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Abstract

We present an Arctic ocean-sea ice reanalysis covering the period 2007-2016
based on the adjoint approach of the Estimating the Circulation and Climate of
the Ocean (ECCO) consortium. The spatiotemporal variation of Arctic sea sur-
face temperature (SST), sea ice concentration (SIC), and sea ice thickness (SIT) is
substantially improved after the assimilation of ocean and sea ice observations.
By assimilating additional World Ocean Atlas 2018 (WOA18) hydrographic data,
the freshwater content of the Canadian Basin becomes closer to the observations
and translates into changes of the ocean circulation and of transports through
the Fram and Davis straits. This new reanalysis compares well with previous
filter-based (TOPAZ4) and nudging-based (PIOMAS) reanalyses regarding SIC
and SST. Benefiting from using the adjoint of the sea ice model, our reanalysis is
superior to the ECCOv4r4 product considering sea ice parameters. However, the
mean state and variability of the freshwater content and the transport properties
of our reanalysis remain different from TOPAZ4 and ECCOv4r4, likely because
of a lack of hydrographic observations.
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Arctic Ocean circulation and its changes, its interactions
with sea ice and the atmosphere, and its exchanges with

The Arctic Ocean is a hotspot in the changing Earth system
and is experiencing rapid warming of surface air temper-
ature (AMAP, 2019), changes in the freshwater content of
the Canadian Basin (Proshutinsky et al., 2019), changes in
the mass exchange with the Atlantic Ocean (Dmitrenko
et al., 2008) and the Pacific Ocean (Woodgate et al., 2012),
and a dramatic decline in sea ice cover (Kwok, 2018). The
sea ice coverage at the ocean-atmosphere interface mod-
ulates the heat, freshwater, and momentum fluxes and is
potentially changing the heat and freshwater budgets of
the Arctic system. Improving our understanding of the

the Pacific and Atlantic oceans is crucial for making pre-
dictions and projections of Arctic changes.

Because of the harsh environmental conditions and
diplomatic constraints, the Arctic Ocean remains one
of the most undersampled regions of the global oceans.
Although sea ice concentration (SIC) is observed by satel-
lites every day, the sea ice cover limits hydrographic
observations and degrades altimetry-based sea level obser-
vations (Armitage et al.,, 2016; Rose et al., 2019). The
sparseness of observations limits their interpretation in
terms of mechanisms and feedbacks in the Arctic Ocean.
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Numerical model simulations, which provide spatiotem-
porally varying ocean states, are therefore used to comple-
ment in-situ and satellite observations and understand the
Arctic Ocean variability and its causes. However, model
simulations also suffer from model deficiencies, such as
biases in transports (Fieg et al., 2010; Aksenov et al., 2016)
and misrepresentations of the ice edge.

To further improve state-of-the-art numerical simula-
tions of the Arctic Ocean circulation and, at the same
time, to improve our interpretation of the sparse obser-
vations, models are being constrained by ocean obser-
vations through data assimilation techniques. Resulting
ocean-sea ice reanalyses (e.g., Fenty and Heimbach, 2013;
Fenty et al., 2017; Koldunov et al., 2017) provide an invalu-
able basis for assessing variability and trends of the Arctic
sea ice cover (Chevallier et al., 2017), and oceanic trans-
ports and their variability (Uotila et al., 2019). However,
analyzing the dynamics of the sea ice changes and the full
freshwater budget of the Arctic remains difficult from the
Arctic Ocean reanalyses.

A crucial factor in this context is that most of the cou-
pled ocean-sea ice reanalyses are produced using sequen-
tial methods (so-called filters), which correct model state
at the analysis steps and introduce mass and energy incre-
ments at each analysis step (see Stammer et al., 2016
for a review on the methods). For instance, the Trac-
ers of Phytoplankton with Allometric Zooplankton 4
(TOPAZ4) reanalysis (Sakov et al., 2012; Xie et al., 2017,
Xie et al., 2018) uses an ensemble Kalman filter to assim-
ilate near-real-time observations, resulting in potential
discontinuities in the time evolution of the model tra-
jectory. In contrast, the Pan-Arctic Ice Ocean Modeling
and Assimilation System (PIOMAS) reanalysis (Lindsay
and Zhang, 2006) uses a nudging scheme to assimi-
late SIC observations and sea surface temperature (SST),
thereby continuously adding source terms to the gov-
erning equations. Discontinuities introduced by the data
assimilation are thereby alleviated. We cannot expect to
obtain detailed dynamical insights into mechanisms lead-
ing to observed ocean-sea ice changes from both reanaly-
ses.

In contrast, the adjoint method preserves model
dynamics by bringing the model simulation close to obser-
vations through changing control variables. The resulting
reanalysis is dynamically consistent over a long assimi-
lation window (years to decades) (Stammer et al., 2016).
Applications of the adjoint method, excluding the assim-
ilation of sea ice data, have been a mature field (Forget
et al., 2015; Kohl, 2015). Still, the incorporation of sea ice
data remains challenging.

Great efforts have been made to implement the
adjoint method to the coupled ocean-sea ice model (e.g.,
Heimbach et al., 2010; Fenty and Heimbach, 2013), with
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encouraging results. However, the adjoint model may still
suffer from strong sensitivities, which degrades the use-
fulness of the adjoint sensitivity, limits the number of
iterations performed, and stalls the optimization process.
For instance, Koldunov et al. (2017) reported that only five
iterations could be performed in their Arctic ocean-sea
ice assimilation system within a 1-year assimilation win-
dow because large sensitivities arose locally, rendering the
adjoint sensitivity useless for the optimization algorithms.
Because of this persisting problem, ECCO version 4 release
4 (ECCOv4r4, ECCO Consortium et al., 2020a; 2020b, For-
get et al., 2015) excludes the adjoint of the sea ice model.
Causes of the problem still need to be understood in detail,
but they likely arise from linearizing nonlinear processes
in the sea ice model.

Here, we use the adjoint method to constrain a cou-
pled ocean-sea ice model by available observations. Build-
ing on the work of Koldunov et al. (2017), we aim to
improve the previous setup of the Arctic reanalysis by
modifying the adjoint model to enable more iterations
over longer assimilation windows covering the period
2007-2016. In this work, we will examine the changes
imposed in the model through the assimilation proce-
dure and compare the resulting reanalysis against that
of TOPAZ4 (Xie et al., 2017) and PIOMAS (Lindsay and
Zhang, 2006). Besides, we compare our reanalysis against
that of ECCOv4r4 to illustrate the impact of using the
adjoint of the sea ice model.

