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ABSTRACT
For many geophysical measurements, such as direct current or electromagnetic induc-
tion methods, information fades away with depth. This has to be taken into account
when interpreting models estimated from such measurements. For that reason, a mea-
surement sensitivity analysis and determining the depth of investigation are standard
steps during geophysical data processing. In deterministic gradient-based inversion,
the most used sensitivity measure, the differential sensitivity, is readily available since
these inversions require the computation of Jacobian matrices. In contrast, differential
sensitivity may not be readily available in Monte Carlo inversion methods, since these
methods do not necessarily include a linearization of the forward problem. Instead, a
prior ensemble is used to simulate an ensemble of forward responses. Then, the prior
ensemble is updated according to Bayesian inference. We propose to use the covari-
ance between the prior ensemble and the forward response ensemble for constructing
sensitivity measures. In Monte Carlo approaches, the estimation of this covariance
does not require additional computations of the forward model. Normalizing this
covariance by the variance of the prior ensemble, one obtains a simplified regression
coefficient. We investigate differences between this simplified regression coefficient
and differential sensitivity using simple forward models. For linear forward models,
the simplified regression coefficient is equal to differential sensitivity, except for
the influences of the sampling error and of the correlation structure of the prior
distribution. In the non-linear case, the behaviour of the simplified regression coef-
ficient as sensitivity measure is analysed for a simple non-linear forward model and
a frequency-domain electromagnetic forward model. Differential sensitivity and the
simplified regression coefficient are similar for prior intervals on which the forward
model response is approximately linear. Differences between the two sensitivity
measures increase with the degree of non-linearity in the prior range. Additionally,
we investigate the correlation between prior ensemble and forward response ensem-
ble as sensitivity measure. Correlation yields a normalized version of the simplified
regression coefficient.We propose to use this correlation and the simplified regression
coefficient for determining depth of investigation in Monte Carlo inversions.

Key words: Modelling, Inversion, Numerical study, Parameter estimation,
Electromagnetics.
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1 INTRODUCTION

Many measurements used in applied geophysics, such as
measurements from electrical resistivity tomography and
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electromagnetic induction methods, can be reproduced by
assuming diffusive energy propagation. In combination with
simulations, such measurements allow to estimate subsur-
face distributions of physical properties, such as electrical
conductivity, using inverse modelling techniques. There
are two major types of inversion techniques, deterministic
gradient-based and stochastic Monte Carlo (MC) inversions
(Aster et al., 2018). Both inversion types rely on the influence
of proposed parametric subsurface models on simulation
responses (McGillivray and Oldenburg, 1990). The so-called
measurement sensitivity characterizes this influence by lin-
earized analysis, that is partial derivatives of the simulated
data with respect to model parameters. Using sensitivity,
the influence of the different measurement signals can be
compared. In particular, model parameters to which the
measurements have negligible sensitivity can be identified.

For a typical surface measurement, sensitivity is negligi-
ble from a characteristic depth downwards. This characteristic
depth is called the depth of investigation (DOI) of this partic-
ular surface measurement. An estimation of the DOI is crucial
as it can prevent over- or misinterpretation of the inversion re-
sults (Oldenburg and Li, 1999). A determination of the DOI is
not trivial if data from diffusive methods are processed, since
(1) a depth of absolute zero sensitivity does not exist and (2)
sensitivity computations are usually restricted to parameter
variations around a (deterministic) inversion result. If the in-
version result is significantly different from the true subsurface
parameters, the estimation of the DOI may be wrong.

Due to the lack of a depth of truly zero sensitivity, a defini-
tion of the DOI always contains some degree of arbitrariness.
Often, a rather small sensitivity threshold is defined relative
to a reference sensitivity, for example using 5% of the maxi-
mum sensitivity. Other approaches to DOI estimation define
global sensitivity thresholds. For example, Christiansen and
Auken (2012) introduced the method of cumulative sensitiv-
ity. They compute all cumulative sums of sensitivities through-
out a one-dimensional model starting from the bottom. This
way, it is possible to give a global sensitivity threshold for DOI
estimation, but the arbitrariness of this threshold remains. As
the cumulative sensitivity is based on differential sensitivities,
it must be assumed that the derived inverse image is a good
representation of subsurface reality.

Despite the helpful guidelines for DOI estimation pointed
out in the previous paragraph, the problem associated with
investigating the sensitivity only around the final inverse
model remains for deterministic inversion results. This non-
uniqueness problem was already considered in the early days
of geophysical inverse processing, for example using the

Backus–Gilbert analysis (e.g. Backus and Gilbert, 1968 and
1967). However, in their analysis, only a linear range around
the result of the inverse method is searched for subsurface
models that equally well satisfy the observed data. As a first
step towards coping with this non-uniqueness problem in fully
non-linear deterministic inversions, Oldenburg and Li (1999)
introduced the so-called DOI index for the interpretation of
direct current and induced polarization inversion results. This
procedure was later adapted for the evaluation of electromag-
netic inversion results (e.g. Brosten et al., 2011). To derive the
DOI index, the reference model for the inversion is altered to
expose features in the inverse image that strongly depend on
the choice of the reference model. However, alteration is often
limited to two different reference models, leaving large parts
of the model parameter space unexplored.

As an alternative to deterministic methods, stochasticMC
inversion methods have been used more frequently in recent
years as the available computational resources are growing
(Tarantola, 2005). Such methods solve the parameter estima-
tion problem by random sampling of probability distributions
and searching for an inverse solution given as a random pa-
rameter vector that follows a probability distribution as first
formalized by Tarantola and Valette (1982). MC methods
tackle the general non-uniqueness problem by performing an
as extensive as possible search of the model parameter space
using random sampling. In this way, MC methods allow to
characterize the uncertainty of the inversion result. Several
variations ofMC approaches exist and are used in geophysical
practice. A thorough compilation, featuring popular applica-
tions of Markov chainMonte Carlo methods (Mosegaard and
Tarantola, 1995), can be found in Sambridge and Mosegaard
(2002). Although, since the publication of their review, several
new MC methods have been introduced, for example trans-
dimensional, multi-chain or approximate Bayesian methods
(Malinverno, 2002; Sambridge et al., 2006; Socco and Boiero,
2008; Vrugt et al., 2009; Bobe et al., 2019).

