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Abstract Modeling soil hydraulic properties requires an effective representation of capillary and
noncapillary storage and conductivity. This is made possible by using physically comprehensive yet
flexible soil hydraulic property models. Such a model (Brunswick [BW] model) was introduced by Weber
et al. (2019, https://doi.org/10.1029/2018WR024584), and it overcomes some core deficiencies present in the
widely used van Genuchten‐Mualem (VGM) model. We first compared the performance of the BW model
to that of the VGM model in its ability to describe water retention and hydraulic conductivity data on a
set of measurements of 402 soil samples with textures covering the entire range of classes. Second, we
developed a simple transfer function to predict BW parameters based on VGM parameters. Combined with
our new function, any existing pedotransfer function for the prediction of the VGM parameters can be
extended to predict BW model parameters. Based on information criteria, the smaller variance of the
residuals, and a 40% reduction in mean absolute error in the hydraulic conductivity over all samples, the BW
model clearly outperforms VGM. This is possible as the BW model explicitly accounts for hydraulic
properties of dry soils. With the new pedotransfer function developed in this study, better descriptions of
water retention and hydraulic conductivities are possible. We are convinced that this will strengthen the
utility of the newmodel and enable improved field‐scale simulations, climate change impact assessments on
water, energy and nutrient fluxes, as well as crop productivity in agroecosystems by soil‐crop and
land‐surface modeling. The models and the pedotransfer function are included in an R package spsh
(https://cran.r‐project.org/package¼spsh).

Plain Language Summary Soil hydraulic property models are mathematical functions, which
describe the relationship between the soil water pressure head and the state of soil water saturation, on
the one hand, and the soil water pressure head and the unsaturated soil hydraulic conductivity, on the other.
These types of mathematical functions are flexible by adjustable parameters. With one set of model
equations, the hydraulic properties of soils whichmay have very different properties due to their vast natural
variability can be described. The models treated in this work are (i) the van Genuchten‐Mualem model, a
model with well‐known problems, but still frequently applied, and (ii) a relatively new physical
comprehensive model, named the Brunswick model. First of all, in a data‐based comparison of model
performance, we demonstrate that the Brunswick model has systematic advantages. Second, knowledge
about these above‐mentioned parameters can be determined through other mathematical functions,
so‐called hydro‐pedotransfer functions, which empirically relate these parameters to observed soil
properties. The information about these soil properties can be measured in the laboratory and is also
recorded in soil maps. We created a new pedotransfer function to facilitate the prediction of model
parameters for the new Brunswick model.

1. Introduction

The accurate representation of unsaturated water fluxes in soils is important for reliable descriptions of
water and energy fluxes (van Genuchten & Pachepsky, 2011) at the soil‐atmosphere boundary (Vereecken
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et al., 2019), for the prediction of plant growth and yields (Angulo et al., 2014; Gayler et al., 2009; Hoffmann
et al., 2016; Lawless et al., 2008), including irrigation optimization (Elmaloglou et al., 2010), and for the
quantification of the environmental fate of agrochemicals (Diamantopoulos et al., 2017; Vereecken
et al., 2016). For this, the Richards equation, which is now known as the Richardson equation (Raats &
Knight, 2018), is considered as de facto standard (Diamantopoulos & Durner, 2012). As necessary input, it
requires functions to describe the soil hydraulic properties (SHPs), of which the most widely used is arguably
the van Genuchten‐Mualem (VGM; van Genuchten, 1980) model. However, a number of well‐known short-
comings are summarized by Weber et al. (2019), motivating the authors to present a model framework. In
the Weber et al. (2019) model, termed Brunswick (BW) model, the soil water retention curve (WRC) and
the hydraulic conductivity curve (HCC) are ramified into a capillary and noncapillary pore space. This is
achieved by introducing only one additional model parameter. The noncapillary part accounts for some
underrepresented effects such as corner and film flow (Diamantopoulos & Durner, 2013; Tuller &
Or, 2001). With the BW model, a water content of 0 at oven dryness is ensured. Further, the inclusion of
the noncapillary part enables a linear reduction of the water content with increasing pF, as has been often
observed in experimental data (Schelle et al., 2013). Moreover, the often observed change in slope in the
mid‐pF range in the HCC (Diamantopoulos & Durner, 2015) can also be modeled with great accuracy.
Finally, it should be noted that the BW model can be used with any capillary saturation function, which
can be integrated in pF space (Streck &Weber, 2020). We define pF by pF¼ log10 ∣h∣, that is, as the common
logarithm of the absolute value of pressure head h (cm).

There are three principle methods of gaining knowledge about the SHP: first, by obtaining knowledge of the
WRC and HCC from laboratory experiments (van Genuchten et al., 1997) and subsequent parameter estima-
tion; second, through inverse modeling of time series of the relevant state variables (Romano et al., 2002);
and third, by pedotransfer functions (PTFs) (van Looy et al., 2017). In general, PTFs predict any difficult
to be measured soil property from easily measurable soil properties. When considering soil hydrology, we
should, in fact, explicitly refer to hydro‐pedotransfer functions (hyPTFs), since other types of PTF exist,
too (Goncalves et al., 2001; Martin et al., 2009; Selim, 1998). hyPTFs relate soil properties or soil texture class
(and, if available, bulk density, soil organic carbon or matter content, cation exchange capacity, etc.) to SHP
and SHPmodel parameters (e.g., Meskini‐Vishkaee et al., 2014; Schaap & Leij, 2000; Tóth et al., 2015). While
the first two methods may present more accurate knowledge, they are typically labor intensive, as well as
being location and scale dependent. An advantage of hyPTF is that for field‐scale application soil texture
information may be derived directly from soil maps (Hengl et al., 2017; Tóth et al., 2017). Laboratory mea-
surements can be effective in estimating large‐scale effective SHP (Hopmans et al., 2002), but, in spite of
the large number of data sets of laboratory measured SHPs included in the construction of hyPTF, concerns
linked to scale and effectiveness may certainly prevail (Philip, 1980; Vogel, 2019). We can, nevertheless,
expect that if the uncertainties during PTF development are contained (input uncertainty) and reported (out-
put uncertainty), the application of hyPTF to the field scale can capture some problems of scale if adequate
approaches (e.g., stochastic modeling; Beyer et al., 2009; Famiglietti &Wood, 1994) are used to represent the
soil spatial variability (Hopmans et al., 2002).

