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Abstract The use of machine learning based on neural networks for cloud microphysical
parameterizations is investigated. As an example, we use the warm-rain formation by
collision-coalescence, that is, the parameterization of autoconversion, accretion, and self-collection of
droplets in a two-moment framework. Benchmark solutions of the kinetic collection equations are
performed using a Monte Carlo superdroplet algorithm. The superdroplet method provides reliable but
noisy estimates of the warm-rain process rates. For each process rate, a neural network is trained using
standard machine learning techniques. The resulting models make skillful predictions for the process rates
when compared to the testing data. However, when solving the ordinary differential equations, the
solutions are not as good as those of an established warm-rain parameterization. This deficiency can be
seen as a limitation of the machine learning methods that are applied, but at the same time, it points
toward a fundamental ill-posedness of the commonly used two-moment warm-rain schemes. More
advanced machine learning methods that include a notion of time derivatives, therefore, have the potential
to overcome these problems.

Plain Language Summary In our work, we are trying to teach a computer how rain forms in
clouds. We show that computer hundreds of cases in the form of data. To be honest, the data are not real
data but only results of simulations with a more complicated computer model. This complicated model
can track the collisions of 10,000 of droplets, and we save all that data about the growth of the droplets
into larger raindrops. This is what we then give to the simpler computer model to teach it something about
clouds and rain. Afterward, it can make pretty good predictions about which clouds will rain and how long
it will take them to produce the first rain. Unfortunately, the current machine learning methods are still a
bit stupid because they only learn from the data but do not understand the mathematics and the physics
behind the data. Therefore, the new computer model is still not as good at predicting rain as some clever
mathematical formulas that were developed 20 years ago. Maybe we first have to teach the computer model
more about calculus before it can learn to predict rain.

1. Introduction
During the last decade, machine learning (ML) has become an essential tool in data science, engineering,
medical research, and many other applied sciences. The success of ML techniques can be explained by its
general ability to extract (learn) complex nonlinear relationships from data. Hence, ML methods like random
forests or deep neural networks (NNs) provide very powerful techniques for many kinds of classification and
nonlinear regression problems. Besides, these methods have been greatly popularized by the availability of
easy-to-use Python libraries like Tensorflow and Keras (Abadi et al., 2015; Chollet et al., 2015; Géron, 2019).

In atmospheric science ML methods are very appealing for nowcasting applications (Sønderby et al., 2020;
Xingjian et al., 2015), remote-sensing retrievals (Lary et al., 2016; Maxwell et al., 2018), and many other
applications that require a postprocessing of numerical weather prediction (NWP) or climate model output.
This area of research is growing rapidly, and for a general overview we refer to recent reviews of ML tech-
niques and their application in climate science (Huntingford et al., 2019; Reichstein et al., 2019) and fluid
mechanics (Brunton et al., 2020).

The usefulness of these tools for the development of atmospheric models is much less clear. Subgrid param-
eterizations, which are crucial to describe unresolved processes in NWP and climate models, are functional
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relationships between resolved model variables and those unresolved quantities. This problem might be
accessible to ML methods given that appropriate training data are available either from observations or
from highly resolved benchmark simulations. Some efforts have been made to use ML to replace convection
parameterizations in general circulations models (O'Gorman & Dwyer, 2018; Rasp et al., 2018) or even to
describe all subgrid processes in the atmosphere (Brenowitz & Bretherton, 2018, 2019; Yuval & O'Gorman,
2020). The results are promising, but not without challenges, which are especially related to the general-
ization of the ML predictions outside of the chosen training data. Further improvements can probably be
expected if conservation principles and/or invariance and similarity laws can be built into ML methods
(Beucler et al., 2020; Ling, Jones, et al., 2016; Ling, Kurzawski, et al., 2016). Advanced regularization meth-
ods might be another important ingredient to stabilize the behavior of complex ML-based parameterizations
(Brenowitz et al., 2020).

When we discuss ML methods for the parameterization problem, it can be helpful to distinguish two dif-
ferent approaches. First, the use of ML to emulate an existing parameterization to achieve an increase in
computational performance, that is, a speedup (Chevallier et al., 2000), and second, to derive new param-
eterizations from original data when the parameterizability of the problem is not necessarily clear. There
is no sharp line between the two approaches, though, because the emulation of expensive highly resolved
models shares many problems with the general parameterization problem.

In the following, we apply regression using NNs to the parameterization of warm-rain cloud microphysics.
The formulation of the corresponding autoconversion and accretion rates is a classic problem in cloud mod-
eling going back to first parameterizations of Kessler (1969) and Berry and Reinhardt (1974). This problem
seems especially well suited for ML methods because most warm-rain parameterizations used today are
based on data from numerical solutions of the kinetic collection equation (KCE). Hence, this looks like a
well-defined regression problem.

The paper is organized as follows. In section 2 we introduce the KCE and define the bulk microphysical
conversion rates. In section 3 we introduce the superdroplet method as a benchmark solver and discuss
the training data in section 4. In section 5 ML is applied to the parameterization problem. In section 6 we
attempt to interpret the predictions from the ML method. In section 7 we solve the corresponding ordinary
differential equations (ODEs) and compare the ML results with an established warm-rain parameteriza-
tion. Sensitivities to hyperparameters and other assumptions are discussed in section 8, followed by our
conclusions in section 9.

2. The Kinetic Collection Equation
The collision-coalescence of droplets in a cloud is described by the KCE:

d𝑓 (x)
dt

= 1
2 ∫

x

0
𝑓 (x − 𝑦)𝑓 (𝑦)K(x − 𝑦, 𝑦)d𝑦 − ∫

∞

0
𝑓 (x)𝑓 (𝑦)K(x, 𝑦)d𝑦, (1)

also known as Smoluchowski equation or quasi-stochastic collection equation (Drake, 1972;
von Smoluchowski, 1916, 1917). Here f (x) is the number of droplets per unit volume in the mass range
[x, x + dx], and x and y are the drop mass. The collision-coalescence kernel K(x, y) describes the physics of
the collision process. For clouds it is specified as

K(x, 𝑦) = 𝜋 [r(x) + r(𝑦)]2 |v(x) − v(𝑦)|Ecoll(x, 𝑦), (2)

where r(x) is the drop radius, v(x) is the terminal fall velocity, and Ecoll(x, y) is the collision efficiency. The
first two terms constitute the geometric swept volume. The collision efficiency quantifies the details of the
fluid dynamics interaction and is tabulated from detailed trajectory calculations. In the following, we use
the collision efficiency of Hall (1980) with modifications by Beheng (1994).