In MC methods, the model parameter space that is sam-
pled is defined based on prior knowledge. This prior knowl-
edge can be understood in the Bayesian sense. It also serves as
implicit regularization in such probabilistic frameworks.With
its subjectivity, the definition of the prior is often the main
criticism of Bayesian inversion methods (Scales and Tenorio,
2001). However, in the following we will assume that defined
prior distributions do reflect possible realizations of the sub-
surface according to prior knowledge.

Applying MC sampling, one has to compute the forward
response for each prior model realization. Drawing a large
number of prior samples, one obtains detailed insight on how
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changes in the parameter model relate to changes in the mea-
surement response. Above, we defined such a relation as mea-
surement sensitivity. Deriving covariance of the prior and the
forward response ensemble and dividing this by the prior en-
semble variance, we derive a simplified regression coefficient
(SimRC). For dimensionless comparison of signals, the SimRC
can be normalized by the variance of the forward response
ensemble, yielding the correlation of prior and forward re-
sponse ensemble.

Inversion updates derived from MC analysis are condi-
tioned on the above mentioned covariances and the actual
measurement data. Therefore, MC analysis does not require a
linearized analysis of the forward problem, and, consequently,
the traditionally used differential sensitivities are not read-
ily available. Thus, commonly used DOI methods (see above)
cannot immediately be applied. Moreover, local differential
sensitivities have only limited informative value when eval-
uating results from global MC analyses and are usually not
computed in such analyses (e.g., Minsley, 2011).

For DOI estimations in MC inversions, the inverted
model is often cut at a depth at which posterior uncertainty be-
comes ‘too large’ to be considered informative (e.g. Brodie and
Sambridge, 2012). One inconvenience of this DOI selection
procedure is that the absolute size of the posterior uncertainty
interval for model sections to which the measurements have
negligible sensitivity almost only depends on the chosen prior
probability. When a prior probability incorporates a high de-
gree of certainty, a high degree of certainty will as well be seen
for the posterior model, also for model parameters to which
the measurements have vanishing sensitivity. This behaviour
of the posterior probability makes a DOI threshold based on
the size of the posterior uncertainty inevitably conditioned on
the chosen prior distribution. Here, it should be noted that
model sections with vanishing sensitivity or correlation to the
measurements can certainly be considered just as reliable as
the prior knowledge. Nevertheless, practitioners usually have
keen interest in exploring the sensitivity of their model and in
delineating their prior knowledge from the information gained
from the inversion update.

One method for such a delineation is the computation
of the Kullback-Leibler (KL) divergence. The KL divergence
was recently presented for Bayesian inversion results in Blat-
ter et al. (2018). The KL divergence gives the difference in
information content of prior and posterior distribution. At a
depth below which prior and posterior distribution are nearly
equal, no information was added by the measurement data.
This depth can be interpreted as a DOI. However, the KL di-

vergence is a purely statistical measure, allowing no analysis
of measurement sensitivity and requires that a posterior dis-
tribution is available.

Analysis of the sensitivity not only gives insight in the
nature of the inversion update but it can also support recon-
sideration of measurement design. However, instead of addi-
tionally computing differential sensitivities, we propose the
use of the SimRC and of the correlation for model sensitiv-
ity analysis. The closely related regression coefficient as used
by Saltelli et al. (2004) is often considered as a global sensitiv-
ity and is informative for the sampled model parameter space.
Additionally, the correlation allows for comparison of differ-
ent measurement signals and a vanishing correlation gives an
intuitive measure for the DOI.

The text at hand treats the estimation of sensitivity
and DOI for probabilistic MC inversion methods using the
SimRC and correlation analysis. For some non-probabilistic
MC methods (optimization methods), the presented work
might be applicable; however, these will not be considered
here. We will describe (1) how the readily available ensem-
bles of prior distribution and forward response can be used
to estimate SimRC sensitivity and (2) how the SimRC and the
corresponding correlation functions can be used to estimate
a DOI. This DOI distinguishes between parameters that are
updated by the inversion and parameters that essentially re-
main at their prior values. Additionally, common DOI estima-
tion and illustration methods (e.g., Christiansen and Auken,
2012; Oldenburg and Li, 1999) can be applied to the SimRC
functions.

The paper is structured as follows. First, we show how
the SimRC is derived for MC style inversions. Second, we ex-
plain how the SimRC relates to differential sensitivities in lin-
ear inverse problems. We also show how the SimRC and de-
rived correlation functions can be used when estimating the
DOI in surface measurement data inversions. Further, we in-
clude three synthetic studies illustrating differences and simi-
larities between the differential sensitivity and the SimRC.We
introduce a linear and a non-linear toy model to provide a
semi-quantitative analysis of the influence of the prior distri-
bution (sampling) specifications on the SimRC, namely prior
correlation, non-linearity of the forward model and the sam-
ple size. For the application to a geophysical problem, we
provide simulations of a one-dimensional frequency-domain
electromagnetic forward model in which different measure-
ment signals with different differential sensitivities to the sub-
surface model are compared and analysed using the SimRC
sensitivity.

© 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association
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2 THEORY

In the following paragraphs, we recall the general concept
of Bayesian inference in Monte Carlo (MC) inversion ap-
proaches. Hereby, we will focus on the computation of the
sample covariance between the prior and forward response
ensemble. We motivate constructing measurement sensitivity
measures from this covariance. The first proposed sensitiv-
ity measure is the covariance normalized by prior variance,
a simplified regression coefficient (SimRC). We show that the
SimRC and differential sensitivity are equal for the case of a
linear forward model and no correlation in the prior distribu-
tion. Additionally, we propose using the SimRC and the corre-
lation between prior ensemble and forward response ensemble
for estimating the depth of investigation (DOI) of a geophys-
ical surface measurement.

