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Abstract The presence of gas hydrates (GHs) increases the stiffness and strength of marine sediments. In
elasto‐plastic constitutive models, it is common to consider GH saturation (Sh) as key internal variable for
defining the contribution of GHs to composite soil mechanical behavior. However, the stress‐strain behavior
of GH‐bearing sediments (GHBS) also depends on the microscale distribution of GH and on GH‐sediment
fabrics. A thorough analysis of GHBS is difficult, because there is no unique relation between Sh and GH
morphology. To improve the understanding of stress‐strain behavior of GHBS in terms of established soil
models, this study summarizes results from triaxial compression tests with different Sh, pore fluids, effective
confining stresses, and strain histories. Our data indicate that the mechanical behavior of GHBS strongly
depends on Sh and GH morphology, and also on the strain‐induced alteration of GH‐sediment fabrics.
Hardening‐softening characteristics of GHBS are strain rate‐dependent, which suggests that GH‐sediment
fabrics dynamically rearrange during plastic yielding events. We hypothesize that rearrangement of GH‐

sediment fabrics, through viscous deformation or transient dissociation and reformation of GHs, results in
kinematic hardening, suppressed softening, and secondary strength recovery, which could potentially
mitigate or counteract large‐strain failure events. For constitutive modeling approaches, we suggest that
strain rate‐dependent micromechanical effects from alterations of the GH‐sediment fabrics can be lumped
into a nonconstant residual friction parameter. We propose simple empirical evolution functions for the
mechanical properties and calibrate the model parameters against the experimental data.

Plain Language Summary Gas hydrates (GHs) are crystalline‐like solids, which are formed from
natural gas molecules and water at high pressure and low temperature. GHs, and particularly methane
hydrates, are naturally abundant in marine sediments. It is known that the presence of GH increases the
mechanical stiffness and strength of sediments, and there is strong effort in analyzing and quantifying these
effects in order to understand potential risks of sediment destabilization or slope failure. Based on our
experimental results from high‐pressure geotechnical studies, we show that not only the initial amount and
distribution of GH are important for the increased strength of GH‐bearing sediments but also the dynamic
rearrangement of GH‐sediment fabrics during deformation characterizes the stress‐strain response and
enables strength recovery after failure. We propose that different microstructural mechanisms contribute to
this rearrangement and strength recovery of GH sediment. However, we consider these complicated
processes in a simplified manner in an improved numerical model, which can be applied for geotechnical
risk assessment on larger scales.

1. Introduction
In marine and permafrost soils, gas hydrates (GH) can be present in large amounts and at high relative
saturations (Wallmann et al., 2012). GH formation can occur whenever pressure‐temperature (p/T) condi-
tions are inside the GH stability region, and GH‐forming components such as CH4 are available in sufficient
amounts. The presence of GH changes the mechanical properties of these sediments or soils, with increased
GH saturations (Sh) often being related to higher shear strength, increased stiffness, and stronger dilatancy
(e.g., Waite et al., 2009; Yun et al., 2007). The mechanical and hydraulic properties of GH‐bearing sediments
(GHBS) are considered to influence the stability of marine sediments and slopes (Bugge et al., 1988; Elger
et al., 2018; Kvalstad et al., 2005; Mountjoy et al., 2014), and they are crucial factors for drilling operations
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(McConnell et al., 2012) and natural gas production scenarios (Boswell et al., 2017; Collett, 2002; Konno
et al., 2017; Schoderbek et al., 2012; Yamamoto et al., 2014). Thus, considerable effort is invested in geotech-
nical testing of GHBS to better understand geomechanical properties and stress‐strain behavior in slope fail-
ure events or GH production scenarios.

The mechanical effects of different GH formation methods and GH‐sediment morphologies and structures
have been investigated (Clayton et al., 2005; Dai et al., 2012; Hyodo, Yoneda, et al., 2013; Miyazaki,
Masui, et al., 2011; Ning et al., 2012; Winters et al., 2007). GHs in sediments are usually characterized either
to be pore‐filling and having only a minor effect on stress‐strain behavior or to be grain‐coating or load‐bear-
ing with larger mechanical effects (Hyodo, Li, et al., 2013; Priest et al., 2009). Which type is formed prefer-
entially depends on Sh and the pore fluid composition with a tendency of pore‐filling GHs to occur under
gas‐limited conditions, and grain‐coating GHs being formed in water‐limited sediments (Choi et al., 2014;
Ebinuma et al., 2005; Priest et al., 2009). Experimental studies have evaluated effects of varying Sh (e.g.,
Masui et al., 2005; Santamarina & Ruppel, 2010), temperatures (Jia et al., 2017; Song et al., 2016), pore pres-
sures (u, Jiang, Zhu, et al., 2015), and effective stresses (σ3′, Lee, Francisca, et al., 2010; Miyazaki, Tenma,
et al., 2011) to identify relevant parameters and initial conditions in the geotechnical analysis of GHBS. In
particular with the perspective on sand production issues during natural gas production and potential slope
failure of fine‐grained sediments, the effects of fines content (Hyodo et al., 2017; Jung et al., 2012; Kajiyama,
Hyodo, et al., 2017; Lee, Santamarina, et al., 2010; Yun et al., 2007), lithology and consolidation history (Fujii
et al., 2015; Ito et al., 2015; Santamarina et al., 2015; Suzuki et al., 2015; Yoneda et al., 2015a), and thermo‐
hydro‐chemo‐mechanical process coupling (Gupta et al., 2017; Klar et al., 2013; Sánchez et al., 2017; Uchida
et al., 2016) have received attention.

