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Abstract For simulating reactive transport on aquifer scale, various modeling approaches have been
proposed. They vary considerably in their computational demands and in the amount of data needed for
their calibration. Typically, the more complex a model is, the more data are required to sufficiently
constrain its parameters. In this study, we assess a set of five models that simulate aerobic respiration and
denitrification in a heterogeneous aquifer at quasi steady state. In a probabilistic framework, we test
whether simplified approaches can be used as alternatives to the most detailed model. The simplifications
are achieved by neglecting processes such as dispersion or biomass dynamics, or by replacing spatial
discretization with travel-time-based coordinates. We use the model justifiability analysis proposed by
Schoniger, Illman, et al. (2015, https://doi.org/10.1016/j.jhydrol.2015.07.047) to determine how similar the
simplified models are to the reference model. This analysis rests on the principles of Bayesian model
selection and performs a tradeoff between goodness-of-fit to reference data and model complexity, which is
important for the reliability of predictions. Results show that, in principle, the simplified models are able to
reproduce the predictions of the reference model in the considered scenario. Yet, it became evident that it
can be challenging to define appropriate ranges for effective parameters of simplified models. This issue
can lead to overly wide predictive distributions, which counteract the apparent simplicity of the models.
We found that performing the justifiability analysis on the case of model simplification is an objective and
comprehensive approach to assess the suitability of candidate models with different levels of detail.

Plain Language Summary In groundwater, chemical substances like nitrate are transported
and undergo chemical reactions. Understanding such reactive transport processes plays a key role in
securing our water resources and drinking water. We use computer models for understanding such
reactive transport processes and for simulating their future behavior. In such models, we make many
scientific decisions on which processes should be included and in what degree of detail. Here, we face a
trade-off: Usually, a complex model with many mathematical terms resolves many details of the process.
Yet, such complex models require lots of data for calibration and lots of time for the computer simulation.
In contrast, a simple model with fewer details comes with less effort in both respects. However, it might
neglect important parts of the process. For the example of nitrate decay, we use a probabilistic approach to
find the best simplification for a comparatively detailed reference model. Our results show that, in certain
cases, it is justified to employ a simpler model instead of a complex alternative without deteriorating
modeling results. Alongside, we explain how difficult it can be to define realistic parameter ranges for
simplified models.

1. Introduction

Our system understanding in environmental science will always remain incomplete, because we can neither
fully resolve the spatial and temporal variability of all system properties, nor can we know all processes and
their interactions to achieve a description of the true system behavior. This lack of system understanding
leads to so-called conceptual uncertainty, which is the uncertainty in choosing the most adequate repre-
sentation of the real system. Acknowledging that we can only approximate the natural system, we can,
however, formulate different models with different degrees or types of simplifications and treat these mod-
els as hypotheses about the true system. Though it is impossible to quantify the total conceptual uncertainty
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(Hoge et al., 2019; Nearing & Gupta, 2018), considering different hypotheses can, at least, help us to estimate
how the modeling results may differ depending on our model choice (Ferré¢, 2017).

Conceptual uncertainty has received increasing attention as it has been identified as a main source of uncer-
tainty in modeling (Burnham & Anderson, 2002; Enemark et al., 2019; Gupta et al., 2012; Neuman, 2003;
Refsgaard et al., 2012; Rojas et al., 2008, 2010; Schoniger, Wohling, et al., 2015; Troldborg et al., 2007).
Examples for conceptual uncertainty in reactive transport models are whether mechanisms such as trans-
verse mixing or the growth and decay of biomass are controlling the process on the relevant spatial and
temporal scale or whether they can be neglected (Loschko et al., 2016; Sanz-Prat, Lu, Finkel, et al., 2016).
Another example for conceptual uncertainty in reactive transport simulation is the choice of a model for
the reaction kinetics. This is investigated in a recent study of Brunetti et al. (2020) who compared models
for ammonification and nitrification on different levels of complexity.

Apart from the uncertainty about which processes should be included in the conceptual model, data scarcity
also restricts computational models in the level of complexity that should be used to describe these processes
(e.g., Guthke et al., 2017). Here, it is important to note that the term “model complexity” is not uniquely
defined and we refer to Hoge et al. (2018) for a detailed discussion of this issue. In a recent study, Baartman
et al. (2020) investigated the geoscientific community's understanding of model complexity. Their survey
shows that there is “no general consensus on how model complexity is perceived or should be defined.”
However, 78% of the participants consider the “number of processes explicitly included” as an adequate
characterization of model complexity, followed by the “number of interactions/feedback incorporated.”

Generally, models with many parameters and nonlinear interactions require more (informative) data to con-
strain their parameters during calibration. Therefore, model complexity and the number and quality of field
data have to be balanced. Typically, if the model is too complex for the given number of calibration data,
it will show a good fit during calibration, but a high variance and errors in the predictions beyond calibra-
tion conditions. This effect is known as overfitting (Babu, 2011; Lever et al., 2016). Contrarily, a model that
is too simple needs less data for calibration but shows a high systematic bias between its predictions and
measured data and thus “underfits” the system (Babu, 2011; Lever et al., 2016). This issue is well-known
as “bias-variance-tradeoff” (Burnham & Anderson, 2002; Geman et al., 1992). Consequently, for a realistic
number of measurements, there is a certain level of model complexity which is just complex enough to cap-
ture the variability in the data but not too complex so the model does not overfit (“principle of parsimony™)
(e.g., Jefferys & Berger, 1992).

Bayesian model selection (BMS) (e.g., Raftery, 1995; Wasserman, 2000) is a statistical method known to yield
a model ranking that implicitly reflects an optimal trade-off between model performance and parsimony.
This analysis ranks the considered models based on Bayesian Model Evidence (BME), which is an integral
measure of how well a model fits a given data set over its entire parameter space (Schoniger et al., 2014).

Here, we use an analysis based on this method to test whether simplified approaches can be used as alterna-
tives to the most detailed model. If we picked a certain set of parameters to run the reference model and used
the corresponding predictions as reference data set, we could use BMS to identify the simplified model that
achieves the best tradeoff between goodness-of-fit and complexity. But if we slightly changed the reference
model's parameter values, our conclusions might change significantly. Given that parameter uncertainty can
take up a significant portion of the overall uncertainty in modeling, we need a method that selects the best
replacement model in view of the full predictive distribution of the reference model. This can be achieved
within the framework of the so-called model justifiability analysis (Schoniger, Illman, et al., 2015).

The core idea of the justifiability analysis is that the models are tested against each other, asking the fol-
lowing: “How would the models be ranked if one of the models actually generated the data?” The original
purpose of the method is to identify the justifiable level of complexity given a specific amount and type of
data (Schoniger, Illman, et al., 2015). In this study, however, we are interested in how similar the predic-
tions of simplified models are compared to the reference model. For this purpose, we use the justifiability
analysis to answer how the simplified models score through the eyes of BMS if the data are generated by the
reference model. To represent each model's parameter and prediction space, the method is established in a
Monte Carlo framework using random sampling of the parameter prior distributions. We analyze the deci-
siveness of the resulting model ranking with the so-called Bayes factor (Jeffreys, 1961; Kass & Raftery, 1995).
This factor shows whether there is significant evidence for selecting or discarding a model from the set.
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Note that our analysis does not test how well models fit real measurements. It should be rather seen as one
of two complementary parts of model testing: In the analysis presented here, plausible model alternatives
are tested against each other in a synthetic setup to check how different modeling hypotheses affect the
prediction of the quantities of interest and which amount and type of data is needed to distinguish between
the different models. With this analysis, we aim to eliminate model candidates that are overly complex or
simple. For a comprehensive model testing, this analysis can be complemented with a test against measured
data. The agreement with actually observed data can be tested with BMS.