2.1 Bayesian inference

In Bayesian inversion approaches, prior information is repre-
sented in a probabilistic manner. According to Bayes’ theorem,
this prior information is combined with the observed data
to derive a posterior probability density function (PDF). The
prior distribution is expressed as the PDF ρ(m) for the random
vector of model parameters m ∈ R

npar , where npar is the num-
ber of model parameters. The likelihood function is the PDF
ρ(d|m) that denotes the conditional probability that a set of
observation d ∈ R

nobs is measured for a given set of parame-
ters. Here, nobs denotes the number of observation variables.
For geophysical measurements, the likelihood gives informa-
tion on whether an observation is compatible with predicted
responses g(m), where g is a geophysical forward model. The
posterior PDF for the random vector of model parameters is
derived by applying Bayes’ theorem:

ρ(m|d) ∝ ρ(d|m)ρ(m). (1)

For large-dimensional non-linear inverse problems, no
analytical solution to equation (1) can be given (Tarantola,
2005). Numerical sampling of the involved probability distri-
butions is one possibility for obtaining an approximate solu-
tion to Bayes’ theorem.Monte Carlo methods are a class of al-
gorithms based on numerical random sampling. Collecting the
Monte Carlo samples in matrices, we approximate ρ(m) by a
matrix M ∈ R

(npar×N)(Evensen, 2003), where N is the number
of samples. For each column inM, forward responses are sim-
ulated. The resulting forward response ensemble is collected
in a matrix G = g(M) ∈ R

(nobs×N).

In principle, drawing a large number of samples N the
model parameter space is searched nearly exhaustively cov-
ering almost all possible parameter realizations. In compar-
ison with deterministic inversion, non-uniqueness problems
are therefore largely mitigated in MC inversions (Tarantola
and Valette, 1982).

We start the introduction of the SimRC by defining the
covariance matrices between the parameters m following the
prior distribution ρ, and the forward model responses g(m):

Cov(g(m),m) = E[(m − E[m])(g(m) − E[g(m)])T ]. (2)

The covariances Cov(m,m) and Cov(g(m), g(m)) are de-
fined analogously. In Fig. 1, we summarize the sensitivity
measure candidates of this work that are derived from these
covariances.

From now on, we express probability distributions by an
ensemble of MC samples. Consequently, the covariances will
be approximated as sample covariances. In terms of the en-
semble matrices M and G, the approximation of the covari-
ance Cov(g(m),m) reads

Cmg := M′G′T 1
N − 1

≈ Cov(g(m),m), (3)

where the primed matrices denote that for each parameter the
parameter mean was subtracted from each parameter sample.
Analogously, we define the (co-)variance matrices

Vm := M′M′T 1
N − 1

≈ Cov(m,m), (4)

and

Vg := G′G′T 1
N − 1

≈ Cov(g(m), g(m)). (5)

In this notation, the sample approximations for the various
coefficients given in Fig. 1 can be summarized as follows:

RC j,i = [V−1
m Cmg]i, j (regression coefficient), (6)

and

SRC j,i = [V−1
m Cmg]i, j(σmi/σg j )

(standardized regression coefficient) (7)

by Saltelli et al. (2004), where the index j is used for responses
and the index i is used for model parameters. Consequently,
the pair ji could be read as sensitivity of response j on param-
eter i.

Additionally, we define

SimRC j,i = [Cmg]i, j/σ 2
mi

(simplified regression coefficient ), (8)

© 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association
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Figure 1 Sensitivity measure candidates derived from the full prior distribution ρ(m) and forward model g; E is the expectation operator with
respect to ρ(m); RC and SRC as used by Saltelli et al. (2004).

and

CC j,i = [Cmg]i, j/(σmiσg j ) (correlation coefficient), (9)

where σ 2
mi

:= [Vm]ii and σ 2
g j
:= [Vg] j j are the sample

variances.
The comparison of various correlations, for example cor-

relation coefficient (CC), can be easier than the comparison
of covariances, as correlation is independent of units by nor-
malization (Mosegaard and Tarantola, 1995).

2.2 Discussion of the SimRC

SimRC versus differential sensitivity

Sensitivities characterize the influence of a parameter model
on simulated measurement responses. Sensitivities are used for
communicating geophysical inversion results as they support
interpretation and possibly hint at adjustments of measure-
ment design. Mostly, sensitivities are derived from a differ-
ential analysis, that is applying the difference quotient. For
MC analysis, where Jacobian approximations are not readily
available, we propose the usage of the SimRC as defined in
the previous section. To illustrate similarities between SimRC
and differential sensitivity, we now consider a linear forward
model.

Linear forward models

We give the linear forward model of finite dimensions g :
R
npar → R

nobs the following general form:

g(m) = Am + b, (10)

with vector b for the intercept and matrix A ∈ R
(nobs×npar ) for

the slope. Arbitrary samples of m can be used to generate a
(m, g(m))-scatter plot, in which all points lie on the plane de-
fined by equation (10).

Using the property of the sample covariance matrix that it
is a quadratic form (Horn and Johnson, 2012, chapter 4.5.3),
we get

Cov(m, g(m)) = Cov(m,m)AT . (11)

Here, Cov(m,m) ∈ R
(npar×npar ) is the prior covariance matrix

of the parameter vector. Inserting the MC samples, we get the
expression

Cmg = VmAT . (12)

We now use (1) that quadratic covariance matrices are
invertible (in the definition of regression coefficient (RC)), and
(2) the general identity Cov(x, y)T = Cov(y,x).

Inserting equation (12) in the definition of RC and stan-
dardized regression coefficient (SRC) (equations (6) and (7)),
one derives

RC j,i = [A] j,i. (13)

© 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association
of Geoscientists & Engineers.,Geophysical Prospecting, 1–18
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In this linear case, this slope A is equal to both the differential
sensitivity and the RC as used by Saltelli et al. (2004).

If the prior covariance matrix is a simple diagonal matrix,
or equivalently no prior correlation is implemented, the rela-
tion [Cmg]i, j = σ 2

mi
[A] j,i holds, and then can be inserted in the

SimRC definition (equation (8)), yielding the same expression
as for RC j,i in equation (13).

Non-diagonality

For non-diagonal prior covariance matrices, the SimRC differs
from the general regression coefficient/differential sensitivity
due to the simplified matrix inversion.

In this work, we propose the SimRC for construction
of sensitivity measures for two reasons. First, prior correla-
tion has a strong effect on Bayesian inference and thus it
may be beneficial to incorporate it in a sensitivity measure.
Monte Carlo samples of the prior distribution account for
prior correlation. Likewise, the SimRC functions implicitly in-
clude prior correlation. Second, the computation of the SimRC
is less expensive compared to the computation of the regres-
sion coefficient as given in equation (6). For some cases, specif-
ically for large models, the sample model variance matrix
Vm = M′M′T/(N − 1) (see equation (4)) may be singular. This
singularity causes the non-existence of the matrix’ inverse, dis-
allowing the computation of RC and SRC.