The data assimilation system and observations are
described in section 2, together with the TOPAZ4,
PIOMAS, and ECCOv4r4 reanalyses. In section 3, we
assess the details of the model-data misfit reduction.
Improvements in SIC and sea ice thickness (SIT) are eval-
uated and compared against the other three Arctic reanal-
yses in section 4. Section 5 focuses on ocean state changes
concerning temperature, salinity, SST, freshwater content
(FWC), and transports through the Fram Strait, Davis
Strait, and the Barents Sea Opening. Comparisons with
TOPAZ4 and ECCOv4r4 are also shown in this section.
Adjustments of the control variables are examined in
section 6. Section 7 provides concluding remarks.

2 | THE DATA ASSIMILATION
SYSTEM AND OBSERVATIONS

This study builds on the coupled ocean-sea ice data
assimilation system presented in the study of Koldunov
et al. (2017). The system uses a pan-Arctic configura-
tion of the Massachusetts Institute of Technology general
circulation model (MITgcm) (Marshall et al., 1997) cou-
pled with a dynamic-thermodynamic sea ice model (see
Losch et al., 2010). The adjoint model is generated by the
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FIGURE 1

Model domain and profiles observing frequency (number/month) on a 3° x 3° grid from (a) April to October and

(b) November to March. At most, one profile is counted each day on each grid. Panel (c) is the number of observations assimilated depending

on time (per month) and depth. Red lines in panel (a) denote locations of Davis Strait, the Fram Strait, and the Barents Sea opening, where

we compute volume, freshwater, and sea ice volume transports in section 5.3 [Colour figure can be viewed at wileyonlinelibrary.com]

Transformation of Algorithms in Fortran (TAF, Giering
and Kaminski, 1998). It is then modified to stabilize the
adjoint sensitivity when calculated over a 4-year assimila-
tion window.

2.1 | The coupled ocean-sea ice model
The model domain covers the entire Arctic Ocean north of
the Bering Strait and the Atlantic Ocean north of 44 °N (see
Figure 1). The open boundaries are nested laterally into
a 16-km Atlantic-Arctic configuration (Serra et al., 2010).
The system has 50 vertical z-levels ranging from 10 m at
the surface to 456 m in the deep ocean. In the horizontal,
a curvilinear grid with a resolution of ~16 km is used.
Atmospheric states from the 6-hourly National Centers
for Environmental Prediction reanalysis 1 (NCEP-RA1)
(Kalnay et al., 1996), including 2-m air temperature, 10-m
wind vectors, precipitation rate, 2-m specific humidity,
downward longwave radiation, and net shortwave radi-
ation, as well as bulk formulae, are used to compute
the surface momentum, heat, and freshwater fluxes. The
river runoff is applied near the river mouth with season-
ally varying river discharge. A virtual salt flux param-
eterization is used to simulate the effects of freshwater
input on salinity changes. The K-Profile scheme of Large

et al. (1994) is used to parameterize unresolved vertical
mixing effects.

The thermodynamic sea ice model is based on
the zero-layer formulation of Semtner (1976) and
Hibler (1980). The dynamic sea ice model is based on
Hibler (1979) and is implemented following Zhang and
Hibler (1997). The thermodynamic-dynamic sea ice
model is then modified to apply adjoint data assimilation
(Losch et al., 2010; Fenty and Heimbach, 2013).

2.2 | The adjoint method

The adjoint model is used to bring the model simulation
into consistency with available observations. The method
minimizes a quadratic model-data misfit (also called cost
function; Equation 1), weighted by the prior data uncer-
tainties, by adjusting control variables iteratively.

T1
J(Cini, Cam(V) = Z[Y(t) - EMx(O]"R™y(t) - E()x(V)]
t=1

+CT
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“1NC. . 4 O To-le
P (O)Clnl + Catm Qm Catm

T1
+ ) Cln(0TQe Clyy (0 ¢y
t=0


http://wileyonlinelibrary.com

LYU ET AL.

Quarterly Journal of the 1911

NRMets

Over the whole reanalysis period (2007-2016), we adjust
the initial condition of the year 2007 (Cini) and daily atmo-
spheric states on the model grid (Catm(t)), which include
2-m air temperature, 2-m specific humidity, precipitation
rate, 10-m wind vectors, downward longwave radiation,
and net shortwave radiation.

On the right-hand side of Equation (1), the first term
computes the uncertainty-weighted model-data misfits,
where y(t) and x(t) represent observations and model
state at time ¢, E(t) maps model states to the corresponding
observations, and R~ is an inverse error covariance matrix
for observations. Superscript T denotes the transpose of
the matrix. The remaining three terms penalize the adjust-
ments of the initial state Cjpi, time-mean atmospheric forc-
ing Catm, and time-varying atmospheric forcing Cj, (f)
and are weighted by the square of prior uncertainties P(0),
Qum, and Qg, respectively. Square of prior uncertainties of
the initial state P(0) and the time-varying atmospheric
forcing Q, are computed as the variance of the nonsea-
sonal variability of the corresponding variables using the
WOA18 ocean atlas and the NCEP-RA1. Uncertainties of
the mean component of 2-m air temperature, 2-m specific
humidity, precipitation rate, 10-m wind vectors, down-
ward longwave radiation, and net shortwave radiation are
set to 1 °C, 0.001kg-kg™!, 1.5x107® mm-s~!, 2 m-s7!,
20W-m~2, and 20 W-m~2.

Because of the computational limit and potential insta-
bility of the adjoint model, we separate the whole 10-year
period (2007-2016) into three segments (2007-2010,
2010-2013,2013-2016) with a 1-year overlap. A total num-
ber of ~10° elements are adjusted in each chunk to reduce
the cost function. The initial state of the latter segment
is taken from the last iteration of the former segment to
avoid discontinuities in the time evolution of the model
trajectory when moving to the next segment.

To stabilize the adjoint model for a 4-year assimila-
tion window, we made the following modifications to the
adjoint of MITgcm:

1. Disable the
scheme,

2. Use a free-drift sea ice dynamic model,

3. Increase the Laplacian diffusivity of heat and salinity to
500 m?-s!, and lateral eddy viscosity to 10,000 m?-s~!,

4. Apply a filter (Stammer et al., 2018) to sensitivity vari-
ables calculated in the adjoint of the thermodynamic
sea ice submodel (see details in Appendix).

K-profiles mixing parameterization

A quasi-Newton algorithm based on Gilbert and
Lemaréchal (2006) is used to iteratively reduce the cost
function by adjusting the control variables employing the
adjoint sensitivities. The optimization stops when the gra-
dient descent algorithm cannot further reduce the cost

Royal Meteorological Society

function. The analyses discussed below are based on the
zeroth iteration (referred to as “INTAROS-ctrl”) and the
last iteration (referred to as “INTAROS-opt”) of the opti-
mization.

2.3 | Observations and prior
uncertainties

Both in situ and remote sensing observations are used to
constrain the model simulation. Data sets that are assimi-
lated and their sources are listed in Table 1.

