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ABSTRACT: Chronological uncertainty complicates attempts to use radiocarbon dates as proxies for processes such
as human population growth/decline, forest fires and marine ingression. Established approaches involve turning
databases of radiocarbon-date densities into single summary proxies that cannot fully account for chronological
uncertainty. Here, | use simulated data to explore an alternative Bayesian approach that instead models the data as
what they are, namely radiocarbon-dated event counts. The approach involves assessing possible event-count
sequences by sampling radiocarbon date densities and then applying a Markov Chain Monte Carlo method to
estimate the parameters of an appropriate count-based regression model. The regressions based on individual
sampled sequences were placed in a multilevel framework, which allowed for the estimation of hyperparameters that
account for chronological uncertainty in individual event times. Two processes were used to produce simulated data.
One represented a simple monotonic change in event-counts and the other was based on a real palaeoclimate proxy
record. In both cases, the method produced estimates that had the correct sign and were consistently biased towards
zero. These results indicate that the approach is widely applicable and could form the basis of a new class of

quantitative models for use in exploring long-term human and environmental processes.
© 2020 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd.
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Introduction

Radiocarbon-dated event-count (REC) sequences are often used as
proxies for important past human and environmental processes.
Archaeologists, for example, use them as proxies for past changes
in human demography, while palaeoclimatologists use them to
understand phenomena such as past changes in sea level or
natural fire regimes (e.g. Thorndycraft and Benito, 2006; Turney
and Brown, 2007; Riede, 2009; Shennan, 2009; Bleicher, 2013;
d’Alpoim Guedes et al.,, 2016; Edinborough et al., 2017). The
underlying logic is based on a correlation between organic carbon
deposition and a given past process of interest. In archaeology, the
target process is often population-level change (e.g. Gamble
et al., 2005; Lepofsky et al., 2005; Turney and Brown, 2007;
Collard et al., 2010; Schulting, 2010; Steele, 2010; Faulkner, 2011;
Armit et al., 2013; Shennan, 2013; Prentiss et al., 2014; Mclaugh-
lin et al., 2018; Colledge et al., 2019; Hannah and McLaugh-
lin, 2019; Leipe et al., 2019). Spatio-temporal variation in human
population levels is thought to be related to variation in organic
carbon deposition because certain human activities lead to
concentrations of organic carbon in sediment and those activities
occur more often when and where there are more people present.
Activities such as agriculture, construction, plant and animal
processing, fire-use, and mortuary rituals all create localized
concentrations of organic carbon—carbon deposition events. The
frequency with which these events occur and the amount of
carbon deposited are tied to population size (Rick, 1987).
Thus, the number of radiocarbon samples in a given area dated
to a given time can be expected to correlate with the number of
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people who occupied that area at the relevant time. The logic is
similar for palaeoclimatology (e.g. Pierce et al., 2004; Thorndycraft
and Benito, 2006; Mooney et al., 2011; Bleicher, 2013). More
natural fire events in a given place and time, for instance, lead to
more charred carbon in the corresponding sediments. In both
disciplines, the proxies are often compared to one or more
potential covariates in an effort to explain through-time variation in
the target process (e.g. Gamble et al., 2005; Lepofsky et al., 2005;
Thorndycraft and Benito, 2006; Bleicher, 2013).

Despite the simple logic, however, radiocarbon dating un-
certainty complicates the construction and use of these proxies.
Radiocarbon dates contain uncertainty both from the measure-
ment of carbon isotopes and from the calibration process that
accounts for though-time changes in the ratio of those isotopes in
the environment (Taylor et al., 2014). These sources of uncertainty
combine to produce calibrated radiocarbon dates with substantial,
highly irregular temporal distributions (e.g. Fig. 1). It is common for
a single sample to have a multimodal temporal density that spans
centuries of calendar time. As a result, count-based sequences of
radiocarbon-dated events are chronologically uncertain, which
means that multiple potential sequences are always possible for
any given sample of radiocarbon dates.

The primary way this uncertainty has entered into analyses of
radiocarbon date proxies involves summing the levels of radio-
carbon date densities for each slice of time in a given interval. The
resulting proxy is often called a ‘summed probability density
function” (SPDF), and it has been a popular tool since its
introduction to palaeoenvironmental science (Geyh, 1969) and
archaeology (Dye and Komori, 1992). The proxy does have
important limitations, however, and has been the subject of serious
scrutiny and much criticism (e.g. Bamforth and Grund, 2012;
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Figure 1. Example of an uncalibrated radiocarbon date density with its
corresponding calibrated density. The vertical line represents the true
underlying calendar date; the blue density represents the radiocarbon date
density in radiocarbon vyears that would be returned from a dating
laboratory; and the red density represents the calibrated radiocarbon date
density with its domain in calendar years. [Color figure can be viewed at
wileyonlinelibrary.com]

Williams, 2012; Bleicher, 2013; Kerr and McCormick, 2014;
Manning and Timpson, 2014; Brown, 2015; Crema et al., 2017).

One of the key problems is that individual radiocarbon date
densities are an expression of uncertainty as just explained — like
any measurement with erro—which means sums of such densities
are too. The level of a radiocarbon-date density for a given interval
(say a year or a decade) is proportional to the probability that the
relevant event occurred in the given interval (Bronk Ramsey, 2009).
The sum of the levels of two such densities in the same interval,
then, reflects both the number of events (because there are two
events in question) and a function of the probability that each
occurred in the relevant interval. When used as a proxy for the
former, however, the sum is conflating process variation
(the number of events) with measurement uncertainty (through-
time fluctuations in the relevant probabilities). To further
complicate matters, calibrated radiocarbon dates also reflect
uncertainty in the calibration curve, which means the final sum
of calibrated densities does as well (Brown, 2015). This is not
necessarily a problem if, following Bronk Ramsey (2017), the
proxy is only interpreted as the temporal distribution of the total
chronological information in a radiocarbon dataset. The desired
proxy in most cases, however, is the number of events that
occurred in each interval of a sequence (e.g. Hoffmann et al., 2008;
Broughton and Weitzel, 2018; Mclaughlin et al., 2018) and the
SPDF cannot isolate that number from chronological uncertainty
about the timing of the individual events.