The presence of GH is often considered to have a cohesive or cementing effect, which contributes to sediment
strength in addition to friction and dilatancy. The nature andmechanism of a potential cohesion or cementa-
tion effect of GH is still unclear (Jung & Santamarina, 2011; Pinkert, 2017; Priest et al., 2009). Recently,
experimental studies on microscale GH‐sediment fabrics have indicated the presence of a water layer
between GH and quartz sand particles (Chaouachi et al., 2015), which appears to contradict the assumption
of cementation or true cohesion. However, the study of microscale GH‐sediment fabrics is a very active field
of research (Lei et al., 2018; Lei et al., 2019). For simplicity, in this study we refer to a structuration effect for
evaluation of experimental data and for constitutive modeling, without referring to a particular
micromechanical effect.

Time‐ and rate‐dependent effects on the stress‐strain behavior of GHBS have received less attention in the
past. However, viscous deformation and creep strain of GHBS were reported to be relevant (Miyazaki
et al., 2010) and similar to frozen sand (Miyazaki et al., 2017). Experiments on pure GH have shown high
stiffness, strength, and ductility, as well as the relevance of strain‐induced structural alterations (Durham
et al., 2003; Jia et al., 2016; Stern et al., 1996).
Several studies have analyzed the mechanical behavior of GHBS during and after GH dissociation through
depressurization or thermal stimulation (Hyodo, Yoneda, et al., 2013; Hyodo et al., 2014; Song et al., 2014).
In the very recent past there have also been the first attempts to carry out studies on undisturbed pressure
cores (Inada & Yamamoto, 2015; Santamarina et al., 2015; Yoneda et al., 2015b). Advanced geotechnical test-
ing systems with tomographical techniques are increasingly being developed and used to analyze so far
unresolved microstructures and micromechanical processes that constitute bulk stress‐strain behavior in
GHBS (Deusner et al., 2016; Yoneda et al., 2016).

Numerical GH reservoir simulators have been used to study the behavior of GHBS during gas production
(Gupta et al., 2015; Rutqvist et al., 2009; Rutqvist et al., 2012) or in marine slope destabilization (Jiang, Sun,
et al., 2015; Sultan & Garziglia, 2014; Zander et al., 2018), and there is strong effort to improve soil mechanical
constitutivemodels andmodel couplings. A number of nonlinear elastic (Miyazaki, Aoki, et al., 2011; Yu et al.,
2011) and elasto‐plastic (Klar et al., 2010; Lin et al., 2015; Sun et al., 2015; Uchida et al., 2012) constitutivemod-
els have been proposed. Furthermore, elasto‐viscoplastic models have been considered (Kimoto et al., 2010).
Discrete element methods (DEM) have been applied to analyze micromechanical interactions and the role of
phase distributions in GHBS (Brugada et al., 2010; Shen et al., 2016; Shen & Jiang, 2016).

Here we analyze the hardening‐softening behavior of GHBS using a combined experimental‐numerical
approach. We investigate the stress‐strain behavior of gas‐ and water‐saturated GHBS at different Sh,
GH‐sediment fabrics, effective stresses, and strain rates in triaxial compression tests. The experimental
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data are used to develop a constitutive model and to carry out preliminary parameter calibration and
model testing.

2. Materials and Methods
2.1. Experimental Setup

Experiments were carried out in the high‐pressure flow‐through system NESSI (Natural Environment
Simulator for Subseafloor Interactions) that was equipped with a triaxial cell mounted in a 40‐L stainless steel
vessel (Figure 1, Deusner et al., 2012; Deusner et al., 2017; Gupta et al., 2017). All wetted parts of the setup
are made of stainless steel. Temperature control was achieved through the hydraulic fluid (glycol‐water mix-
ture) inside the pressure vessel using a heat exchanger and a thermostat system (T1200, Lauda, Lauda‐
Konigshofen, Germany). Confining and axial stresses acting on the sample were controlled by two high‐
precision hydraulic pumps and actuators (VPC 400, APS GmbH, Rosdorf, Germany). The change of sample
volume was calculated by the changes of hydraulic fluid volumes for axial and confining stress‐strain con-
trol. The pore pressure was regulated by a high‐precision piston pump (Teledyne ISCO, Lincoln NE,
USA), which was connected to top and bottom platens of the triaxial cell through high‐pressure fluid reser-
voirs with water or gas, respectively (Parr Instruments, Illinois, USA). The pore pressure was monitored in
the influent and effluent tubings of the triaxial cell. Initial pressurization with CH4 and water exchange after
GH formation was carried out using fine‐regulating valves (TESCOM Europe, Selmsdorf, Germany).