The abundant literature on hyPTF contains a multitude of functional relationships between soil texture
(properties) and SHP or SHP model parameters (Vereecken et al., 2010). Due to their widespread use in
earth system models such as Hydrus 1D (Šimůnek et al., 2016), land atmosphere models (Vereecken
et al., 2019), or soil‐vegetation‐atmosphere models such as the Daisy model (Abrahamsen & Hansen,
2000) and the agroecosystem multimodel library Expert‐N (Priesack, 2006), there has been a strong
emphasis on VGM model parameters. Some selected studies exist for other models, too (van Looy
et al., 2017). Again, it has been demonstrated numerous times that VGM and VGM‐type parameteriza-
tions of the SHP suffer from well‐known problems (Peters, 2013; Weber et al., 2019). However, no readily
available hyPTF predicting parameters of more physically comprehensive models such as the BW model
exist. In part, this might be due to the fact that the necessary large data sets with measurements of the
WRC and HCC are typically not available to the wider scientific community, in spite of the proviso of
replicable science.

Nonetheless, we are determined to make use of the fact that many numerical codes with implemented and
tested hyPTF for the VGM model already exist. We can exploit this fact with the following approach: based
on a data set of WRC and HCC data, compiled from literature sources, we established a constitutive
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relationship between themodel parameters of the VGMmodel and the BW
model in the VGM variant (BW‐VGM). With this strategy, the direct use of
existing codes is possible, while enabling a more physically comprehensive
representation of the SHP. This leads us to the first hypothesis in which we
state that there is a quantifiable relationship between the VGM parameters
and the BW‐VGM model parameters. Second, we hypothesize that the
BW‐VGM model, also in a data‐based evaluation, is better than the VGM
model. Therefore, our aims were to (i) compare the model performance
based on a large data set, (ii) establish a parameter equivalence
(Assouline & Or, 2013) between the VGM and the BW‐VGM model para-
meters, and (iii) increase the utility of existing hyPTF by extending them
to the BW‐VGM.

2. Material and Methods

To achieve these aims, the following research approach was adopted, and a
flowchart of the research approach is given in Figure 1.

1. Measured WRC and HCC from the literature were compiled in a data
set, publicly available in the context of this work at the research data
portal of the University of Tübingen, FDAT (https://fdat.escience.uni-
tuebingen.de/portal/).

2. Knowledge about the VGM and VGM‐BWmodel parameters and their
uncertainties was inferred by inverse modeling assuming identically
and independently distributed residuals, the statistical properties of
which were approximated by two separate Gaussian distributions:
one for the WRC and one for the HCC.

3. The variance of the residual is unknown a priori. This is a direct con-
sequence of the lack in information provided in the measurement
error of the soil hydrological experiments and the unknown nature
of the model error. Therefore, the variances of the combined error
(residual, i.e., model + measured error) of the HCC and WRC were
estimated as extra nuisance parameters. The estimate of the variance
of the error can then be directly used to compare the models with each
other.

4. The estimation was carried out in a Bayesian framework so that the
uncertainty in the resulting model parameters is proportional to the
variance of the likelihoods. The posteriors of the model parameters

were sampled using a Markov Chain‐Monte Carlo (MCMC) algorithm.
5. The functional relationship between corresponding VGM and BW‐VGM model parameters was estab-

lished for all parameters but one using weighted linear regression with individual weights in both the
dependent and the independent variables. These weights were determined directly as the variance of
the respective sample of the posterior.

2.1. SHP Models

Here, the two SHP models for the pressure head dependent WRC θ(h) and HCC K(h) are described. Some of
the parameters exist in both models; we have chosen to use the traditional symbols but later in the study
differentiate them by adding appropriate suffixes. Details of the robust inverse modeling scheme are given,
and summary information describing the compiled data set is presented.
2.1.1. The VGM Model
Soil Water Retention Function
The soil water retention θ (L3 L−3) is a function of pressure head h (L) and given by the van Genuchten
equation

Figure 1. Flowchart of the research approach. The data sets (DS) 1–4 are
described in the text.
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θ hð Þ ¼ θr þ θs − θrð ÞΓ hð Þ; (1)

where θr (L
3 L−3) and θs (L

3 L−3) are the residual and the saturated water contents, respectively, and the
effective saturation function Γ(h) is given as (van Genuchten, 1980)

Γ hð Þ ¼ 1þ αjhð Þn½ �−m
; (2)

where α (L−1), n (−), and m (−) are shape parameters, with the constraint of m ¼ 1 − 1/n.
Hydraulic conductivity curve
The closed‐form expression for the HCC K(h) (L T−1) is given by

K hð Þ ¼ KsΓ hð Þτ 1 − 1 − Γ 1=mð Þ
� �m� �2

; (3)

where Ks (L T−1) is the saturated hydraulic conductivity and τ (−) is a shape parameter. This leads to six
adjustable model parameters which we will denote here as xVGM ¼ {θr, θs, α, n, τ, Ks}.
2.1.2. The BW Model in the VGM Variant
In comparison with the VGMmodel, the BW frameworkmodel conceptually adopts themethod of partition-
ing the SHP, introduced by Peters (2013), into a capillary and a noncapillary part (Weber et al., 2019). The
obtainedmodel for theWRC is continuously differentiable in h. In contrast tomost other retention functions,
a water content of zero at very high‐pressure heads ∣h∣ is ensured. Finally, the desirable feature of a near lin-
ear decrease in water content on a log‐linear scale at high‐pressure heads ∣h∣ is obtained. The capillary and
noncapillary conductivities are computed from the respective saturation functions, thereby accounting for
moreflow phenomena in the drier part of theHCC. All of this is achieved by one additionalmodel parameter.
Here, the BW model framework is briefly explained. Full details can be found in Weber et al. (2019).
Soil water retention function
Again, the WRC is a function of h but given as a weighted sum of the capillary Sc(h), and noncapillary Snc(h)
saturation function, respectively,

θ hð Þ ¼ θcsSc hð Þ þ θncsSnc hð Þ; (4)

where θcs (L
3 L−3) and θncs (L

3 L−3) are, respectively, the saturated water content of the capillary and the
noncapillary part. In equivalence to Equation 1, the saturated water content, θs (L3 L−3) of the VGM
model corresponds to the sum of θcs and θncs.

The effective saturation function Sc(h) in Equation 4 is given by rescaling Γ(h) (Equation 2) as (Iden &
Durner, 2014)

Sc hð Þ ¼ Γ hð Þ − Γ0 h0ð Þ
1 − Γ0 h0ð Þ ; (5)

where the pressure head value at which oven dryness is attained (θ ¼ 0) is set to h0 ¼ −106.8 cm, follow-
ing the suggestion by Schneider and Goss (2012) and in agreement with literature values (Weber
et al., 2017b). Other authors suggest to use h0 ¼ −106.9 cm as anchoring point (Groenevelt &
Grant, 2004). Soil water retention values in the very dry end may be determined experimentally with
the dew‐point method (Gee et al., 1992).