While statistical model selection techniques have received growing interest in many disciplines (Cremers,
2002; Hooten & Hobbs, 2015; Raftery, 1995; Schoniger et al., 2014), only Brunetti et al. (2020) have used
BMS to identify an appropriate level of complexity for biogeochemical models. Based on transient laboratory
measurements, the authors compared five models that differed in the description of the reaction kinetics.
To build a model set of varying complexity, they used different combinations of first-order decay laws and
Monod kinetics for ammonification and nitrification. They found that Monod kinetics are the best suited
choice for modeling this lab-scale experiment. However, they emphasize that the model choice depends on
the temporal stage of the experiment: While bacterial growth was a dominating process at the beginning of
the experiment (supporting the model with Monod kinetics), it was negligible after a while, thus the process
could be described by simpler models with first-order kinetics.

The present study considers reactive transport models of different complexity and assesses in a probabilistic
framework how well the different simplified models can mimic the system behavior of a computationally
expensive reference model. We investigate a set of five models that simulate aerobic respiration and denitri-
fication in a heterogeneous aquifer at quasi steady state, that is, in a regime for which Brunetti et al. (2020)
considered first-order kinetics justifiable. However, in contrast to the latter authors we consider spatial
distributions and the interaction between reactive turnover and physical transport.

We use the model justifiability analysis proposed by Schoniger, Illman, et al. (2015) to assess the following
research questions: Are the simplified models sufficiently unbiased and flexible enough to reproduce the
entire predictive distribution of the computationally expensive reference model? Can we select a simplified
model that represents the reference model best or discard a model that performs unsatisfyingly?

With this analysis, we address the specific problem of choosing a model from a fixed set in the presence of
parameter uncertainty. We are not concerned with a full uncertainty assessment, considering, for example,
the uncertainty in the underlying flow field due to uncertain hydraulic parameters. We also emphasize that
the goal is not to quantify conceptual uncertainty, since this is logically impossible for a finite set of model
alternatives (e.g., Hoge et al., 2019; Nearing & Gupta, 2018).

In summary, our proposed method ranks pre-selected simplified models considering their complete dis-
tribution of possible parameter values by identifying the optimal Bayesian tradeoff between performance
(agreement with reference data) and parsimony. This systematic assessment of model versions is a novel
extension of the justifiability analysis in the context of model simplification. The paper is structured as fol-
lows: We present the methods in section 2, starting with the introduction of BMS in subsection 2.1 as the basis
for the model justifiability analysis in section 2.2. The different reactive transport models and their under-
lying assumptions are explained in section 3, followed by details on setup and implementation in section 4.
Results are presented and discussed in section 5. We summarize our findings and provide conclusions in
section 6.

2. Methods
2.1. BMS

BMS (e.g., Raftery, 1995; Wasserman, 2000) is a well-known approach to address conceptual uncertainty.
For this method, it is assumed that the data generating process is contained in the model set (Bernardo et al.,
1999; Vehtari & Ojanen, 2012). This assumption is appropriate in our study, as we compare a set of models
against a predefined “true” reference model.

In the BMS framework, model weights are calculated that reflect the probability of each model to be the true
one. In the limit of infinite data set size, BMS will identify this true model by assigning it a weight of 100%
(Hoge et al., 2019). In the case of finite data, however, the identification of the true model may be impossible
because two or more models receive similar weights (Schoniger, Illman, et al., 2015).
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Figure 1. Schematic illustration of the model confusion matrix for two
models, i and j. Blue box: likelihood of a single realization drawn from
Model j given a realization drawn from Model i. Red box: BME value
(average likelihood) of Model j given a single realization k of Model i. This
BME value is normalized by the sum of the BME values of all models for
this data set k, which yields a single model weight wy.. Dashed box:
Averaging these weights over all synthetic data sets of the generating
Model i yields the model weight wy, that is, the expected weight of Model j

As a starting point, prior weights P (M;) are formulated. In Bayesian
statistics, a prior probability reflects the modeler's belief based on expert
knowledge. It is formulated before measurements (or synthetic reference
data) y, is taken into account. In the BMS framework, a typical choice
are uniform prior weights P (Mi) = Nim that treat all models in the set as

equally likely.

After formulating prior weights P (Ml-), they are updated to posterior
weights P (M;|y,)based on Bayes' theorem:

p (YO|Mi) p (Mz)
P (Mi |yO) = N, s
Zj:l p (onMj) P (MJ)
in which p (y,|M;) is the so-called BME. BME is also known as marginal
likelihood because it can be calculated by averaging (marginalizing) over
the model's parameter space u; (Kass & Raftery, 1995; Schoniger et al.,
2014):

@

p (YOlMi) = /P (YO|Mi’ui)p (uilMi) du,. @)

u;

BME thus quantifies the model's average likelihood to have generated the
data y, independent of the parameter choice. Equation 2 can be evalu-
ated by sampling the prior distribution of the model parameters p (ui |Mi)
using N,,- Monte Carlo samples and evaluating the likelihood of the ref-
erence data y, given the predictions based on the parameter vector u; of
the model M; (Schoniger et al., 2014):

. s Numc
given that Model i is true. 1
b (YOlMi) ~ N p (YO|Mi,uik) s 3)
MC k=1
where k = 1, ..., Ny, enumerates the Monte Carlo realizations, so that u; is parameter realization

k for model M,. This integral over the model's parameter space ensures an optimal tradeoff between
goodness-of-fit and parsimony. A narrow, bias-free predictive distribution will obtain a high BME value,
while both a very wide distribution and a heavily biased (but narrow) distribution will be punished with a
lower value.

2.2. Model Justifiability Analysis

In the model justifiability analysis introduced by Schoniger, Illman, et al. (2015), a set of models are mutually
tested against each other by building the so-called “model confusion matrix” (cf. Figure 1). Confusion matri-
ces are often used in machine learning, particularly in the field of statistical classification (e.g., Alpaydin,
2004). It is a special type of contingency table, which compares the actual with the predicted classification.
Thus, it is easily visible whether an object is misclassified (“confused”).

This concept has been transferred to the problem of model identification: we let the models take turns in
generating the data set y,, which serves as “synthetic truth,” and then evaluate how well each data gener-
ating model can be identified through the eyes of BMS. If one of the non-data generating models receives a
nonnegligible Bayesian model weight (Equation 1), this can be seen as “confusion.”

Implementation-wise, we let each of the N, models generate N,,. data sets y, by drawing random samples
from their prior parameter distributions p (uilMi). Running the models with these parameters yields pre-
dictive distributions. These predictions are treated as synthetic truth y,. In this role, we refer to the models
as “data generating” and list them in the column labels of the model confusion matrix (Figure 1).

Then, all predictions y of each model (including the one that generated the synthetic truth) are compared
to the reference data set y,. We refer to these models as “evaluating” and list them in the row labels of
the matrix. To compare a single data set pair of the “generating” and the “evaluating” model (blue box in
Figure 1), we calculate the likelihood p (y,; |M u jl) of the reference data set y, ; generated by Model M;
with the parameter vector uy, given the evaluating Model M; with the parameter vector u.
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Table 1 Av.eraging the.likelihoodtc, over all parameter r.ealizations of the eval-
Interpretation of Bayes Factors According to Kass and Raftery (1995) uating model (i.e., averaging over Ny, rows) yields a BME value (see
logyo(BF) Evidence against M, Equation 2 and red b.ox in Flgure. 1). Based on the BME Vz.ilues of al.l mf)d-
005 o P : els, we calculate their model weights P (M ; [Yo.x ) for a single realization

e not wort. more than a bare mention k of the data generating model M; according to Equation 1. These model

0.5-1 substantial weights depend on the reference data set 'y, ; chosen from the data gen-
1-2 strong

erating model (column). Therefore, we also average over all N, columns
>2 decisive of the data generating model to obtain the average weight of Model j given
the data produced by Model i (dashed box in Figure 1).

