrete probability density function, p(X,). Note
that G(X) (3) has only two outcomes (b/(D — 1) or 1 — b). In fact, this estimator
does not take into account proximity effects between classes. For example, if Z(X)
falls in the fifth class, then the fourth or the six will not receive more probability
than the first class. This is strictly valid only if each class can be equally confounded
with all the other classes, for instance, when classes are a priori equiprobable and
they have no ordering. The same lack of ordering information is present in the dis-
junctive indicators J (1), as its underlying model is multinomial, but it also affects
the classical cumulative indicators I (as proven afterwards). One might find several
alternatives, like (a) putting some arbitrary values, decreasing as classes become
far apart, (b) using a suitable probability model with a small dispersion to com-
pute the probability of each class, or (c) estimating each probability of conditional
classification Pr[z(X,) € A j |z(X,) € A;] with the “nugget effect” of transition prob-
abilities (Carle and Fogg 1996). These options are left for further research. The rest
of the paper deals with generalized indicators, to keep the parallelism with classical
indicator kriging.

4 Details on Geostatistics for Probability Vectors
4.1 Data Representation

Several relationships can be established between the cumulative indicators I, the dis-
junctive ones J, and the coordinates 1, (5) of the generalized indicator (3). In addi-
tion to the well-known relation I =L - J (2), it is easy to prove (Appendix, Proposi-
tion 1) that

d-nd-1

b (N

1 1
x=p8-¥.-J and J:E"I’t'n+5'l’ where 8 =In

Therefore, any of the vectors I, J, G, and & are linked through linear, full-rank trans-
formations.

4.2 Structural Analysis

Using (7) and Proposition 2 (see Appendix), both the mean and covariance structure
of the coordinates m (X) are linearly related to the mean and covariance structure of
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disjunctive indicators J(X)

T=p4-¥-J and j:%-\l:f-ﬁ+%-1, (8)

C"(h)=g%-W-C/(h)- ¥ and CQZ):%-\I’VC”(Z)-\I'. ©)

In these expressions, J ,C/ (+), T, and C7 () denote, respectively, means and covari-
ances of J and w. The same can be said about the relationship cumulative-disjunctive
indicators, giving

I=L-J and C'(i)=L-C’(h)-L". (10)

All these equations are naturally satisfied by the experimental means and covariances,
at all lag distances. If the fitted models also fulfill them, then they may be called com-
patible. These relationships offer a way to clarify the modeling of indicator structural
functions. Recall that the disjunctive indicagor covariance C’ (ﬁ) is bound to sum up
to zero by rows and by columns for each £, due to the constant sum constraint of
J. Also, C’(0) = diag(j) —J - J', because it must correspond to a valid covariance
matrix of a multinomial vector (Bogaert 2002). According to this author, these ex-
tra conditions, together with the classical conditions on positive-definiteness of the
covariance structure, are enough to ensure a valid model for c’/ (h). In contrast, con-
ditions for a valid covariance structure C’ (ﬁ ) of cumulative indicators are not known,
apart from a conjecture by Matheron (1993). .

On the contrary, the covariance structure C” (%) is almost free from these limita-
tions. Any model fitted to the covariance structure of coordinates will be consistent
with a covariance structure C” (h) summing up to zero both by rows and by columns,
thanks to the pre- and post-multiplication by ¥ in (9). Provided that the model fit-
ted to C™ (ﬁ) is positive definite, one has only to tune the value of f and the nugget
effects, in order to fit the variance of a multinomial variable for # = 0. Even when
working within a standard IK framework, the covariance system used may be easily
ensured to be a valid one by computing the experimental covariance of the coordinate
function, by fitting a valid model to the resulting (D — 1) x (D — 1) covariance sys-
tem, and by computing the compatible model for J (x) through (9), or even for I(X)
through (10). These derived models for C! (h) or C/ (h) are singular, if one does not
erase a component of the indicators (the last for I(x), which is constant and equal
to 1, or any one for J(¥X), since each can be recovered as one minus the sum of the
others). Another possible, though sub-optimal, option is to work with all disjunctive
indicators, but ignore the cross-covariances (effectively applying kriging instead of
co-kriging).