The effective saturation function of the noncapillary part Snc(h) is expressed directly as

S*nc hð Þ ¼ log10 eð Þ
Z−10ϵ

h

Sc h′ð Þ − 1
h′

dh′; (6)

where h′ denotes the dummy variable of integration and the upper boundary of the integral −10ϵ is a pres-
sure head value very close to 0. From rescaling the Equation 6, an expression for Snc(h) is given as

Snc hð Þ ¼ 1 −
S*nc hð Þ
S*nc h0ð Þ; (7)

which ensures that Snc(h) scales between 0 and 1 when h varies between h0 and ε cm. The expression for
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Γ(h) can be replaced by any given capillary saturation function, such as those proposed by van Genuchten
(van Genuchten, 1980), Brooks‐Corey (Brooks & Corey, 1964), Kosugi (Kosugi, 1996), or Fredlund‐Xing
(Fredlund & Xing, 1994), demonstrating the flexibility of this approach for modeling the noncapillary
retention function. For this study, we set ϵ ¼ −3. The integral in Equation 6 was solved numerically in h
space as implemented in the R package spsh (Weber, Diamantopoulos, et al., 2020). The solution was
derived by numerically integrating using 302 support points on the pressure head interval [10−3; 106.8]
and by adding measured pF values during parameter estimation for each sample individually. An
analytical solution derived by Streck and Weber (2020) was derived after completion of this study and
used as a benchmark for numerical solution. The results showed that no relevant differences exist
between the two.
Hydraulic conductivity curve
Similar to the WRC, the liquid HCC is given as a sum of its capillary Kc(h) (L T−1) and noncapillary Knc(h)
(L T−1) conductivities. Under consideration of the isothermal vapor conductivity Kivc(h) (L T−1), the HCC K
(h) is given similarly to Peters (2013) by

K hð Þ ¼ Kc hð Þ þ Knc hð Þ þ K ivc hð Þ; (8)

where the HCC for the capillary part Kc(Sc(h)) is given by (Peters, 2014)

Kc Scð Þ ¼ KscSc
τ 1 −

1 − Γ
1
m

1 − Γ
1
m
0

 !" #2
; (9)

where the functional argument h has been dropped from the notation and Ksc is the saturated capillary
conductivity (L T−1).

The HCC for the noncapillary part Knc(Snc(h)) is given by Weber et al. (2019) as

Knc Sncð Þ ¼ Ksnc
h0
hr

� �−a 1 − Sncð Þ
; (10)

where hr ¼ 1 cm ensuring matching dimensions, a (−) is a parameter, which governs the slope of the HCC
in the part of the function, where noncapillary flow dominates and is set to 1.5 which is in agreement with
direct measurements (Tokunaga, 2009) and as used in the literature (Weber et al., 2017a). The tortuosity
model in Kivc we used was the Millington and Quirk model (Millington & Quirk, 1961). We give Kivc here
for completeness but refer to Saito et al. (2006) or Peters (2013) for a full description.

This leads to seven adjustable model parameters denoted by xBW−VGM ¼ {θsnc, θsc, α, n, τ, Kcs, Kncs}. The
shapes of the WRC and HCC of both models are shown in Figure 2, along with the specific soil water capa-
city function.

2.2. Data Set

A data set of 1,729 samples with WRC and HCC data was comprised from the following data sets: The
Portuguese and German data sets from Weynants et al. (2013) (apart from the the BGR data, which we
did not use as it was not freely available), the data in the supporting information of Rudiyanto et al. (2015),
the UNSODA database fromNemes et al. (2001), and the “Vereecken database” from Vereecken et al. (1989)
(Vereecken et al., 2017). The textural data are summarized in Figure 3 showing a coverage not untypical for
studies on PTFs and the common underrepresentation of clay soils. The data were compiled and can be
accessed publicly (Weber, Vereecken, et al., 2020).

Figure 4 summarizes the data set by reporting the fraction of samples for which measurements above and
below certain pressure heads were reported. For example, 90% of the samples contained WRC data with
pF ≤ 0.8 and 50% with HCC data (blue circles). In general, the wet end has more samples with measured
WRC than HCC. In the dry end, this is reversed at pF ≥ 4.0. This is related to the adopted measurement
techniques.
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2.3. Parameter Estimation

In the following, two different approaches for the inference about the parameter are described. First, the
method to estimate the SHP model parameters from Bayesian inference is described, in which we employ
a converged MCMC sampler, to sample from the posterior distribution of the model parameters. Later,
the functional relationships relating the parameters xVGM to selected parameters in xBW−VGM are described.
Some parameters were transformed for the entire analyses as follows: log10(n − 1), log10(α), log10(Ks), log10
(Ksc), and log10(Ksnc). This means the prior and parameter bounds were specified accordingly.
2.3.1. Soil Hydraulic Properties
According to the continuous case of Bayes' theorem, the posterior probability density function (pdf) of the
model parameters is (Box & Tiao, 1992)

Figure 3. Texture information samples in the database (left) German soil classification system (right) USDA
classification. The limits of the texture ranges can be found in the respective subfigures; in dark blue, the entire
data set is shown, and in light blue, the reduced data set, DS1 (explanation in section 3.1).

Figure 2. The SHP models (a) WRC and (b) HCC with the BW‐VGM parameters θsnc ¼ 0.08 (−), θsc ¼ 0.42 (−),
α ¼ 0.05 cm−1, n ¼ 1.6 (−), Ksc¼ 100 cm d−1, Ksnc ¼ 10−4 cm d−1, and τ ¼ 0.5 (−). Explanation of the parameters
is given in the text. The continuous salmon‐colored lines are identical to the VGM model, but the retention
curve runs between 0 and θsc (i.e., θs − θr) and not θs and θr.
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f post xkjyð Þ ¼ L yjxkð Þf prior xkð Þ
f yð Þ ; (11)

where fpost(xk| y) is the posterior distribution of the model parameter set xk (i.e., xVGM or xBW−VGM) con-
ditional on the measured WRC and HCC data set, denoted by y. The term in the denominator of
Equation 11, f(y), is independent of the model parameters and serves as a normalizing constant so that f-

post(xk| y) integrates to unity. We explicitly note that, in formulating Equation 11, we do not explicitly for-
mulate prior model weights (Schöniger et al., 2014). However, we do note that through the different
number of parameters, different fprior(xVGM) values are calculated, which are not equal for VGM and BW‐

VGM. This is an indirect result of the latter model carrying an additional parameter (Ksnc), while the para-
meter bounds which correspond in both models were not altered. Scharnagl et al. (2011) demonstrated
how the choice of priormay considerably influence the shape and themode of fpost(xk| y) for SHP parameters,
but in the interest of a fair comparison, the prior was bounded, but no further shape assumptions beyond
bounded uniform were included. Therefore, we are assuming here that fprior(xk) is best described by a multi-
variate distribution with uniform distributed bounded marginals; the bounds are presented in Table 1. From
this, we can compute ln fprior(xVGM)¼−3.51 and ln fprior(xBW−VGM)¼−5.3, implying prior weights of 6:1 in
favor of the VGMmodel. The assumptions on the prior, here, render the posterior proportional to the likeli-

hood function. The posterior sampling of fpost(xk| y) by a MCMC is only
known to a constant of proportionality (Gelman et al., 2014) so that
MCMC sampling is possible without specifying f(y). The joint likelihood
to observe the data is then given by

L yjxkð Þ ¼ ∏
Nθ

i¼1
Li; θðyi;θ

��xkÞ × ∏
Nθ þ N log10K

i¼Nθ þ 1
Li; log10Kðyi;log10KjxkÞ; (12)

whereNθ is the number of data points in the observedWRC,N log10K is the

number of the observed HCC, and yi,θ and yi; log10K are the ith measure-

ments in the WRC and HCC data set, that is, the different data groups.