The resulting confusion matrix has the size N,, xN,,. Its main-diagonal elements are the so-called
self-identification weights and can be used for assessing the justifiability of the models’ complexity (see
Schoniger, Illman, et al., 2015). The off-diagonal elements can be interpreted as a measure of similarity
between two models. For an infinite data set size, the true model will be identified with a weight of 100%
and all other models will receive a weight of 0 (Schoniger, Illman, et al., 2015). For finite data sets, we can
observe that the models “confuse” their own predictions with the ones of the competing models. In this
study, we are interested in the similarity of the simplified models to the complex reference model. Therefore,
we focus on the model weights in the first column of the model confusion matrix. We repeat the calculation
of model weights over growing data sets. Please note that, in this analysis, the data are not based on field or
lab experiments. Thus, the number of data points is only limited by the grid resolution and not by the effort
of acquiring field or lab measurements.

2.3. Bayes Factor

Another possibility to analyze BME values is as Bayes Factors (Jeffreys, 1961; Kass & Raftery, 1995), which
reflects the decisiveness of model choice. The Bayes factor quantifies the evidence of one model M; (in
our analysis the reference model, denoted as M1) compared to an alternative M; (in our analysis the four
simplified models, denoted as M2-MS5).

The Bayes Factor between two models is defined as the ratio of their respective BME values. It can be
obtained from posterior odds, that is, the ratio of posterior model weights according to Equation 1, multiplied
with the models’ prior odds:

P(Mi|YO) P(Mj) _ P(y0|Mi)

P M) = a1y P (M)~ Plolh)’

154 J

“)

Jeffreys (1961) introduced categories for interpreting the Bayes Factor as evidence against M; (here: evidence
against the simplified models). We will use the slightly modified scale suggested by Kass and Raftery (1995)
as shown in Table 1.

Accordingly, negative log,o(BF) values favor M; over M; (here: the simplified over the reference model).

We calculate Bayes factors for each data set realization generated by the reference model and evaluate the
resulting cumulative distribution functions of Bayes factors.

3. Description of the Models

We use the model justifiability analysis to test whether four simplified models are suitable alternatives to
the most detailed reference model for simulating aerobic respiration and denitrification in a heterogeneous
aquifer. Table 2 gives an overview of the models and in the sections 3.1 to 3.5, we describe the details of each
model's conceptualization and their underlying assumptions. Further details of the models can be found in
Sanz-Prat et al. (2015), Sanz-Prat, Lu, Amos, et al. (2016), and Loschko et al. (2016).

The considered models are based on different conceptualizations and partly differ considerably in their
computational costs. The most complex reference model (M1) is a spatially explicit advection-dispersion-
reaction model with biomass growth and decay of a facultative anaerobic organism and transport of dis-
solved oxygen, nitrate, and dissolved organic carbon (DOC). The DOC is released from the aquifer matrix.
From a biogeochemical perspective this is already a highly simplified model as it neglects the reactive
intermediates nitrite, nitric oxide, and nitrous oxide, as well as the presence and interactions of different
organisms.
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Table 2

Overview of the Model Set

Model Spatial conceptualization Considered processes Number of parameters Run time (s)

M1 spatially explicit dispersion, dynamic biomass 10 38.7

M2 spatially explicit dynamic biomass (Monod) 10 33.3

M3 spatially explicit dispersion 10 31.3

M4 streamline based cum. rel. reactivity (Monod) 5 0.1

M5 streamline based cum. rel. reactivity (zeroth- first-order decay) 2 0.1

Note. Runtimes are averaged over 10,000 runs on a standard computer with IntelCore i7 CPU @ 3.60 GHz, 32GB RAM.

In contrast to our reference model, many aquifer- or catchment-scale models on nitrate transport neglect
almost all details of the reactive system and describe denitrification as a simple first-order decay process
that may depend on the organic carbon content of the soil (e.g., Almasri & Kaluarachchi, 2007; Liu et al.,
2018; Zhang et al., 2020), even abandoning inhibition of denitrification by dissolved oxygen. The notion of
these models is that mechanistic details of the reactions are averaged out in large-scale applications and an
effective first-order rate law emerges.

We will test simplified reaction models that stand somewhere between the reference model and first-order
laws. As a first approach of simplification, we neglect mixing due to dispersion (M2) and assume that
the mixing of electron donors (DOC) and acceptors (dissolved oxygen and nitrate) is mainly caused by
mass transfer between the immobile matrix and mobile groundwater. We thereby follow the paradigm of
stochastic-convective transport (e.g., Atchley et al., 2013; Dagan & Nguyen, 1989).

We take a second approach to simplification by neglecting biomass growth and decay (M3): as demonstrated
by Sanz-Prat et al. (2015), Sanz-Prat, Lu, Amos, et al. ( 2016) and Loschko et al. (2016b), dynamic biomass
growth may not be needed in reactive transport models of dissolved oxygen and nitrate if longer times of
nitrate loading are considered. In essence, bacteria grow so fast that abiotic controls, namely, the kinetics
of electron donor release from the aquifer matrix, take over. The inhibition by dissolved oxygen, however,
suppresses denitrification in young groundwater and should not be neglected.

Under the assumptions discussed for Model M2, self-organization of reactive zones according to advective
travel times or times of exposure to reactive aquifer material have been claimed (e.g., Sanz-Prat, Lu, Amos,
et al., 2016). This means that, even though biomass, reactive turnover and solute concentrations depend on
each other and on physical transport in a seemingly complex way, spatial patterns naturally evolve that are
associated with travel or exposure times. Exploiting these conditions leads to our model simplifications M4
and M5: These models are not spatially explicit but are based on the so-called cumulative relative reactivity
approach of Loschko et al. (2016). This method replaces the time in the reaction equation with the travel time
of a water parcel through the aquifer and accounts for varying reactivity along the travel path. This simpli-
fication is only valid if certain assumptions, like a diffusive source of the considered substance, are fulfilled
(Loschko et al., 2016). In M4, the aerobic respiration and denitrification are described by standard Monod
kinetics with noncompetitive inhibition of denitrification while oxygen is present. M5 uses simplified reac-
tion kinetics compared to M4: Aerobic respiration is described by zeroth-order decay and denitrification is
modeled by first-order decay.

In the following section, we describe the details of each model's conceptualization and the assumptions
that underlie their simplifications. The values we chose for the fixed parameters are listed in Table Al, the
distributions that are used for sampling the parameters that are considered uncertain are given in Table A4
for M1-M3 and in Table A5 for M4 and M5.
3.1. Model M1: Reference Model
Model M1 solves the classical advection-dispersion-reaction equation of the dissolved species i (e.g., Loschko
et al., 2016; Steefel & Lichtner, 1998):

oc;
E+V~Vci—v~(DVci)=ri(c(x,t),x,t), (5)

in which ¢; (mol/L) is the concentration of the dissolved species i, which depends on both the spatial coor-
dinates x (m) and time ¢t (s); v (m/s) denotes the linear average velocity; D (m?/s) is the dispersion tensor,
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and r; (mol/[lIs]) is the reaction rate of component i, which potentially depends on all concentrations, the
spatial position and time.

For each immobile component j, the concentration change is given by

dc;

— =r'(cx1,c"(x10). (6)

ot
In this study, the dissolved species are oxygen (0,), nitrate (NO3) and DOC. The concentrations of these
mobile species are denoted c; (x, t) (mol/L) whereas the concentration of the immobile species in the soil
matrix are given in moles of carbon per volume of water c;f (%, t) (mol./L). The immobile species are the
biomass of facultative anaerobic microbes and the natural organic matter (NOM), which serves as sole
electron donor.

The reaction rates in Equation 7 to Equation 14 are adapted from Sanz-Prat et al. (2015) and Loschko et al.
(2018). The degradation rates r (mol/[1s]) of oxygen and nitrate (Equations 7 and 9) are modeled by standard
dual-Monod kinetics (Equations 8 and 10) (Sanz-Prat et al., 2015). Denitrification is inhibited by dissolved
oxygen, which is modeled by the noncompetitive inhibition term in Equation 10.

fo, = —— (7
2 YOZ
CO c
max 2 DOC S
Ho, = /’lo ° : " (8)
2 2 Co,+Kp, Cpoct+Kpoc
#No; ©)
yo; = —
3 YNO;
inh
CNo; c Ky
3 DOC 0, ‘
Hnoy = va”{if : Cza(; (10)

¢No; +Kno;  Cpoc + Kpoc ¢, + Kgf‘

Here, u; (1/s)is the specific growth rate of component i and Y; (mol./mol,) is the yield coefficient. K; (mol/L)
is the Monod constant of the species i and KiO"zh (mol/L)is the inhibition constant of oxygen in denitrification.