The assimilated sea ice observations rely on satellite
observations. SIC observations are derived from Advanced
Microwave Scanning Radiometer for Earth Observing Sys-
tem (AMSR-E, 2007-2010), Special Sensor Microwave
Imager (SSMI, 2011-2012), and Advanced Microwave
Scanning Radiometer 2 (AMSR2, 2013-2016) (Kaleschke
et al., 2001; Spreen et al., 2008). SIC uncertainties result
from representation errors and observational errors (Fenty
and Heimbach, 2013). Representation errors are assumed
to be 15% within 50 km from the coastline and 10% over
open water. Incorporating instrumental errors, we modify
the errors by multiplicative factors of 0.85, 1.20, 1.10, and
1.00 for the observed SIC ranges of 0.00, <0.15, 0.15-0.25,
and >0.25, respectively. SIT observations and their uncer-
tainties are from the optimal-interpolated CryoSat-2/Soil
Moisture and Ocean Salinity (SMOS) SIT product (Ricker
et al., 2017), which takes advantage of the high accuracy
of SMOS-observed thin ice (<1 m) and CryoSat2-observed
thick ice.

SST is based on optimal interpolated microwave and
infrared data from the Remote Sensing System (RSS-SST).
SST data are not available over the sea ice-covered region,
but we assume SST is at freezing temperature (—1.96 °C)
where sea ice is observed but not simulated. Uncertain-
ties of SST result from representation errors, estimated
based on the method of Oke and Sakov (2008), and obser-
vational errors (see Table 1). Along-track sea level anomaly
observations from satellite altimetry are available over
ice-free regions, and their uncertainties are set following
K6hl (2015). Mean dynamic topography (Rose et al., 2019)
is assimilated to correct biases in the mean ocean circula-
tion using uncertainties of 1 cm. Mapped sea level anomaly
data over ice-covered regions (Rose et al., 2019) is used
to constrain the time-varying circulation using half of its
standard deviation as the uncertainties.

For hydrographic data, the model is constrained to
hydrographic profiles from EN4 data (Good et al., 2013)
and Unified Database for Arctic and Subarctic Hydrogra-
phy (UDASH) data (Behrendt et al., 2018). Duplicated data
from the two hydrographic profile datasets are removed.
On average, the Atlantic sector of the pan-Arctic Ocean is
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TABLE 1 Data sets assimilated
Variables
Date sets abbreviations Source
Mean dynamic topography MDT Rose et al. (2019), https://ftp.space.dtu.dk/pub/
DTU19/MDT/
Daily sea surface temperature SST Remote Sensing System, http://www.remss.com/
measurements/sea-surface-temperature/
ASI ice concentration SIC Kaleschke et al. (2001) and Spreen et al. (2008),
SIC-SST? AMSRE (2007-2010), SSMI (2011-2012),
AMSR2 (2013-2016), http://icdc.cen.uni-
hamburg.de/1/daten/cryosphere.html
EN4 hydrographic data and UDASH EN4-T Good et al. (2013), https://www.metoffice.gov.
EN4-S uk/hadobs/en4/ Behrendt et al. (2018), https://
www.awi.de/forschung/klimawissenschaften/
physikalische-ozeanographie/projekte/udash.
html
SMOS and CryoSat-2 merged sea ice thickness SIT (Ricker et al., 2017), https://spaces.awi.de/pages/
viewpage.action?pageld=291898639
Along-track sea level anomaly SLA Copernicus Marine Environment Monitoring
Service, http://marine.copernicus.eu
Monthly sea level anomaly over sea ice cover SSH-Mon Rose et al. (2019), https://ftp.space.dtu.dk/pub/
ARCTIC_SEALEVEL/DTU_TUM_V3_2019/
Moorings EN4-T® Beaufort Gyre Exploration Project, https://www.
EN4-SP whoi.edu/beaufortgyre Nansen and Amund-
sen Basin observational system, https://uaf-iarc.
org/nabos/
WOA18 WOA-T Zweng et al. (2018), https://www.nodc.noaa.gov/
WOA-S 0C5/woal8/woal8data.html

2Since SST is not observed in sea ice-covered regions, we assume SST is —1.96°C where sea ice is observed but not simulated in the model.
bCost constituents of moorings are added to EN4 components in our analysis.

observed more than once per month per 3° X 3° box during
April-October (Figure 1a) and once per 2months dur-
ing November-March (Figure 1b). However, hydrographic
observations in ice-covered regions are much fewer than
those in open water (Figure 1a,b). In the vertical, the pro-
files cover mainly the top 800 m (Figure 1c) and more
observations are available in the summer season than in
the winter season. Uncertainties of temperature and salin-
ity profiles are the same as in K6hl (2015).

Additionally, the model simulation is constrained to
the WOA18 climatology. Since the temperature and salin-
ity climatology are interpolated to the finer grid, thereby
inventing dependent data points, and the inverse covari-
ance matrix is assumed diagonal, we reduced the weight of
the temperature and salinity climatology cost components
by a factor of 10 and 50, respectively. Although the result-
ing factors should have been the same for temperature and
salinity, the values were adjusted to yield similar contribu-
tions to the cost function. Because of the low number of
hydrographic profiles, we increased the weighting of the

hydrological profile component by a factor of 10 to increase
their relative importance with limited iterations.

2.4 | The TOPAZ4, PIOMAS,
and ECCOv4r4 reanalyses

Available variables from the TOPAZ4 (Xie et al., 2017),
PIOMAS (Lindsay and Zhang, 2006), and ECCOv4r4 (For-
get et al., 2015; ECCO Consortium et al., 2020a; ECCO
Consortium et al., 2020b) reanalyses are compared with
our reanalysis. Table 2 lists the details of the three
reanalyses. PIOMAS assimilates the least observations and
the coarsest resolution among the three reanalyses. The
data assimilation method in TOPAZ4 and INTAROS-opt
are computationally more expensive than PIOMAS, and
more observations are assimilated. ECCOv4r4 is a global
ocean-sea ice reanalysis and also uses the adjoint method
as our study. However, a major difference of ECCOv4r4
to our study is that it excludes the adjoint of the sea ice
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TABLE 2

TOPAZ4

HYCOM ocean-EVP ice
dynamic model and ther-
modynamic model

Ocean-sea ice model

Resolution 12-16 km, 28 z-isopycnal

layers
Atmosphere forcing ECMWEF/ERA-Interim

SLA, SST, SIC, ice drift, SIT,
in situ T/S

Variables assimilated

Data assimilation method Ensemble Kalman filter

Reanalysis period 1991-now

model (Forget et al., 2015; ECCO Consortium et al., 2020a;
2020b).

3 | EVALUATION OF THE
OPTIMIZATION

The optimization involved running the coupled ocean-sea
ice model forward to evaluate the cost function over
the time frame 2007-2016, split into three segments as
described above. The adjoint model integration then pro-
vides gradients of the cost function with respect to con-
trol parameters, which were used in an iterative way
to minimize the model-data misfit. In the end, a total
number of 15, 21, and 20 iterations were performed in the
three segments, respectively.