4.3 Simple Co-kriging
The data set of w and J (Appendix, Proposition 1), as well as their expectations
(8) and covariances (9), keep a compatible linear relationship between them; this

is actually an invertible relation. Furthermore, this relation is also fulfilled by the
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respective co-kriging predictors. If j; and 7 j represent these predictors obtained for
an unsampled location X, then

1 1
ny=p-V¥-j; and j§=E~\Il’~n§+B~1. (11)

A proof is provided in the Appendix (Proposition 3), although these expressions are
logically implied by the linearity of the co-kriging predictor. Obviously, the same
can be said about the disjunctive and the cumulative indicator predictions, thanks to
their relation through (2) and (10). One gets exactly the same result by estimating
J(Xo) and accumulating the results in the adequate order, or by kriging I(Xo): where
ijy presents an order inversion, j; has a negative component, and vice versa. This
implies that a full classical co-kriging does not take any advantage of the ordering of
the classes, as J does not convey this information.

5 Simplicial Indicator Kriging (II): Interpolating Log-Likelihoods

From the interpolated values n(*;, i(*;, or jg, one must obtain an estimate for p(Xp).
The classical IK takes this prediction as p, , (Xo) = j;;, after applying the neces-
sary corrections. For instance, in the widespread GSLIB (Deutsch and Journel 1998),
routine ordrel corrects predictions ij in a way equivalent to forcing each compo-
nent of jg to satisfy 0 < j < 1 and modifying the last components to ensure that
D s
=21 i
The simplicial alternative presented here applies the predicted coordinates ng to
the basis (6), thus yielding a compositional vector. No further correction is needed, as
it naturally satisfies the conditions of the sample space (positive component summing
up to one). The estimated ccdf is always ordered and bounded between O and 1.
According to Fig. 1, this can be further simplified (Appendix, Proposition 4) to

Pi1x (%0) = C(exp(B - Jp)), 12)

where 8 = In((1 — b)(D — 1)/b). Recall that b is fixed as a probability of error in the
determination of the categories (3).

The practical implications of this simplification are very important. First, old re-
sults obtained with the classical IK can be recasted straightforwardly to simplicial
IK estimates, which by definition will not present order violations. Second, existing
software routines for IK estimation can be reused to obtain simplicial IK programs
with small changes. Third, if modeling the W auto- and cross-covariances
needed for a full simplicial indicator cokriging is not affordable (as is usually the
case, due to the excessive fluctuations of empirical variograms and covariance func-
tions), one might consider kriging instead of co-kriging. Independently interpolating
the disjunctive indicators j(X) and plugging them into (12), one obtains a valid esti-
mate of a probability vector, though in the process some information will be lost (as
kriging is suboptimal against cokriging).
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5.1 Properties

The most important property of simplicial IK estimator in any of its two forms,
through coordinates or with (12), is its consistency. It always results in a positive
set of D values which sum up to one, automatically satisfying the conditions of a
valid cpdf, without the need of any further correction procedure. But the final form
of (12) implies two interesting stability properties.

e The choice of a matrix ¥ (thus, of a basis of the simplex) does not affect the final
prediction obtained for p(X), as it simply does not appear in (12). However, this
is only strictly true if a full covariance system (with auto- and cross- covariances)
has been used in the co-kriging procedure. If kriging was applied to each coordi-
nate instead of co-kriging, some differences could be observable. For this reason, if
cokriging 7 (X) is not applicable, one might prefer to interpolate J(¥) and use (12).
Since each component J; of J(¥) is taken as non-dependant on the other, their in-
terpolation will be interpreted as the log-likelihood of Z(x¢) € Ax (see discussion
below).

e The value B, thus the value » from (3), plays no role in the kriging procedure
(neither for interpolations of j; nor of ) and simply “scales up” the final result.

But simplicial IK satisfies other standard properties of estimators inherited from
standard kriging techniques. The fact that co-kriging estimators of & (Xo) are BLUE
in real space (the space of coordinates) guarantees that the estimators expressed as
compositions p;  (Xo) are BLUE in the simplex with respect to the Aitchison geom-
etry (Pawlowsky-Glahn and Egozcue 2002). In particular, the Aitchison distance (4)
between the true but unknown discrete probability function p(X) and its estimate is
minimized by the simplicial IK.

Finally, assuming the random function 7 (x) has a jointly normal distribution, its
simple kriging prediction, together with the kriging variance-covariance matrix, gives
the parameters of the true distribution of & (x¢) conditional on the observed data set.
This implies that the conditional distribution of p(xp) is a Normal on the simplex
(Mateu-Figueras et al. 2003). This result opens the door to a possible hierarchical
approach to IK, which is left for further investigation.