The reaction rate of DOC, rp, (mol/[ls]), and the rate of its release from the soil matrix, rlr)e(l)c(x, 1)
(mol/[1s]), are given in Equations 11 and 12, respectively. To model the release of DOC from natural organic
matter (NOM) of the aquifer matrix, we choose a linear driving-force-expression. We assume an infinite sup-
ply of NOM; that is, the long-term depletion of NOM is neglected because this process usually takes decades

(Loschko et al., 2018; 2019).

Ho 5 Hno;
1 2 3
"poc =Tpoc =\ 7t 11)
poc Yo, 4 Yo
1 1 3
rpoc = kpoc * (Choc = €poc) - (12)
The parameter ki, . (1/s) is the maximal release rate of DOC from NOM. The reaction rate r,,, of the immo-

bile biomass is described in Equation 13 with a decay term ry,, given in Equation 14. In Equation 13, ¢jie
(mol./L) is the maximum biomass concentration that accounts for a limited carrying capacity. Biomass
decay is modeled using first-order decay with rate coefficient kg ,, (1/s). It is assumed that the biomass
concentration does not fall below a minimum concentration CZZC" (mol./s).

C*
b
Fpae = (/’loxy + /"m‘t) . <1 - Cmﬁ) ~ Ve (13)
bac
Fdec = kdec : (Cbac - Cbm;:) . (14)
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Solute transport (Equation 5) and reactions (Equations 6-14) are solved together by a fully implicit coupling
scheme using Newton-Raphson iteration with adaptive time stepping. This yields the concentrations of all
compounds dependent on location x and time .

The key assumptions of the reference model are as follows:

1. The NOM concentration is considered constant in time, neglecting the potential decrease of the soil's
reaction potential. This assumption seems to be justifiable if the considered processes act on short time
scales compared to the depletion of the reaction partners in the soil matrix. According to Loschko et al.
(2018), this depletion was observed in aquifers after several years of ongoing denitrification.

2. Biomass is considered immobile. This means that transport of bacteria, including attachment, detach-
ment, straining, and motility, is neglected.

3. Theentire biomass participating in the reactions of the dissolved compounds is summarized into a single
species.

4. Reaction intermediates are not considered.

5. DOC is treated like a defined species with constant properties.

6. The hydraulic conductivity field is known.

Based on the reference Model M1, we follow two different branches for simplification: neglecting dispersion
(M2) and neglecting biomass growth and decay (M3).

3.2. Model M2: Neglecting Dispersion

Model M2 has the same conceptual basis as the reference Model M1. However, in contrast to Model M1,
dispersion is neglected. Thus, Equation 5 simplifies to

%+V~Vci=ri(c(x,t),x,t). (15)
For substances that are introduced diffusively and react with the soil matrix, it is often assumed that dis-
persive mixing has a minor influence, especially if we are interested in an integral quantity such as the
concentration in a groundwater well (e.g., Loschko et al., 2016; 2018). This is typically the case for nitrate
of agricultural origin, which is distributed over a relatively large surface area. In contrast, neglected disper-
sion would be inappropriate for point-like sources such as a contamination plume from a leakage, or when
considering the dynamics of an invasion front (e.g., Cirpka et al., 2012).

In our later analyses and discussions, we consider two versions of Model M2 to reflect potential differences
in the way that different modelers approach model simplification: In case of Model M2a, we use the same
parameter distributions as for Model M1. However, a modeler might decide to modify these parameters to
compensate for the effects caused by neglecting dispersion. Therefore, in the second scenario M2b, we shift
the prior distribution of the maximum specific growth rates toward higher values and use a log-uniform
distribution.

3.3. Model M3: Neglecting Biomass Growth and Decay

Model M3 is based on the same spatially explicit description as the Models M1 and M2, but it neglects the
growth and decay of biomass. This means that the biomass concentration remains at its initial value and that
Equation 13 simplifies to r,,. = 0. As a consequence, the solute concentrations and the release of DOC from
the soil matrix are the only variables that affect the reaction rates of nitrate, oxygen, and DOC (Equations
7-11). As constant biomass concentration we choose the maximum biomass concentration from Models M1
and M2 as an upper limit and sample the parameter from a uniform distribution between 70% and 100% of
the value used in the Models M1 and M2.

The underlying assumption of this simplified model is that typical time scales for the establishment of
the microbial community are much smaller than the time scales over which nitrate is introduced into
groundwater.

3.4. Model M4: Cumulative Relative Reactivity With Monod Kinetics

Models M4 and M5 follow a completely different approach compared to the aforementioned ones. These
models are based on the concept of advective travel times and cumulative relative reactivity. The main idea
is to follow the path of a water parcel through the aquifer. Along its trajectory, the water parcel is exposed to
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geological zones of varying reactivity. The method assumes that the variability in reactivity can be expressed
as a fixed ratio of the rate of a chemical reaction for given concentrations to a reference reaction rate at the
same concentrations. This relative reactivity is integrated over the travel time of the water parcel, yielding
the cumulative relative reactivity. This quantity replaces time in the ordinary differential equations (ODEs)
describing the reaction rates of the solutes. In the final step, the concentrations at each location and time can
be determined by mapping from cumulative relative reactivity to space. In the following section, the concept
is briefly outlined and we refer the reader to Loschko et al. (2016) for a detailed derivation and testing of
the concept.

Within the concept of cumulative relative reactivity, the reaction rates in Equation 5 are split up into two
parts:

ricxt,x )= fXr,(cxt), (16)

where r,(c(x, t)) (mol/[ls]) is the concentration-dependent reference reaction rate and f(x) (-) is the relative
reactivity, which is a concentration-independent, spatially variable scalar multiplier (Loschko et al., 2016).
In the given application, the dimensionless relative reactivity f (x) accounts for the existence and strength
of an electron donor in the soil matrix and specifies the intensity of the considered reaction compared to
the reference reaction rate r, (c (x, t)). Thus, f (x) is directly related to the concentration of NOM, which
is assumed to remain at quasi steady state. Loschko et al. (2016) give an example for the interpretation of
the relative reactivity and the reference reaction rate: There are three factors influencing the reaction rate
of oxygen at a given location in space and time, (1) the oxygen concentration, (2) the nitrate concentration,
and (3) the availability of a reaction partner in the matrix. The reference reaction rate r, (c (x, t)) includes
the first two, whereas the third belongs to the relative reactivity f (x).

In the Lagrangian perspective, a water parcel is traced through the domain. Under steady state flow con-
ditions, the position x of such a parcel depends on its starting location x,, its velocity v(x, t) and its travel
time 7. Thus,

X (7]%) =%, +/OTV(X(T*|X0)) dr,. 17)

Analogously, the cumulative relative reactivity F (T) can be defined as the integral of the relative reactivity
f (x) along the travel time and therefore as a measure of how long this parcel has been exposed to regions
of strong reactivity:

FX)=F (1) ®) = /0 [ (x(71%)) dz,. (18)

Combining Equations 15, 16, and 18 yields

dc
ap T © (19)

c(t) =c(x0.4) -

The concentrations of the solutes can be obtained by solving the system of ODEs in Equation 19 and mapping
it to the spatial domain. The mapping is defined by the origin, travel time, and cumulative relative reactivity
of a water parcel:

cX. 1) =copp (FX 1), ¢y (X (X, 0), =7 (x,1))). (20)

This approach reduces computation times tremendously compared to the spatially explicit models
(cf. Table 2).