Figure 2 shows the resulting percentage decrease in
the total cost function and the individual cost components.
The cost function is dominated by the constituents of
sea surface temperature (SST), SIC, temperature (EN4-T)
and salinity (EN4-S) profiles, and climatological temper-
ature (WOA-T) and salinity (WOA-S), which is mainly
due to a large number of these type of observations (SST,
SIC, WOA-T, and WOA-S) and significant model-data mis-
fits (EN4-T and EN4-S). The total cost reduction is more
than 30% in the three segments. SST, SIC, and climato-
logical temperature (WOA-T) and salinity (WOA-S) are
reduced by 40-60%. The cost constituents of temperature
(EN4-T) and salinity (EN4-S) profiles account for ~20 and
~10% of the total cost and are reduced by 30% and 60%
upon assimilation, respectively. For the other constituents,
MDT and SIT errors are reduced by more than 50%, but
SLA and SIC-SST are degraded. Compared with Koldunov
et al. (2017), the present optimization achieves a larger
cost function reduction for the total and individual com-
ponents. Besides starting from a better first-guess solution,
the increased cost function reduction, in particular, results
from the larger number of iterations performed here.

Royal Meteorological Society

Details of the TOPAZ4, PIOMAS, and ECCOv4r4 reanalysis systems

PIOMAS ECCOv4r4

Pan-Arctic ice ocean
modeling and assimila-
tion system

MITgcm ocean-LSR ice
dynamic model and
thermodynamic model

~40km in the Arctic
Ocean, 50 vertical layers

40km, 21 vertical layers

NCEP/NCAR RA1 ECMWF/ERAInterim
SIC, SST SLA,MDT, in situ T/S, SST,

SSS, SIC, OBP, WOA09
Mixed nudging and OI Adjoint method
1979-now 1992-2017

Because they appear to elicit the greatest improve-
ment during the optimization, we focus on the improve-
ments of SIC, SIT, and SST in the following section.
We compare resulting fields with those available from
the three reanalyses. Besides, model-data differences of
hydrographic profiles, oceanic transports, and freshwater
content are compared against TOPAZ4 and ECCOv4r4.

4 | SEAICE PARAMETERS

4.1 | Seaiceconcentration

The time series of sea ice area (SIA) shown in Figure 3a
reveals a significant variation during the year, with more
disagreements between simulations in wintertime and
fairly consistent results during the summer minima. In
particular, except for ECCOv4r4, all model simulations
match the observed summer record-low SIA in 2007, 2012,
and 2016. During the winter season, INTAROS-opt fol-
lows the satellite observations well, while the TOPAZ4
reanalysis underestimates SIA during the first 4 years and
follows INTAROS-opt after that. PIOMAS also matches the
observations well, but it slightly overestimates SIA in the
winter season. In contrast, INTAROS-ctrl simulates more
SIA than is observed. The ECCOv4r4 reanalysis overesti-
mates STA in the winter season and underestimates SIA in
the summer season.

To reveal the winter intermodel discrepancies in more
detail, Figure 3b shows SIA from January to March in 2007.
TOPAZ4 clearly shows a 7-day signal caused by correcting
the model state at the analysis step, characteristic of every
filter approach. The POIMAS reanalysis shows more SIA
than all the other simulations. Discontinuities are not vis-
ible in the PIOMAS reanalysis because they used a mixed
nudging and optimal interpolation method to alleviate
discontinuities. Yet, the nudging term still adds artificial
sources and sinks to the model simulation and violates
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and ECCOv4r4 (see legend). Panel (a) is for the whole reanalysis period (2007-2016), and panel (b) is for January-March, 2007 [Colour figure
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model physics. The ECCOv4r4 reanalysis simulates more
SIA than all the other simulations. The INTAROS-opt
brings the model-simulated SIA closest to the observations
by adjusting the control variables.

Since SIA in the year 2012 reaches the record min-
imum, we take the year 2012 as an example to exam-
ine the spatial pattern of SIC in all the simulations. As
expected, the spatial distribution of SIC is improved upon
data assimilation (Figure 4a,e). In March, the sea ice
edge extends more in INTAROS-ctrl (black dashed line in
Figure 4a), a feature corrected through the assimilation

process (shading in Figure 4a). Improvements in the
spatial distribution of SIC are even more pronounced
in September (Figure 4e). In contrast to the total SIA
(Figure 3a), both TOPAZ4 (Figure 4b,f) and PIOMAS
(Figure 4c,g) show an overall agreement with observa-
tions, considering the patterns and sea ice edge (15%).
However, ECCOv4r4 (Figure 4d,h) matches the observa-
tion worse than all three ocean—sea ice reanalyses.
Overall, INTAROS-opt, TOPAZ4, and PIOMAS repro-
duce the total SIA minima in 2007, 2012, and 2016 and
the spatial pattern of the pan-Arctic SIC. SIC in ECCOv4r4
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FIGURE 4 SICin March,
2012 in (a) INTAROS-opt, (b)
TOPAZ4, (c) PIOMAS, and (d)
ECCOv4r4. Panels (e)—(h) are
the corresponding September
SIC. The red dotted lines are the
satellite-observed sea ice edge
(15%), and the black dashed
lines in panels (a) and (e) are the
sea ice edge in INTAROS-ctrl
[Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 5

(a) RMSE between the CryoSat2-SMOS observations and INTAROS-ctrl, INTAROS-opt, TOPAZ4, PIOMAS, and ECCOv4r4.

The remaining panels show the mean SIT differences between CryoSat2-SMOS merged data and (b) INTAROS-ctrl, (c) INTAROS-opt, (d)
TOPAZA4, (e) PIOMAS, and (f) ECCOv4r4. The contour interval is 0.1 m [Colour figure can be viewed at wileyonlinelibrary.com]

is significantly different from satellite observation, which
can be attributed to the exclusion of the adjoint of the
sea ice model. The adjoint of the sea ice model was not
incorporated in the ECCOv4r4 because of the associated
difficulties, which the present article largely resolved.

4.2 | Seaice thickness and volume

SIT differences remain large among different ocean-sea
ice reanalyses (Chevallier et al., 2017), which may be
caused by differences in sea ice models and how SIT is
updated when ingesting observations by data assimilation.
In this section, we analyze improvements to SIT due to
the adjustment of the control variables and compare them
with TOPAZ4, PIOMAS, and ECCOv4r4.

The cost of SIT is reduced by ~60% in the three seg-
ments (Figure 2), despite its very small contribution to the
total cost. INTAROS-ctrl (Figure 5b) underestimates mean
SIT in the central Arctic Ocean and north of Greenland,
covered by multiple-year sea ice, and overestimates mean
SIT over seasonal sea ice extent regions. INTAROS-opt
reduces mean SIT errors significantly (Figure 5c), and the
root mean square error (RMSE) is reduced from 0.54 m in
INTAROS-ctrl to 0.40 m in INTAROS-opt (Figure 5a).