For small droplets the hydrodynamic collision kernel is nonlinear with K ∼ x2, and analytical approaches
to solve the KCE are of limited use in this case. The solutions describe the colloidal instability, which is the
formation of larger and larger drops due to binary collisions. The kinetic equation is invariant under the
transformation

𝑓 → c𝑓, t → t∕c (3)
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with a constant c and therefore similarity solutions of the form 𝑓 (x, t) = c𝑓 (x, ct) exist for each
solution f (x, t).

Atmospheric models do not necessarily predict f (x, t); instead, only partial moments of this distribution in
two size ranges are used, which are defined as

M(k)
c = ∫

x∗

0
xk𝑓 (x)dx, (4)

M(k)
r = ∫

∞

x∗
xk𝑓 (x)dx, (5)

and drops smaller than the mass x∗ = 2.6 × 10−10 kg are cloud droplets, and larger drops are raindrops.
M(0)

i = Ni is the number density, and M(1)
i = Li the mass density or cloud resp. rain water content. Depend-

ing on the number of moments that are used for each particle category, parameterizations are classified as
single-, double-, or triple-moment schemes. In the following, we focus on double-moment schemes with
the variables Nc, Lc, Nr , and Lr . It is straightforward to prove that the liquid water content L = Lc + Lr
is conserved by Equation 1 and the scaling constant c of similarity solutions can be identified as c = L̃∕L
(Drake, 1972).

The time evolution described by Equation 1 establishes a system of ODEs for the partial moments Nc, Lc,
Nr , and Lr given by

dLc

dt
= −AU − AC, (6)

dLr

dt
= +AU + AC, (7)

dNc

dt
= −2AUN − ACN − SCc = − 2

x∗
AU − 1

x̄c
AC − SCc, (8)

dNr

dt
= +AUN + ACN − SCr = + 1

x∗
AU − SCr , (9)

with the mean cloud droplet mass x̄c = Lc∕Nc. The autoconversion rate AU, the accretion rate AC, and
the two self-collection rates SCc and SCr are unknown, and to specify these process rates in terms of the
partial moments is known as the warm-rain parameterization problem. Note that we have already made
the approximation to couple the number rates of autoconversion and accretion, AUN and ACN , to the mass
rates (Beheng, 1994, 2010) by the assumption that autoconversion creates droplets of the mass x* and accre-
tion collects on average the cloud droplets with mass x̄c. All moments and the process rates are positive
semidefinite quantities. The time evolution of Lc is monotonically decreasing, because it has only sink terms.
Correspondingly, Lr increases monotonically.

The autoconversion rate AU and the accretion rate AC can be calculated directly from known solutions of
the kinetic equation by

AU = ∫
x∗

x′=0 ∫
x∗

x′′=x∗−x′
𝑓 (x′)𝑓 (x′′)K(x′, x′′)x′dx′dx′′, (10)

AC = ∫
x∗

x′=0 ∫
∞

x′′=x∗
𝑓 (x′)𝑓 (x′′)K(x′, x′′)x′dx′dx′′, (11)

and similar integral forms exist for SCc and SCr (Beheng, 2010; Doms & Beheng, 1986).

Having such data reduces the parameterization problem to a regression task and depending on the input
data and regression assumptions different parameterizations have been derived in the last decades (Beheng,
1994; Berry & Reinhardt, 1974; Khairoutdinov & Kogan, 2000). In the following, we will compare with the
double-moment parameterization of Seifert and Beheng (2001; SB2001 hereafter) given by

AUsb =
kc

20x∗
(𝜈 + 2)(𝜈 + 4)

(𝜈 + 1)2 L2
c x̄2

c

[
1 +

Φau(𝜏)
(1 − 𝜏)2

]
, (12)

SEIFERT AND RASP 3 of 18



Journal of Advances in Modeling Earth Systems 10.1029/2020MS002301

ACsb = kr LcLr Φac(𝜏), (13)

where kc = 9.44 × 109 m3 kg−2 s−1 and kr = 5.78 m3 kg−1 s−1 are coefficients of the Long-kernel (Long,
1974) and 𝜈 is the shape parameter of an assumed Gamma distribution. The functions Φau(𝜏) and Φac(𝜏) are
given by

Φau = 600𝜏0.68(1 − 𝜏0.68)3, (14)

Φac =
(

𝜏

𝜏 + 5 × 10−4

)4

(15)

and depend only on the liquid water time scale 𝜏 = Lr∕(Lc + Lr) = Lr∕L, which is motivated by the
above-mentioned invariance of the kinetic equation.

3. The Benchmark Simulations
For the benchmark solutions of the KCE, we apply the superdroplet method of Shima et al. (2009), which
is a Monte Carlo algorithm that simulates the collision-coalescence processes explicitly. The Monte Carlo
algorithm actually implements a more general equation which takes into account stochastic fluctuations
(Dziekan & Pawlowska, 2017). The KCE (1) is in fact only the mean-field approximation of this more general
stochastic collection equation (Alfonso et al., 2008).

As initial condition, we use a Gamma distribution for cloud droplets with

𝑓 (x) = Ax𝜈e−Bx, (16)

where A and B are calculated from the initial mean radius r̄0 and the initial liquid water content L0 = Lc,0 and
𝜈 is the shape parameter. In the following, we will make use of simulation from the three-dimensional phase
space L0 ∈ [0.3, 2] g m−3, r̄0 ∈ [9,15] μm, and 𝜈 ∈ [0, 4]. The Monte Carlo algorithm draws samples from the
initial conditions that represent a certain number of real droplets given by the (average) multiplicity 𝜉0 =
25,600 in a control volume of 25 m3. The initialization follows the single-SIP approach of Unterstrasser et al.
(2017), which improves the convergence properties of the Monte Carlo method. Typically more than 10,000
superdroplets are used for a single simulation, which ensures a converged solution. The actual number of
superdroplets scales with the number density of the initial conditions. If the number of superdroplets would
exceed 50,000, it is limited to that value. Due to the stochastic nature of the Monte Carlo algorithm, which
also causes additional variance, it can be useful to do simulations with the same initial condition multiple
times. This will be denoted as a simulation ensemble.