Non-linearity

For non-linear functions g, the slope at point m is computed
using the difference quotient:

∂gj(m)
∂mi

≈ gj(m + �mei) − gj(m)
�m

, (14)

for which the parameter vector m is perturbed by the scalar
factor �m in the direction of ei, the unit vector correspond-
ing to the ith parameter. From the linear case, we can draw
some conclusions regarding the relation of difference quotient
and SimRC for general functions. The difference quotient and
the SimRC should be approximately equal for prior parame-
ter ranges that are in the order of �m. Below, we will inves-
tigate the similarity of the SimRC and the difference quotient
for two synthetic non-linear forward models. In practice, the
search space defined through the prior distribution is large
compared to an infinitesimally small �m. Thus, in the con-
text of general non-linear forward models, the SimRC needs
to be interpreted by comparing the prior parameter range to
the non-linearity of the forward model.

2.3 Correlation and depth of investigation

Often, an estimate for the DOI and sensitivity functions is
provided along with inversion results. In probabilistic inver-
sions, inversion results should be as least as reliable as the
prior knowledge, regardless of how sensitive or insensitive the
surface measurements are to the parameters. However, also
for probabilistic inversions, sensitivity and DOI allow valu-
able insight into the nature of the inversion process. In partic-
ular, they can help to distinguish between parameters updated
by Bayesian inference and parameters left more or less at their
prior values. In this way, sensitivities and DOI may point out
that an adjustment of measurement design is necessary.

The SimRC gives a measure for the sensitivity of a mea-
surement setup to a particular subsurface model. Thus, all
available approaches for determining the DOI from sensitiv-
ity can be applied to the SimRC. However, for determining
the DOI, a dimensionless sensitivity can have advantages. By
normalizing the SimRC, one obtains the correlation between
prior ensembles and forward response ensembles (equation
(9)). This correlation can be viewed as standardized SimRC
corresponding to the SRC as used by Saltelli et al. (2004).

Due to its normalization, the correlation function has
some beneficial properties when compared to the SimRC.
First, the normalization makes sensitivities of different mea-
surement signals comparable and easier to threshold. For ex-
ample, the influence of signals from different electrode config-
urations in a direct current resistivity survey can be compared
in terms of correlation. Second, for parameters with zero cor-
relation to the measurement setup, no inversion update will
be seen. Thus, zero correlation gives an intuitive measure for
the DOI of Bayesian inference: the depth below which almost
no correlation is found. One disadvantage of using correla-
tion as sensitivity measure is that strong correlation can hap-
pen while there is small sensitivity (for a wide range of appli-
cable parameter values). Thus, the information of how wide
the range of equally applicable parameter values is, is lost by
normalization.

To complete the discussion of using the correlation for
determining the DOI, we discuss the selection process. Due
to two reasons a zero correlation DOI cannot be determined:
(1) as for other sensitivity measures, the diffusive nature of
energy propagation for the discussed measurement techniques
prevents the correlation from reaching the zero function and
(2) the presence of undersampling in the MC ensemble may
introduce spurious correlation.

Due to reason (1) there is always some degree of ar-
bitrariness in the DOI threshold selection. Thanks to its

© 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association
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normalization and the resulting comparability between pa-
rameters, the correlation allows the definition of global DOI
threshold values (for global DOI threshold values derived
from differential sensitivity, see Oldenburg and Li, 1999;
Christiansen and Auken, 2012).

Regarding reason (2), as always in ensemble calculations,
the ensemble has to be chosen large enough such that the spu-
rious correlations are kept in the background noise.

A useful approach accounting for fluctuations when de-
termining the DOI from correlation sensitivity is the upwards
cumulative sensitivity approach by Christiansen and Auken
(2012). This approach can easily be applied to the CC func-
tions (equation (9)). By computing a cumulative sum, the
possibly present spurious correlation is smoothed. To enable
global thresholding, we introduce a normalization:

CCcum
j (M,G) =

npar∑
i= j

|CCi|

|CCmax| , (15)

with indices j = 1, . . . ,npar, the correlation sensitivity CCi for
the ith layer, and the maximum correlation sensitivity CCmax

for the vertical sequence of parameters.
The upwards cumulative sensitivity approach will be

analysed in the synthetic examples below.

3 SYNTHETIC EXAMPLES

We now investigate the differences between differential sen-
sitivity on the one hand and the simplified regression coef-
ficient (SimRC; equation (8)) and the correlation coefficient
(CC; equation (9)) on the other hand. To this end, we look
at the depth distribution of these parameters and use them to
estimate a depth of investigation (DOI) for interesting cases.
As outlined above, we expect that the differences between
differential sensitivity and the SimRC are essentially deter-
mined by three parameters: (1) non-linearity of the physical
model equations, (2) prior distribution correlations and (3)
the sampling bias of the ensemble. First, a linear toy model is
used to illustrate the influence of sampling bias and prior cor-
relation for the linear case. Second, for a non-linear toy model
all three influencing parameters are investigated. Finally, we
analyse the SimRC and correlation for a non-linear geophysi-
cal model and compare them to differential sensitivities.

3.1 Linear toy model

We start with the relation of differential sensitivity and the
SimRC using the simple case of a linear toy model. This toy

model describes a surface measurement S that is sensitive to a
subsurface property p. The toy model is characterized by two
key features: (1) a linear relation between the model parame-
ters and the model response and (2) an exponential decrease
of the model response with depth. This exponential behaviour
introduces a sensitivity that converges to zero with increasing
depth, but, similarly to diffusive geophysical models, a depth
of truly zero sensitivity does not exist.

We choose the explicit relation between measurement re-
sponse S and subsurface parameter p as follows:

S(z) = S0
p
p0

e−z/z0 , (16)

with depth z, and constants S0, p0 and z0.S0 is the response of a
subsurface layer with property p0 at negligible depth. z0 is the
depth at which the response of a subsurface layer is reduced
by a factor 1/e compared to negligible depth. In general, these
constants depend on the units of the corresponding physical
variable. For simplicity, we set them to one.