6 Discussion: The Role of 8

The discussion on the role of 8 in (12) requires some additional concepts from the
Aitchison geometry of the simplex (Egozcue and Pawlowsky-Glahn 2005, 2006).
Some quick calculations show that the Aitchison norm, ||X||; = +/(X, X), of the in-
dicator transformed vectors at a given location is ||J|ls = oo and |G|l = B/+/2,
regardless of the value of the regionalized variable Z. Actually, the following three
approximations occur simultaneously: (G — J), (8 — 400), and (b — 0). A prob-
ability vector is more informative (the uncertainty on the value of Z is lower) as a
function of this norm, i.e. of the value 8. Now, if one takes (12) and applies a loga-
rithm to both sides, one gets the idea that Inp; = § - ji; plus a constant. This constant
comes from the closure and is irrelevant if the left side of the equality is interpreted
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0.0 0.5 1.0 1.5 2.0

Fig. 2 (Left) Predictions obtained with simple kriging of the underlying Gaussian field Z(x) (empty
symbols), with disjunctive indicator kriging (black symbols), and with simplicial indicator kriging (gray
symbols, obtained with b = 0.1), at four different locations: xo = O (triangle pointing down), xg = 0.33
(square), xy = 1 (diamond), and xqo = 1.95 (triangle pointing up). The two observed data were placed at
x1 =0 and xp = 2. (Right) Covariance functions of Z(x), of the J; and J3 disjunctive indicators, and of
the J; disjunctive indicator (from top to bottom; note that C 1J = C3J ); symbols represent the location of
the predicted distributions of the left plot

as the vector of log-likelihoods of each class. Leaving 8 aside, simplicial IK may be
seen as a (co)-kriging technique on a normalized log-likelihood vector, which is equal
to J. The obtained results are scaled by 8 independently of the geostatistical proce-
dure, giving to the resulting probability vector its informative power. The value of
acts thus as “units”. Fixing its value, the analyst has the opportunity to introduce his
own assessment (necessarily subjective) on the magnitude of the uncertainty affect-
ing Z(X). It could even be “tuned” differently at each interpolated location, although
this option is left for further research.

A small synthetic example may serve as illustration (Fig. 2). Assume Z(x) is
a Gaussian random field, with zero mean and covariance C(h) = exp(—|h|) (with
an effective range around 3 units). The range of this variable is split into three
equally-probable categories by the intervals A; = (—oo, —a), A» = [—a,a), and
A3z =[a, +00), with a = 0.43072. The central dot of Fig. 2, left, represents the corre-
sponding non-conditional, marginal discretized pdf p° = (1, 1, 1)/3. Given that Z (x)
is Gaussian, one can compute the corresponding covariances for the cumulative in-
dicators I (Suro-Perez and Journel 1991). Due to the invertibility of (2), these can
be used to derive covariances for the disjunctive indicators J (Fig. 2, right). Two ob-
servations are available: z(x = 0) = 0.85 and z(x = 2) = 0.00 giving, respectively,
j1=(,0,0) and j, = (0, 1, 0). Kriging Z(x) and each component of J(x) with their
corresponding covariances, one obtains three kinds of estimation of the conditional
pdf: a simple kriging (SK) prediction of Z(xg) (giving the true conditional distribu-
tion), the classical and the simplicial IK predictions. These predictions are compared
in Fig. 2 (left): IK in its classical form gives predictions on a side of the ternary plot
(working with only two samples). Similarly, simplicial IK predictions also fall on
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Fig. 3 Discrete probability p3
densities for the 3-category
synthetic example (see text for
details). Legend: cpdf obtained
with SK of the underlying
Gaussian field (empty square),
with classical IK (JZ; black
square), or with simplicial IK
(p;< 1 K> 874y square); available
data transformed through G
(circles near pp and py vertices,
for values of b =0.01, 0.1, and
0.2); non-conditional pdf
(central circle, marked with O)

gaussian SK
classical IK
simplicial IK
G-trans. data
marginal cpdf

e 6 Om O

a trend (only exactly with cokriging), corresponding to an Aitchison compositional
line (Pawlowsky-Glahn and Egozcue 2002): i.e., the set of all mixtures of the avail-
able “data” g1 = C(exp(Bj1)) and g> = C(exp(Bj2)), with 8 = ln((D_ll)]ﬂ). In this
case, a value of b = 0.1 was taken. Finally, the Aitchison circle of radius r = 8/ V2
is also portrayed (dashed triangle with smooth vertices).