The autoconversion and accretion rates could be calculated from the integral representation Equations 10
and 11, but the Monte Carlo algorithm allows a direct calculation of those conversion rates. For each super-
droplet collision, it is known to which drop category the drops belong to, and hence, the autoconversion rate
can be exactly calculated from

AU =
N∑
1

x′k𝜉
′
k =

N∑
1
(𝛾̃𝛼x𝑗 + xk)𝜉′k, 𝑗, k ∈ c ∧ k′ ∈ r, (17)

where k is the superdroplet with the smaller multiplicity and j is the superdroplet with the larger multiplicity.
The prime denotes quantities after the collision event. Hence, k∈ c∧ k′ ∈ r means that the superdroplet
with the smaller multiplicity became a raindrop after the collision event. The mass x′k is the mass of the
superdroplet k after the collision event with x′k > x*. The portion of the superdroplet j that is added to k is
given by the probability 𝛾̃𝛼 that is defined and calculated as specified in section 5.1.3 of Shima et al. (2009).
Hence, autoconversion is simply the sum over x′k for all superdroplets that became raindrops weighted by
their multiplicity 𝜉′k.

For accretion we have to distinguish two cases and AC = AC1 + AC2. In the first case the superdroplet k is
a raindrop, and j is the cloud droplet. The raindrop k grows by collecting the fraction 𝛾̃𝛼 of j:

AC1 =
N∑
1

x𝑗𝜉k𝛾̃𝛼 , 𝑗 ∈ c ∧ k ∈ r. (18)
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Figure 1. Normalized autoconversion rate Φ(τ) as a function of the
liquid-water time scale 𝜏 = Lr∕(Lc + Lr) for a subset of the training data
with 𝜈0 = 0.

In the second case the superdroplet j is the raindrop, and k is the cloud
droplet. Hence, the mass transfer to rain due to accretion is only the mass
of k before the collision event:

AC2 =
N∑
1

xk𝜉
′
k, 𝑗 ∈ r ∧ k ∈ c. (19)

The self-collection rates are simply

SCc =
N∑
1
𝜉k𝛾̃𝛼 , 𝑗, k ∈ c, (20)

SCc =
N∑
1
𝜉k𝛾̃𝛼 , 𝑗, k ∈ r, (21)

and the sum is taken over the list of all superdroplet pairs for this time
step. In passing we note that the number rates AUN and ACN can be
calculated simply by dropping the mass weights in the equations above.

The simulations are performed with a time step of 1 s, and output is writ-
ten every 20 s. Each individual simulations of the collision-coalescence
process is long enough such that all cloud water is eventually converted
to rain. The length of the individual simulations depends on L0 and r̄0.
For example, for L0 = 1 g m−3 and r̄0 = 13 μm, it is 60 min. For different
L0 the simulation time scales with 1/L0.

Figure 1 shows the normalized autoconversion rate in terms of Φau; that
is, it reproduces Figure 1 from SB2001 for a subset of our simulation out-

put. This confirms that the superdroplet simulations and the derived autoconversion rate are comparable
to SB2001. Although the superdroplet method should have a higher accuracy given that we are using a very
large number of particles, it is also obvious that the Monte Carlo method exhibits significant noise. This
becomes even more severe for larger 𝜈, that is, narrower initial cloud droplet distributions. Some of these
fluctuations might be correct physical behavior, though, and especially for larger 𝜈, the droplet growth can
be dominated by rare events (“lucky droplets”). Nevertheless, it is encouraging that the old fit of SB2001
(black dashed line) is a good approximation to the new data, although some bias is visible.

4. Preparation of Training and Testing Data
As predictors, we use the moments Nc, Lc, Nr , and Lr , which would be the prognostic variables in a
double-moment warm-rain scheme. In addition, we assume that the shape parameter 𝜈 is known, for exam-
ple, from the properties of a given aerosol distribution. Hence, these five variables are the basic features or
predictors in the training data. The process rates AU, AC, SCc, and SCr are the labels or target variables.

The solutions of the KCE exhibit exponential growth, and therefore, the moments and the process rates span
several orders in magnitude. Hence, it is advisable to use log-transformed features and labels for training.
This can also be motivated from the fact that established regression-based parameterization like Beheng
(1994) or Khairoutdinov and Kogan (2000) uses a multiplicative power law ansatz. The log-transform
requires that we specify a minimum value 𝜖 and feature-label vectors with values smaller than 𝜖 are removed
from the training and testing data. We use 𝜖0 = 10−15 for all data except the autoconversion rate for which a
larger value of 𝜖1 = 10−12 is applied (Table 1). The reasoning for this choice is discussed in section 7.

Number and mass densities are linearly dependent in the sense that they increase by a factor c when the
size distribution f (x) is multiplied by the same constant factor. This can be avoided when x̄i = Li∕Ni is used
instead of Ni. The alternative choice Ni and xi would be truly orthogonal. Here we prefer the combination
Li and x̄i for the mass rates because Lc and Lr are the most important predictors for AU and AC. Finally, we
may replace Lr with 𝜏 for predicting autoconversion to make the set of predictors identical to SB2001.