This conflation gives rise to analytical problems. It leads to proxy
features that are unrelated to event-count variation, and these
features are easy to misinterpret as being indicative of significant
changes in the target process (Bamforth and Grund, 2012;
Brown, 2015). It also means that information about uncertainty
is being treated like information about process variation. In
statistical terms, this information misplacement is a kind of model
mis-specification that is likely to create inferential problems just as
with other better-studied kinds of mis-specification that have been
known about for a long time (e.g. Ramsey, 1969). Thus, for both
qualitative and quantitative studies the information misplacement
could lead to the identification of spurious relationships with
covariates and incorrect confidence estimates. This is a significant
problem that severely limits our ability to understand important
long-term human and environmental dynamics with archaeologi-
cal and palaeoenvironmental data.

There have been several recent attempts to improve the
handling of uncertainty with respect to radiocarbon-date proxies.
These improvements can be roughly divided into two groups.
The first focuses primarily on null hypothesis testing. For the
approaches in this group, the SPDF is still used, but observed data
are compared either to SPDFs of dates simulated from
theoretical growth models (Shennan et al., 2013; Manning and
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Timpson, 2014; Crema and Kobayashi, 2020) or to a null
distribution derived from the observed data with a permutation
procedure (Crema et al., 2017, 2016). The former attempts to
separate the target process from well-known spurious features
introduced by the calibration process (Brown, 2015), while the
latter attempts to account for spurious patterns produced by
sampling variability (variation in spatial sampling intensity,
specifically). In contrast, the second group focuses on improving
the way a set of date densities are summarized. This includes
methods such as sample bootstrapping (McLaughlin, 2019),
Bayesian Gaussian mixture models (unpublished function
in BChron, an R package for Bayesian radiocarbon date
calibration; https://andrewcparnell.github.io/Bchron/), compo-
site kernel density estimation (CKDE) (Brown, 2017), and
partially Bayesian kernel density estimation (KDE) (Bronk
Ramsey, 2017). The density estimation and mixture model
approaches limit the impact of calibration curve features
resulting in very smooth estimates. The KDE approaches also
produce uncertainty envelopes that can help, at least visually, to
discern important variation from spurious fluctuations caused by
the calibration curve (Bronk Ramsey, 2017).

While these approaches come with advantages, they are
hindered by important disadvantages when the ultimate aim is
to use radiocarbon-dated events as a proxy for some underlying
process such as population-level change. The null hypothesis
methods still rely directly on SPDFs and so conflate process
variation with chronological uncertainty [though, see Crema and
Kobayashi (2020) for a comparison between an SPDF and an
alternative demographic proxy instead]. The new average/
composite density estimation methods have fewer spurious
features than SPDFs because they reduce calibration artefacts,
but they too are summaries that mix up process variation and
chronological uncertainty. An important caveat with respect to the
KDEs, however, is that they are based on a set of sub-models that
individually do not conflate process variation with chronological
uncertainty. The sub-models are also KDEs and they are combined
to produce an average (Bronk Ramsey, 2017) or composite
(Brown, 2017) model. Individually, these sub-models do not
conflate process variation with chronological uncertainty because
each one represents the temporal density of a single randomly
sampled set of event times drawn from the underlying radiocarbon
date densities. When combined, however, the level of the resulting
composite/average KDE at a given time is a weighted sum that
expresses both the temporal density of events and uncertainty
about the timing of those events. Thus, the information misplace-
ment described earlier persists with both the extended SPDF
approaches and the primary KDE models. Consequently, they may
not be suitable for parameter estimation, model comparison or
variable selection when the scientific objective is understanding
through-time changes in the number of events while accounting
for chronological uncertainty.

Here | describe a study in which | explored an alternative
Bayesian approach inspired by multilevel modelling. In a typical
multilevel framework, parameter estimates for a given variable
are thought of as samples from a common super-population
distribution (Fig. 2) (Gelman and Hill, 2007; Gelman et al., 2013).
For example, one might conduct several regression analyses,
each involving a different sample of observations. The key
parameter of interest might be the relationship between a given
covariate and a response variable, such as calories consumed
and weight gained, respectively. The relationship is characterized
by a regression coefficient, B, where j refers to a specific data
sample (e.g. sample of individuals whose caloric consumption
and weight have been measured). Each B; could plausibly be
thought to come from some super-population of 8's because we
expect variability between data samples to influence the estimate
of any individual B;. The B/s, therefore, can be modelled with a
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Figure 2. Schematic of a multilevel model. The blue density in the top panel represents a superpopulation parameter and the grey densities in the lower
panel represent samples of that superparameter. [Color figure can be viewed at wileyonlinelibrary.com]

probability distribution that describes their uncertainty with
respect to variability among samples. That prior has its own
mean, B, and sampling uncertainty (standard deviation), 6. With
several samples (a number of js) Bayesian methods can be used
to estimate both the individual /s and the super-population
parameters, B and op.