The total toy model response is given by an integration
over the whole subsurface:

Stotal =
∫ ∞

0
S(z)dz. (17)

We discretize equation (17) using equally thick, discrete layers
of constant p. The bottom layer of the model is chosen to ex-
tend to infinite depth. In the following, we investigate the two
influences on the relation of the SimRC and differential sen-
sitivity expected from theory: (1) different prior distribution
probability density functions (PDFs) and (2) the influence of
the ensemble size on the regression coefficient (RC).

We define some standard parameters that remain valid
for all comparisons unless explicitly stated otherwise. First,
each prior distribution is sampled drawing 100,000 samples.
The standard deviations (STDs) of the respective forward re-
sponses are computed from the ensemble. We define a prior
distribution with identical Gaussian prior PDFs for each dis-
crete model layer: a mean of p = 3 and a STD of 0.5.We com-
pute the SimRC and correlation between the prior ensemble
and the forward response ensemble computed by the linear
toy model. We compare the SimRC function to the differen-
tial sensitivity for a homogeneous parameter model at p = 3.

3.1.1 Gaussian prior probability density functions

We study the SimRC and the correlation for the linear toy
model using five different prior STDs: 0.01, 0.1, 0.5 , 1.0 and
1.5.

© 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association
of Geoscientists & Engineers.,Geophysical Prospecting, 1–18
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Figure 2 (a) Differential sensitivity, SimRC (left) and correlation (center, right) for five prior STD. Forward responses are computed using the
linear toy model; (b) zoom-in of (a).

Results for the SimRC, correlation and differential sensi-
tivity are shown in Fig. 2(a). As described by the toy model
(equation (16)), the differential sensitivity asymptotically ap-
proaches the zero function with depth. As expected for linear
model equations, all SimRC functions (equation (8)) are very
close to the differential sensitivity function. The shape of all
correlation functions (Fig. 2a center) is similar to the differ-
ential sensitivity function. As a consequence, the cumulative
correlation functions are very similar for all five prior distri-
bution STDs.

We now zoom in the results (Fig. 2b) in order to visual-
ize sampling fluctuations. On average, the SimRC follows the
differential sensitivity function. However, fluctuations around
the differential sensitivity are present for all derived SimRC

functions. Such fluctuations can be explained by the sam-
pling bias.

To investigate the influence of the ensemble size on the
SimRC and correlation functions, we re-sample the Gaussian
prior PDF with a STD of 0.5 using the smaller ensemble sizes
10,000 and 1,000. Results are shown in Fig. 3. The compari-
son with differential sensitivity indicates the expected increase
in the sampling error with decreasing ensemble size. The sam-
pling error is also present in the different cumulative correla-
tion functions. By normalizing and summing up, the fluctua-
tions are smoothed and they stay visible as an offset generated
by the larger absolute correlation values at depth.

For an ensemble of only 1,000 samples, the undersam-
pling effects become so pronounced that they prevent the
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Figure 3 Differential sensitivity, SimRC (left) and correlation (center, right) for three different ensemble sizes. Forward responses are computed
using the linear toy model.

interpretation of the SimRC as sensitivity. Thus, for this toy
model, an ensemble size of at least 10,000 is needed to use
the SimRC as sensitivity and subsequently for defining a DOI.
However, it is important to note here that the minimal neces-
sary number of samples in other studies may differ and always
depends on the specific problem addressed.

Theoretically, differential sensitivities can only take posi-
tive values for this toy model. Thus, negative sensitivity values
are a result of sampling error. Generally, negative sensitivity
values should only occur in regions below the DOI. For such
profile sections to which measurements have low sensitivity,
the correlation must be interpreted as zero, or, in the case
of interpreting results from diffusive methods, as negligibly
small.

The DOI derived from the differential sensitivity using a
threshold of 5% of the maximum sensitivity is 3 m. Since the
SimRC values are almost equal to the differential sensitivities,
they yield a DOI of 3 m as well. For the correlations and cu-
mulative correlation, we choose the thresholds that yield the
same DOI of 3 m in this simple linear case. For the correla-
tions, this threshold correlation is 0.03. For cumulative cor-
relation, this threshold is 0.05. For the more complicated ex-
amples, we will analyse the differences in DOI for these same
thresholds.

3.1.2 Multivariate Gaussian prior probability density func-

tion with vertical constraints

To study the effect of prior correlation on the SimRC, we
investigate four prior distributions with different correlation
lengths. In general, prior correlation is implemented if a priori
correlation between model parameters is assumed (Tarantola
and Valette, 1982). We extend the separate Gaussian PDFs
per parameter to a multivariate Gaussian PDF (e.g. Mardia
et al., 1979). In this multivariate Gaussian PDF, parameters
can be correlated via a prior covariance matrix (Hansen et al.,
2006). Here, we introduce a simple Gaussian-shaped corre-
lation, which is fully defined by a standard deviation of the
prior parameters and a spatial correlation length (Gaspari and
Cohn, 1999, Section 4.3). As before, for all parameters the
Gaussian mean is set to p = 3 and a STD of 0.5 is chosen,
creating a multivariate Gaussian prior distribution. We com-
pute multiple ensembles for different prior distributions with
increasing correlation length: 0, 0.2, 0.6 and 1 m. For the cor-
relation length of zero meters, parameters are sampled inde-
pendently, and, thus, this prior distribution is equivalent to the
uncorrelated Gaussian PDFs of the previous section.

SimRC results for different correlation lengths are shown
in Fig. 4. The larger the prior correlation length, the larger the

© 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association
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Figure 4 Differential sensitivity, simplified regression coefficient (SimRC (left) and correlation (center, right) for four different correlation lengths
of a uniform multivariate Gaussian prior distribution. Forward responses are computed using the linear toy model.

SimRC and consequently the correlation between prior ensem-
ble and forward response ensemble. Prior correlation has the
most obvious effect on the shallow parameters to which mea-
surements are more sensitive. For the very shallowest parame-
ters, correlation decreases again due to the decreasing number
of neighbouring correlated layers.