In the following, we train a neural net for each label separately. This allows us to test different sets of predic-
tors for each process rate. Another consideration is that autoconversion is most important when Lr is still
small; later on the system is dominated by accretion. Hence, we do not want to contaminate the training
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Table 1
Overview of the Training and Testing Data

Initial conditions
training (+validation) testing

L0 [g m−3] 0.2, 0.4, 0.6, 0.8, 1.0, 2.0 0.3, 0.5, 0.7, 0.9, 1.5
r̄0 [μm] 9, 10, 11, 12, 13, 14, 15 9, 10, 11, 12, 13, 14, 15
𝜈 0,1,2,3,4 0.5, 1.5, 2.5, 3.5
n 5 (+2) 5

potential predictors P (features)
AU AC SCc SCr

Lc, x̄c, 𝜈, Lr , 𝜏 Lc, x̄c, 𝜈, Lr , x̄r , 𝜏 Lc, Nc, x̄c, 𝜈, 𝜏 Lr , Nr , x̄r , 𝜏

data reduction for label-feature vectors
AU AC SCc SCr

AU > 𝜖1 AC > 𝜖0 SCc > 𝜖0 SCr > 𝜖0

Pau >𝜖0 Pac > 𝜖0 Psc, c > 𝜖0 Psc, r > 𝜖0

𝜏 < 0.85 𝜏 < 0.99 Lc > 10−4 g m−3 Lr > 10−4 g m−3

total number of samples after data reduction (without validation data)
AU AC SCc SCr

train test train test train test train test
179,133 114,312 316,141 185,956 365,705 220,119 309,151 181,247

Note. n is the number of ensembles using different random number seeds for the same initial condition.

data with rather irrelevant autoconversion labels, for example, when Lr ≫Lc. Even accretion becomes irrel-
evant when Lc is small. Hence, we can remove labels based on 𝜏, Lc, and Lr to focus the training on the
relevant part of the phase space.

As testing data, we use a separate set of simulations with different values of L0 and 𝜈. This makes sure that
the testing data are clearly separated from the training data. The selection of the training and testing data is
summarized in Table 1. The testing data span a marginally smaller range of initial conditions as the training
data. This means the ML models will, in some sense, only need to interpolate to achieve a good skill on the
testing data. This is sufficient here because cases that have lower L0 and/or smaller r̄0 are nonprecipitating
and will not produce rain by the warm-rain collision-coalescence process within reasonable time. Cases with
higher L0 and larger r̄0 rain so quickly that the error in the timing becomes irrelevant. The shape parameter
𝜈 is not a prognostic variable in a two-moment scheme and is set a priori and is usually within the range
shown here.

Finally, the training, validation, and testing data are standardized using the mean and standard deviation
to ensure that all features zero mean and a standard deviation of one. Hence, we apply the transformation
𝜒̌ = (𝜒−𝜒̄)∕𝜎𝜒 , where𝜒 is a feature vector with mean 𝜒̄ and standard deviation 𝜎𝜒 and 𝜒̌ is the standardized
value of the feature.

A subset of the training data before standardization is visualized by a pairs plot in Figure 2 showing AU
and the predictors Lc, x̄c, 𝜏, and 𝜈. This shows clearly that we have defined 𝜈 = 𝜈0 as the shape parameter
of the initial conditions. Note that discrete values of, for example, 𝜈 and x̄c, are artificially smeared out in
this plot by the kernel density estimator, which assumes a Gaussian distribution. It can also be seen that x̄c
does not change much, especially not for large 𝜈. This is explained by the fact that initially, only the tail of
the distribution is affected by collisional growth, but not the mean, and later accretion does collect all cloud
droplets. Only for broad distributions x̄c decreases during the final collection stage, because very small cloud
droplets are not collected efficiently by the raindrops (see, e.g., Figure S40).

5. The ML Models
To parameterize the process rates with ML, we train several small NNs. Each has three fully connected layers
with 16 nodes per layer. Each neural net has only a single output node corresponding to our choice to train a
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Figure 2. Pairs plot for log-transformed training data showing the autoconversion rate, the cloud water content, the mean cloud droplet mass, the time scale τ,
and the shape parameter ν. The plots on the diagonal show a kernel density estimate.

separate NN for each individual process rate. This gives a total of 609 trainable parameters for each NN. The
sigmoid activation function is applied. Larger nets and other activation functions have been tested, and those
results are documented in the supporting information. However, they did not lead to any improvements.
We choose the mean squared error (MSE) as loss or cost function and RMSprop as the optimizer. RMSprop
is a variant of gradient descent that automatically adjusts the gradient magnitude during the minimization.
The initial learning rate is set to 10−3. We use early stopping with a patience of 20 epochs and a maximum
number of 200 training epochs.

In this first ML step, we primarily test different predictors for the process rates. For autoconversion, our first
models follow classic formulations like Beheng (1994) or Khairoutdinov and Kogan (2000) and use only the
cloud variables Lc and x̄c (Model 1). As a second model, we can, in addition, assume that the (initial) shape
parameter 𝜈 is known as well (Model 2). Our Models 3 and 4 make use of the rainwater content Lr as an
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Table 2
Overview of Analyzed and Tested ML Models for Autoconversion (and SB2001 for Comparison)

Predictors Trainable Testing data ODE solutions, t10 errors
No. (features) param. MAE MSE MAE MSE ME MRE
SB Lc, x̄c, 𝜈, 𝜏 (6) 3.46 11.23 1.43 2.13 −0.91 −2.70
1 Lc, x̄c 609 6.29 18.71 — — — —
2 Lc, x̄c, 𝜈 609 5.06 14.88 15.41 22.19 −15.26 −30.59
3 Lc, x̄c, 𝜈, Lr 609 2.33 6.38 5.76 8.18 0.92 10.31
4 Lc, x̄c, 𝜈, 𝜏 609 2.41 6.90 6.40 8.79 1.90 13.14
5 x̄c, 𝜈, 𝜏 609 2.79 8.56 6.09 8.47 0.81 8.59
6 x̄c, 𝜏 609 1.79 5.81 6.74 8.71 2.39 13.86

Note. MAE and MSE of AU for testing data are given in 10−9 m3 kg−2 s−1. MAE, MSE, and ME of t10 in
min, and MRE of t10 in %. All ML models use sigmoid activation and 𝜖0 = 10−15 for accretion and both
self-collection rates.

additional predictor of AU, either explicitly (Model 3) or by using 𝜏 (Model 4). The latter two models are ML
counterparts of SB2001 in the sense that they have the same information provided as predictors.

Two additional ML models using only x̄c−𝜈−𝜏 and x̄c−𝜏 as set of predictors are an attempt to improve the ML
models by borrowing the dependencies from SB2001. Hence, for Model 5 with x̄c − 𝜈− 𝜏 we have eliminated
the Lc dependency from AU by dividing the training data (labels) by L2

c . For model 6 with predictors x̄c−𝜏 we
have, in addition, removed the 𝜈 dependency with the corresponding term of Equation 12. See also Table 2
where all six models are listed.

