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Abstract

Most common machine learning (ML) algorithms usually work well on balanced
training sets, that is, datasets in which all classes are approximately represented
equally. Otherwise, the accuracy estimates may be unreliable and classes with only a
few values are often misclassified or neglected. This is known as a class imbalance
problem in machine learning and datasets that do not meet this criterion are referred
to as imbalanced data. Most datasets of soil classes are, therefore, imbalanced data.
One of our main objectives is to compare eight resampling strategies that have been
developed to counteract the imbalanced data problem. We compared the perfor-
mance of five of the most common ML algorithms with the resampling approaches.
The highest increase in prediction accuracy was achieved with SMOTE (the syn-
thetic minority oversampling technique). In comparison to the baseline prediction on
the original dataset, we achieved an increase of about 10, 20 and 10% in the overall
accuracy, kappa index and F-score, respectively. Regarding the ML approaches, ran-
dom forest (RF) showed the best performance with an overall accuracy, kappa index
and F-score of 66, 60 and 57%, respectively. Moreover, the combination of RF and
SMOTE improved the accuracy of the individual soil classes, compared to RF
trained on the original dataset and allowed better prediction of soil classes with a
low number of samples in the corresponding soil profile database, in our case for
Chernozems. Our results show that balancing existing soil legacy data using syn-
thetic sampling strategies can significantly improve the prediction accuracy in digital

soil mapping (DSM).

Highlights

e Spatial distribution of soil classes in Iran can be predicted using machine learn-
ing (ML) algorithms.

e The synthetic minority oversampling technique overcomes the drawback of
imbalanced and highly biased soil legacy data.

e When combining a random forest model with synthetic sampling strategies the
prediction accuracy of the soil model improves significantly.
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1 | INTRODUCTION

Soils are one of the most valuable natural resources in many
ways. For countries like Iran, the role of a soil in providing a
sustainable resource for food production and water manage-
ment is most important and is an essential link to, for exam-
ple, nature conservation and biodiversity (Emadodin,
Narita, & Bork, 2012). Therefore, spatial soil information is
essential to reduce risks in environmental and agricultural
planning (Mesgaran, Madani, Hashemi, & Azadi, 2017). In
Iran, legacy soil maps and the related soil profile information
are the main sources of soil information. However, many
regions of Iran have not been mapped on a scale fine enough
to evaluate, monitor, understand and maintain important soil
functions, such as water holding capacity or carbon storage
(Roozitalab, Siadat, & Farshad, 2018). Furthermore, the
existing coarse-scale (1:1 M) soil class map (Banaei, 2000),
although helpful, obviously shows imbalanced data on soil
classes and is impractical for land use planning and agricul-
tural practices, due to its insufficient information content
(SWRI, 2015). Hence, it is necessary to develop higher reso-
lution soil maps to be able to provide decision makers with
maps that give detailed spatial soil information, which can
be used for improving land management and crop guide-
lines. This holds true not only for Iran but for many other
countries and regions worldwide (Sanchez et al., 2009).

Digital soil mapping (DSM) has been successfully
applied for mapping of soil classes at a large range of scales,
including regional and local scales (Brungard, Boettinger,
Duniway, Wills, & Edwards, 2015; Hounkpatin et al., 2018;
Schmidt, Behrens, & Scholten, 2008), the national scale
(Adhikari, Minasny, Greve, & Greve, 2014; Ramcharan
et al., 2018) and the continental scale (Hengl et al., 2017;
Teng, Rossel, Shi, & Behrens, 2018). Digital soil mapping
can integrate soil point observations (e.g., classified soils)
with various sources of grid-based geospatial covariates
(e.g., satellite imagery, digital elevation models and climate
data). This is enabled by wusing machine learning
(ML) algorithms that relate the covariates to any soil infor-
mation (McBratney, Santos, & Minasny, 2003).

In DSM, particularly at the national scale, the soil data
mainly consist of legacy soil profiles (Stumpf et al., 2016).
Although they provide valuable local information on soil
classes or properties, the use of legacy soil data in machine
learning is challenging due to a number of problems related
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e The resulting new soil map of Iran has a much higher spatial resolution compared to
existing maps and displays new soil classes that have not yet been mapped in Iran.

covariates, imbalanced data, machine learning, random forest, soil legacy data

to the nature of these data (Hounkpatin et al., 2018). Most of
the common ML algorithms consider balanced training sets,
that is, datasets where all classes are approximately represen-
ted equally. Because these algorithms treat all misclassifica-
tions equally, they have a bias towards classes with many
instances, which often results in false accuracy estimates
(Chawla, Bowyer, Hall, & Kegelmeyer, 2002) and the mis-
classification or neglect of classes with only a few instances
(Batista, Prati, & Monard, 2004). This is known as the class
imbalance problem in ML (He & Garcia, 2008). In this
respect, datasets that do not follow this criterion are called
imbalanced data. Most soil class datasets are therefore
imbalanced data (Hounkpatin et al., 2018). This stems from
the spatial distribution pattern of soils, which is usually not
equal. It can additionally be influenced by the sampling
strategy.

Several approaches have been developed in the ML com-
munity to handle imbalanced data. One is the design of new
models which can handle imbalanced data directly, for
example, by applying cost functions that penalize wrong
classification (Chawla et al., 2002). Another approach is to
apply different evaluation metrics instead of the overall
accuracy, such as precision and recall (He & Garcia, 2008).
A third approach is to resample the data (Piri, Delen, & Liu,
2018). In this study. we focus on resampling methods but
also test different evaluation metrics on the original as well
as the resampled datasets.