2.2. Sample Preparation and Mounting

Sediment samples were prepared from quartz sand (porosity 0.35, grain size 0.1–0.6 mm, mean particle dia-
meter 0.29 mm, G20TEAS, Schlingmeier, Schwülper, Germany; see supporting information S3), and mixed
with defined amounts of deionized water. The partially water‐saturated and homogenized sediments were
filled into the triaxial sample cell, which was equipped with a combination of a fluoroelastomer (FKM)
sleeve and a latex rubber sleeve to obtain final sample dimensions of 160 mm in height and 80 mm in dia-
meter (supporting information Figure S2). The sand was placed in five layers, with each layer being tamped
30 times. Sample geometry was assured using a sample‐forming device. The sample was cooled to 3–4 °C
after the triaxial cell was mounted inside the pressure vessel. Temperature inside the pressure vessel was
monitored throughout the experiments.

Figure 1. Experimental scheme.
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2.3. GH Formation and Pore Fluid Exchange

GH formation was carried out in normally consolidated samples at constant isotropic effective stress of 1
MPa using an excess gas method (Hyodo, Li, et al., 2013; Masui et al., 2005; Waite et al., 2004). To avoid effec-
tive stress changes, flow‐controlled slow pressurization with CH4 was achieved using fine‐regulating valves,
while the confining stress was regulated accordingly. After pressurization, influent and effluent pore pres-
sure valves were closed. Pore pressure was not regulated during GH formation, whereas isotropic effective
stress was automatically controlled at 1 MPa. The target GH saturation (Sh) was defined by the amount of
deionized water in the sample with an estimated error of ±1.25% due to the sequence of steps for sample
preparation andmounting. In addition, initial Sh in the compression tests was calculated based on pore pres-
sure measurements and sample temperature monitoring during GH formation, assuming a hydration num-
ber of 5.75. Taking into account various sources of uncertainty in this calculation (see supporting
information S4 for further discussion), GH formation was estimated as being completed by 85 ± 19% prior
to testing (supporting information Table S1) relative to the target Sh value. Here we referred to this estimate
and took into account that small amounts of water might have been available at the onset of the compression
tests. Mechanical tests were started earliest after a hold time of 3 days and latest after 15 days, referring to the
end of pressurization with CH4.

Prior to testing, some samples were saturated with water whereby remaining CH4 gas was replaced with
deionized water, which was either saturated with CH4 or free of dissolved CH4, respectively. Saturation with
CH4 was achieved in a stirred pressure vessel within 24 h at slightly higher pressures and lower temperatures
compared to p/T conditions in the triaxial cell. Gas‐water replacement was carried out after reducing the
pore pressure to approximately 0.5 MPa above GH stability conditions, by percolating water in upstream
mode at a flow rate of 100mL/min at constant isotropic effective stresses. CH4 gas and percolated water were
collected in a pressurized reservoir.

2.4. Triaxial Compression Testing

Strain‐controlled drained triaxial compression tests were performed after individual hold periods (support-
ing information Table S1). The tests were carried out at axial strain rates 0.006, 0.06 and 0.6%/min, and at
constant minor principal stresses of 0.25, 0.5, and 1.0 MPa. Pressure, stress, and strain measurements were
recorded every 1 s. Data were averaged over time intervals of 1 min prior to evaluation. The accuracy of the
individual pressure measurements is ±0.5% at constant temperature. Random errors resulting from tem-
perature changes or leakage of fluids can be neglected due to the short duration of the compression tests
and large thermal buffer capacity of the high‐pressure systems. The accuracy of volume and strain measure-
ments is related to pressure measurements since system volume changes are calibrated depending on the
system pressure. Thus, erroneous pressure measurements can result in an overall error of volume measure-
ment of 4 mL, which converts to 0.4% of volumetric strain. The effective confining stress (σ3′) was controlled
with an accuracy of ±0.5% throughout the individual compression tests. However, in few occasions minor
and short deviations from the specified values were observed due to rapid volume change events or experi-
mental problems. We highlight issues with confining stress control in the figure captions and provide the
measurement results for all compression tests (supporting information S5).