In Model M4, the aerobic respiration and denitrification are described by standard Monod kinetics with
noncompetitive inhibition of denitrification by dissolved oxygen:

r0.0z = == * Tmax (21)
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Figure 2. (a) Conductivity field, (b) NOM field, and (c) flow net of the example problem.
inh
. B dCNo; _ Cno; . Ko2 | NOy 22)
O,NO; - dF - max

inh
eno; + Koy ¢o, + K]

in which r!_(mol/[ls]) is the maximum reaction rate of the dissolved species i for a relative reactivity of
fx) =1
3.5. Model M5: Cumulative Relative Reactivity With Simplified Kinetics

Model M5 has the same conceptual basis as Model M4, but it uses simplified reaction kinetics. Typically,
the Monod coefficients K, and K" are relatively small, whereas Ko; is comparatively large (Loschko et
al., 2016). These assumptions simplify the Monod terms in Equations 21 and 22 to zeroth-order decay for
aerobic respiration and first-order decay for denitrification:

0, .
—Vee ifco >0
[ oa— 2 23
0.0, {0 else (23)
0 ifco, >0
— 2
Tono; = {—kNO3 “CNo; else, 24

in which kNo; (1/s) is the first-order decay coefficient of nitrate. While in Model M4 denitrification is only
inhibited when oxygen is available, it is completely prohibited in Model M5. Note that the ODE system of
Equation 19 with the rate laws of Equations 23 and 24 has a simple analytical solution.

4. Setup and Implementation

The scenario considered in this study consists of a two-dimensional rectangular domain of size 50 m X 25m
with a numerical grid spacing of 0.2 m in each direction. For the flow field, we generate a multi-Gaussian
random field with an exponential covariance function and correlation lengths of 4 m X 1 m using the spectral
method of Dietrich and Newsam (1997). The geometric mean of the conductivity is set to K, = 107> m/s and
the variance of the log-hydraulic conductivity is o . = 1. The flow field is obtained by solving the ground-
water flow equation with fixed-head boundary conditions at the left and right boundaries and no-flow
conditions at the top and bottom boundaries on this parameter field. For the relative reactivity field, we
assume anticorrelation of NOM content and hydraulic conductivity on a larger scale, because areas with
low hydraulic conductivity tend to have a high NOM content (Loschko et al., 2016), while the respective
small-scale deviations are uncorrelated. Figure 2 shows (a) the spatial distribution of the log-hydraulic
conductivity, (b) the NOM field, and (c) the streamline-oriented grid. All geometrical, geostatistical,
hydraulic, and transport parameters are listed in Table Al.

Water with dissolved oxygen (cng = 2.5-10"*mol/L) and nitrate (cj(}f _ = 10~*mol/L) infiltrates the system
from the left. The inflow concentrations are constant over time. No-ﬂS()w boundary conditions are assigned
to the top and the bottom boundaries, at the left and the right boundary the hydraulic head is fixed. The head
difference of 0.2 m leads to a moderate average velocity of 0.4 m/day. Initially, nitrate and oxygen are absent
in the domain. For the spatially explicit models (M1, M2, and M3), the initial concentrations of DOC and
biomass are set to the saturation concentration of DOC (¢ = 3 .10~* mol/L) and the maximal biomass

. DOC
concentration (¢, = 83 pmol/L). The initial and boundary conditions are summarized in Table A2.
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For the Bayesian model analysis, we sample the parameters from their prior distributions, which are given
in Table A4 for the spatially explicit models and in Table A5for the cumulative relative reactivity models.
We define the likelihood function p (y,|M;, u;,) as a Gaussian distribution with mean y = 0. For the mea-
surement error, we assume a standard deviation of ¢,,,,, = 107> mol/L for each individual measurement
(concentration in one streamtube). As we consider the normalized concentration ¢= ¢/c;,p,,,, We also nor-
malize the standard deviation 6 = 6,,.45/Cips10w = 0.1 mol/L. Our quantity of interest is the normalized
concentration averaged over all ng, streamtubes at a certain cross section. Because the concentrations in adja-
cent streamtubes are correlated, we have to account for the correlation of the measurement error variances:
We assume equal variance ¢%(c) = 0.01 mol?/L? for the concentration in each streamtube and calculate the
correlation p between the concentrations in each streamtube at a certain cross section. The variance of the
mean can be calculated as ¢ (¢) = # + "Z—_l po2(c). This results in a slightly decreased variance related to
the measurement error of the mean concentration o2 (©) = 0.0092 mol?/L2.

We choose uniform prior model weights P (Mi) = 1/N,,, which means all models are considered as equally
likely before seeing any reference data set.

4.1. Numerical Methods

4.1.1. Reactive Transport Models

Heads and stream function are solved by the Finite Element Method with bilinear elements. In the next
step, a streamline-oriented grid (Cirpka et al., 1999a) is generated with n, = 125 streamtubes and n,,, = 250
streamtube sections. Figure 2c shows the resulting flow net. We compute the mean groundwater age
(Goode, 1996) and cumulative relative reactivity (Equations 17 and 18) along the streamtubes. In Mod-
els M1 to M3, advective-dispersive-reactive transport is solved by cell-centered Finite Volumes on the
streamline-oriented grid (Cirpka et al., 1999b). Reactions and transport are coupled with a fully implicit
scheme using Newton-Raphson iteration with adaptive time stepping, as already done by Loschko et al.
(2016).

4.1.2. Bayesian Model Justifiability Analysis

We calculate the BME values by averaging the likelihood values obtained from N,,. = 10* Monte Carlo
samples drawn from the parameter priors (Equation 3). The convergence of the BME values is checked by
observing that the values reach a steady state over increasing sample size and by determining the effective
sample size (ESS) (Liu, 2004). The ESS indicates how many realizations contribute significantly to the BME
estimate (Schoniger, Illman, et al., 2015). The ESS values range from 458 for M1 to 2866 for M3 and are
hence comfortably high to ensure stable results.

The quantity of interest used for the justifiability analysis is the normalized nitrate concentration, aver-
aged over 125 streamtubes at N cross sections. The number of cross sections considered is varied between
one and 150 cross sections. Remember that we can afford arbitrarily large data sets, because we work in a
synthetic setting and data set size is only limited by grid resolution. The very high resolution data sets do
not serve to mimic realistic field conditions but to test and compare the models against each other on a
detailed grid.

5. Results and Discussion

The normalized concentrations c/c, of nitrate at different cross sections predicted by the six models are
shown in Figure 3. The values are averaged over all streamlines of the respective cross section. Based on
this figure, we want to analyze (1) how similar the models are independent of the parameter choice, that
is, before they are calibrated, and (2) how well the simplified Models M2-M5 can reproduce a specific ref-
erence data set that was generated by the reference Model M1. This reference data set is based on a single
realization using parameters that are a typical expert choice (cf. Table A3) and is shown as a black line in
Figure 3. All shaded areas illustrate the 90% credible intervals of the model predictions in three different
states: The light gray intervals show the prior predictions, that is, the models’ behavior over the range of
parameters that was considered plausible before they are conditioned on data. The prior means are shown
as gray lines. The red intervals show the posterior predictions after the models have been calibrated on the
flux-weighted nitrate concentration in a single cross section at the outflow boundary. The red lines repre-
sent the corresponding posterior means. The dark gray intervals illustrate the posterior predictions after the
models have been calibrated on the reference values at 150 equidistant cross sections. The corresponding
posterior ensemble means are shown as green lines.
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Figure 3. Ninety percent credible intervals for prior state (light gray), posterior after calibrating on one data point at
the outflow (red), and posterior after calibrating on 150 equidistant data points (dark gray). Prior means (light gray
line), posterior means after calibrating on one data point at the outflow (red line), and posterior means after calibrating
on 150 equidistant data points (green line). The reference data (black line) is an arbitrarily chosen realization of M1.

5.1. Prior Predictive Distributions

The analysis of the prior intervals shows that the two scenarios considered for Model M2 differ substantially.
While the interval predicted by M2a is remarkably similar to the one predicted by the reference Model M1,
M2b has a much higher variance than all other models. This is caused by the attempt to compensate for a
neglected process by changing the parameter prior distributions in Scenario 2b. From the predictions made
by Model M2a, we can conclude that dispersion is not a dominating process for the considered quantity of
interest in the tested setup and therefore it can be neglected without any compensation.