PIOMAS shows a slightly larger RMSE of SIT (0.46 m)
than INTAROS-opt (0.40m) and TOPAZ4 (0.41m,
Figure 5a). TOPAZ4 shows larger errors in October and
November than both INTAROS-opt and PIOMAS, but
the SIT errors are quickly reduced as the model assimi-
lates observations sequentially, resulting in smaller RMSE
than both PIOMAS and INTAROS-opt at the start of
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the next year. Again, ECCOv4r4 shows the largest SIT
errors (Figure 5a,f), which are even larger than those of
INTAROS-ctrl.

Mean SIT bias remains in the three products. Negative
SIT errors up to —0.6 m exist in the central Arctic Ocean
and the Eurasian Basin, extending to the northeastern
Greenland coast. In the Beaufort Sea, all four reanalyses
overestimate SIT by ~0.2-1.0 m, with TOPAZ4 performing
best. In the seasonal sea ice extent regions, including the
marginal seas and around Greenland, TOPAZ4 data show
smaller mean SIT errors than the other three reanalyses.

Despite the improvements in SIC and SIT, we note that
sea ice volume shows significantly different time variabil-
ity among different reanalyses (Figure 6). For instance, our
model simulations, ECCOv4r4, and PIOMAS show a more
substantial seasonal variation than does the TOPAZ4 data,
especially before 2011. INTAROS-opt changes the total sea
ice volume in the summer season throughout the 10 years
and in the winter season after 2010 when additional SIT
observations are available. Despite the different assimi-
lation methods and numerical models, we see that the
state-of-the-art ocean—sea ice models reproduce the spa-
tiotemporally varying SIC successfully. We speculate that
SIT is improved either through rectifying mechanisms by
improvements on SIC or by assimilating additional SIT
data in the winter season. The beneficial effects of assimi-
lating satellite SIT are more clearly visible in the TOPAZ4
reanalysis after January of the year 2014.

To examine the relative importance of SIC and SIT on
the residual sea ice volume, we replace each component in
INTAROS-opt with observations (blue line and black dots
in Figure 6). Replacing SIT with observations (black dots in
Figure 6) achieves a better match with the observed sea ice
volume than replacing SIC with observations (blue line in
Figure 6), indicating that the sea ice volume improvement
mostly results from the SIC assimilation and that SIT needs
to be further improved to further reduce sea ice volume
erTor.

Year

5 | OCEANSTATE

In the filter approaches, ocean states are changed by updat-
ing the state through assimilating observations and prop-
agating the analysis increment by the forward model. The
adjoint method adjusts the atmospheric forcing and the
initial state to reduce the model-data misfits. These adjust-
ments to the control variables are calculated by the infor-
mation propagated by the adjoint model and the forward
model. This section concentrates on ocean changes after
data assimilation and compares them with TOPAZ4 and
ECCOv4r4.

5.1 | Model-data differences
in temperature and salinity

Based on INTAROS-ctrl, INTAROS-opt, TOPAZ4, and
ECCOv4r4, we compute RMSEs of temperature (Figure 7a)
and salinity (Figure 7b) to the profile observations and
averaged them over our model domain and the years
2007-2016. In INTAROS-opt, both temperature (Figure 7a)
and salinity (Figure 7b) errors are reduced in the
top 3,000m upon data assimilation. Both TOPAZ4 and
ECCOv4r4 show overall smaller RMSEs of temperature
and salinity in the top 3,000 m than INTAROS-opt. For
ocean temperature (Figure 7a), ECCOv4r4 shows larger
temperature errors in the top 30 m and is comparable to the
TOPAZ4 in the layer 50-250 m and has the smallest errors
below. Salinity RMSEs (Figure 7b) reveal that ECCOv4r4
has smaller salinity errors except for the ocean surface,
where TOPAZ4 shows even smaller salinity errors.
Temperature differences (Figure 8) of the four simula-
tions relative to the profiles in the layer 100-1,000 m are
examined. INTAROS-ctrl (Figure 8a) simulates a warmer
intermediate layer, and the biases can be up to 2 °C in
the Arctic Atlantic water and 1 °C in the Atlantic Ocean.
INTAROS-opt (Figure 8b) significantly reduces warm bias,
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FIGURE 7 RMS

0 differences of (a) temperature
and (b) salinity in
100 INTAROS-ctrl, INTAROS-opt,
TOPAZ4, and ECCOV4r4 to the
200 profile data [Colour figure can
be viewed at
wileyonlinelibrary.com]
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especially in the Arctic Ocean and the Greenland and Ice-
land seas. The ratio of error reduction (Figure 8c) reveals
that temperature errors are reduced by 40-80% in the cen-
tral model domain. Degradations are visible in the south-
ern boundary in the Atlantic section, where the boundary
condition likely dominates temperature changes.

TOPAZ4 (Figure 8d) and ECCOv4r4 (Figure 8e) show
smaller temperature errors, especially in the deep basin.
Besides, ECCOv4r4 shows the smallest temperature errors
in the Greenland, Iceland, and Norwegian seas. The water
is then transported into the Arctic Ocean, resulting in the
smallest temperature errors of the Arctic Atlantic water.

Salinity differences to profile observations are shown
in Figure 9 to illustrate salinity errors of the four sim-
ulations in the top 100 m. INTAROS-ctrl (Figure 9a) is
saltier in the western Canadian Basin and the Labrador
Sea and is fresher in the Eurasian Basin and the north
Atlantic Ocean. Upon data assimilation, salinity errors are
reduced in most regions (Figure 9b). The ratio of salinity
error reduction (Figure 9c) shows an overall improve-
ment of salinity in most model domains, but degradations
also occur occasionally. TOPAZ4 simulates a fresher Arctic
Ocean with salinity errors up to —0.8 psu (Figure 9d) and
smaller salinity errors in the Atlantic section (Figure 9d)
except near the coast. ECCOv4r4 (Figure 9e) also shows
small salinity errors in the Atlantic section, but the errors
remain large in the Arctic Ocean.

5.2 | SST changes

SST is consistent among the Arctic ocean—sea ice reanal-
yses (Chevallier et al, 2017) and interacts with sea
ice directly. We compare the mean SST difference and
RMSEs of SST anomaly between the four simulations and
RSS-SST.

In INTAROS-ctr], the mean SST (Figure 10a) shows
strong cold biases up to —3 °C and SST anomaly
(Figure 10b) also show significant errors, especially in
seasonal sea ice extent regions. Upon data assimilation,
INTAROS-opt reduces the mean SST biases up to 2 °C in
large areas of the pan-Arctic Ocean (Figure 10c). Reduc-
tion of RMSEs of SST anomaly (Figure 10d) up to 1 °C is
also achieved.