2.5. Constitutive Modeling and Numerical Simulation

We consider a classical plasticity framework (Jirasek & Bazant, 2002), where the state of stress depends on

the loading‐unloading history and is calculated incrementally. The total infinitesimal strain ϵe∶ ¼ 1
2

∇uþ ∇Tu
� �

, where u denotes the displacement field, is decomposed additively into the elastic strain ϵee
and the plastic strain ϵep, that is, ϵe ¼ ϵee þ ϵep. In the elastic range, we assume linear isotropic material beha-

vior with Young's modulus E and Poisson's ratio ν as the model parameters.
2.5.1. Yield Function and Plastic Flow Rule
There exists a yield surface F in the stress space that encompasses the elastic region. The stress states lying
inside the yield surface produce elastic deformations, while the stress states lying on the surface produce
plastic deformations. The stress states outside the yield surface are inadmissible. We consider a Drucker‐
Prager yield criterion where the yield function is given as
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F σe; χ
� �

∶ ¼ qþ α χð Þp−c ¼ 0 (1)

Here p∶ ¼ 1
3
Trσe and q∶ ¼

ffiffiffi
3
2

r
dev σe

����
���� are the stress invariants. p denotes hydrostatic or mean stress, and q

denotes shear stress. Function F describes a conical surface in the principal stress space, s.t. the axis of the
cone coincides with the hydrostatic line. Parameter α indicates the mobilized frictional resistance at any
given stress state, and c indicates a structuration parameter. χ denotes the vector of internal plastic variables
that affect the hardening‐softening behavior of GHBS. Similar to the yield surface F, there exists a plastic
potential surface G in the stress space such that the plastic flow occurs in a direction normal to this surface.
The incremental plastic strains can be derived from the plastic potential G as

ϵe˙p ¼ λ˙
∂G
∂σe

(2)

where ∂G/∂σe describes the normal to the surface G, and _λ is a proportionality constant indicative of the mag-
nitude of the plastic strain increment. Furthermore, it can be shown that the invariants of the plastic strain
rate can be written as

ϵ˙pv ∶ ¼ Tr ϵe˙p ¼ λ˙
∂G
∂p

and ϵ˙ps ¼
ffiffiffi
2
3

r
dev ϵe˙p

����
���� ¼ λ˙

˙

∂G
∂q

(3)

We consider a non‐associative flow rule, that is, G ≠ F

G σe; χ
� �

∶ ¼ qþ β χð Þp ¼ 0 (4)

with β < α. The parameter β denotes the dilatancy of the material.
2.5.2. Consistency Conditions

Along any process of loading‐unloading, if F < 0, the stress state is elastic and _λ= 0, while, if F= 0, the stress

state is plastic and _λ > 0. These nonlinear inequality constraints can be reformulated as the following
Karush‐Kuhn‐Tucker (Kuhn & Tucker, 1951) optimality conditions:

F σe; χ
� �

≤0; _λ≥0; _λF ¼ 0: (5)

To confine the stress trajectory to the yield surface during plastic loading, an additional plastic consistency
condition is considered (de Souza Neto et al., 2008):

λ̇ Ḟ¼ λ̇
∂F
∂σe

: σe˙þ
∂F
∂χ

: χ̇

0
B@

1
CA ¼ 0 (6)

2.5.3. Numerical Solution and Calibration Procedure
We solve the global nonlinear equilibrium equation using a Galerkin finite element formulation defined on
Q1 elements. The nonlinearities are resolved iteratively using a full Newton‐Raphson method with a conti-
nuum tangent matrix (Zienkiewicz & Taylor, 2014). Within each global Newton iteration step, a local pro-
blem is solved at each Gauss point to determine the new stress state. The local problem involves the
integration of the material constitutive model over the load increment of the current global step. We use
an implicit return mapping algorithm (Huang & Griffiths, 2009; Simo &Hughes, 2006) to solve the local pro-
blem. We have implemented our numerical scheme in C++ based on the DUNE PDELab framework
(Bastian et al., 2010; Dedner et al., 2010).

For numerical simulation of the triaxial compression experiments and model calibration, we consider a
one element triaxial setup with unit dimensions (supporting information Figure S1). Load is applied in
two stages. In the first stage, an isotropic load equal to the confining stress is applied, which
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corresponds to the initial stress state of the GHBS sample. In the second stage, strain‐controlled triaxial
compression is simulated by specifying an axial strain rate corresponding to vertical displacement rates
in the experiments. We use a regression based parameter estimation strategy and test the goodness‐of‐fit
against the experimental data using a weighted R2 measure where higher weights are assigned to the
data points in the elastic region, in the vicinity of the peak strength, and along the secondary hardening
curve. In this study, we used a heuristic strategy because our objective was to identify the trends in the
parameter space and not to find the best fit for the parameters. For future parameter estimation studies,
we are developing Bayesian inversion frameworks based on an Active Subspaces method for model
reduction (Teixeira Parente et al., 2018).