From the prior predictions of M3, it can be seen that the model predicts rather low nitrate concentrations
(i.e., high nitrate depletion) and cannot reproduce the cases with very little or even no nitrate depletion
in M1. Again, this is an issue related to compensation mechanisms in simplified models: When biomass
dynamics are neglected, the biomass concentration is fixed at its initial value. In our setup, this value is sam-
pled from a uniform distribution ranging between 70% and 100% of the maximum biomass concentration in
the reference model. However, this choice tends to cause higher nitrate depletion than the reference model.
A closer analysis of the reference Model M1 reveals that the realizations with very little nitrate reduction are
characterized by high decay coefficients of bacteria (k) and low values of the maximum specific growth
rates (u,?lflx, ;422,3:). These cases cannot be reproduced by Model M3.

The most simplified Model M5 has a similar prior predictive range as the reference Model M1, while the
predictions of M4 show a higher variance than Model M1, though it has only 2 parameters while M1 has 10.
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If we think about model complexity only in terms of parametric complexity or “number of parameters
included,” this result might be surprising. However, the more we simplify a model, the more “effective” (as
opposed to mechanistic) its process description becomes. This in turn makes it more difficult to define rea-
sonable prior ranges of the effective parameters, as they lose their physical meaning. This effect becomes
clearly visible in the prior predictions of the Models M2b, M3, and M4.

The prior mean of predictions by M1 yields relatively high nitrate concentrations (more than 90% of the
initial nitrate concentration reaches the outflow boundary). This is because the predictive distribution of M1
is strongly skewed toward high nitrate concentrations. The same holds for the prior mean of Model M2a. The
prior means of M2b to M4 range between 65% and 75% of the inflow concentration at the outflow boundary,
while M5 also predicts slightly higher concentrations on average (80% of the initial nitrate concentration
reaches the outflow boundary).

5.2. Posterior Predictive Distributions

The posterior credible intervals for the case when only the concentration at the outflow boundary was
used for conditioning the models (red intervals) are relatively similar for M2b-M5. The reference Model
M1 still covers the range of little nitrate depletion (remember that also M1 was calibrated on its own ref-
erence data set), with the highly similar Model M2a showing the same behavior. The posterior means (red
line) of M2b-MS5 reproduce the reference data quite accurately. Interestingly, the data generating Model M1
performs worse than the simplified Models M2b-M5. The reason for this is the very high exceedance prob-
ability of the reference data set (black line) in the predictive distribution of M1. This might be surprising
as the parameters that were chosen for the reference data set are mostly located centrally in the prescribed
range (cf. Tables A3 and A4). However, the nonlinearity of the simulated processes leads to a highly skewed
predictive distribution.

Using 150 cross sections as calibration data leads to a considerable shrinkage of the posterior intervals (dark
gray) for all models. In this case, the posterior mean (green line) of all models reproduces the reference data
set accurately.

In summary, Figure 3 implies that the Models M2a, M4, and M5 are suitable simplifications of the reference
model if quasi steady state concentrations are considered. However, the analysis so far did not take the
models’ complexity into account. This will be done by the model justifiability analysis, presented in the
next section. The prior credible intervals of M2b show that a modeler's uncertainty about compensation
mechanisms might lead to overly wide prior choices. For M3, a similar issue became evident: the assumption
about the biomass concentration led to higher nitrate depletion than in the reference model. Of course, the
cumulative relative reactivity models (M4 and M5) also involve effective parameters. Yet, these models have
less parameters than M2 and M3, which makes their predictive distributions less prone to difficulties in the
prior formulation.

5.3. Model Justifiability Analysis

All conclusions drawn from the interpretation of the posterior distributions in Figure 3 are conditional on
the realization of M1 that was chosen as reference data. To gain a more comprehensive understanding of
how suitable Models M2 to M5 are as simplifications of the reference Model M1, we have to consider the
overall prediction space of the reference Model M1 instead of picking just a single, somewhat arbitrary real-
ization as reference data set. The model justifiability analysis as described in section 2.2 with M1 as the
data generating model fulfills exactly this task. The resulting model weights allow statements about the
overall suitability of the simplified models, integrated over the range of data sets that are plausible accord-
ing to the reference Model M1. Here, suitability means how well the models score in a trade-off between
goodness-of-fit to reference data and parsimony.

Figure 4a shows the weights each model receives when the reference Model M1 has generated the data.
Starting from equal prior weights of P (M) = 0.2, the weights of Models M1 and M2a are very similar and
increase monotonically. This confirms the conclusion drawn from Figure 3 that M2a is highly similar to M1.
Beyond that, the high weights for Model M2a show that, even for the smallest data set, it scores well inde-
pendent of the parameter choice and in terms of the tradeoff between model complexity and goodness-of-fit.
With increasing data set size, the weights for M3 decrease monotonically. This means that with more data,
the dissimilarity between M1 and M3 becomes more evident. The weights for M4 and M5 decrease only at
a very slow rate. This shows that, even with the largest data set, there is “confusion” among these models.
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Figure 4. Average model weights over increasing data set size, when M1 generates the data. (a) Using the same
parameter distributions for M1 and M2. (b) Testing parameter distributions that compensate for the missing dispersion
in M2.

Figure 4b also shows the weights each model receives, when the reference Model M1 has generated the
data, but this time replacing Model M2a with its changed-prior variant M2b. As in Scenario A, Model M3
scores worst. Model M2b receives much smaller weights than M2a, because the wide prior is now penalized
as overly complex through the eyes of BMS. The weight of M2b is similar to those of M4 and MS5. For this
modeling scenario, the analyst would now have to decide whether all three models are similarly good can-
didates to replace M1. To this end, we investigate the similarity between these three candidate models by
constructing a 3 X 3 model confusion matrix. We expect that Models M4 and M5 are actually very similar, as
they are based on the same modeling concept. From conceptual considerations and the output distributions
in Figure 3, we know that Model M2b differs significantly from M4 and M5. The similarity analysis based
on the model confusion matrix will now reveal whether the differences are large enough for model discrim-
ination via BMS. Further, we can learn from this analysis whether M2b scores a similar tradeoff between
performance and parsimony as M4 and M5. If it did, we would see similar weights for all three models in
the off-diagonal entries of the model confusion matrices; here, however, we expect to see a punishment of
the complexity (wide prior distribution) of M2b instead, leading to clearly lower weights for M2b if M4 or
M5 generate the data.

Figure 5 shows model confusion matrices for increasing data set sizes. The highest weight for each data
generating model (column) is printed in bold. For Figure 5a, only the flux-weighted concentration at the
outflow boundary was used for the analysis, while Figures 5b and 5c are based on a data set of 25 and 150
cross sections, respectively. The weights on the main-diagonal reflect the ability of each model to identify its
own predictions (self-identification weights). The off-diagonal elements are the weights each model receives
when the reference data was generated by another model and can be interpreted as a measure of model
similarity.

Data generated by Data generated by Data generated by
M2b M4 M5 M2b M4 M5 M2b M4 M5

M2b
M2b

0.36 | 0.30 | 0.30

M2b

041 | 026 @ 0.27 0.50 | 0.22 | 0.22

0.33 | 0.35 | 0.33 0.30 | 0.39 | 0.35 0.25 0.35

Model weights for
M4

Model weights for
M4

Model weights for
M4

0.31 | 0.35 0.37 0.29 | 0.35 | 0.39 025 | 0.34 042

M5
M5
M5

(a) (b) ()

Figure 5. Model confusion matrices for M2b, M4, M5 based on concentrations in (a) a single cross section and (b) 25
and (c) 150 cross sections. Columns refer to the models that generate the data, rows to the models that we calculate the
weights for. The highest weight for each data generating model (column) is printed in bold.
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Figure 6. Average model weights when M1 generates the data over
increasing data set size for the reduced model set.