We point out that we have simplified the notation and subsequently
dropped an explicit reference to Li,θ and Li; log10K . In the following we

assume statistically independent and heteroscedastic errors (homosce-
dastic within θ and K) which are calculated by

Figure 4. Cumulative frequencies describing the percentage of samples with measurements above (blue circles; top axes)
and below (red squares; bottom axes) a certain pressure head (pF ¼ log10 ∣ h∣), (left) θ(h) and (right) log10K(h).

Table 1
Bounds for the Shp Model Parameters of the Prior, and the Two
Nuisance Parameters

Parameter Unit Lower bound Upper bound

θr , θsnc (−) 0.001 0.35
θs , θsc (−) 0.2 0.7
αVGM , αBW (cm−1) 0.001 0.1
nVGM , nBW (−) 1.1 11
Ks , Ksc (cm d−1) 1 1,000
Ksnc (cm d−1) 1 E‐6 1 E‐1
τVGM , τBW (−) −2 10

Statistical model
σθ (−) 0.001 1
σlog10K (cm d−1) 0.001 1

Note. Explanation of the parameters is given in the text. The parameters α,
n − 1, K, and σ were estimated in the log10‐transformed space.
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eik hi; xkð Þ ¼ yik − f hi; xkð Þ k ¼ 1; 2 and i ¼ 1; …; N ; (13)

where f(hi, xk) denotes the model‐predicted WRC or HCC value at pres-
sure head hi and model for k, with N ¼ Nθ þ N log10K. The errors in WRC

and HCC are assumed to have a zero mean (E[eik(hi, xk)] ¼ 0) and are
normalized by the respective standard deviations σlk, where l denotes
the data group of WRC and HCC. The standardized residual eik is

obtained by

eik hi; xkð Þ ¼ eik
σlk

i ¼ 1; …; N: (14)

The fact that σlk can be different for WRC and HCC leads to the choice
of estimating an individual σlk,. Thus, we explicitly write σθ and σlog10K
which were estimated as additional nuisance parameters in the

Bayesian inference for each of the two models with the same bounds (Table 2). As illustrated in Weber
et al. (2018), the choice of the likelihood model L(y| xk) influences fpost(xk| y). With reference to the above,
this can lead to better approximations of fpost(xk| yi) but requires close, that is, supervised examination of
the inference result for each individual sample and model. Since this is not within the scope of this study,
we assume that eik is approximately normal and the likelihood model for HCC and WRC, under the con-

sideration of Equation 14, is then formulated as

Li yið jxk;σlkÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2πσlk

p exp −0:5 e2ik
� �

: (15)

For the estimation of the best parameter set, we used a parallelized global optimization algorithm (dif-
ferential evolution; Storn & Price, 1997) as implemented in the R package DEoptim (Mullen et al., 2011)
using a maximum of 500 iterations, default settings, and setting the number of population members as
10 times the number of parameters. The obtained best parameter estimates were used in subsequent
analyses. To sample from the posterior, we used the delayed rejection adaptive Metropolis algorithm
(Haario et al., 2006) as implemented in the FME package in R (Soetaert & Petzoldt, 2010). The sampling
was performed using a single chain with 50,000 iterations. Convergence was attested by ensuring the

Gelman and Rubin's convergence diagnostic bR (Brooks & Gelman, 1998; Gelman & Rubin, 1992) ful-

filled the condition bR<1:2, for each element in x, calculated based on two additional chains. Of all

metrics, the bR statistic provides the best guidance on exactly when convergence has been achieved
(Vrugt, 2016). The sample was obtained using a maximum number of three tries for the delayed rejec-
tion procedure and an adaptation of the covariance matrix of the jump distribution every 100 iterations.
The first 90% of the samples were treated as burn‐in and discarded, and subsequent analyses were done
on the last 10%. As starting point for the chain, we used the best parameter estimate for each given
sample and model and added some small amount of noise to avoid the sampler getting stuck at the
mode right from the outset.
2.3.2. Construction of the hyPTF
The construction of the hyPTF was based on establishing functional relationships between the estimated
parameters (see section 2.3.1) for the two models (xVGM → xBW−VGM, except for Ksnc). We used weighted
least squares to account for errors in both the predicted and the explanatory variable (Glaister, 2001) for
θsnc(θr), θsc(θs − θsnc), αBW(αVGM), nBW(nVGM), Ksc(Ks), and τBW(τVGM), while for Ksnc, we simply used

the median of a set of estimated bKsnc . Next to the adopted weighted linear regression for the remaining

parameters, we tested several other regression and machine learning models to predict bKsnc based on
different parameter combinations. None of the results were considered robust; thus, we suggest using med-

ian bKsnc. The consideration of errors was achieved by using the calculated variance from the posterior's sam-
ples fpost(xk| y) marginal for each parameter. The variance of parameter j in model k for the observed data set
d was calculated from the MCMC sample of the posterior and used as a weight wjkd ¼ [var(xjkd)]

−1/2 for the

Table 2
Comparison of the Median Mean Error (ME) and Median Mean Absolute
Error (MAE) Between the Van Genuchten‐mualem (Vgm) and the
Brunswick (BW‐VGM) Model for the Two Data Groups Water Retention
Curve (WRC) and Hydraulic Conductivity Curve on the 402 Samples

WRC HCC

(cm3 cm−3) (log10 [cm d−1])

Model ME MAE ME MAE

VGM −1.5 E‐8 4.6 E‐3 −1.7 E‐5 0.17*
BW‐VGM −7.8 E‐6 4.6 E‐3 2.4 E‐5 0.11*

*Denotes significant difference with p¼ 1.48 E‐8 between the models ME
and MAE for HCC.
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York regression (York, 1966). We follow this procedure so that those parameters estimated in section 2.3.1
with a large variance, automatically receive a smaller weight in the regression, hereby reducing the biases
in the hyPTF. In this way, less well‐constrained parameters are assigned lower weights in the regression
in contrast to well‐constrained parameters.