3. Results
3.1. Experimental Results

The stress‐strain behavior of GH‐free sand was taken as reference in this study. The behavior of this refer-
ence sample specimen was similar for water‐saturated, partially dry and dry sand (Figure 2) and typical
for medium dense sand. The critical state friction angle (φcs) was calculated to be 33.3 ± 1° based on peak
friction angles φmax and maximum dilation angles ψmax (supporting information Table S3) according to
equation (7) (Bolton, 1986; Schanz & Vermeer, 1996):

φcs ¼ φmax−0:5ψmax (7)

Dilation angles were calculated based on changes in volumetric (∂εp′) and deviatoric strains (∂εq):

sinψ ¼ −

∂εp′
∂εq

2− ∂εp′
∂εq

(8)

Critical state conditions that are defined to occur without volumetric strain were not reached in the range of
axial strains investigated in this study, which is, however, typical (e.g., Omidvar et al., 2012). Apparent oscil-
lations of dilatancy index d (equation (9)) result from time‐resolved calculations based on small
strain increments.

d ¼ ∂εp′
∂εq

(9)

The analysis of the results within the scope of Rowe's stress‐dilatancy theory (Rowe, 1962) and using equa-
tion (10) (Porcino &Marcianò, 2017; Yu et al., 2007) to calculate reference lines for different values of c′/p′(c
′: structuration strength, p′: mean effective stress) clearly indicates contributions of friction and dilation to
reference sediment strength. The stress ratio η is defined according to equation (11) (q: deviatoric stress,
M = 1.342: frictional constant defining the critical slope line). As expected, no cohesion or structuration
strength (c′) was observed, and data plot on the c′/p′ = 0 line (Figure 2c). The parameter c′, which refers
to Mohr‐Coulomb shear strength criteria, relates to the structuration parameter c (equation (1)) according
to equation (12) (e.g., Wojciechowski, 2018).

d ¼
9 M−ηð Þ þ 6c

0

p0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2M 3−Mð Þp

9þ 3M−2Mηþ 4 c0

p0

� 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2M3−M

p (10)

η ¼ q
p′

(11)

c ¼ 6c′cosφffiffiffi
3

p
3−sinφð Þ (12)

The stress‐strain behavior of gas‐saturated GH‐bearing sand showed strong hardening‐softening behavior
and substantially increased peak strength compared to GH‐free sand (Figures 2d–2g). The stiffness of
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GHBS was higher than GH‐free samples, but it did not show a clear dependence on Sh in the tested range
(supporting information Figure S6). However, the peak strength showed a clear dependence on Sh
(Figure 2d). The onset of dilation was similar at different Sh and largely coincided with peak strength.
Thus, different from the GH‐free sand, the occurrence of peak strength and peak dilation was clearly
separated and the substantial increase in peak strength could not be assigned to merely sediment friction

Figure 2. Results from compression tests with GH‐free sand (a–c), gas‐saturated GH‐bearing sand (d–f), and water‐saturated GH‐bearing sand (g–i). (a, d, g)
Strength characteristics, (b, e, h) volumetric strain, and (c, f, i) stress‐dilatancy relationship. Labels refer to test numbers in supporting information Tables S1–
S3. Remarks: (d) The brief drop in (σ1‐σ3) at ε1 ≈ 0.03 in the test with Sh = 0.45 was due to test interruption for technical reasons. (g) The oscillations in (σ1‐σ3) at
ε1 ≈ 0.02–0.03 in the test with Sh = 0.29 were due to transient problems with pore pressure regulations and differences between pressure values u1 and u2. The
maximum error in effective stress conditions (σ3′) was minor (≈ 3%) and, thus, neglected in further data analysis.
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and dilation. The post‐peak behavior indicated that after passing peak strength, dilatancy was rapidly mobi-
lized and the cumulative volumetric strain approached values of GH‐free sand. Post‐peak residual strength
of GH‐bearing samples approached values of GH‐free sand in only few cases and mostly stayed above refer-
ence values. However, after partial mobilization of dilatancy during softening, further dilation was effec-
tively suppressed and strain behavior indicated arrival at critical state conditions. The clear transition in
strain behavior suggests strain localization and mobilization in a narrow shear zone. Post‐peak strength
minima showed some relation to Sh in the order of magnitude of differences at peak strength.

Evaluation of the results within the scope of Rowe's theory clearly suggests that the presence of GH contri-
butes a strong structuration effect (colored dashed lines in Figure 2f; supporting information Table S3).
Conspicuously, the stress‐strain behavior after softening until the end of the tests showed an apparent sec-
ondary hardening effect, which resulted in the recovery of peak structuration strength (Figure 2f). This
apparent strength recovery was more pronounced in cases where dilatancy was most suppressed, and thus,
ongoing deformation occurred in a narrower shear zone.