Focusing on the prediction for xg = 0.33, Fig. 3 shows the effect of varying b. The
dots close to the vertices of the ternary diagram represent the resulting g; and g, for
three different values of b (or 8): 0.2 (2.08, innermost), 0.1 (2.89, intermediate), and
0.01 (5.29, outermost and visually almost coincident with the borders of the triangle).
As references, the figure includes the corresponding Aitchison circles (dashed curves:
all points on one of these circles give a pdf with the same informative power), as well
as the compositional lines between each pair of g, (solid lines: all points on one of
these trends correspond to possible simplicial indicator cokriging predictions for a
fixed value of b). Finally, the compositional line from the center of the plot (point O)
to pp gives the set of cpdfs predicted with simplicial IK at xo = 0.33, for all possible
values of b between 0 (on the vertex) and % (on the center O), and the dashed
line is its tangent at the center. This tangent is, in fact, a vector representation of the
predicted jg.

7 Illustration: Simulated Example

In this section, a more complex simulation exercise was conducted, to compare per-
formance of IK in the simplicial and in the classical approaches. A single realiza-
tion was drawn (with LU decomposition) from a zero-mean, unit-variance Gaussian
random function Z(X), with an exponential covariance model of effective range
9 units (u). The simulation contained 19 “observations” {Z(x,), n =1,2,...,19}
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Fig. 4 Data (marked with crossed circles) and locations to be predicted (marked with dots and alphabetic
characters). The contour lines mark the levels of 0.5, 0.90, and 0.95 kriging variance obtained with simple
kriging of Z(x), the original Gaussian random function

within a square of 10 x 10u® (Fig. 4). Figure 4 shows also the 9 locations where the
probability distribution will be estimated, portraying several scenarios of spatial rela-
tionship with the observations. Again, the non-conditional distribution of the random
function at any location is known: Z(x,) ~ N(0, 1). Its range may be split into 10
a priori equally-probable classes (Table 1). Applying the disjunctive indicator trans-
form (1), the simulated values of Z(X,,) are transformed into “observed” vectors j,
(of 10 components), foreachn =1, ..., 19.

At each of the 9 unsampled locations, the true cpdf is computed applying sim-
ple kriging to the simulated data set, using its true exponential covariance. Figure 4
presents the area where interpolation is meaningful (for example, with a kriging vari-
ance lower than 90% or 95% of the sill of the exponential variogram). This true cpdf
of Z(Xo) (a Gaussian) is discretized in the same classes of Table 1. This is done
because IK techniques estimate this discrete version of the true cpdf, therefore it is
better suited for comparison purposes. Given that the joint distribution of Z(X) is
Gaussian and that its true covariance is known, the true covariance structure of its
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Table 1 Definition of classes

by intervals and central values Class Interval g

(medians)
Al —oo ~1.282 —1.645
Ay —1.282  —0.842 —1.036
Az —0.842 —0.524 —0.674
Ay —0.524 —0.253 —0.385
As —0.253 0.000 —0.126
Ag 0.000 0.253 0.126
A7 0.253 0.524 0.385
Ag 0.524 0.842 0.674
Ag 0.842 1.282 1.036
Ao 1282 +oo 1.645

indicator transformations may be computed, using a relation between the distribution
of bi-normal variables and that of their cumulative indicator transformations given
by Suro-Perez and Journel (1991). The compatible autocovariances for the disjunc-
tive indicators may be obtained inverting (2) and are plotted in Fig. 5. At each of
the 9 unsampled locations, simple kriging is applied to estimate each component of
J(%p). Only auto-covariances are used (Fig. 5). Kriging (and not co-kriging) is ap-
plied, to resemble what is really done in standard IK practice. From the kriged values
J¢ (Table 2), the two IK estimations are computed.

Classical IK directly takes the kriged values p; , (Xo) = j§ as a discrete estimate
of the cpdf of Z(X), after correcting them to avoid negative probabilities and forcing
their sum to 1. The correction proposed by Deutsch and Journel (1998) in Table 2
affects preferentially the upper tail classes (as it is applied on the ccpf), leaving one
wondering why the lower tail estimates are more reliable than the upper tail ones.