The difference between differential sensitivity and the
SimRC caused by prior correlation has to be taken into ac-
count when interpreting SimRC functions as sensitivity. On
the one hand, this is a deviation from the concept of differen-
tial sensitivity derived purely from partial derivatives. On the
other hand, it may be beneficial, especially in Bayesian inver-
sionmethods, to incorporate the prior correlation into the sen-
sitivity measure since it drives the Bayesian update. Of course,
when interpreting the SimRC, it has to be kept in mind that the
SimRC is not purely a property of the functional relationship
at hand. Instead, it is influenced by a mixture of the functional
relationship and the prior correlation that is a human input.
Finally, for the cumulative correlation functions, we can ob-
serve that the differences due to correlation are reduced by the
normalization (Fig. 4 right).

Since an increase in correlation length leads to larger
SimRC values, it is evident that it also enlarges a DOI esti-
mate that is derived from SimRC and correlation analysis. As

before, we use 5% of the maximum sensitivity as the DOI
threshold to compare DOIs estimated from differential sensi-
tivity and SimRC functions. For the DOIs derived from corre-
lation, we use a threshold correlation of 0.03. For the cumula-
tive correlation, we choose 0.05 as DOI threshold. These two
thresholds are set based on the results of the previous exam-
ples (see above).

All DOI values are listed in Table 1. The DOI for dif-
ferential sensitivity is 3 m. For the SimRC and the correlation,
the derived DOIs are larger for larger correlation lengths. This
behaviour has the same advantages and disadvantages as the
form of the SimRC function as discussed before. The disadvan-
tage is that the DOI is affected by input other than the func-
tion itself. On the other hand, the advantage is that the larger
DOI properly reflects the sphere of influence of the Bayesian
update. For the cumulative correlation, the DOIs are closer
to the DOI of the differential sensitivity. We attribute this to
the normalization that also brings the cumulative correlation
curves closer together.

3.2 Non-linear toy model

To study differences between differential sensitivity and the
SimRC for a non-linear parameter dependence, we introduce

© 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association
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Table 1 Depth of investigations for regression coefficient (SimRC; DOI threshold = 5% of maximum sensitivity), correlation (DOI threshold =
0.01) and cumulative correlation (DOI threshold = 5%) for four different correlation lengths for the prior distribution. Forward responses are
computed using the linear toy model. The DOI of the differential sensitivity (DOI threshold = 5% of maximum sensitivity) is 3.0 m

Correlation-length (m) DOI SimRC (m) DOI correlation. (m) DOI cumulative correlation. (m)

0.0 3.15 2.85 3.15
0.2 3.30 3.30 3.00
0.6 3.60 3.75 3.15
1.0 4.05 4.35 3.30

Figure 5 Exponential dependency of Stotal on the subsurface parame-
ter p.

a simple but strongly non-linear toy model. We adjust the lin-
ear toy model from the previous section by turning the linear
relation between the model response and the subsurface pa-
rameter p into an exponential one (Fig. 5):

S(z) = S0ep/p0e−z/z0 . (18)

The total response is computed for a discretized model
analogous to the linear case. As for the linear example, we
compute SimRC and correlation of prior and forward re-
sponse ensemble for different prior distributions and ensem-
ble sizes. As before, the default prior distribution is a Gaussian
PDF with mean p = 3 and STD of 0.5, sampled using an en-
semble size of 100,000, unless stated otherwise.

3.2.1 Gaussian prior probability density function

We study the effect of the non-linearity between the forward
model response and the prior distribution by using five prior
distributions differing in STD. The STDs are 0.01, 0.1, 0.5 ,
1.0, and 1.5. For larger STD, the ensemble will be more non-
linear.

Results are shown in Fig. 6. For the two smallest STDs,
the SimRC function (equation (8)) is close to the differ-
ential sensitivities (Fig. 6a left). In the more shallow pro-
file sections, we observe that the SimRC increases for the
larger STDs. As the parameter–response relation is exponen-
tial, this behaviour is expected. For the larger STDs, the cur-
vature of the non-linearity of the forward model leads to
regression coefficients that are larger than the slope at the
mean of the prior ensemble. If the curvature had a different
sign, such that it would reduce the slope of the function, it
would lead to SimRC values that are smaller than differential
sensitivity.

In the correlation functions (Fig. 6), we see that an in-
crease in prior STD causes a decrease in the correlation for the
more shallow model parameters. As correlation is a measure
for the linearity of the relation between two random variables,
this decrease of correlation is expected for the non-linear toy
model. For correlation, any curvature would lead to a de-
crease. The cumulative correlation function is similar for all
investigated prior STDs (Fig. 6a right). The integration over
depth almost removes the effects of the non-linearities in the
correlation functions. Thus, a DOI estimation derived from
cumulative correlation functions would be almost identical for
all STDs.

For the SimRC, fluctuations around the differential sensi-
tivity function are observed especially in the lower most parts
of the profile (Fig. 6b). Fluctuations are more pronounced for
larger STDs. Thus, a strong non-linearity in the parameter–
response relation requires a larger ensemble size to achieve
a similarly low degree of ensemble bias as seen for less non-
linear relations.

Turning to the DOIs, we use the same threshold as for
the linear case. For the differential sensitivity, this results in a
DOI of 3 m. All DOI values are listed in Table 2. SimRC DOIs
are close to the 3-m DOI derived for the differential sensi-
tivity function, regardless of the prior distribution STD. For
the DOI derived from the correlation functions, a decrease in
DOI is observed for an increasing prior STD. This effect can
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Figure 6 (a) Differential sensitivity, SimRC (left) and correlation (center, right) for five prior STD. Forward responses are computed using the
non-linear toy model; (b) zoom-in of (a).

Table 2 Depth of investigations for regression coefficient (SimRC; DOI threshold = 5% of maximum sensitivity), correlation (DOI threshold =
0.01) and cumulative correlation (DOI threshold = 5%) for five different STD of the prior distribution. Forward responses are computed using
the non-linear toy model. The DOI of the differential sensitivity (DOI threshold = 5% of maximum sensitivity) is 3.0 m

STD DOI SimRC (m) DOI correlation.(m) DOI cumulative correlation. (m)

0.01 3.15 2.85 3.00
0.1 3.15 2.85 3.15
0.5 3.00 3.00 3.00
1.0 3.00 2.55 3.15
1.5 2.85 2.40 3.15

be traced back to the general decrease of correlation for an
increasing non-linearity (see above). As for the linear exam-
ple, the cumulative correlation is closer to the DOI derived
for differential sensitivity by normalization.