TOPAZA4 shows slightly smaller SST errors regarding
the mean SST (Figure 10e) and SST anomaly (Figure 10f),
especially in the marginals seas and around Greenland.
ECCOv4r4 shows the largest cold biases (Figure 10g) and
RMSEs of SST anomaly (Figure 10h) in the pan-Arctic
Ocean, which is likely caused by the misrepresentation of
the sea ice processes.

In all the simulations, SST differences of the mean state
and of the variability remain along the strong currents
and the variable ice extent regions. We take the SST time
series (Figure 11c) averaged over a 50 X 50 km box near
Fram Strait (green box in Figure 10b) as an example to
examine and explain the differences between the reanaly-
ses and observations. During September-November 2012,
SIC observations averaged over this box (blue line in
Figure 11b) show sea ice appearing from September 27 to
October 26, accompanied by declining SST (Figure 11c).
Both INTAROS-opt and TOPAZ4 (black and green lines
in Figure 11b, c) simulate a similar process as the obser-
vations, starting from October 11 to October 23 and
September 27 to November 23, respectively. Based on
INTAROS-opt, we diagnose SIC changes (AA) due to sea
ice advective divergence (—V - (1A), Saiv), atmospheric
thermodynamic effects (Satm), and oceanic thermody-
namic effects (Soce, Figure 11a). Figure 11a reveals that
the advective divergence effect dominates the accumula-
tion of sea ice in this region. The underlying water cools
as the ice is moving in. It melts the ice from underneath,
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the layer 100-1,000 m. Panel (c) is the ratio of potential temperature error reduction upon data assimilation [Colour figure can be viewed at
wileyonlinelibrary.com]

shown by the negative contribution from the oceanic ther-
modynamic effect. The small contributions from the ther-
modynamics suggest that the colder water moves together
with the ice into the box, while surface fluxes have a minor
impact. In TOPAZ4 (green lines in Figure 11b,c), sea ice
emerges at a date similar to SIC observations, but more
sea ice is simulated in the middle of October. During the
decay, SIC is reduced (corrected) during each step (every
7 days) of the data assimilation before building up biases
again between two analysis cycles. In general, no dynamics
can be inferred behind the SIC changes. The decay pro-
cess in the TOPAZ4 reanalysis takes more time. In contrast,
INTAROS-ctrl and ECCOv4r4 fail to reproduce this sea
ice intrusion process, and therefore, significant SST errors
remain in these two simulations.

We conclude that, overall, the adjoint method
improves both the variability and the mean state of the
SST. INTAROS-opt is consistent with TOPAZ4 in general,
but SST differences remain along sea ice extent regions
and strong current regions, related to the fast ocean-sea
ice interaction processes.

Royal Meteorological Society

2.0

4 1.6

1.2

0.8

410.4

-0.4

-0.8

-1.2

-1.6

-2.0

Potential temperature differences in (a) INTAROS-ctrl, (b) INTAROS-opt, (d) TOPAZ4, and (e) ECCOv4r4 to EN4 data in

5.3 | Freshwater content
In this section, we examine freshwater content (referred to
34.8 psu as in Proshutinsky et al., 2009) in INTAROS-opt,
TOPAZ4, and ECCOv4r4, and take freshwater content in
the Beaufort Sea and the Laptev and the East Siberian seas
as examples to examine their mean values and variability.
After the assimilation, a freshening is noticeable in the
interior of the Arctic Ocean (Figure 12a). At the same time,
along the routes of outflowing Arctic water into the North
Atlantic east and west of Greenland, a reduction of fresh-
water content can be seen. Circulation changes (vectors
in Figure 12a) depict an enhanced anticyclonic circulation
anomaly in the Canadian Basin and a weaker anticyclonic
circulation anomaly in the Eurasian Basin. We also note an
increase of Atlantic inflow west of Svalbard and St. Anna
Trough and enhanced Arctic outflow through the western
Fram Strait and Nares Strait. The freshwater comes mostly
from the direct adjustment of the initial salinity of the
year 2007 (Figure 12b). It is then redistributed towards the
Canadian Basin via the mean circulation. The enhanced
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Salinity differences in (a) INTAROS-ctrl, (b) INTAROS-opt, (d) TOPAZ4, and (e) ECCOv4r4 to EN4 data in the top 100 m.

Panel (c) is the ratio of salinity error reduction upon data assimilation [Colour figure can be viewed at wileyonlinelibrary.com]

circulation around Greenland would, according to Kohl
and Serra (2014), contribute to the reduction of the fresh-
water content. The additional freshwater content remains
in the Canadian Basin through the enhanced anticyclonic
circulation, as revealed by Morison et al. (2012).

Compared with TOPAZ4 and ECCOv4r4, INTAROS-
opt simulates less freshwater content over the Arctic
continental shelves and slightly more freshwater in the
Canadian Basin (Figure 13a,b). One may argue that
INTAROS-opt increases the freshwater content in the
Canadian Basin at the expense of degrading the Arctic
continental shelves. However, the mean freshwater con-
tent increment after data assimilation (Figure 13a) shows
almost no changes in the Arctic marginal seas.

Based on annual observations (Proshutinsky et al,
2009; 2019), the WOA18 atlas (Zweng et al., 2018), the
PHC atlas version 3.0 (Steele et al., 2001), INTAROS-opt,
TOPAZ4, and ECCOv4r4, we computed the freshwa-
ter content in the Beaufort Sea (Figure 13c) and the
Laptev and East Siberian seas (Figure 13d). INTAROS-opt
changes the mean freshwater content without altering its
variability significantly. The mean freshwater content in
the Beaufort Sea is increased from 12 to 16 km? after data

assimilation (Figure 13c), and changes in the marginal
seas are also visible (Figure 13d).

Freshwater content remains different in TOPAZ4,
INTAROS-opt, and ECCOv4r4 (Figure 13a,b), especially
over the Arctic marginal shelves. In TOPAZ4, sea sur-
face salinity (SSS) is relaxed to a combined climatology
of the WOAO5 and the version 3.0 of Polar science cen-
ter Hydrographic Climatology (PHC, Steele et al., 2001)
with a timescale of 30 days to complement limitations of
seasonal river discharge and relatively coarse atmospheric
forcing. In INTAROS-opt and ECCOv4r4, the salinity is
mainly changed by adjustment of initial salinity and atmo-
spheric forcing. The SSS restoring term seems more effi-
cient in changing SSS than adjusting atmospheric forcing
in the marginal seas. However, salinity relaxation damp-
ens the seasonal freshwater content variability (green lines
in Figure 13c,d).