Several resampling approaches have been proposed
which can be separated into two groups: (a) data-driven and
(b) algorithm-driven methods (He & Garcia, 2008). Most
researchers have employed data-driven methods (Piri et al.,
2018) which use resampling techniques to adjust the ratio
between the classes in the training set (Chawla et al., 2002).
In their simplest forms, random oversampling (ROS)
increases the minority class data by the random replication
of their occurrence, and random undersampling (RUS)
decreases the number of majority class data by randomly
removing data from the original dataset. This consequently
allows ML algorithms to be learned from the balanced data
without bias (He & Garcia, 2008). However, these classical
random resampling techniques could increase the chances of
overfitting or potentially discard useful observations (Piri
et al., 2018). To account for such shortcomings, more
sophisticated resampling techniques for speech and image
recognition have been proposed, such as the synthetic
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minority oversampling technique (SMOTE) (Chawla et al.,
2002), one-sided selection (Batista et al., 2004) and the
adaptive synthetic sampling approach (ADASYN) (Branco,
Torgo, & Ribeiro, 2016).

Although many of the resampling techniques have been
proposed and successfully applied to cope with problems
of imbalanced data in mathematics and informatics
(Tkachenko, Doroshenko, Izonin, Tsymbal, & Havrysh,
2018), to the best of our knowledge, these techniques have
not been widely tested in DSM studies for large areas and at
a national scale. There are only a few studies related to dif-
ferent balanced sampling techniques for soil science, mostly
limited in sampling size and techniques. For instance, Heung
et al. (2016) tested one method (ROS) for generating bal-
anced training data from a conventional soil survey. They
indicated that the use of ROS resulted in computational limi-
tations that might have been present because the training
data were derived from soil survey data. Sharififar, Sar-
madian, Malone, and Minasny (2019) evaluated two
resampling techniques (ROS and RUS) to cope with the
issue of imbalanced soil data with 452 profiles observations
in an area covering about 12,000 ha. Therefore, our paper
investigates how to solve the problem of imbalanced soil
data using different resampling techniques and legacy soil
information for a large area (1,648,195 km2) and at the
national scale.

We tested five ML algorithms on eight resampled bal-
anced datasets generated from the original imbalanced
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FIGURE 1

dataset to compare the influence on different algorithms. We
analysed and discussed the influence of the resampled bal-
anced datasets as well as the prediction accuracies. Our main
objective is to apply and test ML algorithms and resampling
techniques for imbalanced legacy soil information in DSM.

2 | MATERIALS AND METHODS

2.1 | Study area

Iran, bounded to the north by the Caspian Sea and to the
south by the Persian Gulf and Sea of Oman, is the second
largest country in the Middle East and covers an area of
about 1,648,195 km? (Figure 1a). Iran has a diverse topogra-
phy, which is due to the existence of two major mountain
systems, namely the Alborz and the Zagros ranges. The
Alborz range starts from the north-west and extends like an
arc on the south of the Caspian Sea to the east, separating
humid climate sections in the north from arid central Iran.
The Zagros range covers the western parts of Iran, extending
to the south and separating the semi-arid western parts from
central arid basins (Figure 1b). The average altitude is
1,200 m, the maximum elevation of the country is in the
centre of the Alborz chain at 5,671 m above sea level and
the minimum elevation is on the southern coast of the
Caspian Sea at 28 m below sea level.

Most of the country has arid (65%) and semi-arid (20%)
climate conditions. Temperature ranges from —20°C to
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(a) The location of the study area (Iran) and spatial distribution of soil legacy dataset, (b) a digital elevation model (DEM),

(c) mean annual rainfall (millimeter: mm), (d) normalized difference vegetation index (NDVI) and (e) a traditional soil map. ARC, Arenosols; CHH,
Chernozems; CLH, Calcisols; CMC, Cambisols; FLC, Fluvisols; GLE, Gleysols; GYH, Gypsisols; KSH, Kastanozems; LPE, Leptosols; LVH,
Luvisols; PHH, Phaeozems; RGC, Regosols; SCH, Solonchaks; SNH, Solonetz; VRK, Vertisols [Color figure can be viewed at

wileyonlinelibrary.com]
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greater than 50°C throughout the country and during the
year. The average annual rainfall is 250 mm, which is about
one-third of the world's average precipitation, ranging from
less than 100 mm in the central region of the country to
1,200 mm in the north (Mesgaran et al., 2017) (Figure 1c). It
has been estimated that 70% of precipitation in Iran evapo-
rates. Because of the climatic and topographic contrasts,
together with different geological substrates, Iran shows a
diversity of plant communities. The potential natural vegeta-
tion consists of oak, beech, linden and elm in the more
humid sections of the north, and the thin cover of grasses
and scattered shrubs in the semi-arid and arid regions. In
addition, the variation in the density of plant cover through-
out the country could be inferred from the analysis of the
normalized difference vegetation index (NDVI), where the
dominant trend indicated an increase from south to north,
correlating with climate conditions (Figure 1d).

Diverse topography, climate, geology and vegetation
cover have led to formation of a high variety of soils that
cover about 58% of the Iranian landscapes (Roozitalab et al.,
2018). The remaining landscapes are rocky mountains, out-
crops, badlands, salinas (Dagh), lakes and
others, covering about 69 million hectares or 42% of the
total land area of the country. The conventional soil map
provided by the Soil and Water Research Institute of Iran
(Banaei, 2000) (Figure le) shows that Regosols (22%),
Gypsisols (20%), Cambisols (17%), Solonchaks (15%) and
Calcisols (12%) constitute about 87% of the total soil
resources of the country. Soil groups including
Kastanozems, Gleysols, Phaecozems and Luvisols, which
have mainly developed in the Caspian Sea region, constitute
less than 3% of the total soil cover. Gypsisols and Solon-
chaks are widespread in the central main plateau between
the Alborz and Zagros mountain chains, where the climate is
arid or super-arid and the environment is mostly desert.
Calcisols and Cambisols are developed in semi-arid regions
along the sloping landscapes of the two mountain chains and
Regosols are developed on highlands with steep slopes.

sand dunes,

Soil Saence

Kastanozems, Gleysols, Phaeozems and Luvisols are mostly
developed under sub-humid to humid climates of the
Caspian Sea (SWRI, 2015).