For estimating unbiased confidence intervals for the regression, we used nonparametric bootstrapping
(Davison & Hinkley, 1997) as described in the following: for each relationship between the ith VGM and

BW‐VGM model parameters, we define a sampled data set Di : xVGMj ; xBW − VGM
j

n o
where i is the index for

the parameter (1–6) and j is the index for the xVGMi; j ; xBW − VGM
i; j pairs, determined by MCMC. For each Di,

we repeated the following steps 10,000 times:

1. We generated a bootstrap sample Bi by randomly samplingm points (m¼ 1,…, 10,000) with replacement
from Di with their corresponding variances for both VGM and BW‐VGM, as determined by MCMC
sampling;

2. we performed a York regression on each Bi and obtained estimated intercepts bai and slopes bbi;
3. then, the set of predictions was calculated bxBW − VGM

n : baqii þ bbqiixVGMn

n o
4. and calculated the 90% percentile confidence intervals of bxBW − VGM

n , baqi , and bbqi .
2.4. Model Comparison and Evaluation

For the model comparison, we use several metrics to compare the model performance: (i) the mean error
(ME) describing the average bias, (ii) the mean absolute error (MAE) describing the magnitude of the bias,
(iii) the root mean squared error (RMSE) describing the spread of the error around the mean, (iv) the stan-
dard deviation of the residual for each sample and data group, which can be seen as a contributor to the var-
iance of the model parameters, in the presence of a uniform fprior(xk), and (v) the Akaike information
criterion (AIC; Akaike, 1974) and the Kashyap information criterion (KIC; Kashyap, 1982), metrics rooted
in information theory, used as model ranking metrics (Ye et al., 2008). ME and MAE are used as summary
statistics over all results.

First, we directly compare σθ and σlog10K (as introduced in 2.3.1) as a measure for the scatter of the observed

data around the calibrated model. The assumption is that the total variance of the residual σ2lk; tot in data

group (WRC, HCC) and of model k (VGM, BW‐VGM) is described by the

σ2lk; tot ¼ σ2l; OBS þ σ2lk;MOD; (16)

where σ2l; OBS is the measurement error and σ2
lk;MOD is the model error, and σ2lk; tot is the estimated parameter

from maximizing Equation 12. In a sample wise comparison of model performance, the σ2OBS can be seen
as a constant for each individual sample, which is not known. Since it is constant, we can directly compare
σl,VGM,tot with σl,BW,tot as a qualitative measure for the spread of the residual as a result of the model error
of the corresponding model. The smaller value is to be favored.

The RMSE for data group (WRC and HCC) and model k (VGM, BW‐VGM) is given by

RMSElk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nl

*∑
Nl

i
yil − f hil; xkð Þ½ �2

s
; (17)

where Nl is the number of observations in data group l. We acknowledge that there is an equivalence
between the comparison of RMSElk and σlk.

Lastly, we used two different information criteria to evaluate the model performance by using the concepts
behind the AIC and the KIC. According to Höge et al. (2018), AIC is the criterion for identifying the model
with the largest predictive capability, and KIC is the criteria to identifying which model is the most likely data
generating process.

The AIC for model k is given by
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AICk ¼ −2ln L yð jbxkÞþ2Nbx; k; (18)

where Nbx is the number of estimated parameters and L yð jbxkÞ is the maximum likelihood estimate in

Equation 12. The KIC is given by

KICk ¼ −2ln L yð jxkÞ−2ln f prior xkð Þ − Nbx; kln 2πð Þ − ln Cbxbx��� ���; (19)

where ln fprior(xk) is the prior pdf value, and ∣Cbxbx ∣ is the covariance matrix of the posterior, calculated from

the MCMC sample. By comparison, models with lower values are to be favored. Interpreted in model
weights, a difference in 10 signifies that the model with the lower value receives 100% of the weight,
and the other model may be rejected outright (Burnham & Anderson, 2010).

3. Results and Discussion
3.1. Data Selection

From the parameter estimation of the SHP models, some initial analyses and subsequent sample removal
were required, since it appears obvious to construct a hyPTF based only on data which contains sufficient
information to constrain model parameters and where the sampler is likely not to have been influenced
by the prior bounds. Samples with instances of estimated parameter close to the limits of the already wide
prior bounds (Table 1) were removed. This was achieved by removing all samples for which the estimated
parameters values did not fulfill the condition θs < 0.69, τVGM <−1.5, and θsnc < 0.29. After applying these
criteria, the initial data set was reduced to 402 of which 10 samples were chosen at random and set aside for
use in the hyPTF model performance (DS4), by way of example. The remaining 392 soil samples compose
data set 1 (DS1; Figure 3, light blue crosses). Parameter τ is frequently poorly defined in the VGM model
and lacks in physical meaning (Peters et al., 2011), as evident from literature frequently reported as having
negative values (e.g., McCarter & Price, 2014; Schelle et al., 2011). In the presence of data from the dryer
ranges of the HCC, this parameter can help achieve an improved match of model and data for the frequently
observed change in slope in the HCCwithin themid‐pF range. In other words, in the VGMmodel, very small
τ, that is, unphysical τ < 0, mostly enables a better match of the HCC where noncapillary conductivity
becomes visible in the data. Honoring this, the functional parameter relation for τ was based on a reduced
data set (DS2), filtering out the samples in DS1 which had τVGM < 0. For the hyPTF of Ksnc, we used DS1
with additional filter criteria discarding Ksnc < 10−5 cm d−1 resulting in DS3 with 359 samples. This precau-
tion was taken to ensure that the MCMC sampler was hardly affected by the lower boundary of the prior.
Moreover, the values <10−5 showed a large variance in the posterior, indicating that the information in
the data was, at best, limited to constrain the parameter.

3.2. Model Comparison

In Table 2, the medianMEs andMAEs of the models are presented for DS1. The ME in all cases is essentially
0. The only significant difference inmodel performance could be attested for theMAE in the HCC, where the
BW‐VGM model was found to be significantly better than the VGM model (Wilcoxon rank sum test,
p ¼ 1.4 E‐8). The ME and MAE of the WRC for both VGM and BW‐VGM are very similar. The MAE for
the WRC is so small that in standard laboratory settings, these values would not be differentiable. Caution
is called for when interpreting this result. As a reminder, the VGM comes with greater flexibility for the
WRC, because it is not forced to match a water content of 0 at h¼ 106.8, considering that most of the samples
contain data only up to a pF of about 3 (Figure 4). In other words, particularly for data sets containing obser-
vations only from limited pressure head ranges (Scharnagl et al., 2011), the VGM canmatch the data well. So
from a utilitarian point of view, it is treated as an accepted model (Fatichi et al., 2020), proven by the myriad
of applications it has found. This is a direct consequence of the VGM being more flexible at the cost of not
maintaining physical comprehensiveness and is therefore not as rigid as the BW‐VGM, which, in turn, is
forced always to meet the physically necessary condition of a water content of zero at a fixed pressure around
pF¼ 6.8. The VGM can perform well and might even be superior when matching observed data. However, it
does this by releasing the model from physical comprehensiveness, so it cannot claim to describe the proper-
ties of a semidry or dry soil, as it is the case for the BW‐VGM. This points to the fact that the data are a
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limiting factor, since it does not cover the entire pressure head range, highlighting the need for routinely
obtaining SHP good data in the dry (and very wet) range of both HCC and WRC. Summarizing our
findings, we can state that based on the comparison of the ME and the MAE for the WRC data, the
model‐data match for BW‐VGM is, on average, equal to that of the VGM. On the other hand, for the