3.2.2 Multivariate Gaussian prior probability density func-

tion with vertical constraints

As for the linear case, we now introduce prior correlation by
turning the Gaussian priors from the previous section into
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Figure 7 Differential sensitivity, SimRC (left) and correlation (center, right) for four different correlation lengths of a uniform multivariate
Gaussian prior distribution. Forward responses are computed using the non-linear toy model.

multivariate Gaussian priors. The SimRC is analysed for these
correlation lengths: 0, 0.2, 0.6 and 1 m.

Results are shown in Fig. 7. By comparing the SimRC to
differential sensitivity, we see two influences on the SimRC
functions: (1) a relatively small offset arising from the non-
linearity in the model response and (2) the relatively larger
influence of the prior correlation. As for the linear case, the
SimRC and correlation in the shallow profile parts increase
with increasing correlation length as parameters here are most
sensitive to the toy model.

Since the sensitivity measures for this case are very simi-
lar case with correlation, we do not explicitly show the DOI
values. As in the linear case, the DOI estimates for the SimRC
in the region of enhanced correlation are larger compared to
the DOI estimate from differential sensitivity.

3.2.3 Uniform prior probability density function

We study the applicability of SimRC and correlation analysis
of uniform PDFs as a simple non-Gaussian case. We study the
non-linearity of the toy model response by increasing the size
of the prior interval. In particular, we derive the SimRC and
correlation functions for five different uniform prior intervals
around a mean of p = 3: ±0.05, ±0.5, ±2.5, ±5.0, and ±7.5.

Results are shown in Fig. 8. The SimRC and correlation
functions are similar to the Gaussian case. Again, for the two
smallest prior intervals, the differential sensitivity approxi-
mately equals the computed SimRC. As for the Gaussian case,
correlation decreases with an increase of non-linearity on the
investigated parameter–response interval. The cumulative cor-
relation functions are closer together for all investigated prior
distribution PDFs. This simple example shows that the usage
of SimRC and correlation as sensitivity measures is not strictly
restricted to Gaussian PDFs.

3.3 Frequency-domain electromagnetic model

Frequency-domain electromagnetic (FDEM) induction data
show diffusive energy propagation in the subsurface when low
frequencies are used for surveying. Therefore, measurement
sensitivity andDOI are quantities of interest when FDEMdata
are processed and discussed.

FDEM data are sensitive to the electrical conductiv-
ity (EC) of the subsurface. During FDEM surveys, an elec-
tromagnetic field is generated in a transmitter coil. The
field propagates into the subsurface and generates eddy cur-
rents in a conductive material. These eddy currents subse-
quently generate a secondary field that is recorded by one or
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Figure 8 Differential sensitivity, SimRC (left) and correlation (center, right) for five uniform prior intervals. Forward responses are computed
using the non-linear toy model.

multiple receiver coils. The magnitude of the secondary field
is usually expressed in parts-per-million (ppm) with respect
to the primary field. This magnitude can be related to EC
using the non-linear formulas given by Ward and Hohmann
(1988).

For one-dimensional forward modelling of FDEM data,
we use the code provided by Hanssens et al. (2019). We sim-
ulate data for one transmitter and two receiver coils, each of
the receivers simulated at two different lateral offsets. The first
receiver is simulated with a horizontal co-planar coil setup at
two locations, in particular at 1 and 2 m offset to the trans-
mitter coil. The second receiver is simulated with a perpen-
dicular coil setup at 1.1 and 2.1 m offset from the transmit-
ter coil. This way, simulated differential sensitivity functions
(Fig. 10) of the four signals differ (1) in magnitude due to the
offset variations and (2) in shape due to the difference in set-up
geometry.

Data are simulated for a discretized subsurface for which
each layer is 20 cm thick. To prevent unphysical (negative) pa-
rameter values, prior model parameters are defined through
log-normal PDFs for the subsurface parameters. The prior en-
semble has a size of 100,000. Around the selected prior mean
(EC of 100 mS/m), the forward response shows a slightly non-

linear behaviour (Fig. 9). For the coils with larger offset, the
non-linearity is more pronounced than for the two smaller off-
set measurements.

The statistical parameters for SimRC analysis for all four
measurement signals are shown in Fig. 10. The SimRC and the
differential sensitivity are almost identical. After our analysis
for the synthetic models, differences between the two quan-
tities can be associated with two potential sources: (1) the
non-linearity of the forward equation as shown in Fig. 9 and
(2) and undersampling bias in the ensemble. The most non-
linear signal, the simulated response for the perpendicular 2.1
m coil, accordingly shows the largest difference of differential
sensitivity of the uniform parameter model with an EC of 100
mS/m and the SimRC.

As different signals are compared here, this example gives
a good illustration of the normalizing effect implicitly included
in the correlation derived from the SimRC.Contrasting SimRC
to correlation (Fig. 10 left and center), correlation functions of
all four simulated measurements signals are directly compara-
ble for the simulated EC profile.

A comparison of the DOIs is based on the thresholds
from the synthetic examples. DOI values are listed in Table 3.
DOIs for differential sensitivity and SimRC are about equal, as
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Figure 9 Forward response for the FDEM forward model around the Gaussian prior distribution mean.

non-linearity is in the responses around the ensemble mean is
comparable small.

In general, DOIs derived from SimRC and correlation
are in close agreement with the DOIs derived from differen-
tial sensitivity. The largest difference occurs for the horizon-
tal co-planar coil at offset 2.0 m. For this configuration, the
largest DOIs are seen. Looking at Fig. 10, we see that all sen-
sitivity measures already close to zero in this range. Thus, a
small change in the threshold would lead to considerably dif-
ferent DOIs.

All in all, the SimRC and correlation functions yield sen-
sitivity measures and DOIs in agreement with differential sen-
sitivity for this FDEM forward model.

4 CONCLUSION

In this work,we introduce the simplified regression coefficient
(SimRC). Additionally, we propose the SimRC and correlation
of prior ensemble and forward response ensemble as sensi-
tivity measures and for the depth of investigation (DOI) esti-
mation. Both measures are closely related to differential sen-
sitivities of measurement variables to model parameters. For
linear problems, we showed that SimRC and differential sen-
sitivity are equal if no correlation is implemented in the prior
distribution.