2.2 | Procedures

This work was conducted in three main steps (Figure 2):
(a) preprocessing of soil datasets, (b) acquisition of
covariates and (c) calibrating of ML algorithms.

2.3 | Preprocessing of soil datasets
2.3.1 | Original imbalanced dataset

In this study, we used the Soil Profile Database (SPDB) of
Iran, which consists of 7,664 soil profiles (Banaei, 2000;
SWRI, 2015). Sampling locations in the study area are pres-
ented in Figure la. The soil profile locations were selected
by different sampling strategies, including stratified random
sampling (~87%), grid sampling (~8%) and the conditioned
latin hypercube sampling approach (~5%). However, the
excavation and the description of soil profiles, laboratory
analyses of soil samples and classification of soils were con-
ducted using common methodologies (Sparks, 1998; WRB,
2006). The soils in SPDB are classified into 15 World Refer-
ence Base (WRB) groups:
Calcisols, Cambisols,

Arenosols, Chernozems,

Fluvisols, Gleysols, Gypsisols,
Kastanozems, Leptosols, Luvisols, Phaecozems, Regosols,

Solonchaks, Solonetz, and Vertisols (Table 1).

2.3.2 | Resampled balanced datasets

We used and tested eight resampling techniques (random
under- and over-sampling, synthetic minority oversampling,
adaptive synthetic sampling, the introduction of Gaussian
Noise, Tomek link, condensed nearest neighbours and one-
sided selection method) using the “Utility Based Learning
for Classification and Regression tasks” (UBL) package in R
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FIGURE 2 Overview of employed methods. C5.0, decision tree; DEM, digital elevation model; kNN, k-nearest neighbour; ML, machine
learning; RF, random forest; SMOTE, a dataset oversampled using the synthetic minority oversampling technique; SVM, support vector machine;

XGBoost, extreme gradient boosting [Color figure can be viewed at wileyonlinelibrary.com]
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WRB groups Abbreviation Training data Validation data Total In % TABLE 1 Number of training and
validation data in each soil class
Arenosols ARC 20 8 28 0.3
Chernozems CHH 7 2 9 0.1
Calcisols CLH 1,337 573 1,910 24.9
Cambisols CMC 986 422 1,408 18.3
Fluvisols FLC 316 135 451 5.9
Gleysols GLE 45 19 64 0.8
Gypsisols GYH 694 297 991 12.9
Kastanozems KSH 168 71 239 3.1
Leptosols LPE 234 100 334 4.3
Luvisols LVH 64 27 91 1.2
Phaeozems PHH 31 12 43 0.5
Regosols RGC 1,001 428 1,429 18.6
Solonchaks SCH 336 143 479 6.2
Solonetz SNH 55 23 78 1.0
Vertisols VRK 77 33 110 14

Abbreviation: In, intensity.

(Branco, Ribeiro, & Torgo, 2016) in order to balance the
class distribution in the training dataset. In this paper, fully
balanced soil datasets were generated; that is, datasets where
all soil classes are represented by the same number of sam-
ples (Burez & Van den Poel, 2009; Estabrooks, Jo, & Jap-
kowicz, 2004). For the sake of clarity, we plotted each of the
eight resampling techniques in Figure 3 and then described
them briefly in turn. In any case, a synthetic sample is a
computer-generated new soil sample within a given covari-
ate space based on different statistical assumptions and,
therefore, counts as an artificial covariate space description
of a given soil class. These synthetic samples are only valid
in the tested environment. A more detailed description of the
eight used resampling techniques can be found in Branco,
Torgo, and Ribeiro (2016).

Random undersampling (RUS) is a simple strategy of
randomly removing samples of the majority classes
(e.g., Calcisols) according to the size of the minority class
(e.g., Chernozems) to generate a balanced dataset. This is
one of the earliest techniques used to alleviate imbalance in
the dataset, however, it may increase the variance of the ML
algorithms (He, Bai, Garcia, & Li, 2008).

Random oversampling (ROS) is a simple technique that
increases the number of minority class data by random repli-
cation, whereby the replicate is content-identical to its source
and no new contextual variation will be added. This tech-
nique builds a new set of representatives of the minority
class (e.g., Chernozems) according to the size of the majority
class (e.g., Calcisols) to balance the classes.

The synthetic  minority technique
(SMOTE) is a more sophisticated technique compared to

oversampling

ROS. It performs oversampling by creating synthetic exam-
ples, in which samples of a minority class (e.g., Cherno-
zems) are interpolated in the covariate space to generate new
examples of that specific class (Chawla et al., 2002). Thus,
based on the k-nearest neighbours (KNN)of a minority class,
linear functions between all adjacent neighbours and
covariates are generated and one new synthetic sample is
generated along this function. By repeating this methodolog-
ical workflow, an equal number of samples for each class is
generated.

The adaptive synthetic (ADASYN) sampling approach
works similarly to SMOTE, as shown in Figure 3. However,
it generates more synthetic examples for the minority class
(e.g., Chernozems) along the linear function by weighting
the distance. According to He and Garcia (2008) ADASYN
focuses on the minority class examples according to their
level of difficulty in learning. The essential idea of
ADASYN is to use a weighted distribution for different
minority classes as a criterion to decide the number of syn-
thetic samples that need to be generated for each minority
class (He et al, 2008). The weight is calculated
according to:

2 1)

w=

where A is the number of examples in the K nearest neigh-

bours of a minority class that belong to the majority class
and the value of w ranges from O to 1.