In water‐saturated samples in which the pore space was flushed after completion of GH formation, the
stress‐strain response was very different compared to gas‐saturated samples. The peak strength and
hardening‐softening behavior were strongly suppressed (Figures 2g–2i). Post‐peak dilation was
considerably larger and extended over longer time and strain intervals, similar to the observed response in
GH‐free sand. This suggests that strain was not confined to a narrow shear zone as it was observed in tests
without water flushing. Only a minor structuration effect was observed in the early compression phase
(Figure 2i), and post‐peak strain behavior could be attributed to reference sand residual friction.

Tests on gas‐saturated samples at different effective confining stresses (0.25–1 MPa) and Sh (Figure 3) were
largely in accordance with Figure 2. Peak strength values were dependent on Sh, and samples showed a clear
hardening‐softening behavior. The post‐peak behavior was characterized by a rapid mobilization of dila-
tancy and a sharp transition in volumetric strain evolution with reduced dilatancy, which indicates strain
localization in a narrow shear zone. The width of the strength peak appeared to be dependent on effective
stresses. Low initial effective stresses resulted inmore brittle failure and faster strength depletion during soft-
ening. At higher effective stresses, the peak was substantially broader, and failure characterized by higher
ductility and slower softening. Similar to tests at different Sh (Fig.2, Supplementary Table S2), there was
no obvious difference in stiffness properties or primary hardening, except that themagnitude of compression
was higher at higher effective stresses. Structuration estimates (c′, supporting information Table S3) at the
onset of dilation (1.2–2.1 MPa) and peak strength (0.9–1.4 MPa) were similar at different effective stresses
and showed a dependency on Sh. Highest stress ratios (η) at peak strength were observed at lower effective
stresses (approximately 2.7). The softening intervals were again followed by apparent strength recovery,
which proceeded toward peak structuration strength of individual samples (colored dashed lines in
Figures 3c, 3f, and 3i). A second softening event in the later strain period (ε1 ≈ 0.16) led to further mobiliza-
tion of dilatancy and was followed by strength recovery in the late compression stage.

The stress‐strain response was strongly dependent on strain rates in the range between 0.006 and 0.6%/min
(Figure 4). Faster strain rates resulted in stiffer behavior and earlier arrival at peak strength. The magnitude
of compression prior to softening was lower at high strain rates. This behavior was similarly observed at dif-
ferent Sh. Softening was considerably more brittle at fast strain rates, with substantial differences in strength
peak width and earlier mobilization of dilatancy. The magnitude of peak strength, however, was only affected
to a minor extent. Rapid mobilization of dilatancy after peak strength and strain softening behavior were
observed in all tests with a sharp transition in dilation behavior after softening. The amount of mobilized dila-
tancy, however, was dependent on strain rates, with a smaller amount of dilatancy being mobilized at higher
strain rates. This suggests that brittle failure at faster strain rates occurred in a narrower failure zone com-
pared tomore ductile deformation at slow strain rates. Again, post‐peak behavior in all tests was characterized
by apparent recovery of peak structuration strength. At higher Sh and faster strain rates, mobilization of dila-
tancy appeared to be occurring stepwise with a brief strength plateau after first rapid softening, which sug-
gests the occurrence of additional transient strengthening effects as a consequence of fast and brittle failure.

The transient increase of isotropic effective stress by 1 order of magnitude to 10 MPa prior to triaxial com-
pression tests had only minor effects on the stress‐strain behavior compared to strain rate effects (supporting
information Figure S8). In addition to increase in stiffness, compressive strain prior to peak strength was
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expectedly lower than for normally consolidated samples, and softening revealed a more brittle behavior.
However, peak strength was only slightly affected, which suggests that GH‐sediment fabrics were not sub-
stantially altered in response to transient isotropic loading.

Additional test results suggest that the hold time after completion of GH formation can strongly influence
the stress‐strain characteristics in compression tests. A test of a water‐saturated specimen (Sh = 0.22) after
a hold time of 15 days after pressurization with CH4 and transient increase of isotropic effective stress by 1

Figure 3. Results from compression tests with gas‐saturated GH‐bearing sand at different effective confining stress (σ3′), (a–c) Sh = 0.22, (d–f) Sh = 0.36, (g–i)
Sh = 0.45. (a, d, g) Strength characteristics, (b, e, h) volumetric strain, and (c, f, i) stress‐dilatancy relationship. Labels refer to test numbers in supporting infor-
mation Tables S1–S3.