A similar approach could be used to account for chron-
ological uncertainty in a REC sequence. Instead of exploring
sampling variability among distinct sample clusters, however,
chronological uncertainty could be accounted for by imagin-
ing that every possible event-count sequence is like a sample
from a super-population. Take, for instance, two radiocarbon-
dated events with overlapping temporal densities. With only
two densities, the set of possible event-count sequences
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includes realizations wherein the events do not co-occur and
others wherein they do (Fig. 3). Sequences of the first kind
contain two instances where the count is equal to 1,
corresponding to the dates in which each event occurs, and
zeros elsewhere (Fig. 3C). In other sequences, the correspond-
ing event-count is equal to 2 at the time of co-occurrence and
0 elsewhere (Fig. 3D). Importantly, there are also enormous
numbers of possible permutations because the specific date for
the co-occurrence (or, conversely, separate occurrences)
could be any of the potential dates within the interval spanned
by both densities. Without a compelling reason to assume that
one particular sequence is the ‘true’ one, all the possibilities
need to be explored. Thus, we can imagine that all the
potential sequences make up a super-population of sequences
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Figure 3. Example of the effect of chronological uncertainty on event-counts. Panel A shows the IntCal13 calibration curve; B shows two
overlapping calibrated radiocarbon date densities — the true calendar dates are not shown because of the scale (the dates are 6000 and 5999 sp); C
shows an example probable event-count sequence in which the events do not occur in the same year; D shows an example sequence in which they
do occur in the same year; and E shows a randomly drawn ensemble of probable event sequences (RECE) plotted with transparency so that higher
density regions can be visually distinguished (darker areas). [Color figure can be viewed at wileyonlinelibrary.com]
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reflecting the chronological uncertainty in the timing of the
individual events. This approach deviates from true multilevel
modelling because the units of analysis (potential REC
sequences) are not ontologically distinct like separate nested
clusters of observations (e.g. students in different schools or
patients in different hospitals, canonical examples of multi-
level data). Nevertheless, viewed in this way, the super-
population can reflect the impact of chronological uncertainty
on various parameters of interest. If, for example, we were
interested in the relationship between the true event-count
sequence and one or more potential explanatory covariates,
the super-population could be sampled to estimate that
parameter and account for the chronological uncertainty in
the timing of the relevant events. The model would summarize
the results of a set of what-if scenarios in which we ask
what the model parameters would be if a given event-count
sequence represented the true underlying process and then
permuted all the sequences—though, in practice, we would
randomly sample a set of probable sequences (creating a
Radiocarbon-dated Event Count Ensemble, or RECE) rather
than permute all possibilities. In this way, the approach
extends the KDE (Bronk Ramsey, 2017) and CKDE
(Brown, 2017) approaches by introducing a Bayesian regres-
sion framework instead of producing a composite/average
density estimate. This new approach—REC modelling—could
hypothetically be used for many different types of models and
parameters of interest.

To explore the potential utility of REC models, | ran a series of
simulated regression experiments in two stages. The aim was to
see whether a known relationship between a given simulated
covariate and REC sequence could be reconstructed with a
multilevel Bayesian regression model designed to account for
chronological uncertainty. The first stage involved a simple
monotonic function representing persistent through-time changes
in event frequency, and the second stage involved a real
palaeoclimate record representing highly variable through-time
changes in event frequency. In all regression experiments, the
true underlying process—time in the case of the monotonic
function in the first stage and the palaeoclimate record itself in
the second—was also used as the sole covariate. | reasoned that if
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the proposed approach could be used in a general applied
setting, it should be able to produce good estimates of the known
regression coefficient. A ‘good’ estimate in this context would be
one that was at least close to the true value, indicating the correct
direction and magnitude of the known effect. If the estimates
were biased, however, the method would still be considered
potentially useful if the bias was in a consistent direction (i.e.
always too high or too low, irrespective of the structure of the
underlying process). Importantly, the method would only be
considered useful if it produced good estimates in the analyses of
both the monotonic function and the real palaeoclimate record.

Materials and methods
Simulated data

As mentioned, two process were used to simulate data (Figs
4-7). The first was a monotonic function of time. This process
could represent, for example, a simple through-time increase/
decrease in human population levels or forest fire frequency. It
was formulated as follows:

y=eftlte{t b, ..t} (1)

where B represents a regression coefficient (exponential rate)
and t refers to a given date from t; to t,. The start date (t;) was
the beginning of a millennium between 12 000 and 2000 a sp
chosen at random, and the end date was 1000 years later—the
values used were t; =6000 a sp and t,=5001 a sp. The
regression coefficient, 8, was set to 0.004 for one set of
analyses and then to —0.004 for another set.

For each analysis in this stage of the study, the process in
Equation (1) was used to produce a sample of 1000 calendar
dates. These dates were then turned into an event-count
sequence by counting the number of dates that fell into a given
year from 6000 to 5001 a sp. Next, the sample of calendar
dates was converted into corresponding radiocarbon dates
(on the '*C timescale) with a function in the ‘Clam’ R package
(Blaauw, 2020) and then calibrated back onto the calendar
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Figure 4. Plots showing simulated data for the monotonic increasing process. Panel A displays the IntCal13 calibration curve; B shows the true
process; C shows the sample of 1000 exact dates from the process; and D shows a radiocarbon-dated event-count ensemble (RECE) of the process.

[Color figure can be viewed at wileyonlinelibrary.com]
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Figure 5. Plots showing simulated data for the monotonic decreasing process. Panel A displays the IntCal13 calibration curve; B shows the true process; C
shows the sample of 1000 exact dates from the process; and D shows a radiocarbon-dated event-count ensemble (RECE) of the process. [Color figure can be

viewed at wileyonlinelibrary.com]

scale with the same package. Lastly, the set of calibrated
radiocarbon-date densities was sampled at random to produce
an ensemble of potential sequences. The dates in the domain
of the densities were sampled in accordance with the level of
the given density, which meant that the sampled ensemble
reflected the probability that each possible event-count
sequence would be observed given the set of radiocarbon
dates (i.e. more probable sequences were sampled more
often).