The introduction of Gaussian Noise (GN) was first pro-

posed by Lee (1999) and adapted by Branco, Ribeiro, and
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FIGURE 3 An illustrative overview of the eight resampling methods used in this study. ADASYN, adaptive synthetic sampling; ¢NN,
condensed nearest neighbours; GN, the introduction of Gaussian noise; OSS, one-sided selection method; ROS, random oversampling; RUS,
random undersampling; SMOTE, synthetic minority oversampling; T-link, Tomek link [Color figure can be viewed at wileyonlinelibrary.com]

Torgo (2016) to generate a balanced dataset using a combi-
nation of random under- and oversampling. The algorithm
starts by applying random undersampling to the majority

class (e.g., Calcisols). Regarding the oversampling method,
a new synthetic example of the minority class
(e.g., Chernozems) is obtained by introducing a small
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perturbation on existing samples through Gaussian noise, in
which the noise depends on the standard deviation of each
numeric covariate (evaluated on the examples of minority
class). This means that each covariate value (i) of the new
synthetic example new; is built as follows:

new; = ex; + rnorm(0,sd(i) X pert) (2)

where ex; represents the original example value for covari-
ate i, sd(i) represents the evaluated standard deviation for
covariate i in the class under consideration (e.g., Cherno-
zems) and pert is a number indicating the level of perturba-
tion to introduce when generating synthetic examples
(pert =0.1).

The Tomek link (T-link) method is the first of the so-
called distance-based resampling methods. It builds on the
idea that if two samples belonging to different classes are
each other's nearest neighbour based on the covariate space,
it will negatively influence the performance of the ML
algorithms (Tomek, 1976). Therefore, the T-link method
removes one of those two samples (i.e., the example of the
majority class (e.g., Calcisols)), which increases the distance
within the covariate space between the two classes and
improves the learning.

The condensed nearest neighbours (cNN) method was
proposed by Kubat and Matwin (1997) and adapted by
Branco, Ribeiro, and Torgo (2016). In this undersampling
strategy, a subset of samples that is consistent with the origi-
nal data is generated. A subset of examples is said to be a
consistent subset of the original data if, and only if, for every
point in the original data its nearest neighbour in the subset
has the same class. Beside the reduction of redundancies
within the training set, we also strengthen the focus on a spe-
cific covariate range of a given class. This should allow us
to better characterize the minority class (e.g., Chernozems)
alongside minor changes in the classification accuracy of the
majority classes.

The one-sided selection (OSS) method uses both the T-
link undersampling strategy and the (cNN technique (Batista
et al., 2004).

2.3.3 | Grid-based geospatial covariates

We collected and calculated 110 covariates, which were rep-
resentatives of scorpan factors (McBratney et al., 2003)
from five sources: (a) remote sensing images, (b) digital ele-
vation model, (c) climatic maps, (d) available soil property
maps and (e) digitized choropleth maps. All covariates were
aggregated (average resampling) or disaggregated (bilinear
resampling) to a common grid of 90 X 90 m spatial
resolution.

Organisms (o) and parent material (p) factors were char-
acterized by remote sensing images, using median values of
six spectral bands (i.e., bands of 2, 3, 4, 5, 6 and 7) of
Landsat 8 (Wulder et al., 2016) cloud-free images taken dur-
ing 2016 with 30 X 30 m spatial resolution. Furthermore,
remote sensing indices were also computed (e.g., salinity
index and carbonate index). We used MODIS products with
250 x 250 m spatial resolution, including median values of
two surface spectral reflectance of MODIS images, the
enhanced vegetation index, the normalized difference vege-
tation index and daytime and night-time land surface temper-
ature (Mira et al., 2015).

Furthermore, we derived 30 terrain attributes (e.g., mid-
slope position and wetness index) from a preprocessed Shut-
tle Radar Topography Mission (SRTM) digital elevation
model (DEM) with 90 X 90 m resolution using SAGA GIS
(Conrad et al., 2015) to represent the terrain factor (r). The
climate factor (c) has the potential to explain large parts of
the variation of soil classes in Iran because of its high spatial
variability and range over the country area. Therefore,
29 maps of climatic surfaces (e.g., annual mean precipitation
and annual mean temperature) obtained by WorldClim
(Hijmans et al., 2005) were used.

Additionally, we used 10 soil property maps (e.g., soil
organic carbon and coarse fragments) as
covariates. These soil maps were provided by ISRIC (the
International Soil Reference and Information Centre) (Hengl
et al., 2017). As categorical predictor variables, we used five
choropleth maps, which were compiled at different carto-
graphic scales (e.g., soil map and land-use map) (Banaei,
2000). Four examples of covariates are shown in Figure 1.

In the next step, we used recursive feature elimination
(RFE) to identify the most suitable covariates for modelling
(Kuhn & Johnson, 2013) and to reduce the dimensionality.
The RFE algorithm first ranks all covariates according to
their importance, given by coefficients. Then, those predictor
variables having the least influence on the prediction perfor-
mance of models are eliminated. That procedure was recur-
sively repeated until all the covariates were eliminated.
Features were then ranked according to when they were
eliminated.

continuous

2.3.4 | Calibration of ML algorithms

Five ML algorithms (i.e., C5, random forest, extreme gradi-
ent boosting, support vector machine and k-nearest neigh-
bour) were evaluated using the caret package (Kuhn &
Johnson, 2013) to build the relationship between soil classes
and covariates.

Decision tree analysis, a commonly used technique in
DSM, was implemented using the C5.0 algorithm (Quinlan,
1992). This method uses a series of binary rules (if-then
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statements) in the form of an algorithm having the structure
of a tree consisting of nodes and leaves to classify the soil
classes (Breiman, 1996). Considering small within-node var-
iance and high between-node variance rules, the predictor
variables are used to split the training dataset into two sub-
sets. Partitioning is stopped if a minimum tolerated number
of samples (pixels) is reached in a node of the tree. This
threshold influences the size of the tree in terms of end
nodes and is thus strongly related to overfitting and generali-
zation. The terminal nodes, namely leaves, will present soil
classes. Notably, for each terminal node the majority class
label is assigned for the final classification results.