HCC, the MAE is significantly larger for the VGM, while no significant
difference could be distinguished for the ME. This means that on
average, both models perform equally well, but the VGM model does
not represent hydraulic properties of soils in the dry end of the WRC
and HCC. With regard to the overall performance, the magnitude of
the bias is significantly reduced by introduction of the physically more
comprehensive model, which is mostly an attributed to the better
performance in HCC.

This fact is further supported by Figure 5 where the RMSE values and
estimated variances σθ and σlog10K are shown. In the RMSE of the WRC

(Figure 5, top left), a slight scatter around the 1:1 line is observable.
This is similar for the estimated variances (Figure 5, bottom left), where,
in the majority of cases, the variances are near equal (Figure 5, bottom
left). This is different for the HCC (Figure 5, top right panels). Here,
almost all estimated RMSE and variances are plotted below the 1:1 line,
and the BW‐VGM model performs significantly better than VGM
(Wilcoxon‐Rank‐Sum test p¼ 1.68 E‐10). This is linked to the VGMmod-
el's ability to describe data, which is in a pressure head range attributed to

Figure 5. (Top row) Comparison of the estimated combined error variance for θ(h) (left) and for log10K(h) (right) between the Brunswick (BW) model and the van
Genuchten‐Mualem model (VGM). The combined error variance is the lumped model and measurement error variance. (Bottom row) Comparison of
the root mean square error (RMSE) for θ (left) and for log10K (right) between BW and VGM. Red line is the 1:1 line.

Figure 6. Difference in the Akaike (AIC) and Kashyap Information
Criterion (KIC) between the two models.
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the noncapillary part, which can only be achieved by foregoing descriptive capability of data in the capillary
part, a direct consequence of the lack in physical comprehensiveness. This is in contrast to the BW‐VGM,
which can describe this change in slope in themid‐pF range of the HCC (Fig. 2b), expressed in a smaller resi-
dual variance.

With regard to the evidence from the Bayesian selection criteria, the above‐mentioned better performance is
further corroborated by the histograms of the differences between the AIC and KIC (Figure 6), which
clearly favor the BW‐VGM model. The computed differences, ΔKIC ¼ KICBW−VGM−KICVGM and
ΔAIC ¼ AICBW−VGM−AICVGM, are in almost all cases clearly below 10. The ΔAIC values are similar
in magnitude to what Weber et al. (2017a) found, in their comparison of performance of the VGM
model to an improved SHP model (the PDI model in the van Genuchten variant). The ΔAIC exhibits
a slight shift to the left of the ΔKIC indicating that the AIC makes a clearer statement than the KIC.
While both criteria are based on the maximum likelihood estimate −2ln L yjbxkð Þ, the penalty terms vary.
Both contain a term for the number of parameters, which is multiplied by a factor. This factor is 0.16 lar-
ger for the AIC (Equations 18 and 19). Following this, the AIC initially has a larger penalty than the KIC.
However, the KIC contains extra penalty for extra parameters when they are not well defined through the
prior, in particular if it is noninformative as in our case (Table 2). This difference, expressed in compara-
tive weights, means a 6:1 favoring of the VGM model. This should not be confused with prior model
weights; it is the calculated value of the prior at the best parameter estimate. This could have been slightly
altered, by reducing the bounds of the θcs to smaller values, but we chose to use the same bounds as for θs,
as we do not a priori know the value of θncs. At that point, we had no knowledge of realistic values for
θncs; it could also be 0, implying the saturated water content could equal the capillary water content

θs ≜ θcs. This meant that the bounds were identical, and no further constraint could be legitimized. The
introduction of badly constrained parameters is another penalty term, reflected in the term ln∣Cbxbx ∣ .
These two factors are larger than the 0:16Nbx; k but not large enough to induce a ΔKIC > 0, and a systematic

Figure 7. (Lower triangle) Histograms of parameter correlation coefficients between parameters for the (a) VGMmodel and (b) BW‐VGMmodel, (upper triangle)
the corresponding mean correlation coefficients, and (diagonal) densities of the standard deviations of the respective parameter posteriors. Mark, the
histograms are unitless, while the units of the densities on the x‐axis correspond to those of the respective (transformed) parameters.
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favoring of the BW‐VGM is the result. This is noteworthy, since the KIC, initially, favors the VGM through
the use of the prior, before either the data or parameter dependent terms are added. But from Figure 6, we
can read that even if the prior favored the VGM over the BW‐VGM 6:1, this is overcome “after the data has
been seen by the models” in Equation 12. We note that the AIC does not account for the prior information
and thus is also suitable to non‐Bayesian methods but can demonstrate the similarity in results, if this
study had been conducted using simple weighted least squares.

Information on the robustness of parameter estimates is presented in Figure 7. The lower triangle shows his-
tograms describing the distribution of correlation coefficients between parameters. These were derived by
calculating the parameter correlation matrix from the posterior sample of the parameter estimation for each
individual soil sample in DS1. Note that for parameter τ, we reduced the data set a little further which does
not, however, significantly change the result presented here. Correspondingly, the upper triangle gives the
mean correlation coefficient between parameters. The diagonal shows the densities of the standard devia-
tions of all marginals. This was done for both models individually. The density plots indicate small standard
deviations and therefore, in almost all cases, clearly identifiable parameters. The mean correlation coeffi-
cients are small to moderate. While θr and θs hardly correlate (−0.21), their counterparts in the BW‐VGM
correlate more (−0.82). However, the correlations of all other parameters do not appear to be very strong
(either close to 1 or close to −1). Overall, no clear picture can be derived as to whether or not correlation
increased by adopting the BW‐VGMmodel. This is significant because it means that adopting the physically
more comprehensive model together with an additional model parameter does not come at the expense of
losing robustness and identifiability.