The second simulated process was based on a real
palaeoclimate record. The record chosen was a high-
resolution time-series of '“C measurements from a speleothem
extracted from Yok Balum Cave in southern Belize (Kennett
et al., 2012). The series was chosen because it has a large
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number of observations. The specific period of real time
actually covered by the series was not relevant, however, and
neither was its temporal resolution. Rather, it simply represents
a natural process with the kind of variability observed in real
climate data, which made it a useful basis for this simulation
study. The observations in the speleothem record were used as
the covariate, x, in the following regression expression:

yn — eﬁ0+[3xn (2)
where B and B, were again regression coefficients. This
function (Equation 2) was then used to weight the probability
that a given integer date in the range [6000,5001] a
BP—chosen to be consistent with the previous stage of the
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Figure 6. Plots showing simulated data based on a process driven by a positive relationship with a real palaeoclimate record. Panel A displays the
IntCal13 calibration curve; B shows the true process; C shows the sample of 1000 exact dates from the process; and D shows a radiocarbon-dated
event-count ensemble (RECE) of the process. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 7. Plots showing simulated data based on a process driven by a negative relationship with a real palaeoclimate record. Panel A displays the
IntCal13 calibration curve; B shows the true process; C shows the sample of 1000 exact dates from the process; and D shows a radiocarbon-dated
event-count ensemble (RECE) of the process. [Color figure can be viewed at wileyonlinelibrary.com]

study—would be randomly selected. When the speleothem
record was high, the corresponding date would be selected
with a higher probability, and vice versa. An R core function
‘sample’ (R Core Team, 2019) was used to perform the
weighted sampling and produce 1000 dates. Next, the
sampled calendar-scale dates were converted into radiocarbon
dates and calibrated following the same procedure just
described for the monotonic function. As before, this
procedure was followed twice to explore both a positive and
a negative regression coefficient, which was set to +1. In this
case, to compensate for large magnitude negative numbers in
the climate record, an intercept term was added to the model,
Bo, and set to 5 for all analyses. This intercept term ensured
that the mean level of the count process was high enough that
the sampled sequences would have sufficient variation in them
— without it, the mean level of the process was so close to zero
that most of the sampled sequences were largely just zeros.

Regression experiments

Three regression analyses were performed in each stage of the
study. In the first analysis of each stage, the response variable
was the event-count sequence with no chronological error. This
analysis served to verify that without chronological uncertainty
the known relationship between the count sequence and its
corresponding process—the monotonic function or the real
palaeoclimate data—could be accurately estimated. In the
second analysis, a single sequence from a given ensemble was
used as the response variable. Then, in the last analysis, a
randomly selected sample of 50 sequences from the relevant
ensemble was analysed within a multilevel framework wherein
each sequence served as the response variable in a single
regression (i.e. a full REC model).

In all analyses the relevant true process served as the sole
covariate. Thus, time was used as the sole covariate for the
monotonic process in stage one, and the palaeoclimate record
was used as the sole covariate in stage two. The target
parameter in each case was the relevant known regression
coefficient.

© 2020 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd.

Radiocarbon-dated event-count (REC) model

The core model used in all analyses was based on the negative
binomial distribution (Hilbe, 2011). This distribution was
chosen for two reasons. First, its domain is the positive integers,
which is appropriate for event-count sequences. Second, it is
often used in cases where the relevant response variable may
have a variance/dispersion that is not identical for all values of a
given covariate (e.g. Zhu, 2011). This property makes it useful
for capturing autocorrelation and non-stationarity—and, in the
present case, it was useful for modelling a particular property of
chronological uncertainty.

Chronological uncertainty imposes a specific structure on the
set of all possible event-count sequences. That structure is a
gradual increase followed by a gradual decrease, a kind of
spreading along the time axis in both directions (Bronk
Ramsey, 2017). As Figs. 4 and 5 show, even if the true process
increases or decreases monotonically with time, the set of
possible event-count sequences will always gradually increase
and then gradually decrease. The backward and forward
smearing of the true process is caused by the natural structure
of chronological uncertainty. When we say we are uncertain
about the timing of an event, we really mean that we have some
idea about when the event occurred and that the probability of
the event having occurred in any particular time declines with
distance from some central, most-probable interval. When
compiling an event-count sequence, some events will sit at the
ends of the relevant temporal interval. Consequently, portions of
the densities describing the chronological uncertainty of those
leading and tailing events will extend beyond most of the
densities in the event sample. This tapering creates gradual tails
in the sequences. Without the true process to indicate otherwise,
we must assume that those tails, however small, indicate possible
temporal locations for some events. Consequently, the number of
events that probably occur in those tail regions declines
gradually away from the mass of most event densities. Even
single potential sequences randomly selected from an ensemble
will tend to display some level of smearing—’'chronological
spread’ (Bronk Ramsey, 2017)—because of the nature of
chronological uncertainty. Importantly, the smearing does not

J. Quaternary Sci., Vol. 36(1) 110123 (2021)
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reflect the true underlying process and, so, can potentially
confound statistical analyses that fail to account for it.

The negative binomial distribution may be able to account
for the spread. The distribution has two parameters. One, often
denoted r, refers to some number of events (either failures or
successes) in a set of Bernoulli trials (coin-flips); and the other,
p, refers to the probability of the event (success or failure). The
domain of the distribution then refers to the corresponding
number of complementary events that would be expected for a
given combination of r and p. For example, if r refers to
successes, then the domain is often the expected number of
failures for a given number of trials. Importantly, the mean of
the distribution can be written as follows:

'| —
P (3)
p

p=r

In this equation, p acts like a weight applied to r. Thus, r
could refer to a regression function intended to capture the
impact of covariates on the mean, and p would then be useful
for capturing through-time changes in the mean that may be
unrelated to the covariates. In the case of REC sequences, p
could represent the expected impact of chronological un-
certainty on a given sequence. It would adjust the mean level
of the process distribution up or down in accordance with
gradual increase/decrease in a given sequence caused by the
structure of chronological uncertainty (i.e. the gradual forward
and backward tapering of the event sequence as described
earlier).