All six models show a good convergence. The MSE and mean absolute error (MAE) of the validation data
follow the training loss perfectly as shown for the first four models in Figure 3. Hence, there is little sign of
overfitting. Overfitting is also not to be expected, because we have much more training data than trainable
parameters. Interestingly, the lines of Models 3 and 4 can hardly be distinguished, which already indicates
that it is rather irrelevant whether we use Lr or 𝜏. At the same time, it is obvious that having more predictors
provides a better model and, especially, the jump from Models 2 to 3 and 4 is large. Models 5 and 6 use
different training and validation data and cannot be directly compared with Models 1–4 in this kind of
diagnostic.

More important than training or validation loss is the comparison with the testing data, which has not
been used to optimize the model parameters. This is shown in Figure 4 and in Table 2. Also for the testing
data, we see that Models 3 and 4 are clearly superior to Models 1 and 2. We compare with four classic, in
the sense of non-ML, parameterizations. First, SB2001 with its original parameters. ML Models 3 and 4,
which use the same set of predictors, are significantly better than SB2001, whereas SB2001 is better than ML
Models 1 and 2. For “SB new” we have recalibrated Φau on the training data using a Levenberg-Marquardt

Figure 3. Mean squared error (MSE) and mean absolute error (MAE) for training (solid) and validation set (dashed)
for Autoconversion Models 1–4.
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Figure 4. Mean squared error (MSE) and mean absolute error (MAE) for autoconversion calculated against the
independent testing data. The ML models are compared with the parameterizations of SB2001, KK2000, and a power
law regression model.

minimization. This brings the SB2001 ansatz closer to the MAE and MSE of ML Models 3 and 4. KK2000 is
the parameterization of Khairoutdinov and Kogan (2000), which is of similar quality as ML Models 1 and
2 that also use only cloud variables. The model named “power” is a regression model using a power law
ansatz for Lc, Nc, and 𝜈, optimized using Levenberg-Marquardt minimization on the training data. This is
only marginally better than KK2000.

This seems to make little difference for the scores against the testing data, Model 5 is slightly worse than
Model 4, but Model 6 with x̄c − 𝜏 has the best MAE and MSE against the testing data. The result can be
interpreted such that ML Models 3 and 4 are able to approximate those dependencies well enough from the
original data and do not benefit from a simplification of the problem when we remove these dependencies.
That Model 6 is better than Models 3 and 4 suggests that there are some issues with the generalization of
those two models to the testing data.

Figure 5 shows a similar comparison of ML models with SB2001 for accretion and both self-collection rates.
In general, we find that the use of additional predictors leads to an improvement of the models. The results
are ML models that provide a significant improvement over SB2001 (and KK2000 for accretion). The addi-
tional improvement from including 𝜏 in the self-collection rates is small though. For accretion, it is not
necessarily favorable to include 𝜈, but this difference is not significant for our training and testing data. In
a full atmospheric model, one could hope that simpler parameterizations or ML models might generalize
better and drop those variables that provide only a marginal improvement.

In the following (sections 6 and 7), we use Lc− x̄c−𝜏−𝜈 for autoconversion, Lc−Lr − x̄c− x̄r −𝜈 for accretion,
Lc − x̄c − 𝜈 − 𝜏 for self-collection of cloud droplets, and Lr − x̄r for the self-collection of rain.

As a pure ML application, we would already be done at this point. The ML models can make skillful pre-
dictions of the process rates that are of similar quality, or even better, than standard parameterizations used
in atmospheric models. From the point of view of model development for NWP and climate models, on the
other hand, we want to go at least one step further and test whether the ML-based process rates lead to skill-
ful solutions of the ODE system that approximates the original KCEs. Before we do so, we first analyze the
ML models in some more detail in the next section.

6. Interpreting the NNs With Partial Dependence Plots
While we have seen that the ML models can achieve similarly good predictions of the conversion rates as
SB2001, they do not directly reveal how they do so. However, there are ways to peek inside the “black box”
that allow to gain some insight from the trained models (McGovern et al., 2019). In particular, we use a
method called partial dependence plots (PDP) (Friedman, 2001). To create a PDP, one predictor is set to a
fixed value for all samples in the test set, which is then passed to the trained model to create a prediction.
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Figure 5. Mean square error (MSE) and mean absolute error (MAE) for accretion and self-collection calculated against
the independent testing data and compared to SB2001.

By repeating this process for a range of predictor values and averaging the results, one obtains the effect
of changing this one predictor on the prediction, all else being equal. This can then be repeated for every
feature to obtain the plots in Figure 6. Note that in these univariate PDP plots, dependencies between the
predictors are thus not taken into account. We also plotted the dependencies in SB2001 for comparison
(see figure caption for details).

For accretion, the dependencies of the ML model as revealed by the PDP technique are very close to SB2001
for Lc and Lr , whereas the additional effects from taking into account x̄c, x̄r , and 𝜈 are small. This is also
consistent with the results using different sets of predictors from the previous sections, which already sug-
gested that Lc and Lr are the dominant predictors. For autoconversion ML Model 4 the PDP analysis shows
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Figure 6. Partial dependence plots for the neural networks as described and selected in section 5. Autoconversion is ML Model 4 of Table 2. Red dashed lines
denote predictions for SB2001. For AC, we used their Equation 21, for AU Equation 16, for SCc Equation 14, and for SCr Equation 19. For the variables that
were not varied, the mean over the test set was used to create the SB2001 predictions.

that the ML approach finds dependencies on Lc, x̄c, 𝜏, and 𝜈 that are very similar to SB2001. The dependency
on 𝜈 is somewhat, the one x̄c only marginally, weaker than the analytic relations of SB2001. The latter orig-
inate directly from the Long (1974) kernel, but the Long-kernel itself is only an approximation, and, hence,
it is not obvious that it provides the correct functional relationships. ML Model 4 predicts an increase of AU
with 𝜏 that is qualitatively similar to Φau(𝜏) of SB2001. Note that the 𝜏 dependency that results from the PDP
analysis corresponds to

AU ∼
[

1 +
Φau(𝜏)
(1 − 𝜏)2

]
(22)

rather than just Φau(𝜏) itself. This explains why AU of SB2001 levels off at small 𝜏 in Figure 6. For small 𝜏
the ML model shows smaller AU than SB2001.