3.3. hyPTF: Functional Relationship Between Model Parameters
3.3.1. θsc , θsnc, α, n, Ksc, and τ
The predictions of all BW‐VGMmodel parameters, except for Ksnc, were based on York regression. The cor-
responding regression parameters (Table 3) can be directly used to derive BW‐VGM parameters from VGM
parameters. We remark that the intercepts acquire values which are essentially 0. The regression results are
depicted in Figure 8, and the corresponding sum of the variance in x and y is given alongside them. First of
all, there is a perceivable difference between the weighted line regression and the ordinary least squares
(OLS). This can be attributed to the fact that, in York regression, weights are considered leading to robust
and unbiased estimates of hyPTF parameters. This is not the case for the saturated water content where
OLS and the York estimate are nearly identical as well essentially identical to the 1:1 line. With regard to
the physical interpretation of the model parameters, this appears to be consistent, as the modulation in
the BW‐VGM model affects the dry end and not the total saturated water content of a soil. For the θr and
θncs this is a little different, where for the hyPTF slope for θncs(θr) is 1.28, this means the underestimation
of a residual water content, in other words the water content which is not part of the capillary water, is
underestimated by about 30% in the VGM model. This may also be an artifact when considering that for
many of the samples the data were obtained only from evaporation experiments. In evaporation experi-
ments, the WRC data are usually available until about pF ~ 3. This coincides with the pressure head region
in which soils over a large range of textures only then show a decrease in the slope of the WRC on the
semi‐log scale as the soil dries. Exceptions are coarse‐grained soils (e.g., sands) with low θr, where the capil-
lary water content, in the BWmodel sense, may have been nearly fully drained by pF ~ 3. This means that in
nonsandy soils, θr often is used to enable a better model‐data match, in particular for data in the pressure
head range with the steep slope. In other words, θr is muchmore of a fitting parameter than a physically con-
sistent terminology and only delivers limited information about a “residual water content.” Moreover, if
WRC data do not exist for pressure heads up to pF > 6, like in Schelle et al. (2013), then changes in θr lead
to small changes in the objective function values, meaning that θr is less well constrained. Therefore, the esti-
mation of θr often leads to larger uncertainties than for the other WRC parameters (e.g., Dettmann &
Bechtold, 2016).

In BW‐VGM, θsnc is larger (Figure 8) since the matching of the WRC data in the pressure head range of
pF > 3 is achieved by the near‐linear slope of the noncapillary retention curve, which appears only to be
achievable when θsnc ≥ θr. It is noteworthy that log10α and log10(n − 1) are nearly identical. We speculate
that this stems from an interplay with τ, Ksc, and Ksnc, and the information content in most observed data
sets provides sufficient information content for the parameters of the capillary model to account for the air
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entry pressure head and the width in the unimodal pore‐size distribution. Generally, the larger τ, the
greater the steepness of the capillary bundle model describing the HCC. In Figure 6 (left), it can be seen
that the slope of the York fit for τ is so large that hardly any negative τBW − VGM remains. This is
physically consistent (Peters, 2013) and an indicator that through inclusion of the noncapillary
conductivity model part, τ is no longer used to account for HCC in the dry range, which can be achieved

Figure 8. Relationship between the soil hydraulic property model parameters from top to bottom θr: θsnc (here denoted as θr), θs: (θsc+θsnc), αVGM: αBW−VGM,
nVGM: nBW−VGM, Ks: Ksc, τVGM: τBW−VGM, τVGM: τBW−VGM, constrained (αi, ni − 1, and Ki are shown as log10‐transformed values on both axes),
OLS: ordinary least squares, CI: confidence interval.

Table 3
Regression Coefficients and their Standard Errors (In Brackets) for the Prediction of the BW‐VGMModel Parameters from
the York Regression

Parameter Intercept Slope

θsnc (θr,VGM) −1.58 E‐03 (7.49 E‐4) 1.285 (0.0074)
θtot (θs,VGM) 1.89 E‐03 (3.00 E‐3) 0.993 (0.0072)
log10αBW (log10αVGM) −2.06 E‐02 (6.30 E‐3) 0.986 (0.0036)
log10nBW − 1 (log10nVGM − 1) 6.42 E‐02 (2.3 E‐3) 0.933 (0.0065)
log10Ks,BW (log10Ks,VGM) 1.16 E‐01 (1.78 E‐2) 1.060 (0.012)
τBW(τVGM) * 2.95 E‐02 (1.16 E‐1) 1.833 (0.123)
log10Ksnc** −1.72**

*For τVGM ≥ 0, only; for τBW(τVGM < 0) ¼ 0. **For Ksnc, the median of the fitted value as indicated is directly used.
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by τVGM ≪ 0. Thus, we decided to take a functional approach, and use τBW ¼ min(τVGM, 0); otherwise, the
same approach is used as in Table 3.
3.3.2. Ksnc

Ksnc has no corresponding parameter in the VGMmodel. Initially, we tested the York regression (and several
other methods, e.g., artificial neural networks and multiple linear regression, results not shown) to find a
method to predict Ksnc from VGM parameters. However, it was not possible to achieve a better predictive

performance than with the median of bKsnc , which we determined as 10−1.72 cm d−1. Therefore, using the
median appears to be the parsimonious choice. Diamantopoulos and Durner (2013) presented a model for
corner flow based on theoretical considerations at the pore scale, whose maximum unsaturated conductivity
value was determined as being very close to the value calculated here. Based on Ahe works by Tuller and
Or (2001) and Diamantopoulos and Durner (2015) and the similarity in Ksnc to the weighted saturated con-
ductivity for the film flow component in Peters (2013), it appears not farfetched to construct informative
priors in the near future. In particular, by considering the existing knowledge of the relationship between
soil properties and saturated noncapillary flow, we are confident physical constraints can be incorporated.
At this stage, we encourage the use of the published estimated hydraulic model parameters and their asso-
ciated uncertainties in the accompanying data publication (cf. acknowledgement) in order to explore this
further. Given current knowledge, we deem it premature to consider a prior in the Bayesian inference
scheme for the parameter Ksnc but encourage to use the presented data set to construct priors for future infer-
ence of parameters. It means that the value of Ksnc ¼ 10−1.72 cm d−1 might change in the future and still
needs further research.
3.3.3. Performance of the hyPTF
By way of example, the performance of the hyPTF is illustrated in Figure 9 for one of the samples (UNSODA
2573) of the randomly chosen set‐a‐side data set DS4. The results of the remaining nine samples from the
validation data set can be inspected in Figure A1. Three different results of models are compared against
the measured WRC and HCC data: (i) the VGM model as parameterized by inverse modeling, (ii) the same
for the BW‐VGM model, and (iii) the BW‐VGM model parameterized by predicting the model parameters
using the hyPTF established in the paper. Evidently, the inclusion of the noncapillary part in the WRC

Figure 9. Exemplified comparative performance of the parameterized VGM model, the parameterized BW‐VGM model,
and the hyPTF‐predicted BW model against the UNSODA 2573 data set. The remaining nine samples of the
validation data set DS3 are shown in Figure A1.
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and HCC not only leads to the mentioned physically comprehensive model but also leads to a formidable
description for pF > 2. This is also true for the BW model whose parameters were predicted applying
knowledge of the estimated VGM parameters and the hyPTF.