Simplicial IK uses the transformation (12) to get pg, « (Xo) as an estimate of the
cpdf of Z(¥Xy). If one considers that observing z(x,) € A; means that truly Z(X,) €
A; with a 90% probability, then b = 0.1 in (3), and thus a value of g = 4.39 was
taken in (12). The proposed estimator actually interprets the result of j*(¥g) as the
non-normalized log-likelihoods of each category, and (12) simply transforms them to
closed probabilities.

A comparison of the true distribution with its classical and simplicial IK estima-
tions, as cumulative functions (Fig. 6), reveals the following issues:

e As expected, both IK predictors (as well as the cpdf estimated with results from
simple kriging of Z) tend to the non-conditional marginal distribution (as seen with
the series of locations F to I) when estimating the cpdf at a location far away from
the data.

e Both IK predictors tend to give more disperse distributions than the true ones. This
is directly related to the underlying model (multinomial in IK, normal in SK) or
the non-parametric character of both IK techniques. Good examples are locations
A and C.

e Simplicial IK predictions p;,, cannot have a zero in any component, and in the
lower tail they tend to be greater than p¥,, (locations A and D). The extreme
case is location F, which coincides with a datum. Given that simplicial IK is also
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Fig. 5 Auto-correlograms of the Gaussian random function (Z(x), dashed line) and of the components
of J (solid lines): curves (from top to bottom) correspond to the correlograms of ji (or jig), j2 (or jog),
J3 (or jg), ja (or j7), and js (or jg). The dotted line marks the 0.05 correlation level, showing the effective
range of each correlogram. Note that the classes near the median are much less continuous than the tail
classes

an exact interpolator, the final estimation of kriging is exactly the result of (3):
(1 — b) in the observed category, and b evenly distributed among the others.

e Classical IK, on the contrary, gives higher probability to central classes (locations
B, D, and G) than simplicial IK.

e Finally, upper tails of p¥,, are trimmed in those cases where the total sum of j;
is far from one (Table 2). On the other side, simplicial IK offers always a reliable
estimation of these tails, as seen in Fig. 6. It is interesting to note that at locations
G and H, the corrections of classical IK only affect the upper tail, while the main
source of distortion from the true distribution is the lower tail.

Summarizing, simplicial IK, while keeping a performance globally comparable to
that of classical IK, never gives order relation problems. This advantage is due to its
very definition as a cokriging of log-odds, and not because of posterior corrections.
Its optimality properties are not obscured by the correction process.
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Table 2 1K predictions for disjunctive indicators, as obtained by kriging (upper part) and after correction
(below). Corrections are marked with an asterisk

Uncorrected A B C D E F G H 1

J1 0.03 0.29 0.01 0.02 0.02 0.00 0.04 0.06 0.08
1) 0.03 0.05 0.04 0.05 0.06 0.00 0.07 0.08 0.09
J3 0.05 0.13 0.09 0.07 0.08 0.00 0.08 0.09 0.09
Ja 0.07 0.11 0.09 0.08 0.08 0.00 0.09 0.09 0.10
J5 0.06 0.11 0.09 0.09 0.09 0.00 0.09 0.10 0.10
J6 0.06 0.08 0.08 0.08 0.09 0.00 0.09 0.10 0.10
J7 0.06 0.09 0.17 0.13 0.11 0.00 0.10 0.10 0.10
J8 0.50 0.12 0.16 0.15 0.17 0.00 0.11 0.11 0.11
Jo 0.07 0.09 0.10 0.07 0.07 0.00 0.09 0.10 0.10
Jj10 0.00 0.02 0.02 0.49 0.43 1.00 0.58 0.41 0.22
Sum 0.94 1.09 0.85 1.22 1.18 1.00 1.33 1.22 1.09
Corrected A B C D E F G H 1

J1 0.03 0.29 0.01 0.02 0.02 0.00 0.04 0.06 0.08
i) 0.03 0.05 0.04 0.05 0.06 0.00 0.07 0.08 0.09
J3 0.05 0.13 0.09 0.07 0.08 0.00 0.08 0.09 0.09
Ja 0.07 0.11 0.09 0.08 0.08 0.00 0.09 0.09 0.10
J5 0.06 0.11 0.09 0.09 0.09 0.00 0.09 0.10 0.10
J6 0.06 0.08 0.08 0.08 0.09 0.00 0.09 0.10 0.10
J7 0.06 0.09 0.17 0.13 0.11 0.00 0.10 0.10 0.10
J8 0.50 0.12 0.16 0.15 0.17 0.00 0.11 0.11 0.11
Jo 0.07 0.02* 0.10 0.07 0.07 0.00 0.09 0.10 0.10
Jj10 0.07* 0.00* 0.17* 0.26* 0.23* 1.00 0.24* 0.17* 0.13*
Sum 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