Also, for the two self-collection rates the agreement between ML Model 4 and SB2001 is surprisingly good,
although we have to emphasize that Figure 6 is plotted in log scales. For a small cloud liquid water content
Lc < 10−4 the ML model predicts a lower self-collection rate (SCc resp.) than SB2001. The same is observed
for rain with Lr < 10−5 leading to a lower self-collection rate SCr compared to SB2001.

The dependency of cloud droplet self-collection on 𝜈 shows a good agreement, whereas the additional depen-
dency on x̄c is weak. Cloud droplet self-collection shows an increase for large 𝜏, which should be interpreted
with caution due to the fact that this is only a box model without sedimentation or other effects. Note that
the SB2001 cloud droplet self-collection rate as shown here includes the loss due to autoconversion.

Thus, the PDP technique confirms that the ML algorithm is able to extract physically reasonable nonlinear
relationships for the warm-rain processes from the training data. The main dependencies are consistent
with the well-established warm-rain parameterization of SB2001. The additional sensitivities are physically
reasonable and promise to provide an improvement over SB2001. Whether they actually hold that promise
will be to focus of the next section.
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Figure 7. Time series of the rain water content for the solution of the KCE and the ODE solutions using SB2001 and
ML Model 4 with autoconversion predictors Lc, x̄c, ν, and τ. Black and gray colors are the KCE solutions, red to orange
colors for SB2001, and bluish colors the ML model. Shown are four difference initial conditions with (from left to right,
different hue of colors) (1) L0 = 1 g m−3, r̄0 = 14 μm, 𝜈 = 0; (2) L0 = 0.7 g m−3, r̄0 = 14 μm, 𝜈 = 0; (3) L0 = 0.7 g m−3,
r̄0 = 11 μm, 𝜈 = 0; (4) L0 = 0.5 g m−3, r̄0 = 11 μm, 𝜈 = 2.

7. Results for the ODE System
In atmospheric models the warm-rain ODE system, Equations 6–9, is part of a much larger PDE system, and
these source and sink terms are usually integrated with a simple Euler forward time stepping. Hence, we do
the same here using a sufficiently small time step of 5 s. In NWP and climate models time steps of 20 s and
up to several minutes are common, but this can deteriorate the solution of the warm-rain ODE system.

Note that we solve here only the ODE system as given by Equations 6–9 and no additional processes like
drop sedimentation, drop breakup, or large-scale dynamics are taken into account. This ODE system should
therefore parameterize the KCE as defined by Equation 1 and be interpreted as a box model or as spatially
homogeneous cloud.

In the following, we focus on comparing the different ML models for autoconversion with benchmark solu-
tions of the KCE and the parameterization of SB2001. In this section, all ML models use the same choices
(and hyperparameters) for accretion and the two self-collection rates by using the ML models that gave the
best results against the testing data.

Figure 7 shows the rainwater content Lr for four solution with different initial conditions with zero initial
rainwater, but with different initial liquid water content L0 = Lc(t = 0), different initial mean volume radius
r̄0 = r̄c(t = 0) and different shape parameter 𝜈. The time evolution is typical of all solutions of the KCE
and shows a conversion from the pure cloud water initial condition with no rain to a pure rain water state
where all cloud water has been depleted. Hence, the solutions change primarily in their time evolution,
namely, the onset of the cloud-to-rain conversion, which is dominated by autoconversion, and the speed of
the conversion to rain once a first significant amount of rain has formed. This slope is set by the accretion
rate. Obviously, the amount of rain is limited by the total liquid water in the system L0. Lower L0, smaller r̄0,
and larger 𝜈 lead to a slower formation of rain and a delay of the transition to a pure rain state. For these four
cases, SB2001 provides almost perfect solutions that are very close to the benchmark solutions of the KCE.
The ML model, here Model 4, shows a delay for the three cases with 𝜈 = 0 and a too fast formation of rain for
the slowest case with 𝜈 = 2. Hence, the dependency on 𝜈 seems to be suboptimal in the ML model. To analyze
those dependencies more systematically, we define a time scale tp as the time when p percent of the cloud
water has been converted to rainwater. The time scale t50 is a good measure for the overall performance of
the ODE systems, whereas t10 focuses on the initial stage where autoconversion tends to dominate.

Figure 8 presents the results for t10 for ML Model 2 with predictors Lc, x̄c, and 𝜈 and Model 4 that, in addition,
includes 𝜏. ML Model 2 has clear deficiencies and fails to represent the timing of the benchmark solutions in
a large part of the parameter space. In contrast, Model 4 shows a reasonable behavior, and also, the depen-
dencies on r̄0 and 𝜈 are qualitatively correct. But ML Model 4 shows a significant bias with a delay in most
parts of the phase space and a too weak sensitivity to r̄0. The dependency on 𝜈 is actually captured quite well
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Figure 8. Time scale t10 in min as a function of L0, ν, and r̄0 for two ML models without (top row) and with τ as predictor (bottom row) for autoconversion.
The superdroplet benchmark solutions (black) are shown together with SB2001 (red) and the respective ML model (blue).

here and only slightly too strong. SB2001 is significantly better than ML Model 4 and matches the bench-
mark simulation surprisingly well given that it has not been retraining or retuned for this data set but is the
original parameterization as published in 2001. On the other hand, we have used exactly the same collec-
tion kernel as in SB2001 and only applied a different numerical method. This shows that the good scores of
the ML models against the testing data of the process rates do not directly transfer to the ODE solutions. In
contrast, SB2001 is better for the ODE solutions, although it is worse against the testing data for the process
rates. This will be discussed and explained in section 8. Here we just note that ML Model 4 would be an
acceptable warm-rain parameterization, but in this metric, it is clearly outperformed by SB2001.

The deficiencies of ML Model 2 can also clearly be seen in the time series of AU and AC shown in Figure 9.
ML Model 4 provides a very good approximation of both AU and AC, for this case, and is in some aspects even
superior to SB2001. The latter shows a remarkable overestimation of AU in the first 10 min. Hence, for cases
like this, for which ML Model 4 has only a small temporal bias, the solution reproduces the detailed evolution
of the KCE reasonably well. In contrast, the autoconversion rate of Model 2 starts much too high, decreases
with time and even shows some signs of instability later in the simulation. The inability to represent the time
evolution of AU, and especially the increasing AU in the first stage of rain formation, can also be observed
for many other parameterizations that are only based on cloud variables like Berry and Reinhardt (1974),
Beheng (1994), and Khairoutdinov and Kogan (2000). Hence, this is caused by our choice of predictors, not
by the ML approach itself.