This view of the negative binomial distribution’s parameters
led to the core regression model used for all analyses. The
model was structured as follows:

y, ~NB(r, p,) (4)

r= eﬁ0+ﬁxn (5)

The outcome (response) variable in Equation (4) is denoted
¥n Which refers to the level of a given event-count process at
time n. That variable follows a negative binomial distribution,
NB(-) and has a parameter r that must be positive and p, which
must be between zero and one. In Equation (4), ris defined by
a log-link function containing a regression with an intercept
denoted By, a regression coefficient 8 and a covariate x,. In
practice, of course, the model could be adapted to included
any number of potential covariates by turning B into a vector
and x,, into a matrix where the columns are each a different
covariate. The model is Bayesian and, so, has the following
priors defined for the random parameters:

p,~U@e™ 1) (6)
By ~N(0, 100) (7)
B ~N(0, 100) (8)

To account for chronological uncertainty in event times,
Equation (4) was extended. Instead of only estimating one set
of parameters for a single regression involving one event-count
sequence (y,), multiple regressions were set up and their
parameters estimated simultaneously for k potential event-
count sequences, denoted y,, ;. Hyperpriors were added for the
super-population regression coefficient and the intercept
denoted B and By, respectively. The lower-level individual
regression parameters were denoted B; and Bo;. The whole
model (i.e. full REC model) was structured as follows:
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Yo~ NB(r, pn,j)’ 9)
rj = ePojthxn (10)
where x,, still referred to a single covariate—the true process

responsible for the event-count sequence. The model also had
the following priors:

P, ~Ue™%, 1) an
Boj ~ N (Bo, o) (12)
B; ~N(B, op) (13)
Bo ~N(0, 100) (14)
B ~N(0, 100) (15)
a0~ U(1e719,10) (16)
o ~U(1e1,10) (17)

All the analyses were conducted in R (R Core Team, 2019). A
Bayesian analysis package, ‘Nimble’ (NIMBLE Development
Team, 2018), was used to produce the Bayesian models and
estimate their parameters with Markov chain Monte Carlo
(MCMO) simulations. Each simulation involved a minimum of
200 000 iterations. The MCMC posterior chains were inspected
for diagnostic indications of convergence, and standard Geweke
statistics (Geweke, 1992) were used to test the chains for
significant deviations from stationarity after discarding the first
2000 iterations as burn-in (see Supporting Information for
Geweke test results). The packages ‘ggplot2” (Wickham, 2016),
and ‘ggpubr’ (Kassambara, 2019) were used for producing
figures. All the R scripts used in this analysis are available at
www.github.com/wccarleton/recm.

It should be noted that the sequences analysed were sub-
sampled to speed up parameter estimation. Each model could
involve thousands of parameters. This is because the average
ensemble member event sequence originally contained
roughly 1300-1500 observations and each observation had a
corresponding p parameter to be estimated. With a sample of
only 50 ensemble members in a given model, then, the
number of p parameters could be as high as 75 000 per
analysis. Such an enormous number of model parameters
would require millions of MCMC iterations to obtain unbiased
posterior samples. So, to shorten computation time and reduce
memory requirements, the response/covariate pairs were sub-
sampled such that only every 10th observation was included in
a given lower level regression—a few thousand parameters to
estimate instead of tens of thousands. For similar reasons, only
50 sequences were drawn from the parent population of
possible sequences (but see the Supporting Information for
replications involving more sequences). While this may not be
recommended in general, the simulated patterns were very
clear by design, which meant that sub-sampling had no
obvious impact. In practice, this would reduce the likelihood
that a noisy pattern and/or weak signal could be detected.

Results
Stage 1: monotonic process

The results from the first stage of the study were promising. To
reiterate, this stage involved a monotonic function of time as
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Figure 8. Density plots for posterior estimates of the target regression coefficient in each of the three analyses of the first stage (i.e. the analyses in
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RECE member. The far right column contains posterior density plots for the top-level, superpopulation B parameters estimated using an REC model.

the underlying process and the target parameter was a
regression coefficient set at +0.004. The first analysis—the
verification with a chronological-uncertainty-free event
sample—produced a mean posterior estimate of 0.0041 for
the target parameter when the true effect was positive and
—0.0039 when it was negative. This result demonstrated that
the core negative-binomial regression model was able to
correctly estimate the target parameter with a reasonable
degree of uncertainty (Fig. 8). As Fig. 8 shows, the model also
produced a reasonable posterior predictive interval that
included all the observed data in the 95% interval—the
interval was estimated with point-wise quantiles of posterior
samples from the MCMC.

The next regression analysis involving a single REC
sequence as the response variable also produced promising
results. The posterior mean estimate of the target parameter
was 0.0025 when the true effect was positive and —0.0021
when it was negative (Fig. 8). These estimates indicate the
correct direction of the known effect, but both are biased
towards zero. Importantly, the posterior predictive estimates
for the observed data also included all the data points at the
95% credible interval despite the temporal smearing caused by
chronological uncertainty (Fig. 9).

The full REC model results were similar. Recall that in this
analysis 50 randomly sampled event-count sequences were
simultaneously assessed and that the individual regression

Stage 1 Posterior Predictive Interval

2A1Y1S0g

Z

o

Q

g

10 :

L. Lfuballl i o,

0 - - g

=

20 2

z 3

10 g ¢

g 0 P 3 g

3

20 -

10 o

& S th 2

5 A TORTY Py w1 1 R TR TR g

m

30 2

20 2 3

10 Y 1 § E

0 e A A e il g g

6000 5600

5200 4800

Time (Cal. BP)

Figure 9. Posterior predictive intervals for the models of the monotonic function. The black dots represent the observed count data and the blue
region represents the 95% predictive interval. [Color figure can be viewed at wileyonlinelibrary.com]

© 2020 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd.