In this study, the WOA18 data remain an essen-
tial source of hydrographic observations to constrain
the model’s climatology. However, the differences
between different hydrographic atlases remain significant
(Figure 13c,d), caused by different sources of observations
and temporal coverage of the Arctic Ocean atlas. The PHC
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FIGURE 10 MeanSST
difference to RSS-SST in (a)
INTAROS-ctrl, (c) INTAROS-opt, (e)
TOPAZ4, and (g) ECCOv4r4. The
right column is the corresponding
root mean square difference
between the temporal anomalies of
SST of the four simulations and
those of RSS-SST. The contour
interval is 1 °C, and the green box
indicates regions that are used in
Figure 11 below [Colour figure can
be viewed at wileyonlinelibrary.com]
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FIGURE 11 (a)Time series
of SIC changes (AA) for the region
near the Fram Strait (green box in
Figure 10b) from September 1, 2012,

to November 30, 2012, and
attributions to oceanic (Soce) and

(@) 20F

I —AA —
S} 10 — Sdiv oce
%) L
< 9 e

-10 I | | J : l

(b) g0k . Obs —— TOPAZ4

E e INTAROS-ctrl —— ECCOv4r4

60 F —— INTAROS-opt
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divergence term (Sg;y) on SIC
changes (AA). Individual terms are
diagnosed with INTAROS-opt.

Panels (b),(c) are time series of SIC

and SST for the same region from
observations and the four
simulations (see legend in panel (b))
[Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 12 (a) Difference in

MO6

mean freshwater content (in meters,
6 shading) and velocity in the top 100 m
(vectors) between INTAROS-opt and
INTAROS-ctrl. Panel (b) shows the
2 freshwater content increment
introduced by the initial salinity
0 adjustment. The contour interval is
1 m [Colour figure can be viewed at
wileyonlinelibrary.com]

atlas data merge WOA98 with the regional Arctic Ocean
atlas, providing a good description of the Arctic Ocean
before the 2000s (Steele et al., 2001). In contrast, WOA18
data include observations until 2018, but may not include
all data from the regional atlas. Therefore, improving the
quality of the Arctic Ocean climatology is required to fur-
ther reduce the model-simulated salinity biases through
data assimilation.

5.4 | Oceanic and sea ice volume
transports

The Arctic freshwater content and transports through the
key straits remain different among Arctic ocean models
and reanalyses (Aksenov et al., 2016; Uotila et al., 2019).
In contrast to Koldunov et al. (2017), our results show

that the assimilation changes the ocean circulation in the
pan-Arctic Ocean (Figure 13a). We examine the transport
changes in detail. Table 3 presents mean fluxes of volume,
liquid freshwater, sea ice volume, and heat through the
Fram Strait, Davis Strait, and the Barents Sea Opening in
INTAROS-ctrl and INTAROS-opt.

As can be seen, changes in the fluxes are more sig-
nificant than those shown by Koldunov et al. (2017). Sea
ice volume transports are reduced by ~26.4% through the
Barents Sea Opening while increased by 30.9% through
the Fram Strait. Net southward volume flux through the
Fram Strait is reduced by 16.8% because of an enhance-
ment of the Norwegian North Atlantic Current and a
weakening of the Arctic outflow, resulting in increased
heat fluxes to the Arctic Ocean and decreased freshwater
flux from the Arctic Ocean. The southward net volume
flux through the Davis Strait is increased, accompanied by
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FIGURE 13 Differences in
freshwater content (in meters)
between INTAROS-opt and (a)
TOPAZ4 or (b) ECCOv4r4. Panels (c)
and (d) are the accumulated

freshwater content (x10° km?) in the
Beaufort Sea (enclosed by the red
line in panel (a)), and in the Laptev
and the East Siberian seas (enclosed
by the black line in panel (b)) based
on INTAROS-ctrl, the three
reanalyses, the PHC3.0, and WOA18
climatology (see legend). Observed
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TABLE 3 Mean volume flux (VF, in Sv), liquid freshwater flux (LFWF, in mSv), sea ice volume transport (SIVF, in mSv), and
heat flux (HF, in TW) through the Fram Strait (FS), Davis Strait (DS), and Barents Sea Opening (BSO) in INTAROS-ctrl and
INTAROS-opt, their difference in %, and from the observational estimates. Significant changes (>10% or <-10%) are in bold.

INTAROS-ctrl INTAROS-opt Difference (%) Obs
BSO VF 2.8 2.9 1.3 1.8
LFWF -2.1 -2.0 4.8 NA
SIVF -3.1 -1.0 —26.4 NA
HF 83.7 76.1 -9.1 48.0°
Davis VF -0.5 -1.1 109.7 -1.6 £0.5°
LFWF -15.3 —49.1 220.6 —93.0 +6.0°
SIVT -11.5 -11.2 -1.9 -10.0 £1.0°
HF 10.9 11.9 8.0 20.0 +9.0°
Fram VF -3.3 -2.7 -16.8 -1.8 +5.0°
LFWF -70.8 —42.5 —40.0 —-84.3 +£16.7°
SIVT -50.1 —56.4 30.9 70.04
HF 37.3 39.0 4.6 NA

21998-2006 Average (Skagseth et al., 2008).

2004-2010 Average (Curry et al., 2014), the estimates vary depending on different years (Cuny et al., 2005; 2011).
¢Based on moorings covering different periods (Schauer et al., 2008; de Steur et al., 2009; Fieg et al., 2010).
41991-1998 average (Kwok et al., 2004).

more southward freshwater transport. Data assimilation Fram Strait shows. Unfortunately, direct observations of
does not always bring oceanic transport closer to obser-  the transports through the key straits cover different peri-
vations, as the reduced liquid freshwater flux through the  ods. Particular methods are used to fill the spatial gaps,
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FIGURE 14
liquid freshwater (in mSv), and sea ice

Volume (in Sv),

volume (in mSv) transports through
the (a-c) Fram Strait and (d-f) Davis
Strait in the four simulations. The
volume and liquid freshwater flux are
computed over the top 500 m [Colour
figure can be viewed at
wileyonlinelibrary.com]
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resulting in significant uncertainties in the observational
estimates. Moreover, model studies (K6hl and Serra, 2014)
also show substantial decadal variability of the transports.
Because of this, direct comparisons are complicated, and
conclusions drawn could be ambiguous.

The time series of volume, liquid freshwater, and sea
ice volume transports from INTAROS-ctrl, INTAROS-opt,
TOPAZ4, and ECCOv4r4 is shown in Figure 14. Upon
data assimilation, mean freshwater transports through the
Fram Strait (Figure 14b) and the Davis Strait (Figure 14e)
are substantially changed, but the variability changes
are small. A better match of sea ice volume transport
(Figure 14c,f) is observed in the three reanalyses than
for the liquid freshwater transport (Figure 14b,e) and vol-
ume transport (Figure 14a,d), especially after the year
2012. Regardless of the biases, the variability of volume
and liquid freshwater transport through the Davis Strait
matches well in TOPAZ4, ECCOv4r4, and INTAROS-opt
(Figure 14d,e). However, no clear correlations are observed
in volume and liquid freshwater transports through the
Fram Strait (Figure 14a,b).