To compare with the other ML models, we analyze the overall errors for t10 as shown in Figure 10 and
in Table 2. The scores are evaluated over a wide range of initial conditions with L0 ∈ [0.3, 2] g m−3, r̄0 ∈
[10,15] μm, and 𝜈 ∈ [0, 4]. This reveals that the other ML models with different predictors, including those
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Figure 9. Time series of the autoconversion rate AU and the accretion rate AC of ML Models 2 and 4 (blue) for the
initial condition L0 = 0.7 g m−3, r̄0 = 11 μm, 𝜈 = 0. For comparison the superdroplet benchmark simulations are
shown (black) as well as SB2001 (red).

borrowing some dependencies from SB2001, cannot improve significantly over Model 4. Only Model 3,
which uses Lr instead of 𝜏, is slightly better for the ODE solutions. In our opinion, this small difference is
not significant. In terms of mean error (ME) and mean relative error (MRE) Model 5 is the best ML model.
Overall, none of the ML models comes even close to the low MAE and MSE of SB2001. A detailed inspec-
tion shows that all ML-based models have difficulties with the slowly evolving cases of low L0, small r̄0, and
large 𝜈.

In the next section, we will analyze this behavior in more detail and test some more ML models with the
goal to remedy these deficiencies.

8. Sensitivities and Discussion
ML models can be fine-tuned by altering the design of the neural net and the optimization algorithm that
determines the trainable parameters (Géron, 2019). In the ML community, such choices are called hyper-
parameters. Most prominently for neural nets is the size of the network. A wider and deeper neural net has
more trainable parameters and can fit the training data better, but this will not necessarily generalize to the
testing data or the application.

Figure 10. Mean absolute error (MAE) and mean squared error (MSE) for t10 for various ML models with different
predictors and SB2001 (left), as well as mean error (ME) and mean relative error (MRE) for the same models (right).
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Figure 11. Mean absolute error (MAE) and mean squared error (MSE) for t10 for ML Models 13 to 18 and 4 using
different thresholds ϵ1 as well as SB2001 (left), and mean error (ME) and mean relative error (MRE) for the same
models (right).

As part of this study, we have made many attempts to further improve the performance of the ML model
to come closer to the ODE results of SB2001. We have, for example, tested deeper and wider NNs as well as
different activation functions. None of this leads to a significant improvement in the behavior of the ODE
solutions, and these further experiments are therefore documented in the supporting information. The main
bottleneck for a further improvement seems to be that improved results for the training or test set do not
necessarily transfer to the ODE solutions.

Some hint for the underlying cause for the difficulties to further improve the ML models can be gained from
experiments that change not the ML model itself, but the threshold 𝜖1 in the data reduction of the training
data. Changing 𝜖1 has a pronounced and systematic impact on the timing of the ODE solutions: A smaller
𝜖1 leads to a further delay of the rain formation, especially for the difficult initial conditions, for example,
large 𝜈, whereas a larger 𝜖1 results in a more rapid formation of rain (Figure 11 and Table 3). At this point,
we may also reveal that the initial setting of 𝜖1 = 10−12 is an a posteriori choice that minimizes the MAE,
MSE, and ME of the ODE solutions; only for MRE an even larger 𝜖1 would be better.

Further evidence for the cause of the problem can be gained from Figure 9. The autoconversion rate AU
can be very small at initial times, and for large 𝜈 it becomes virtually zero for the benchmark solutions
and, hence, in the training data. If AU is zero at initial time in the ODE system, though, no rain will ever
develop because AC is also zero due to Lr being zero by definition. When we remove the small values of
AU at initial time with help of an increased 𝜖1, then the ML model extrapolates ending up with a higher
value for AU. This explains the change in the ME and MRE for different 𝜖1 switching for a delay at low 𝜖1
to a too fast development at high 𝜖1. Hence, we have to conclude that the benchmark simulations do not
provide useful training data for AU at initial time. The underlying cause for this behavior is that the concept
of autoconversion is, in fact, ill-posed for large 𝜈 and small r̄0. The two-moment parameterization is only
based on the moments M(0)

c = Nc and M(1) = Lc. For a very slowly evolving narrow cloud droplet distribution

Table 3
The Same as Table 2 but for ML Models With Predictors Lc, x̄c, ν, τ (as Model 4) but Using Different
Thresholds ϵ1 in the Data Reduction of AU

Trainable Testing data ODE solutions, t10 errors
No. param. 𝜖1 MAE MSE MAE MSE ME MRE
SB (6) — 3.46 11.23 1.43 2.13 −0.91 −2.70
7 609 1e–15 2.32 6.41 10.24 13.01 9.60 34.57
8 609 1e–13 2.34 6.48 6.84 9.48 4.36 19.08
(4) 609 1e–12 2.41 6.90 6.40 8.79 1.90 13.14
9 609 1e–11 2.62 7.85 6.61 11.40 −5.22 −5.04
10 609 1e–10 2.36 6.06 10.90 17.46 −10.56 −17.23
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these two moments contain no information about the evolution of the drop size distribution during this
earliest stage of the rain formation. The collisional growth is initially only affecting the higher moments of
the cloud droplet distribution, which are, unfortunately, not part of the two-moment model. Hence, when
we follow this interpretation, the ML models have to fail because the training data contain no information
that can lead to an ODE system that describes those solutions of the KCE. The puzzling piece here is that
such an ODE system seems to exist in form of the SB2001 parameterization.