J. Quaternary Sci., Vol. 36(1) 110123 (2021)


https://wileyonlinelibrary.com

118 JOURNAL OF QUATERNARY SCIENCE

coefficients, B/'s, from those analyses were considered samples
of a super-population parameter, B. Thus, the estimates of
interest in this case were primarily the super-population
parameter, B, and its sampling uncertainty, og. The mean of
the posterior distribution for B was approximately 0.0027 when
the true relationship was positive and —0.0018 when it was
negative. The mean of the posterior distribution for B's sampling
uncertainty (standard deviation), 65, was 0.000076 when the
relationship was positive and 0.000057 when it was negative.

Stage 2: real palaeoclimate process

The results from the second stage of the study were also
encouraging. In this stage, a real palaeoclimate record was used
to create the process that drove event-counts. The target parameter
was a regression coefficient set at +1. The first analysis—the
verification—produced a posterior mean estimate of 1.009 for the
target parameter when the true effect was positive and —0.989
when it was negative. As with the corresponding analysis in the
first stage of the study, the model produced a reasonable posterior
predictive interval that included all the observed data at the 95%
level.

The next regression analysis involving a single REC sequence
also produced promising results. The posterior mean estimate of
the target parameter was 0.558 when the true effect was positive
and —0.459 when it was negative (Fig. 10). Like the stage 1 results,
these estimates have the correct signs but are biased towards zero.
The posterior predictive estimates for the observed data included
all the data points at the 95% credible interval despite the temporal
smearing (Fig. 11).

The full REC model produced similar results. The posterior
mean for B—the super-population regression coefficient—was
approximately 0.5 when the true relationship was positive and 0.5
when it was negative. The mean of the posterior distribution for the
sampling uncertainty, op, of the super-population regression

parameter was 0.02 when the relationship was positive and
0.037 when it was negative.

Discussion

The simulation results indicated that REC models may have
substantial utility. In all the experiments, the models produced
posterior parameter estimates that were consistent with the sign
of true values and biased towards zero. This means that the
model always indicated the correct direction of the known
effect and, although biased, was off in a consistent way. In
practice, this means that REC models appear to be able to
determine whether a real effect was positive or negative despite
radiocarbon-date uncertainty and that in general we can expect
the magnitude of effect estimates to be lower than their true
values. While a biased estimate is suboptimal, the consistency
of the bias suggests REC models are still useful for resolving
important features of real response—covariate relationships even
in the presence of significant chronological uncertainty.

The bias was probably caused by temporal spread.
Temporal spread, as explained earlier, describes a distortion
of the true event-count sequence caused by chronological
uncertainty. Compared to the true event-count sequence, the
radiocarbon-dated event-count ensemble (RECE)—set of prob-
able event-count sequences—is distorted in two ways. One is
that the count sequence is, on average, flattened with its peaks
lower than those of the true sequence. This is because the
probability that events co-occurred is almost always going to
be lower than the probability that they occurred at different
times. The other distortion involves overall temporal span.
Compared to the true sequence, the RECE occupies a longer
span of time and tapers at either end. It tapers backward and
forward from the first and last observations in the true
sequence, respectively. Thus, the RECE as a whole is flattened
and spread out compared to the true event-count sequence.
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Figure 10. Density plots for posterior estimates of the target regression coefficient in each of the three analyses of the second stage (i.e. the analyses
in which a real palaeoclimate record was used as the true process). The far left column shows posterior densities for the 8 parameter in the models
involving the chronological-uncertainty-free date sample. The middle column shows the same posterior estimates for the models involving a single
randomly selected RECE member. The far right column contains posterior density plots for the top-level, superpopulation 8 parameters estimated

using an REC model.
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the blue region represents the 95% predictive interval. [Color figure can be viewed at wileyonlinelibrary.com]

As a corollary, a randomly drawn sequence from the RECE
(representing one probable event-count sequence) will prob-
ably have lower peaks than the true sequence and the events
will be spread over a longer interval.

The way these distortions lead to biased estimates can be
seen most clearly in the case of a monotonic process (Fig. 12).
The rate parameter for the monotonic function would naturally
be lower for event-count sequences that have been squashed
and stretched out in time. This is because the rate parameter is
essentially a slope value with event-count as the numerator
and time as the denominator. Dilation along the time
dimension (i.e. spreading out of the events) increases the
denominator, which means the ratio is lower for a given count
sequence. Imagine the time between counts growing while the
counts themselves remained constant. A line drawn through
those counts would tilt, becoming more horizontal (i.e. have a
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lower slope) as the time dilation increased. The decrease in the
rate would be even greater if the numerator (the counts) shrunk
as well, which as described earlier is what happens as a result
of temporal spread. Thus, temporal spread may be expected to
reduce the magnitude of regression coefficients with respect to
time in many real-world cases. When time is the covariate, we
should expect coefficient estimates to be closer to zero than
their true values.