For Monte Carlo inversion methods, the SimRC is com-
puted from the readily available covariance matrix. Thus,
no additional forward model runs are needed. This makes
the SimRC a computationally attractive alternative to the
Jacobians needed to compute differential sensitivity.

We analyse the use of the SimRC analysis for three syn-
thetic examples: a linear, a simple non-linear and a frequency-
domain electromagnetic forward model. For each forward
model, we analyse the following influences on the SimRC
function: (1) forward model non-linearities, (2) a priori de-
fined (vertical) correlation between the model parameters and
(3) ensemble fluctuations caused by undersampling. All three
influences cause differences between differential sensitivity
and the SimRC.

Regarding the non-linearity of the forward model, dif-
ferences between differential sensitivity and SimRC increase
with an increase in the non-linearity of our synthetic forward
model. The deviation between differential sensitivity and the
SimRC depends on the curvature of the forward model. For
correlation, the non-linearity leads to smaller absolute cor-
relations. The influence of non-linearity on DOI estimation
was minor, the SimRC, correlation and cumulative correlation
yield DOIs similar to the differential sensitivities.

While the influence of non-linearity is small sized, the
SimRC and correlation may have an advantage over differ-
ential sensitivities for some specific forward models. For our
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Figure 10 Differential sensitivity, SimRC (left) and correlation (center, right) for a uniformGaussian prior distribution and the different simulated
measurement signals for four FDEM receiver coils with different distance to the transmitter coil.

Table 3 Depth of investigations for regression coefficient (SimRC) and differential sensitivity (both with DOI threshold = 5% of maximum
sensitivity), correlation (DOI threshold = 0.01) and cumulative correlation (DOI threshold = 5%) for the four simulated FDEM forward
responses corresponding to the coil offsets. The last row corresponds to the overall DOI (maximum of the DOIs for the separate signals)

Coil offset (m) DOI Differential sensitivity (m) DOI SimRC (m) DOI correlation (m) DOI cumulative correlation (m)

1.0 3.4 3.6 3.2 4.0
1.1 1.6 1.6 1.8 2.2
2.0 6.0 5.6 4.8 4.8
2.1 2.8 3.0 3.0 3.2

realistic exponential non-linearity, they account for the aver-
age of non-linearity of a whole interval of the definition range
of the forward model. This averaging property can be even
more vital for other forward models. For example, for alter-
nating forward models, local partial derivatives may give a
wrong impression of a function, while the ensemble used to
compute the SimRC and correlations has the ability to capture
the forward model behaviour across the whole prior range.

Regarding a priori correlation, differences of differen-
tial sensitivity and the SimRC are more pronounced than for
non-linearity. Two main deviations can be observed. First, the
SimRC and correlation are much larger in the most sensitive
area of the subsurface. Second, the DOI becomes larger, as

regions of the subsurface that were previously not sensitive
become sensitive through correlation.

The a priori correlation introduces an important dif-
ference between differential sensitivities and the SimRC.
While differential sensitivity is fully determined by the un-
derlying forward model, the SimRC, by including effects of
correlation between prior distribution parameters, becomes
dependent on a second human input. This is a disadvantage
of the SimRC (and general stochastic Monte Carlo methods),
and it always has to be kept in mind when analysing its values.
On the other hand, the dependency on prior correlation can be
desirable since this correlation is important for the Bayesian
update. Thus, when insight into the update process is the
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target of the sensitivity study, the SimRC functions gives valu-
able extra-information compared to differential sensitivity. If
a separate analysis of pure measurement sensitivity is desired,
one could additionally compute the (computationally more
expensive) regression coefficient.

Regarding ensemble fluctuations, as for all ensemble
methods, the overall size of the ensemble has to be large
enough for the problem at hand. Here, this means that small
ensemble size leads to ensemble bias which hinder a sensible
assessment of the sensitivity and a clear determination of the
DOI. In these cases, it is likely that the ensemble is also too
small for the actual Bayesian update.

Finally, applying the SimRC analysis to a geophysical
forward model, we obtain similar information from differ-
ential sensitivity and the SimRC. After checking that non-
linearities in the investigated frequency-domain electromag-
netic model are comparably small for the investigated prior
range and if no prior correlation is implemented, the SimRC
can be used and interpreted as a (classical) differential
sensitivity.

Overall, we recommend using DOI estimations from the
SimRC for geophysical parameter estimations using Bayesian
inference. For correlation functions, obtained by normalizing
the SimRC, global DOI thresholds can be introduced. When
the influences of prior correlation and non-linearity are kept
in mind, the SimRC and correlation yield a computationally
attractive sensitivity adapted to judging the sphere of influence
of a Bayesian update.

Analogous to differential sensitivity, the SimRC can be
extended to two- and three-dimensional models in a straight-
forward manner. In the future, the SimRC should be applied
and tested for such models beyond the one-dimensional ap-
proximation, further analysing its advantages over Jacobian
and RC computations. The computational advantage over the
Jacobian becomes especially beneficial for highly parameter-
ized models resulting in expensive forward model runs. Addi-
tionally, for cases where the number of model parameters ex-
ceeds the number of Monte Carlo samples, the sample model
variance matrix may be singular, causing the regression coeffi-
cient and standardized regression coefficient to be unavailable
while the SimRC is still available.

While in this work the SimRC was solely compared to
differential sensitivity and thereof derived simple measures for
the depth of investigation (DOI), more sophisticated DOI es-
timation approaches as outlined in the introduction should be
compared to the DOI estimations derived from SimRC and the
correlation functions. In particular, the normalized Kullback–
Leibler divergence and the correlation functions could be com-

pared for multiple synthetic cases to further investigate three
main questions: (1) how the Kullback–Leibler divergence re-
lates to the SimRC functions, (2) if more generally valid DOI
thresholding values can be defined and (3) how a DOI esti-
mate from Kullback–Leibler divergence relates to the SimRC
DOI estimates derived for the measurement signals. For such
a comparison, it must be acknowledged that SimRC does not
formally provide an overall DOI. However, considering the
SimRC function of the measurement signal showing the deep-
est significant sensitivity to the subsurface parameters may
be adequate for a meaningful comparison to the Kullback–
Leibler divergence function.
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