Two ensemble techniques, namely random forest
(RF) and extreme gradient boosting tree (XGBoost) models,
were also employed. Random forest develops a large num-
ber of independent decision trees using different subsets of
the training data and a different combination of predictor
variables (Breiman, 2001). The three well-known tuning
parameters of RF models are mtry (the number of predictor
variables), ntree (the number of trees) and sampsize (the size
of sample to be used in each tree), and they are optimized by
caret (Behrens, Zhu, Schmidt, & Scholten, 2010; Kuhn &
Johnson, 2013). The final prediction is the average of all sin-
gle trees. In addition, by calculating the mean decrease accu-
racy, the RF algorithm ranks the importance of each
covariate.

Rather than building independent trees by RF, XGBoost
models (Chen, He, Benesty, & Khotilovich, 2019) generate
a number of trees sequentially, in which each new tree tries
to improve the classification error of the previously con-
structed trees. In the first iteration, the XGBoost algorithm
gives more weight to the samples that are badly predicted
and the new trees are forced to focus on those difficult to
learn samples.

Support Vector Machines (SVMs) developed by Cortes
and Vapnik (1995) separate the dataset into different classes
by constructing hyperplanes in a multidimensional space. To
find an optimal hyperplane with the greatest possible margin
between the hyperplane and any point within the training
set, SVM with radial basis function (RBF) kernels uses an
iterative training algorithm in order to minimize an error
function.

The kNN is an instance-based learner used for classifica-
tion and regression that simply tries to classify a new sample
in a dataset according to a combination of the classes of the
k instance(s) located the closest in covariate space distance
to it in a training dataset (Hastie, Tibshirani, & Friedman,
2009) and, therefore, can be seen as a supervised classifier.
Here, standard Euclidean distance was implemented to quan-
tify a distance between the new samples and the training
samples.

oil Science
2.3.5 | Validation of ML algorithms

In order to test the accuracy of predictions of all ML algo-
rithms, the soil dataset was divided randomly into two sets.
The larger set was used for training (70% = 5,371 soil sam-
ples) and the smaller set was set aside for validation
(30% = 2,293 soil samples). Five different accuracy metrics
were used, including overall accuracy (OA), kappa index
(K-index), recall, precision and F- score, which is in accor-
dance with general recommendations for describing the
quality of ML algorithms for imbalanced datasets (Chawla
et al., 2002). All the accuracy metrics are functions of the
confusion matrix as shown in Table 2. In brief, OA is a met-
ric calculating the classifier overall accuracy; the K-index
measures interrater agreement for instances; recall is the pro-
portion of those instances that are correctly classified; preci-
sion is the proportion of those predicted instances that are
correctly classified; and the F-score is the harmonic mean of
precision and recall (Equations 3—7). Importantly, 10 itera-
tions of training and validation were applied to provide more
reliable accuracy metrics. Then the average values of the

accuracy metrics and their standard deviations were
calculated.
TP+ TN
A =

0 TP+TN +FN + FP (3)

TP
Precision = ———— 4)

TP+ FP
TP
Recall= ——— (5)
TP+ FN

2 X Precision X Recall
F—score= — (6)
Precision + Recall

1-0A
1-P,

K—index=1-

(7)

where TP, TN, FP and FN are true positive, true negative,
false positive and false negative, respectively (Table 2). P, is
the hypothetical probability of chance agreement.

TABLE 2  Anexample of a confusion matrix

Actual positive Actual negative

class class
Predicted TP (true positive) FP (false positive)
positive class
Predicted FN (false negative) TN (true negative)

negative class
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TABLE 3 The accuracy of ML algorithms trained on the original
imbalanced dataset

Soil Science

Models Overall accuracy (%) Kappa (%)  F-score (%)
RF 584 +2.1 498 + 1.5 49.6 +2.2
XGBoost  58.1 = 1.0 494+ 1.2 49.1 £2.1
C5.0 56.4 +2.1 475 +24 484+ 14
SVM 51.0+3.1 415+23 445+ 13
ANN 48.0+1.2 367+ 15 37.0+ 2.4

Abbreviations: C5.0, decision tree analysis; kNN, k-nearest neighbour; ML,
machine learning; RF, random forest; SVM, support vector machine; XGBoost,
extreme gradient boosting.

3 | RESULTS AND DISCUSSION

3.1 | The original imbalanced dataset

Table 3 summarizes the validation results of ML algorithms
trained on the original imbalanced dataset. As can be seen,
the highest accuracy was achieved by the RF model, in
which OA, K-index and F-score were 58.4, 49.8 and 49.6%,
respectively. Other models tested were XGBoost (OA of
58.1%, K-index of 49.4% and F-score of 49.1%) and C5.0
(OA of 56.4%, K-index of 47.5% and F-score of 48.4%).
The kNN had the lowest performance, with OA, K-index
and F-score of 48.0, 36.7 and 37.0%, respectively. Similar to
kNN, the SVM model showed poor prediction power, with
OA of 51.0%, K-index of 41.5% and F-score of 44.5%. This
might be attributable to the fact that kNN and SVM classi-
fiers are more sensitive to the imbalanced class distribution
in comparison to the tree-based ML algorithms, and thus
cannot handle multiclass imbalanced problems (Yang, Zhou,
Zhu, Ma, & Ji, 2016). This is in line with the results of Piri
et al. (2018), who pointed out the performance of SVM,
which deteriorates dramatically when applied to imbalanced
datasets. Because of mathematical characteristics, the SVM
decision boundary is closer toward the minority class region
compared to the ideal classification decision boundary in an
imbalanced dataset, as in our case.