10.1029/2019GC008458Geochemistry, Geophysics, Geosystems

DEUSNER ET AL. 4893



order ofmagnitude to 10MPa prior to deviatoric loading showed clear changes in stress‐strain behavior (E20,
supporting information Table S1 and Figure S9). Although stiffness properties and early yielding behavior
appeared to be unaffected, peak strength and softening were not observed. After limited initial
compression and similar onset of dilation, dilation characteristics showed a smooth transition toward zero
volumetric strain with continuous increase of deviatoric stress.

3.2. Modeling Studies

To consider strain rate effects in constitutive modeling, the model parameterization is based on the assump-
tion that the total mobilized frictional resistance (α) can be decomposed into a residual friction component
(αres) and a dilatancy component (β, e.g., Houlsby, 1991).

Figure 4. Results from compression tests with gas‐saturated GH‐bearing sand at different strain rates: (a–c) Sh = 0.22, (d–f) Sh = 0.33–0.36, (a, d) strength char-
acteristics, (b, e) volumetric strain, and (c, f) stress‐dilatancy relationship. Labels refer to test numbers in supporting information Tables S1–S3.
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α ¼ βþ αres (13)

Dilatancy is a macroscopic manifestation of the kinematic constraints imposed by the microstructure of the
soil skeleton and evolves through any micromechanical process that causes volume changes of the soil. The
residual friction, on the other hand, is an intrinsic property of the skeleton and can usually be assumed con-
stant for intact quasi‐static soils. In the transition from solid‐like to fluid‐like behavior, however, the residual
friction of a dynamic soil skeleton is expected to change at different strain rates (Andrade, et al., 2012). Here
this concept was modified and extended to model strain and strain rate effects for GHBS during different
hardening‐softening intervals.

In order to develop the evolution functions for the model parameters, we consider the internal
variables χ = (χ1, χ2)

T, where χ1 ¼ Sh; _ϵ1ð Þdenotes the explicit internal variables that arise from the test con-

ditions but remain constant during plastic deformation, while χ2 ¼ _λ; λ
� �

denotes the implicit internal vari-

ables that arise from plastic deformation (refer to equation (2)). Based on the experimental observations, we
introduced smooth evolution functions for the parameters β and αres

β ¼ βmax χ1ð Þ·λ·exp 1−λ
3
4

� 	
(14)

αres ¼ αmin χ1ð Þ þ Δαres χ1ð Þ· 1þ 1= _λ
� 	−1

·λ (15)

where λ ¼ λ=λ* χ1ð Þ and λ̇ ¼ _λ= _λ* χ1ð Þ.
Equations (14) and (15) are extensions of the evolution functions proposed in Andrade, et al. (2012). βmax

denotes the peak dilatancy, and λ* denotes the corresponding accumulated plastic shear strain.

αmin denotes the initial frictional resistance of the intact material before loading, and _λ* denotes the critical

plastic strain rate. To understand the significance of _λ*, note that in equation (15), 1þ 1= _λ
� 	−1

≤1, and _λ*

controls the growth rate of this function. The smaller the value of _λ*, the faster the function grows to its max-
imum value. Note that for each triaxial test, since χ1remains constant throughout the test, the model para-
meters βmax, αmin, and Δαres also remain constant but have different values for each test. In this work, we do
not propose any functional relationship for the evolution of these parameters wrt χ1 but rather infer the para-
meter values from the experimental data and study whether consistent trends emerge.

Our elasto‐plastic model has an eight‐dimensional parameter space,P χ1ð Þ ¼ E; ν; c;αmin;Δαres; βmax; λ
*; _λ*

� �T
.

E, ν parameterize the elastic model, c, αmin the initial yield surface, and Δαres; βmax; λ
*; _λ* control the subse-

quent hardening‐softening of the yield surface. The combination of E, ν, c, αmin characterizes the initial state
of the test sample, before loading begins. The parameters inPwere calibrated against the experimental data
following the procedure outlined in section 2.5.3. The calibrated parameters for each triaxial test are listed in
Table 1, where the first two columns represent χ1, the rows E2 and E3 denote the water‐saturated samples,
and the rows from E6 to E17 refer to the gas‐saturated samples.

The parameter estimation confirmed that in our experiments E and ν did not depend noticeably on χ1 and also
appeared to show no clear dependence on the pore fluid. The structuration parameter c showed dependence
on the pore fluid but not on χ1, and αminshowed no dependence on both χ1 as well as pore fluid composition.
This suggests that the initial state of the GHBS samples in each test was similar despite having different Sh;
however, it differed from that of the reference sand. So, it appears that in our experiments the formation of
GH alters the sediment fabric, but the actual quantity of GH (up to the saturations that were investigated) does
not affect the nature of this alteration. The peak dilatancy of the GHBS samples showed some correlationwith
Sh but appears to be independent of the axial strain rate. The progress of dilatancy mobilization, however, is

controlled by the strain rate (see parameter λ: the lower λ, the higher will be the rate of dilatancy mobilization
in accordance with equation (14)). For a given Sh, the higher the strain rate, the faster the dilatancy is mobi-
lized and critical state conditions are established. Further, in the gas‐saturated samples, the peak dilatancy
and the dilatancy mobilization rate were observed to be higher compared to the water‐saturated samples.