While harder to intuit, the bias is the same for regressions
with respect to any covariate, x,, that is itself a function of time
whether it is monotonic or not. In such cases, the temporal
spread of the event-count sequence still results in flattening and
dilation of the sequence with respect to both the covariate and
time, as long as the covariate observations are temporally fixed.
The events, and corresponding counts of events per unit time,
are spread out such that they become paired with a greater span
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Figure 12. Plots demonstrating the effect of chronological spread on the rate of the monotonic function. The top two plots show the true function
(black line) and corresponding chronological-error-free date samples from that function. The bottom two plots show the best approximation to the
true function (black lines) given samples from an RECE. The RECE samples represent possible event-count sequences based on calibrated
radiocarbon dates corresponding to the sample of chronological-error-free dates used in the top two plots.
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of covariate observations compared with the original event-
count sequence. If the covariate is the product of a stationary
process (i.e. the covariate’s process has statistical properties that
remain fairly constant through time) then the event-count
sequence is redistributed more evenly over roughly the same
range of covariate values (as in Fig. 12). If, in contrast, the
covariate process is not stationary, then the event-count
sequence is spread out over a larger portion of the covariate’s
intrinsic variation as well. In both cases, the correlation between
the count process and the covariate would be reduced relative
to the true covariation. These distortions affect the ‘slope’ of the
regression function with respect to the covariate just as they
would with respect to time—i.e. the magnitude of the ‘slope’ is
reduced while its sign remains the same.

Brown (2017) recently reported a similar bias with respect to
regression involving SPDFs. In a simulation study analogous
to the one described above, Brown used regression models to
evaluate the standard SPDF and a CKDE model. Each summary
proxy was created with simulated radiocarbon data based on a
known process with a fixed rate parameter. Then, the proxies
were each used as the response variable in a regression, one
for the SPDF and one for the CKDE. As was found in the
present study, the models Brown assessed produced parameter
estimates that were closer to zero than the target value.
Interestingly, the regression involving the SPDF produced a
less biased result in the experiment than the one involving the
CKDE, which is surprising given that KDE models ideally
remove spurious radiocarbon calibration artefacts.

With this finding in mind, it seemed logical to compare the
REC results to a simple regression involving an SPDF. So,
following Brown (2017), | produced an SPDF and used R’s
built-in ‘glm’ function to estimate the parameters of a Gaussian
generalized linear model (GLM) involving that SPDF as the
response variable and time as the sole covariate. The SPDF
was based on the simulated data from the monotonic
(increasing) process used in the present study, which meant
that the target rate parameter had a value of 0.004. The SPDF-
GLM produced an estimate that was biased further towards
zero than the REC model estimate of the same parameter
(Fig. 13).

The advantage of the REC model may come partly from
sampling possible event-count sequences in proportion to their
relative probabilities. This probability-weighted sampling
likely reduced the impact of temporal spread on the REC
model compared to the SPDF-GLM because the latter
effectively gives equal weight to every point on the SPDF
including the ‘tails’ at either end of the proxy. Put another way,
the SPDF-GLM cannot account for the difference between the
probability that an event occurred in a given time and the
probable number of events that occurred—it was misplacing
information by treating chronological uncertainty as if it was
direct information about event-counts. It should also be noted,

Density (scaled to 1)

0.001 0.002

though, that a Gaussian model is probably not appropriate
when applied to an SPDF (or KDE) because those proxies are
bounded on the low end by zero—they must be positive by
definition and the Gaussian distribution does not reflect that.
So, some of the additional bias observed in the GLM-SPDF
estimate may have been partly caused by that distributional
mis-specification as well.

The temporal spread bias must be considered when
interpreting REC model parameters. It means that, in general,
smaller effects will be harder to see, holding other factors
constant (e.g. overall degree of chronological uncertainty in
the events and the relevant portion of the calibration curve).
Small effects that are already close to zero may become
indistinguishable from zero because temporal spread presses
the estimates of those effects further toward zero. Conse-
quently, the bias also means that effect sizes will be under-
estimated. So, for example, an analysis of the long-term impact
of climate change on human population sizes would probably
estimate an impact that is too low. It will be important, then,
for inferences drawn from REC models to be tempered in light
of the bias caused by temporal spread.

It will also be important to consider the impact of sampling
insufficiency on REC models. While the issue of sampling has
been discussed previously with respect to radiocarbon date
proxies (e.g. Williams, 2012), REC models will probably be
affected in a predictable way that bears stating explicitly.
Count models, like the REC model presented here, can be
affected by zero-inflation. Zero-inflation occurs when there is
an excess of zeros in a count dataset. The excess can occur for
many reasons, and it ultimately leads to biased parameter
estimates and misleading inferences (Hilbe, 2014). For REC
models, this problem implies that spatiotemporal sampling
intensity needs to be considered carefully. In an extreme case,
a sequence composed entirely of zeros because the relevant
region or time period had never been investigated would
appear to the REC model as representing a constant level
(zero-level) of the target process. However, there would be an
overabundance of zeros in this hypothetical dataset caused by
insufficient sampling and not by a constant low level of the
real target process. This cartoon example would obviously
lead to a false impression. Less extreme examples, though,
may be harder to detect in practice and REC model users need
to be aware of the potential pitfall. Handled incautiously, poor
sampling will probably produce misleading results and the
sampling intensity required for a given study will be case-
dependent. Possible solutions exist, such as zero-inflated
Poisson models or mixture models (see Hilbe, 2014) but
results may vary and the appropriateness of a given solution is
again case-dependent.

A related sampling concern involves the notion of sample
size and significance. Converting radiocarbon-date databases
into count time-series transforms sample size estimates from

0.003 0.004

Value

Figure 13. Parameter estimates from the SPDF-GLM and REC models compared to the true target value. The grey dashed line on the right indicates
the target value. The centre dark grey density is the posterior density estimate for that target from an REC model. The light grey density on the left is
the density of the SPDF-GLM estimate (constructed using the mean and standard error reported by R’s ‘glm’ function) of the target parameter. As the
plot makes clear, while both estimates are biased towards zero, the REC model estimate is much less biased than the SPDF-GLM estimate.
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the number of dated events to the length of the series. For
example, 100 dates spread out over 1000 years in an annual
count series comprises a time-series with 1000 observations,
not 100. Consequently, the level of certainty one has about the
final model results—for REC models, or indeed any time-series
analysis of radiocarbon-dated events—should take into ac-
count the sampling rate with respect to the number of dates
and not the resolution/length of the time-series those dates
have been converted into. To some extent, sampling the date
densities accounts for this problem in REC models because, as
explained earlier, even with two nearly overlapping date
densities co-occurrence between sampled dates is very
unlikely (Fig. 3C). Thus, chronological uncertainty is likely to
erase signals given low sample sizes. Nevertheless, sample
size needs careful consideration and large samples (with high
sample intensity per unit space/time) are probably required.