Generally speaking, the performances of ML algorithms
trained on the original imbalanced dataset indicated that the
two ensemble-based models (RF and XGBoost) show high
and fairly similar accuracy (Table 3). Our findings are in line
with results of several DSM literature reviews, which all
confirmed the power of ensemble-based models compared
to the other common ML algorithms (Brungard et al., 2015;
Hounkpatin et al., 2018). However, a closer inspection of
the calculated recall values of individual classes revealed
that a considerable number of minority classes will be mis-
classified as majority classes, such as Chernozems,
Phaeozems and Solonetz (Table 4). In other words, the
minority classes are overpredicted. We observed that the

highest recall values were obtained by the Calcisols
(~70.8%, 1,910 samples) and the lowest recall values were
attributed to the Chernozems (0%, nine samples). These
results were expected for an imbalanced dataset, in which
classes with lower sampling frequencies (e.g., Chernozems,
Phaeozems and Solonetz) were mostly modelled less accu-
rately, compared to the majority classes (e.g., Calcisols,
Regosols and Cambisols). Consequently, the soil class map
has bias toward the majority class. Similar problems have
been reported by other DSM researchers who found that
there is a positive relationship between the sample size and
the accuracy of individual soil classes (Brungard et al.,
2015; Hengl, Toomanian, Reuter, & Malakouti, 2007). As
an example, Jafari, Finke, Van de Wauw, Ayoubi, and
Khademi (2012) found a relatively poor prediction of some
soil groups that had only a few pedon observations in rela-
tion to the area. Taken together, obtained findings on the
imbalanced soil data need to be interpreted with caution.

3.2 | The resampled balanced datasets

Figure 4 shows the results obtained with the different
resampling approaches. Similar to the original imbalanced
dataset, RF outperforms all other models for all resampled
balanced datasets. The results indicate that all ML algo-
rithms trained on the SMOTE resampled balanced data
achieved the overall best performance, which is in accor-
dance with the studies from other fields (Chen et al., 2018;
Zarinabad et al., 2017). The general trend reveals ADASYN
and GN as the second and third most effective balancing
approaches, respectively. The poorest performance was
obtained with the RUS resampled data. This clearly indicates
that discarding the samples randomly from the original
dataset decreased the power of ML algorithms (Lauron &
Pabico, 2016). However, the other three undersampling tech-
niques (cNN, T-link and OSS) performed better compared to
RUS. Nevertheless, they did not achieve superior perfor-
mance in comparison to the ML algorithms trained on
the three oversampling techniques (SMOTE, ADASYN
and GN).

In general, we conclude that oversampled data perform
better compared to undersampled data (Estabrooks et al.,
2004). This can be explained by the fact that undersampling
techniques ignore useful information embedded in the
instances of the majority class and hence degrade classifier
performance (Zarinabad et al., 2017). It is worth noting that
the ML algorithms trained on the ROS resampled data
achieved a poor performance in comparison to those trained
on the other three oversampled data (SMOTE, ADASYN
and GN). This indicates that in a dataset with a huge differ-
ence between minority (e.g., Chernozems: 0.12%) and
majority (e.g., Calcisols: 24%) classes, replication
(i.e., copied samples) of the minority group randomly at a
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XGB: OA XGB: K-index XGB: F-score
60 60 60
40 40 40
20 20 20
0
SMOTE ADASYN  GN NN 0SS T-link ROS RUS  Original SMOTE ADASYN  GN NN 0SS T-link ROS RUS  Original SMOTE ADASYN  GN NN 0ss T-link ROS RUS  Original
C5: OA C5: K-index C5: F-score
60 60 60
40 40 40
20 20 20
0 0 0
SMOTE ADASYN  GN NN 0ss T-link ROS RUS  Original SMOTE ADASYN  GN NN 0ss T-link ROS RUS  Original SMOTE ADASYN  GN NN 0SS T-link ROS RUS  Original
SVM: OA SVM: K-index SVM: F-score
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FIGURE 4 The accuracy metrics of five ML algorithms trained on the original imbalanced data (red) and eight resampled balanced datasets
(blue). ADASYN, a dataset oversampled using the adaptive synthetic sampling approach; C5.0, decision tree analysis; cNN, a dataset undersampled
using condensed nearest neighbours; GN, a dataset oversampled using the introduction of Gaussian noise; kNN, k-nearest neighbuor; ML, machine
learning; OSS, a dataset undersampled using the one-sided selection method; RF, random forest; ROS, a dataset oversampled using random
oversampling; RUS, a dataset undersampled using random undersampling; SMOTE, a dataset oversampled using the synthetic minority
oversampling technique; SVM, support vector machine; T-link, a dataset undersampled using Tomek link; XGBoost, extreme gradient boosting

[Color figure can be viewed at wileyonlinelibrary.com]

high rate is not necessarily the best option for solving the regions (Amin et al., 2016; Haixiang et al., 2017). Therefore,
imbalanced learning problem. Several authors agree because the trained ML algorithms on the ROS resampled data could
ROS makes exact copies of the minority class examples; this not precisely be generalized to the unseen data. This is one
might increase the likelihood of overfitting (Zarinabad et al., reason why we obtained a poor performance of ML algo-
2017). In addition, Chawla et al. (2002) stated that the sim- rithms using ROS resampled data, which is in line with the
ple replication of samples in ROS can make the decision findings of Hounkpatin et al. (2018), who pointed out the
region smaller and more specific for the minority samples. poor power of generalization of RF models trained by ROS
However, the synthetic examples (e.g., SMOTE) cause the resampled data. Contrary to our findings, Sharififar, Sar-
ML algorithms to create larger and less specific decision madian, Malone, and Minasny (2019) indicated a significant
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improvement in ML learning when they made balanced soil
data using ROS. They also pointed out that balancing the
soil classes led to a notable decrease in uncertainty of ML
algorithms (Sharififar, Sarmadian, & Minasny, 2019).

Furthermore, balancing the dataset improved the predic-
tion power of ML algorithms, compared to the original
imbalanced data shown as baseline in Figure 4. This is par-
ticularly true when the data are preprocessed using the
SMOTE resampling technique, which is better than any
other resampling techniques and independent of the ML
algorithm (Chawla et al., 2002; Tantithamthavorn, Hassan, &
Matsumoto, 2018). For instance, RF trained on the SMOTE
resampled dataset increased OA, K-index and F-Score by
~10, ~20 and ~10%, respectively, in comparison to the RF
model trained on the original imbalanced dataset. This result
confirmed that the SMOTE resampling technique could suc-
cessfully handle the skewed class distribution, as also
reported by Lauron and Pabico (2016). Like SMOTE, the
ADASYN algorithm has achieved sufficiently higher perfor-
mance. This is because ADASYN not only provided a bal-
anced data distribution but also forced the ML algorithms to
focus on complex minority class examples in the dataset
(Amin et al., 2016). Our results generally indicate that ML
algorithms could be better trained by synthetic resampling
techniques (SMOTE, ADASYN and GN), which is in line
with several published literature reviews (Piri et al., 2018;
Zarinabad et al., 2017).