So how and why does SB2001 actually work? SB2001 does overestimate AU for 𝜏 ≪ 0.1, especially for the
difficult cases with small L0, small r̄c, and large 𝜈. This can clearly be seen in Figure 9 and becomes even
more severe for more extreme cases. The parameterization compensates this by a decrease of AC for small
𝜏 that is not based on data (see the supporting information). The parameters in Φac(𝜏), Equation 15, have
been chosen such that the solutions of the ODE system match the timing of the reference solution of the
KCE. Thus, the good agreement of SB2001 for t10 is a combination of the self-similarity of the solutions,
which is the mathematical foundation that makes this possible, and a tuning of the ODE system for t10. The
self-similarity is instrumental in this because for each slowly evolving solution with small r̄c, small L0, and
large 𝜈 we can in principle find a corresponding fast solution with nonvanishing AU by taking the limit
to large L0. The self-similarity will then guarantee that the rescaled similarity solution matches the time
evolution of the true slowly evolving solution. This neither requires nor guarantees that AU and AC are both
correct for the slowly evolving solution, though. Hence, for those extreme cases SB2001 is not a rigorous
approximation of the process rates based on the numerical data, but a parameterization that mimics the
time evolution of solutions of the KCE.

In some sense ML, at least in the approach that we have chosen here, is an attempt to be more rigorous than
SB2001, but such a direct solution based only on data may not exist for this problem. In the parameteriza-
tion community, this is known as a closure problem. The chosen model, here the ODE system for the two
moments M(0)

c = Nc and M(1) = Lc, cannot be derived rigorously from the fundamental physical equations
(here the KCE) without the help of additional and independent assumptions, for example, making use of
conservation laws or invariance properties that may be part of the underlying equations but are not yet con-
tained in the parameterized model. Due to the closure problem associated with vanishing autoconversion for
small r̄c and large 𝜈, it remains unclear whether a two-moment scheme is actually able to represent autocon-
version properly over the full range of parameters. The results presented here indicate that it is not. Hence,
the problem might be fundamentally ill-posed. Nevertheless, the SB2001 model provides a good parameter-
ization because it makes use of the invariance of the KCE to time transformations as an additional closure
assumption.

9. Conclusions
In this study we have applied standard ML methods in form of fully connected neural nets to the parame-
terization problem of warm-rain cloud microphysics. We find that ML-based models provide a reasonable
representation of the microphysical process rates. The ML approach confirms previous results that includ-
ing rain water information is essential to parameterize warm-rain autoconversion, that is, in a standard
two-moment model cloud water variables alone are insufficient to predict autoconversion. The dependen-
cies of appropriate ML models of the cloud microphysical process rates are consistent with established
warm-rain parameterizations. The resulting ML-based parameterizations can be applied in actual atmo-
spheric models to describe the warm-rain processes.

A great advantage of the ML approach is that different model formulations can be implemented and evalu-
ated quite quickly, for example, models using different sets of predictors. In the supporting information, we
document an extension of the warm-rain two-moment model to predict the number change due to autocon-
version and accretion explicitly. To our knowledge, this has never been done with standard bulk schemes,
but it can, in our case, improve the prediction of cloud droplet size.

More generally, the ML approach seems especially well suited to parameterize the complications and details
of ice microphysical processes, which often require a mix of analytical relations and look-up tables in
state-of-the-art parameterizations. Hence, the ML approach has the potential to greatly simplify and speed
up the development process of microphysical parameterizations for NWP and climate models.
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The main problem of the ML approach presented here is that for the actual application in form of an ODE
system, the quality of the ML-based models is inferior to the classic non-ML parameterizations. The ML
models show significant biases especially for slowly evolving solutions of the KCE. This behavior cannot be
improved by modifying the ML model using standard hyperparameters like size of the network, activation
function, and so forth. We posit that these biases of the ML models are not so much a deficiency of the
ML approach itself but are caused by inherent limitations of the chosen two-moment warm-rain model.
During the first stage of rain formation, the two-moment model is insufficient to describe the evolution of the
process rates, and, hence, it cannot be trained properly with the process rates of the benchmark simulations
and standard ML approaches. In physically based parameterizations such limitations can be overcome by
making additional closure assumptions, but often, this leads to compensating errors being introduced.

A logical step would be to include additional higher moments as predictors. This could maybe overcome the
problems and the ML methods do offer a powerful technique to derive such more complicated parameteri-
zations. Still, there might be new challenges when going to more and higher moments like the treatment of
activation and turbulent mixing and the effect of these processes on the higher moments of the cloud droplet
distribution. In addition, three-moment schemes are more costly in a computational sense, when applied in
a full NWP or climate model.

Maybe more advanced ML techniques like, for example, neural ODEs (Chen et al., 2018; Rackauckas et al.,
2020) can resolve the issues even on the level of a two-moment scheme by learning the equations from data
in the sense that the ML models include the concept of an ODE or of a function and its derivative. Being
able to include the time evolution of the model variables (the ODE solutions) and the process rates (the
derivatives of the ODE solutions) in the training data would probably resolve the closure problem related
to the ill-posedness of the two-moment warm-rain parameterization. Then we would only have to remove
the misleading autoconversion rates during the initial stage from the training data and replace those with
the corresponding benchmark solution. By being able to train directly on the time evolution of the model
variables, such advanced ML methods might succeed to extract an ODE system that is as good as or even
better than SB2001. Even more so if it would be possible to build the time invariance of the KCE into the
neural net similar to the Galilean invariance that is included in ML-based turbulence models (Ling, Jones,
et al., 2016; Ling, Kurzawski, et al., 2016). But to achieve this, the ML model first needs a concept of time
and time derivatives.

In this study, we have not analyzed the computational performance or efficiency of the ML approach ver-
sus classic parameterizations. This has to be done in a full model framework and, probably, taking into
account hardware accelerators like GPUs. For the simple warm-rain ODE and using CPUs, the ML models
are in fact more expensive than the classic parameterizations. But this might change dramatically for full
mixed-phase microphysics schemes and using an implementation and hardware that is tailored toward ML
models. Hence, we do not want to draw any conclusions from the current study regarding computational
performance or efficiency.

Data Availability Statement
The training and testing data, the Python notebooks, NCL scripts, and ODE solutions are provided at Zenodo
(https://doi.org/10.5281/zenodo.3988974) and at Gitlab under the public project (https://gitlab.com/
axelseifert/warmrain). The Lagrangian microphysics model McSnow is part of the ICON modeling frame-
work, which is a joint effort of Deutscher Wetterdienst (DWD) and the Max Planck Institute for Meteorology
(MPI-M). ICON licenses for scientific use are available at not cost online (at https://code.mpimet.mpg.de/
projects/iconpublic/). Subsequently, the access to the McSnow GIT archive can be granted by A. S.
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