When the size of the data set is increased, the self-identification weights
of all models increase (see Figures 5a-5c). This agrees with the theoretical
expectation that, in the BMS framework, the true model can be identi-
fied in the limit of infinite data set size (Schoniger, Illman, et al., 2015).
However, in the setting we analyze here, the self-identification weights
increase only slowly. This is probably due to correlations between the con-
centrations in the individual cross sections, so that more data only add
limited information with respect to model choice.

In the last two columns (when M4 and M5 generated the data), the
“confusion” among the models remains strong: Even with the largest
data set size, there is not yet a clear picture of model identification. The
off-diagonal elements reveal that M4 and M5 are actually similar. M2,
however, does not show such a strong confusion with other models. This
confirms our attempt to explain the similar weights of M2b, M4, and M5
when the reference Model M1 generated the data: The confusion matrices
imply that M4 and M5 are almost redundant for the purpose of predict-

ing nitrate concentration. M2b instead is different in its predictions but
scores a similar tradeoff between goodness-of-fit and parsimony.

5.4. Justifiability Analysis for a Reduced Model Set

From the analysis so far, we can conclude that the predictions of the

two cumulative relative reactivity models (M4, M5) are very similar and,
consequently, that the models are quasi-redundant for the purpose of predicting nitrate concentration.
Therefore, we decide to exclude one of these two models to avoid misinterpretations due to redundancy in
the model set. Considering that M5 is slightly preferred over M4 for data sets generated by the reference
Model M1 (cf. Figure 4) and that M5 is the most parsimonious model in the set, we decide to keep it and dis-
card M4. Also, the analysis revealed clearly that M2a is a better choice than M2b. Therefore, we omit M2b
from the following analysis. With this reduced model set, we want to test how M5 scores compared to the
other simplified models, now that it does not have to compete with a very similar model.

Figure 6 shows the weights the models receive when the reference Model M1 has generated the data.
Comparison with Figure 4 shows that excluding M4 leads to a redistribution of model weights due to the
constraint that they sum up to 1. The strongest relative increase is in fact in M1 and not in M5. Note that,
for individual data sets, the relative increase in model weights is the same for all four models, and it can be
calculated as 2; BME;/ Z;l BME;. However, due to averaging over many data sets representing the pre-
dictive distribution of M1 and the large variations in BME values per data set, this constant factor translates
into individual reweighting factors per model. The more decisive the model weighting, the more nonlinear
the behavior.

5.5. Decisiveness of Model Choice Measured by Bayes Factors

We want to further investigate the decisiveness of model choice by using Bayes Factors. To this end, we use
the BME values to determine pairwise Bayes factors between the reference model and the simplified models
for a data set of 150 cross sections. We ask “how much stronger is the evidence in favor of the reference
model M1” and therefore calculate

BME, .
BF = ——,withi=2-5. (25)
BME,

Figure 7 shows the cumulative distributions functions (CDFs) of log,,(BF) for each of the simplified mod-
els. The dashed lines mark the thresholds according to Jeffreys (1961) (cf. section 2.3). The light gray
line (log,(BF) = 0) indicates equal support for both models. The black line at log,,(BF) = 2 indicates
“decisive” evidence against the simplified model as an alternative to M1. Vice versa, log,,(BF) = —2 indicates
“decisive” evidence in favor of the simplified model, so in these cases the simplified model should be pre-
ferred through the eyes of BMS, even though the underlying data set has in fact been generated by the
reference M1. Such cases occur because of the complexity of M1: if the simplified model is able to fit the
data well and shows less variability than M1, it will be preferred by BMS (see section 1).
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Figure 7. CDFs of the logarithmic Bayes Factor for M2-MS5 tested against the reference Model M1.

The CDF of Model M2a exemplifies the distribution for a model that is almost identical to the reference
model, as for nearly all realizations log,,(BF) = 0. The median log,, Bayes factors of the other simplified
models are all slightly negative (—0.49 for M2b, —0.70 for M3, —0.54 for M4, and —0.28 M5) and thus show
a small preference of the simplified models over the reference model. The Bayes Factor CDFs of M2b, M4,
and M5 are relatively similar and show that less than about 15% of their realizations lead to a rejection with
decisive evidence.

In contrast, M3 shows a high variability in its performance: 30% of its realizations are rejected with “decisive”
evidence. At the same time, 26% of its realizations are preferred over the reference model with “decisive”
evidence. The reason why the CDF of M3 considerably deviates from the other curves is that, in contrast to
all other models, M3 cannot reproduce very high nitrate concentrations. Thus, for realizations of M1 with
very little nitrate depletion, M3 has extremely small BME values and consequently, is rejected clearly against
the reference Model M1. However, if M3 is able to reproduce the realizations of M1 (i.e., for normalized
concentrations less than approximately 0.9), BMS rewards that the predictive distribution of M3 has a higher
probability mass concentrated at these values, while the distribution of M1 is strongly skewed toward high
nitrate concentrations.

Overall, we find that the CDFs for the Bayes factors against M2b, M4, and M5 support our general conclusion
from the average model weights (Figure 4) that all three models are suitable but not perfect candidates to
replace the reference Model M1, while M3 is not a robust choice. Model M2a is able to perfectly mimic the
reference data. However, through the eyes of BMS, it does not improve in terms of model parsimony; that
is, it is still rather complex.

6. Conclusions

In this study, we have a applied the Bayesian model justifiability analysis (Schoniger, Illman, et al., 2015)
to compare five models that simulate aerobic respiration and denitrification in a heterogeneous aquifer
coupled to solute transport. The model that includes the most detailed description of the underlying pro-
cesses has served as a reference, whereas the other models were either direct simplifications of the reference
model by dropping specific processes, or replaced the advection-(dispersion)-reaction equation in Cartesian
coordinates by the concept of cumulative relative reactivity solved along trajectories (Loschko et al., 2016).

The results of the model justifiability analysis show that all simplified models are suitable replacements for
the computationally expensive reference model, but the models differ significantly in the number of pro-
cesses/parameters involved, and in the ease of constructing meaningful prior distributions. In the model
justifiability analysis, models are tested against each other based on their prior predictive distributions.
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These distributions are generated by sampling from the models' parameter spaces and running the mod-
els with the respective parameter realizations in a Monte Carlo framework. By taking the entire predictive
distributions into account, the results of the justifiability analysis allow statements about the overall suit-
ability of the simplified models, independent of a specific parameter choice. The analysis is based on
the principles of BMS and thus implicitly performs a tradeoff between goodness-of-fit to reference data
and model complexity. We highly recommend applying this framework when judging the exchangeabil-
ity of competing models. However, the process-based reasoning leading to the competing models should
never be discarded.

As criterion for model similarity we considered flux-weighted nitrate concentrations in quasi steady state at
different cross sections. This choice has direct consequences for the suitability of the model simplifications.
Model M2a, which neglects local dispersion and keeps the priors of all other parameters, was practically
indistinguishable from the full model. Similar observations have been made by Sanz-Prat et al. (2015), yet
without a full stochastic analysis. Local dispersion would have been much more important if we had consid-
ered an invading front and a reaction between purely dissolved compounds, or dynamic electron-acceptor
loads. Also, biomass dynamics are important predominantly under conditions when the biomass still has
to grow, for example, when an aquifer is loaded with a reactant for the very first time. Such conditions
have not been considered in the current analysis, as they are rather unlikely for nitrate contamination in
aquifers. Because we considered the nitrate concentration after establishment of a stable microbial com-
munity, the models without dynamic biomass (i.e., Models M3-M5) had a chance of meeting the reference
model. That the spatially explicit model without dynamic biomass scored poorly is mostly due to the dif-
ficulty of defining a reasonable prior distribution of the constant biomass concentration and might have
been avoided by choosing a broader prior. For the given type of data, the simplest Model M5 using the
cumulative-relative-reactivity concept with simplified kinetics turned out to be the best simplification of
the computationally expensive reference model. It scores well in the justifiability analysis and reduces run
times tremendously compared to the spatially explicit models. This computational efficiency enables a
high number of models runs and thus quantification of parametric uncertainty was feasible, which can be
impractical with spatially explicit models. As M5 has only two parameters, it is less prone to the problem of
overly wide prior ranges. Please note that this recommendation is conditional on the purpose of the model
(prediction), the considered scenario (diffusively introduced nitrate reacting with the soil matrix) and the
quantity of interest (quasi steady state nitrate concentration as an integral quantity flux-averaged over a
cross section).