Contrary to our expectations, we found no prediction
when ¢NN, T-link and OSS
undersampling techniques in comparison to original data

improvement using
because useful information on the majority class might be
lost through undersampling techniques. In other words,
undersampling techniques can significantly improve the

accuracy of classifiers if redundant information

oil Science

(e.g., majority class instances with nearly identical informa-
tion or meaning) is present in the data space (Devi &
Purkayastha, 2017). We do not see these effects within our
prediction problem and therefore the effect of undersampling
techniques is only minor or even negative, as important
information gets lost. Tang, Krasser, Alperovitch, and Judge
(2008) also observed that undersampling techniques might
not provide highly accurate classification. Contrary to our
findings, Sharififar, Sarmadian, Malone, and Minasny
(2019) indicated a significant improvement in ML learning
when they made balanced soil data using an undersampling
technique. These results indicate that there is no universally
good choice of how to resample the dataset (Haixiang et al.,
2017); that is, the best resampling technique and ML algo-
rithm for one dataset can be worse than no resampling for
another (Rodriguez-Torres, Carrasco-Ochoa, & Martinez-
Trinidad, 2019). Overall, the performance of resampling
techniques depends heavily on the levels of imbalance, sizes
of datasets and ML algorithms (Maldonado, Lépez, &
Vairetti, 2019).

We should consider that the main purpose of resampling
techniques is not improving the overall accuracy of models
but enhancing the accuracy of each soil class, particularly
minority soil classes. To test this assumption, we compared
the recall values of each soil class obtained by the RF model
trained on the original imbalanced dataset with those
obtained by the RF trained on the SMOTE resampled bal-
anced dataset (Figure 5). From the plot depicted in Figure 5
it is possible to get a sense that the SMOTE resampling tech-
nique improves the accuracy of most of the soil classes,
compared to the original dataset. For instance, the accuracy
of Calcisols (1,910 soil samples) obtained by two RF models
trained on the original imbalanced dataset and SMOTE res-
ampled balanced dataset reached maximum values of 70.8

100

80

FIGURE 5 The recall values of each

soil class obtained by the random forest 60
model trained on the original imbalanced

data (red) and SMOTE balanced data (blue).

ARC, Arenosols; CHH, Chernozems; CLH, 40
Calcisols; CMC, Cambisols; FLC, Fluvisols;

GLE, Gleysols; GYH, Gypsisols; KSH,
Kastanozems; LPE, Leptosols; LVH, 20
Luvisols; PHH, Phacozems; RGC, Regosols;

SCH, Solonchaks; SNH, Solonetz; VRK,

Vertisols [Color figure can be viewed at 0

wileyonlinelibrary.com]
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TABLE 5 Relative improvement (RI) of recall values in each soil class based on the RF trained on the original imbalanced data and SMOTE

balanced data

Recall obtained Area obtained by
Recall obtained by RF by RF trained RF trained on the Area obtained by RF
trained on the original on the SMOTE original imbalanced trained on the SMOTE
WRB groups In % imbalanced data (%) balanced data (%) RI (%) data (Km?) balanced data (Km?)
Arenosols 0.3 475 62.5 31.6 51.6 2322
Chernozems 0.1 0.0 0.0 0.0 38.7 771.2
Calsisols 24.9 70.8 77.6 9.6 367,744.2 274,985.3
Cambisols 18.3 63.1 65.0 3.0 59,481.7 82,147.7
Fluvisols 5.9 23.7 34.6 46.3 26,356.6 20,539.2
Gleysols 0.8 38.9 52.6 35.2 304.8 714.8
Gypsisols 12.9 58.1 61.3 55 308,773.4 332,895.3
Kastanozems 3.1 60.5 65.4 8.1 15,645.3 15,453.8
Leptosols 43 44.6 54.4 22.0 46,116.2 42,159.5
Luvisols 1.2 39.2 48.9 247 9,499.0 9,828.3
Phaeozems 0.5 26.6 41.6 56.6 728.1 698.6
Regosols 18.6 55.7 55.9 0.3 660,505.4 715,567.5
Solonchaks 6.2 66.0 73.3 11.0 113,320.5 112,568.7
Solonetz 1.0 34.7 522 50.4 383.8 385.4
Vertisols 1.4 50.3 66.5 32.1 178.5 180.9

Abbreviations: In, intensity; RF, random forest; RI = ((Recall smMoTE Resampled data = R€Call originat data) / Recall original data) X 100; SMOTE, a dataset oversampled using

the synthetic minority oversampling technique; WRB, world reference base system.

and 77.6%, respectively. This improvement can be seen very
clearly for the prediction of Fluvisols (451 soil samples), in
which the accuracy increased from 23.7 to 34.6%, when
applying two RF models, respectively.

In addition, we calculated the relative improvement
(RI) of the recall values obtained by RF models (original data
and SMOTE) in order to compare the performances of the
two models in detail (Table 5). It can be shown that the RF
trained on the SMOTE resampled balanced dataset clearly
improves the recall values of the 15 soil classes with an aver-
age of 22.4%, compared to RF trained on the original imbal-
anced dataset. For instance, the highest obtained relative
improvement (RI) was 56.6% for Phacozems (43 soil sam-
ples), followed by 50.4% for Solonetz (78 soil samples) and
46.3% for Fluvisols (451 soil samples). Apart from Cherno-
zems, comparing the relative improvement and intensity of
the observations for each class (Table 5) indicated a negative
trend line (R of —0.54), which demonstrated that the
SMOTE resampling technique forced the RF to focus on the
minority classes (Piri et al., 2018; Zarinabad et al., 2017).