8 Conclusions

A finite, discrete (approximation of a) probability density function is a composition,
i.e. a vector with D positive components summing up to one. Probability vectors and
compositions have as sample space the D-part simplex (S”), and this space can be
given an Euclidean space structure compatible with a log-ratio scale.

These considerations are taken into account when estimating probabilities, by
applying conventional linear geostatistical techniques to the coordinates of the
indicator-transformed data in a chosen orthonormal basis (computed as a set of gener-
alized log-odds). Interpolated results can be easily re-expressed as probability vectors
by back-application to the basis. This technique is called simplicial indicator kriging,
and its results are always valid multinomial probability vectors. Using common con-
cepts from linear algebra, a clean solution to order relation problems of indicator
kriging is obtained.
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Fig. 6 Final ccdf predictions obtained with the classical IK (filled circles) and simplicial IK (empty trian-
gles) and true conditional cumulative probability functions (dashed line), together with its discrete version
(thick line). The naive predictions of i* are also included (empty circles)

Under certain conditions (when classes are a priori equally probable), one can
work with normalized log-likelihoods of each class, instead of log-odds. These nor-
malized log-likelihoods are equivalent to classical disjunctive indicators, and may
be interpolated using standard available software. To convert kriging results back to
probability vectors, the analyst must first choose a normalizing value, which accounts
for the odds of confusion between categories. This alternative procedure yields equal
results to simplicial IK, but it also yields a valid estimation even when not using a full
co-kriging procedure, just kriging each log-likelihood independently (though this is
sub-optimal). In fact, this procedure should only be used in this way, ignoring cross-
covariances, because the full co-kriging system of disjunctive indicators is singular.

Finally, a way to correctly model indicator covariances is also found. This is im-
portant because raw (disjunctive) indicator covariances must sum up to zero both by
rows and columns, and for each lag. To avoid dealing with these constraints, one
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might model the covariance structure of the coordinates. The fitted covariance model
could be eventually back-transformed to a covariance model for the classical indica-
tors, automatically fulfilling all its needed constraints.
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Appendix: Proofs

For an orthonormal basis, the coordinates of a vector p may be straightforwardly
computed as & = W - Inp, where W is an orthonormal, rank-deficient matrix (Egozcue
et al. 2003). For ease of reference, the next property states these characteristics with-
out proof. (Note that here I is not the cumulative indicator function of Journel 1983.)

Property 1 (Orthonormality of W) A matrix ¥ of computation of coordinates of a
compositional vector in an orthonormal basis of the simplex S fulfills

VU =1y,

l 1 (13)
L -\II=ID—B~1D,

with I the identity matrix and 1 a matrix with all elements equal to 1. Subindexes
show their number of rows and columns.

Proposition 1 (Coordinates of the generalized indicator function) Let J be a disjunc-
tive indicator transform (1), and let G be a generalized indicator transform (3) defined
with the same set of cutoffs. Then the vector of coordinates of G, represented by =,
fulfills

T=p4-¥.J,
1 1
= .y, — 1,
J 5 n—i—D

where 1 is a vector of D ones, 8 =In((1 —b)(D — 1)/b), and ¥ is the matrix repre-
senting the basis used.
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Proof To prove the first equality, assume that category k was observed. The i-th
coordinate is

D 2o Vi
.ZZ W InG; = 1n<(1—b)“4k( b_1> ’ j)

b\ Vi 1—b
1n<<1—b> w( 1) ) Wik In =Wy - B,
- m

with g =1In((1 — b)(D — 1)/b). The key point of this equivalence comes from the
fact that the rows of ¥ sum up to zero, thus ) j#k Wij = —Wik. The second equality
of the proposition is obtained multiplying both sides of the first one by ¥’ and taking
into account Property 1, yielding

1
\Il’-n:\ll’~(ﬂ-\II~J)=ﬂ-‘I”-‘I’~J=,3-<ID—B~1DxD)-J

1 1
:,3.([D.J_B.IDXD.J>:,3.<J_B.1D>.