It should be stressed here, too, that other well-known
sampling issues affect REC models. As with any quantitative
analysis of radiocarbon dates, samples are likely to be spatio-
temporally non-independent, leading potentially to autocorrela-
tion in terms of both sample date and collection intensity—
archaeologists, for example, may take multiple dates from
individual depositional contexts and large archaeological sites
may attract more intense sampling. Analogous problems may
arise in palaesoenvironmental research. Another potential problem
concerns sample heterogeneity. Scholars will need to consider
whether all the samples in a given database are measuring the
same thing; for example, do a human bone and a seed from a
hearth both contribute equally to an estimate of past population
size? The REC model does not directly account for these sampling
issues and researchers need to carefully consider sampling
strategies, the inferential logic of date-as-data with respect to
a given target process, and ‘chronometric hygiene’ (see
Williams, 2012, for further discussion).

Future development of REC models could proceed in multiple
directions. One involves further statistical power analyses. This
research would probably involve a comprehensive simulation
study aimed at determining the true/false positive rate for REC
models given a set of realistic parameters. Limits and ranges for
those parameters (numbers of events, degree of chronological
uncertainty, strength of the true effect, etc.) could be drawn from a
review of published studies based on radiocarbon-date proxies.
Importantly, this sort of research should include determining
minimum sample density requirements given a variety of models
and different research objectives. It should also involve specific
attention to the impact of calibration curve uncertainty and, more
specifically, how that may vary for different sections of a given
calibration curve—see the Supporting Information for a brief
exploration of the IntCal13 curve (Reimer et al., 2013).

A second direction for future research should involve a deeper
investigation into the magnitude of the bias caused by temporal
spread and potential ways of reducing that bias. In the experiments
described here, the bias seemed to consistently reduce the
magnitude of the true parameter value by close to half. While it
seems unlikely that the estimated magnitude would usually be half
that of the true value, it may be that the magnitude of the bias is a
function of some analytical or experimental condition, such as the
average degree of chronological uncertainty among individual
events, or the average slope of the calibration curve over the span
of the true event-count sequence. For example, the extended
analysis described in the Supporting Information involved a much
earlier portion of the calibration curve (22 000 sp). That analysis
produced a parameter estimate that biased further towards zero
than the estimates described above, which suggests that there may
be a relationship between curve location and the degree of bias. If
that pattern holds and the bias was predictable given some other
parameter or characteristic of the relevant data, a correction might

© 2020 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd.

be applied. Such a correction, if it exists, would obviously be very
useful. Other practical corrections could be explored as well,
however, such as beginning with a set of dates covering a long
interval and then carefully selecting a smaller window of time for
analysis—although this could lead to a ‘garden of forking paths’
(Gelman and Loken, 2014) and trimming the data in this way
should be done with caution.

Another direction for future research could involve improving
the specification of model parameters. In particular, the
p parameter in the negative binomial model used for the present
study was left to be estimated from the data. This may ultimately
be the best approach, but information from a given dataset could
be used to constrain that parameter. The parameter could
represent the probability that any events occurred at a given time,
which suggests that an SPDF proxy or perhaps the KDE model
could potentially be used to inform the parameter estimates.

A fourth direction for future work could involve comparing REC
models to the other published approaches. The cursory exploration
described above involving the SPDF-GLM and the REC model is
only scratching the surface and more systematic comparisons
should be conducted to fully understand the observable differ-
ences. A detailed comparison that includes mathematical details
might also lead to a deeper understanding of the nature of
chronological uncertainty and its impact on patterns observed with
different regression models.

A final direction for future research should involve devel-
oping a way to incorporate information from Bayesian
chronological models to constrain uncertainty. In the present
study, the events were each dated with a single simulated
radiocarbon date density. This was analogous to a
radiocarbon-date database consisting of stratigraphically un-
related events. Fully specified chronological models could be
used, however, if the events were stratigraphically related. In
such cases, simply sampling the marginal posterior calibrated
radiocarbon-date densities—as was done here—would not be
taking advantage of the available information. Instead, a
chronological model should be used to constrain the draws
from the set of probable event-count sequences so that they
respect prior information about the temporal relationships
among events. Recent developments involving the application
of Bayesian hierarchical modelling to chronological analyses
of archaeologically defined cultural phases could potentially
be useful in this regard (Banks et al., 2019). These Bayesian
hierarchical phase models might be used to constrain the
sampling of a given RECE in order to incorporate both
stratigraphic and archaeological prior knowledge into REC
models.

Conclusions

REC models appear to be a useful way to extract information
from large databases of radiocarbon-dated events. Unlike
analyses involving established summary proxies based on
radiocarbon dates—e.g., the well-known SPDF—REC models
do not conflate process variation with chronological uncer-
tainty. Instead, REC models account for the impact of that
uncertainty on parameter estimates by sampling the probable
arrangements of event-count sequences given the chronologi-
cal uncertainty in radiocarbon dates. REC model parameter
estimates have signs that reflect the true process—covariate
relationship and are biased towards zero. While the bias needs
to be considered when conducting research in practice, it
appears to be consistent (always towards zero), which means
that the models will be useful in an applied context. REC
models are, therefore, a promising alternative to established
approaches.
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