Moreover, comparing the predicted area by RF models
(original data and SMOTE) indicated that the minority soil
classes are much better represented in the map resulting from
SMOTE resampled data (Table 5). For instance, the RF model
trained on the SMOTE resampled balanced dataset could

increase the predicted area for two minority soil classes of
Chernozems and Arenosols significantly from 38 to 771 km?
and from 51 to 232 km?, compared to the RF model trained
on the original imbalanced data. This finding again suggests
that balanced training datasets exhibit better classification
rates in comparison to the imbalanced original dataset.

As an additional visual analysis, we showed a small
section of the study area in the northern parts of the country
(Figure la) after the SMOTE balancing approach has been
applied (Figure 6), to explore the differences between two
maps generated by RF models (original data and SMOTE).
As seen, the general spatial distribution of soil classes is
similar. This is particularly true for the majority soil classes
(e.g., Calcisols, Regosols and Cambisols); however, there
are some differences in the areas predicted as Chernozems
(i.e., the minority soil classes). When the predicted soil clas-
ses compared with actual soil profiles was overlaid on the
maps (Figure 6), we could conclude that the RF model
trained on the SMOTE resampled data model was much
more successful in DSM. These results are in line with the
works of Sharififar, Sarmadian, Malone, and Minasny
(2019) and Sharififar, Sarmadian, and Minasny (2019), who
indicated balancing the soil dataset helped overcome the
issue of modelling imbalanced soil data by improving the
predictive models’ results.
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Predicted Chernozems

Observed Chernozems

FIGURE 6 The spatial distribution of soil classes obtained by the random forest model trained on the original imbalanced data (left) and SMOTE
balanced data (right). The small section of the study area in the northern parts of country is depicted in Figure 1a. ARC, Arenosols; CHH, Chernozems;
CLH, Calcisols; CMC, Cambisols; FLC, Fluvisols; GLE, Gleysols; GYH, Gypsisols; KSH, Kastanozems; LPE, Leptosols; LVH, Luvisols; PHH,
Phaeozems; RGC, Regosols; SCH, Solonchaks; SNH, Solonetz; VRK, Vertisols [Color figure can be viewed at wileyonlinelibrary.com]

3.3 | Comparison of digital and
traditional maps

Under natural conditions, genesis of soil classes is typically
a result of geological, topographic, climatic, hydrologic and
geomorphologic factors interacting with the biosphere.
Therefore, the understanding and interpretation of the spatial
distribution of soils and its variability is of great concern in
prediction methods and in interpretation of the terrestrial
systems (Mesgaran et al., 2017). Accurate soil maps as well
as soil models very much depend on how much the soil—
landscape interrelationship is sampled and analysed in an
unbiased way. The legacy soil databases, which were used
in this study, do not have a geographically ideal distribution
and intensity in terms of equal probability among all prov-
inces and land uses in the country (SWRI, 2015). Although
the recall values of models struggling on such datasets are a
function of their soilscape representativeness, our results
show that the ML algorithm, like RF trained on resampled
SMOTE datasets, could reduce the effect of distribution bias
significantly and can produce more accurate results com-
pared to the traditional soil maps of Iran (Figure 1d). We
used recall values to quantify this effect. Recall value
describes the presence or absence of a soil class. Here, we
use Chernozems soil distribution and compared it in our
modelled map with the previously mapped units.

In chronological order, four soil maps were prepared for
Iran by Kovda and Lebedev (1942), Dewan and Famouri
(1964), Banaei (2000) and Hengl et al. (2007). The first was
a schematic map (1/6,000,000 scale) describing global char-
acteristics of structured zones of different environments and
does not have soil classes like Chernozems. The second
mentioned the existence of Chernozems intercalated with
Chestnut soils (Dewan & Famouri, 1964) but did not

delineate Chernozems on the map. Also, Banaei (2000) did
not present Chernozems within his soil landscapes. Hengl
et al. (2007) produced a map using fuzzy format but the dis-
tribution of Chernozems was separately mapped. Roozitalab
et al. (2018) properly defined the presence and the distribu-
tion of Chernozems in Gillan and Mazandran provinces. The
digital map of soil classes produced based on the combina-
tion of the SMOTE resampling technique and RF model has
a much higher spatial resolution compared to existing maps
in Iran and displays new soil classes such as Chernozems in
the north parts of the country that have not yet been mapped
in Iran. Therefore, the map generated in this study can be
considered as an improved map of soil classes in Iran.

4 | CONCLUSION

In this paper, we tried to prepare a digital map of soil classes
at the national scale with the resolution of 90 X 90 m in
Iran. Herein, we tested five ML algorithms on nine datasets,
including the original imbalanced soil dataset and eight res-
ampled balanced soil datasets, to explore if resampling can
enhance the prediction power of ML algorithms in DSM
problems. The following conclusions can be drawn from
this study.

1. Random forest was the best method to predict soil clas-
ses in all datasets. Therefore, RF can be recommended
as the most reliable model to predict spatial distribution
of soil classes of Iran.

2. Resampling the original datasets, particularly with the
SMOTE technique, increased OA, K-index and F-Score
in comparison to the original dataset. These results
clearly indicate that standard ML algorithms could be
better trained by the balanced SMOTE resampled dataset
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than imbalanced legacy data from existing soil maps.
This is vital in DSM studies because they mostly rely on
such imbalanced soil legacy data, in which the applica-
tion of ML algorithms can generate highly biased soil
class maps.

3. The resulting new soil map of Iran produced based on
the combination of the SMOTE resampling technique
and random forest model has a much higher spatial reso-
Iution compared to four existing soil maps in Iran.
Therefore, the map can be considered as the latest ver-
sion of a soil map in Iran.
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