The present study underpins the currently evolving perception and acknowledgment of complexity in mod-
eling: When we discuss complexity of numerical models, we have to take more into account than the plain
number of incorporated processes, interactions and feedbacks. The simplification of physical descriptions
often comes at the cost of a more complicated definition of the parameter priors. When we neglect a certain
process, the parameters may not represent a physically meaningful value anymore but rather be an effective
parameter that compensates for the missing process. Consequently, modelers might encounter difficulties
when trying to define realistic prior distributions for effective parameters. The more effective parameters a
model has, the stronger this effect can be. Therefore, we emphasize to also consider the constrainability of
the parameters as an aspect of model complexity. This means, to take into account how easy or difficult it is
to a priori constrain the parameters based on expert knowledge.

We found that performing the justifiability analysis on the case of model simplification is an objective and
comprehensive approach to assess the suitability of candidate models with different levels of detail. The
method has three major advantages:

« Models are compared independent of calibration data, which might not be available or, as pointed out by
Vogel and Sankarasubramanian (2003), even “cloud our ability” to accept or reject a model concept.

« Considering the models’ entire parameter and predictive distributions provides a comprehensive model
evaluation rather than a comparison based on specific parameter sets.
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« Working on the intermodel level, the method allows to filter a set of models with respect to their (prior)
predictive power such that, on a second level, a subset of similarly capable models can be rated on
additional performance criteria like run time or goodness-of-fit with actual measurement data.

Future research should target model comparison also on the level of structural similarity (Bennett et al.,
2019) to complement the analysis of the model predictions. This might help detect structural redundancy
in the model set and can further advance directed model (set) development.

Appendix A: Parameters and Initial Conditions

The following tables provide implementation details such as the geometrical, geostatistical, hydraulic and
transport parameters (Table A1), initial and boundary conditions (Table A2), parameters of the reference
solution (Table A3) and prior distributions chosen for the uncertain parameters (Table A4 and Table A5).

Table Al

Geometrical, Geostatistical, Hydraulic, and Transport Parameters

Symbol Meaning Value Units
L Length of the 2-D domain 50 (m)
w Width of the 2-D domain 25 (m)
ny Number of cells in x direction 250 )
n, Number of cells in y direction 125 )
Ax Cell size in x direction 0.2 (m)
Ay Cell size in y direction 0.2 (m)
Mg Number of streamtubes 125 “)
Mgee Number of streamtube sections 250 ©)

Geostatistical parameters of the K-field

(L, Correlation length in x direction 4 (m)
L Correlation length in y direction 1 (m)
Glan Variance of log-hydraulic conductivity 1 )

Kg Geometric mean of hydraulic conductivity 1-1073 (m/s)

Parameters of the flow field

Ko Effective hydraulic conductivity 1.2-1073 (m/s)
qy Mean specific discharge 0.4 (m/day)
J Mean hydraulic gradient 4.1073 “)
Transport parameters
9 Porosity 0.3 )
o Longitudinal dispersivity 1-1072 (m)
a; Transverse dispersivity 1-1073 (m)
D, Molecular diffusion coefficient 1-107° (m?/s)
Table A2
Initial and Boundary Conditions
Symbol Meaning Initial conc. Inflow conc.
c?’;b Dissolved oxygen (mobile phase) 0mol/L 2.5-10"* mol/L
NO;
moz Nitrate (mobile phase) 0mol/L 1-10~* mol/L
ntZZO Dissolved organic carbon (mobile phase) 3.10~* mol/L 0mol/L
b . . .
Cominob Bacteria (immobile phase) 80 pmol/L n.a.
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Table A4

Table A3
Parameters of the Reference Solution (M1)
Symbol Meaning Value
y,?lflx Maximum specific growth rate based on oxygen 0.1 (1/day)
Zg% Maximum specific growth rate based on nitrate 0.1 (1/day)
Ko, Monod coeff. of oxygen 11.4 (umol/L)
KNO; Monod coeff. of nitrate 70 (pmmol/L)
Kpoc Monod coeff. of DOC 20 (umol/L)
l_?jl Inhibition coeff. of oxygen in denitrification 10 (pmol/L)
Yo, Yield coeff. of oxygen 0.25 (moll(’)azc/molc)
Yio; Yield coeff. of nitrate 0.25 (molﬁ%; /mol)
Kgec Decay coeff. of bacteria 0.05 (1/day)
kg"é'gax Maximum rate constant of DOC release 0.2 (1/day)
Clr)r?(fx Maximum biomass concentration 83.3 (pmol/L)

The datasets generated and analyzed during the current study are available in the FDAT repository of the University of
Tiibingen, https://fdat.escience.uni-tuebingen.de/portal/

Symbol Meaning Distribution Units
Parameters of Models M1 and M2a
y,?lflx Maximum specific growth rate unif .(a, b) a=15-1073, (1/day)
based on oxygen b=0.12
Mﬁfxg Maximum specific growth rate unif . (a, b) a=15-1073, (1/day)
based on nitrate b=0.12
Ko, Monod coefficient of oxygen unif . (a, b) a=5b=15 (pmol/L)
kNog Monod coefficient of nitrate unif . (a, b) a=60,b=80 (pmol/L)
Kpoc Monod coefficient of DOC unif .(a, b) a=10,b=30 (pmol/L)
i(:;l Inhibition coefficient of unif . (a, b) a=5b=15 (pmol/L)
oxygen in denitrification
Yo, Yield coefficient of oxygen unif . (a, b) a=02,b=03 (molg‘zc/molc)
YNO; Yield coefficient of nitrate unif . (a, b) a=02,b=0.3 (mol?\;‘gg /mol¢)
kgec Decay coefficient of bacteria unif . (a, b) a = 0.025, b =0.075 (1/day)
kgé’g“x Maximum rate constant of DOC release unif . (a, b) a=01,b=05 (1/day)
Parameters of Model M2b that differ from Model M1 and M2a
y,?lflx Maximum specific growth rate log — unif .(a,b) a=0.05b=0.2 (1/day)
based on oxygen
Mﬁfxg Maximum specific growth rate log — unif .(a,b) a=0.05b=0.2 (1/day)
based on nitrate
Parameters of Model M3 that differ from Models M1 and M2
Z’lfsx Maximum biomass concentration unif . (a, b) a=58.3,b=833 (mol/L)

Note. The parameters specified for Model M1 are also applied for Models M2a, M2b, and M3. Exceptions are mentioned

separately.
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Table A5
Prior Distributions Chosen for the Uncertain Parameters of the Models M4 and M5
Parameters of Model M4
r,?lflx Maximum reaction rate of oxygen unif . (a, b) a=2-1073, (pmol/[L day])
under reference conditions b =100
rﬁfg Maximum reaction rate of nitrate unif .(a,b) a=2-1073, (pmol/[L day])
under reference conditions b=5
Ko, Monod constant for oxygen unif .(a,b) a=5>b=15 (pmol/L)
kNo; Monod constant for nitrate unif .(a,b) a=60,b =280 (pmol/L)
Kg‘zh Inhibition coefficient of unif .(a,b) a=5>b=15 (pmol/L)
oxygen in denitrification
Parameters of Model M5
r,?lflx Maximum reaction rate of oxygen unif .(a,b) a=2-1073, (pmol/[L day])
under reference conditions b =100
rﬁﬁ% Maximum reaction rate of nitrate unif . (a, b) a =50, (pmol/[L day])
under reference conditions b=25.10°
Data Availability Statement
Data are currently being archived in the repository of the University of Tiibingen (https://fdat.escience.uni-
tuebingen.de/) and will be made available upon acceptance. For review purposes, data can be downloaded
using the following link (https://bwsyncandshare.kit.edu/s/iRZzriE9kS6B8bX).
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