Overall, the optimization changes the mean fresh-
water transports through the Fram Strait and the Davis

Strait. However, the mean volume and liquid freshwater
fluxes through the key straits remain different in the three
reanalyses.

6 | ADJUSTMENTS OF THE
CONTROL VARIABLES

Unique to our optimization is that corrections to the con-
trol variables are the only means for adjusting the model
to reduce the model-data misfit while leaving the model
dynamics untouched. Figure 15a shows the resulting nor-
malized adjustments of atmospheric states averaged over
the model domain. Changes of the atmospheric state in the
first 4-year period are smaller than in the remaining years,
caused by a low number of iterations in this segment and
the additional option to adjust the initial state in the year
2007. Because more iterations have been performed, cor-
rections to the atmospheric forcing are more pronounced
than those shown in the study of Koldunov et al. (2017).
Among all atmospheric states, wind components are
adjusted most noticeably by the optimization algorithm.
The 2-m air temperature and specific humidity are also
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Normalized Adjustment

FIGURE 15

uwind
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(a) Area average of the adjustments of the control variables (see legend) normalized by their uncertainties. Adjustments

of the overlapping years (2010 and 2013) are also shown. Panels (b, c) are normalized root mean square of corrections to (b) wind
u-component anomaly, (c) wind v-component anomaly in May. Panels (d, e) are similar to (b, c) but for November [Colour figure can be

viewed at wileyonlinelibrary.com]

substantially changed; their adjustments are still smaller
than those of the wind. During the winter season, wind
components seem to be the most efficient control variables
because the Arctic Ocean is covered by sea ice block-
ing the heat and freshwater fluxes between the ocean
and atmosphere. Although the same applies to the trans-
fer of momentum, the free drift approximation in the
adjoint enables the transfer of corrections to the wind,
which is likely to be much less efficient than what the

adjoint predicts. From April to October, the roles of 2-m
air temperature and specific humidity increase because of
more open water.

We focus on corrections of the wind vectors in May
(Figure 15b,c) and November (Figure 15e,f) when the cor-
rections are at the maximum and minimum, respectively.
Normalized root mean squares of u and v wind correction
anomalies depict substantial adjustments of wind vectors
over seasonal sea ice extent regions in May (Figure 15b,c)
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and along the East Greenland Current (Figure 15e,f). Wind
vectors in May are one of the most crucial factors that
impact SIC in September (Kauker et al., 2009), indicating
that wind vectors likely impact the SIC several months
later through sea ice advective convergence effects. There-
fore, corrections to wind vectors in May and November
may change SIC over the seasonal sea ice extent region
months later.

7 | CONCLUSIONS

Building on the work of Koldunov et al. (2017), we pro-
vide here an Arctic ocean-sea ice reanalysis for the period
2007-2016. By applying a filter algorithm to the adjoint
sensitivities, thereby eliminating local random spikes in
the respective fields, we increased both the assimilation
window (to 4years) and the number of iterations per-
formed over each window. Through the filter process,
the adjoint model may underestimate the real sensitiv-
ities of the cost function to control parameters related
to ocean-sea ice processes (Appendix). Nevertheless,
remaining adjoint sensitivities appear still effective during
the optimization process in reducing the model-data mis-
fits. The optimization achieves a significantly larger cost
function reduction, through the increased number of iter-
ations, than reported previously by Koldunov et al. (2017).
The data assimilation approach improves the spatial sea
ice distribution and reduces total SIA in the winter sea-
son. Together with SIC, SST is also significantly improved.
However, despite the significant improvement in SIT esti-
mates, we note that residual SIT and sea ice volume errors
remain substantial.

INTAROS-opt, TOPAZ4, and PIOMAS reproduce the
SIC variations well. In contrast, ECCOv4r4 fails to repro-
duce SIC correctly because of the exclusion of the adjoint
of the sea ice model. SIT differences between different ren-
analyses remain large, with INTAROS-opt and TOPAZ4
showing smaller RMSEs (0.40 and 0.41 m, respectively)
than that in PIOMAS and ECCOv4r4 (0.46 and 0.52m,
respectively).

Temperature and salinity errors are also reduced upon
assimilating WOA18 and hydrographic profile observa-
tions. However, large temperature and salinity errors
remain in INTAROS-opt in the Atlantic sector. We specu-
late that the large errors, especially the temperature biases
in the intermediate layer, are related to the biased bound-
ary conditions, which are not adjusted in our study. Dis-
crepancies in the freshwater content and transports across
the Fram and Davis straits remain large between differ-
ent reanalyses, supporting the need to improve coverage of
hydrographic observations in the Arctic Ocean.

Compared with the other filter-based ocean-sea ice
reanalyses, our product is dynamically consistent and
reproduces the sea ice parameters and the underlying
ocean state well. The data could be used for understanding
the causes and consequences of the Arctic sea ice changes.
The results above encourage us to use, in future applica-
tions, a single assimilation window, adjust the boundary
conditions, and extend the reanalysis from the year 1991
to now.
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APPENDIX A

Because of the nonlinear thermodynamic sea ice sub-
model, the adjoint sensitivities may suffer from strong
sensitivities, which hamper the minimization algorithm.
Figure Ala and c show such a case in which strong sen-
sitivities of 2-m air temperature appear in the Kara Sea
(black box region in Figure Ala) from June 20, 2007 to June
27,2007 (black line in Figure Alc).

Here, we use a filter to suppress these large sensitiv-
ities. For one sensitivity variable, the filter compares the
absolute value at a location with the global mean of its
absolute value and with the mean absolute value of the sur-
rounding eight grid points. We set the sensitivity to zero
if the sensitivity is 30 times larger than the global mean
of its absolute value or 10 times larger than the mean of
the absolute values of the surrounding points. The filter
algorithm is available at https://github.com/guokun-lyu-
SITU/MITgcm-sea-ice-DA/blob/main/filter_margin.F.

In the adjoint of the thermodynamic sea ice model, we
apply the filter to the sensitivity variables of ice drift vec-
tors, SST, SSS, net heat flux, effect snow thickness, SIC,
and effective sea ice thickness to each timestep, thereby
suppressing the strong local sensitivities, and the filter is
also used to remove strong sensitivities of wind stress and
net short wave radiation. The filter suppresses the regional
strong sensitivities (Figure A1b and red line in Figure Alc)
successfully and, at the same time, it has little impact on
the adjoint sensitivities in the other regions.
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Adjoint sensitivity to 2-m air temperature on June 24 of the year 2007 (a) without and (b) with the filter. Panel (c) shows
the mean absolute value of the sensitivity in the Kara Sea (enclosed by the black box in panel (a)) [Colour figure can be viewed at
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