To test the performance of the intended use of the hyPTF developed in this paper, we gathered five hyPTF
from the literature. The five models were CP (Carsel & Parrish, 1988), RM7 (model H2m in Schaap
et al., 2004), RM8 (H3m in Schaap et al., 2004), WPTF (Weynants et al., 2009 &Weihermüller et al., 2017),
and euptf (Tóth et al., 2015) and made a double parameter prediction. In the initial step, we predicted the
VGM model parameters for the six soils in DS4 which had soil property information. Based on those pre-
dicted parameters, and using the hyPTF from this paper, we predicted the BW‐VGM parameters. The
summary statistics are shown in Figure 10 (top row). The calculated RMSE results for both the WRC
and the HCC between the modeled and measured data are displayed. In each, the RMSE value for the
VGM model is given on the x‐axis, and the RMSE of the corresponding BW‐VGM model is given on
the y axis. Visual inspection of Figure 10 clearly shows that the plotted RMSE fall below the 1:1 line
for almost all cases in both data groups and, again, with a more pronounced effect for the HCC. This
demonstrates that, in spite of a double prediction step, the BW‐VGM model is still better than the
VGM. For one sample, UNSODA 2573, we explicitly show the modeled WRC and HCC for (i) five double
predicted parameter sets for the BW‐VGM, (ii) the maximum likelihood estimate of the VGM‐BW model

Figure 10. (Top row) Calculated RMSE for the volumetric water content and unsaturated hydraulic conductivity curves
for the predicted VGM and the double‐predicted hyPTF BW‐VGM model for the samples from the validation data set
with sufficient auxiliary information on soil properties for the use of the various literature hyPTF (abbreviations of
models are explained in the text). (Bottom row) Performance of the double predicted BW‐VGM model to describe the
WRC (left) and HCC (data), exemplified on the sample UNSODA 2573 (further samples can be seen in Figure A2).
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from maximizing Equation 12, and (iii) the hyPTF‐predicted parameters of the BW‐VGM model based on
the maximum likelihood estimate of the VGM. We refrain from a discussion of the performance of the
individual literature hyPTF at this stage. It follows that the RMSE shown in Figure 10 (top row) is within
the range of other published PTFs (Nguyen et al., 2017; Román Dobarco et al., 2019; Zhang &
Schaap, 2017).

We note that the presented double prediction hyPTF does not alleviate problems mentioned in the litera-
ture relating to unconsidered effects of stone content on SHPs (Nasri et al., 2015; Tetegan et al., 2015), on
organic (Wallor et al., 2018), forest (Puhlmann & von Wilpert, 2012), or multimodal soils (Pollacco
et al., 2017). In addition, the effects of dynamic nonequilibrium (Diamantopoulos et al., 2015; Šimůnek
& van Genuchten, 2008) and macropore flow are not captured, since in the sense of the BW‐VGM model,
only an application to matrix flow is possible. Nevertheless, as the input hyPTF for the VGM model is
region specific (e.g., Hollis et al., 2015; Román Dobarco et al., 2019), we are convinced our approach to
work, here, too. Another advantage is that there are different VGM PTFs available (van Looy et al., 2017),
with different requirements in input, so that, depending on the case specific information available, the
case‐specific double prediction step can be made. However, it is possible that this might not replace a
newly constructed hyPTF based on machine learning tools, deemed superior for these kind of predictions
(Szabó et al., 2019). A difficulty for that is that existing large data sets such as the EU‐HYDI (Weynants
et al., 2013) and HYPRESS (Wösten et al., 1999) data sets are not publically available, which in itself ham-
pers model improvement.

4. Conclusion and Outlook

The aim of our study was to rigorously compare the VGM model with the physically comprehensive SHP
model proposed by Weber et al. (2019). In their model framework, some important deficiencies in the
VGM model are overcome, which is a result of a larger physical comprehensiveness. By using a large data
set of 402 soils samples, it could be shown that this framework, the BWmodel, outperforms the VGMmodel
in describing measured hydraulic properties. This is particularly visible in the HCC with a significant
decrease in average MAE of the model‐data matches. We could also demonstrate that it would be helpful
for model development and assessment if WRC and HCC data were determined over a much wider range
of pressure heads than those commonly included in available data sets.

Many environmental modeling codes, which adopt the Richards/Richardson equation to simulate water
fluxes, are often implemented with the VGM and, also hyPTF, for the VGM. With the presented work,
it will now be easy to use the better SHP models and the here presented new hyPTF. With this hyPTF,
readily available data from soil maps (Dai et al., 2019) can be used to parameterize the BW model. The
approach of the double prediction can also be used to permute input and algorithmic uncertainties
(e.g., Carsel & Parrish, 1988; Deng et al., 2009; McNeill et al., 2018) through the hyPTF. In addition,
Europe wide maps of BW‐VGM model parameters based on available VGM maps (Szabó et al., 2019;
Tóth et al., 2017) can easily be created, facilitating spatially explicit soil moisture modeling. This means
that, for the first time, the application of a physically more comprehensive models may be applied for
landscape‐scale research.

In the worst case, the implementation of the BW model will lead to no significant improvement in simu-
lated water redistribution in soils. In the best case, it can lead to more realistic water uplift from the ground-
water or deeper soil zones. From this, we expect to have an effect on simulated plant growth, yield
development and evapotranspiration when considering the soil‐vegetation‐atmosphere nexus. However,
this requires a separate investigation. Finally, we are convinced that the presented hyPTF will (a)
strengthen the utility of the BW model, (b) enable field‐scale simulations of water and nutrient flux estima-
tions in agroecosystems also under dry conditions, and (c) enable better impact assessment of warmer and
drier meteorological conditions caused by climate change (at least for Western and Central Europe where
these conditions have been predicted). In other words, it is possible that in modeling global food produc-
tion, considerable differences may result from adopting a new model for the soil water fluxes. One step
toward achieving this is by mapping model parameters based on soil property (Hengl et al., 2017) or
hydraulic property (Tóth et al., 2017) maps.
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APPENDIX

Figure A1. Like Figure 9, but for 10 samples. From top to bottom and left to right: UNSODA_4341, Schind_org_215,
UNSODA_2216, UNSODA_2573, UNSODA_2763, Schind_org_604, Schind_min_631, Schind_org_371,
UNSODA_4141, and Goncalves_6200006305.
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Data Availability Statement

The data sets Weber, Finkel et al. (2020) used in this work can be freely accessed under http://hdl.handle.
net/10900.1/c2f45822-86ba-4338-b3e0-2d068f024e07.
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