Here, Ip is the identity D x D matrix, and the subindex placed in the vector/matrix
1 shows the dimension of this object. The last step uses the factthat ¥ J; =1. O

Proposition 2 (Moments of the coordinate random function) Denote the mean of the
disjunctive indicators by E[J(X)] = J. This vector forms a one-way contingency table,
or the marginal distribution of the categorical random function. Denote the mean of
coordinates as E[n (¥)] = &. Let Cov[J(X), (x + h)] = CJ (h) be the covariance
of disjunctive indicators and Cov[zx (X), (X + h)] =C~ (h) the covariance of the
coordinates. Then, these moments fulfill

T=p-V.],
C™(h)=p*-Ww-C/(h)- ¥,
ol g1
J_,B v 7t+D 1,

1

c’/(h) = ﬁwll’ -CT(h) - V.
Sketch of a proof If Z is a random vector and Y =T - Z + b is an affine linear
transformation, it is well known that
E[Y]=T-E[Z]+D,
Cov[Y]=T-Cov[Z] - T’

But, according to Proposition 1, the relationship between J and & is linear. Taking
T=p4-W¥ and b =0, the first two equations are proven immediately; the same is
attained for the last two equations with T= "1 . W’ and b = % -1 (]
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Proposition 3 (Kriging of a full-rank linear transformation) For Z(X) a p-dimen-
sional vector-valued random function, (simple) co-kriging it at X and applying a
full-ranked linear transformation T to the result is equivalent to applying (simple)
co-kriging to the transformed values Y(X) =T - Z(X).

Proof Myers (1983) studied a similar expression, when T is a (dual) vector. Let z;
and y;; represent the estimations obtained with simple co-kriging. Then, the goal is
to show that y; = T - zj. Using matrix notation, it is common to write z; = Aé -z,
where A, contains all the co-kriging weights arranged in a pN X p matrix, and z
is a vector containing the observations of the p components of Z(X) at N locations.
These weights are computed with A, = CZ_1 - C;0, where C; contains the pN X
pN covariances among all components at all observed locations, and C,o contains
the pN x p covariances between the components at the observed locations and the
components at the estimated location. The same can be written for Y(X), so that
Yo = A’y -y, where Ay = C)_,1 - Cyo. If the covariance models built for Z and Y are
compatible, then these matrices satisfy the same linear relationship as vectors, i.e.
Cy=Ty-C.-T) and Cy9 =Ty - C;o- T’, with Ty a block diagonal matrix with N
reproductions of matrix T on the diagonal. Then the co-kriging weights of these two
systems fulfill:

Ay=C;'-Cyo=(Ty-C.-Ty) Ty -Cyp- T
=Ty -C7' Ty Ty Coo-T' =Ty - C7'-Co- T =Ty - A, - T'.

If this relationship can be inverted, A, =T, - A, - T~'. Now we can compute the
predictor z§ = AL -z = (T}, - A, - T™)" - z=T"' . A - Ty - z, or equivalently,
T zj= A’y - Ty - z. But, given that Ty - z =y, this finally implies that T - z§ =
Al -y=y5. O
Proposition 4 (Estimator of simplicial Indicator Kriging) If jj is the estimator ob-
tained by the classical indicator co-kriging on J(X), then the estimator of the proba-
bility vector p(Xo) from a simplicial point of view is
Pk (o) = C(exp(B - Jp)) = B © exp(ig)-
Proof To prove Proposition 4, one must replace (11) within (6), to get p*(¥o) =

Clexp(W' - %)) = C(exp(W' - B - ¥ -jg)). Then, using relation (13), one obtains
p*(Xo) = C(exp(B - (Ip — % -1p) - j;)), and some standard algebraic manipulations

provide
s B .
A (SRS
eXP<ﬂ Jo— 5 1p-Jo

(
C(exp(ﬂ J3> .exp<—% -1p Jé))
<exp</3 .jg)) @C(exp(—% 1p J‘é)).

p*(X0) =C

c
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Recalling that 1p is a matrix with D x D ones, 1p - jg becomes a constant vector,

thus C (exp(—% -1p - j;)) = n, the neutral element of perturbation. But perturbing a
vector by the neutral element leaves it unchanged, thus

p*(Fo) = C(exp(B - j)) @n =C([exp(ip]),

which yields the sought result taking into account the definition of powering. O
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