The preliminary model calibration focused on matching the strength evolution during primary and second-
ary hardening within a classical elasto‐plasticity framework. It can be seen that this approach, together with
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the evolution functions 14 and 15, is able to capture the observed hardening‐softening behavior as a function
of plastic strains and strain rates (Figure 5). As mentioned in section 2.5.3, the model calibration algorithm
attached higher weights to the peak strength and secondary hardening curves. This has led to deviations
between experimental and simulation data for unloading during the softening periods. To some extent,
the model also underpredicts sample contraction during primary hardening, which follows from the
inherent limitations of the Drucker‐Prager theory of plasticity. It needs to be noted that large‐strain
compression test data can be biased by experimental artifacts, for example, platen effects, which would
interfere with model calibration.

4. Discussion
4.1. Characteristics of Stress‐Strain Behavior of GHBS

This study confirms that the presence of GH alters the stress‐strain behavior of sandy sediments. After
GH formation from partially water‐saturated sand using an excess‐gas‐method, the GHBS is substan-
tially stiffer and stronger than the GH‐free sand (supporting information Tables S2 and S3). The peak
and critical strength of water‐limited samples, in which the residual gas was not replaced after GH for-
mation, were substantially higher than in water‐saturated specimen, in which the residual gas was
replaced with water prior to testing. Since the experimental results did not show a large difference after
gas replacement with CH4‐free or CH4‐saturated water, that is, at different thermodynamic constraints
with respect to GH stability (supporting information Figure S7), the change in mechanical properties is
unlikely to be caused by GH dissociation or dissolution. Also, it is unlikely that mechanical damage
from hydrodynamic shear forces during pore fluid exchange was responsible for sediment weakening,
since water replacement was carried out at relatively low flow rates (100 mL/min). Instead, since the
early stress‐strain behavior of GH‐bearing samples after water exchange still resembled the behavior
of gas‐saturated samples (supporting information Table S2 and Figure S6), it is likely that the alteration
of GH‐sediment fabrics and stress‐strain behavior were controlled by sample deformation in the pre-
sence of water, and not by the exchange of fluid itself.

The stress‐strain behavior of GHBS does not show a simple dependency from Sh. A clear dependency with Sh
was observed for the magnitude of peak strength, which increases for higher Sh under varying strain and
strain rate conditions, given that the pore fluid composition during testing was similar (Figure 6a). At similar
strain rates, other parameters show a dependency on Sh, including magnitudes of post‐peak strength,
strength peak width, ductility characteristics, and axial strain differences between onset of dilation and peak
strength. Early yielding and post‐peak stress‐strain behavior appear to be less related to Sh (supporting infor-
mation Table S3).

The compression test data from gas‐saturated GHBS were characterized by high peak strength values and
pronounced strength depletion during softening compared to earlier studies (e.g., Hyodo, Li, et al., 2013).
Observed differences in hardening‐softening characteristics could result from composition and grain size dis-
tribution of the sand or from GH formation procedures. Frequently in past studies, GH was formed prior to

Table 1
Calibrated Model Parameters

Sh (%) _ϵ1 (min−1) E (MPa) υ (−) c (MPa) αmin (−) Δαres (−) βmax (−) _λ* (−) λ* (−)

E2 22 ± 5 0.0625 475 0.32 0.15 0.72 0.175 0.29 0.0000575 0.025

E3 29 ± 7 0.0625 475 0.32 0.15 0.72 0.2 0.34 0.0000575 0.025

E6 22 ± 5 0.0625 475 0.32 1 0.72 0.175 0.52 0.000285 0.0075

E7 33 ± 7 0.0625 475 0.32 1 0.72 0.375 0.605 0.000285 0.0085

E8 45 ± 10 0.0625 475 0.32 1 0.72 0.5 0.65 0.000285 0.012

E14 36 ± 8 0.00625 475 0.32 1 0.72 0.05 0.605 0.000001 0.0155

E15 22 ± 5 0.00625 475 0.32 1 0.72 0.035 0.52 0.000001 0.0155

E16 22 ± 5 0. 625 475 0.32 1 0.72 0.3 0.52 0.0065 0.00375

E17 36 ± 8 0. 625 475 0.32 1 0.72 0.325 0.605 0.0065 0.0054

Note. Labels refer to test numbers in supporting information Tables S1–S3.
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Figure 5. Simulation results for compression tests with different Sh and different strain rates. Gas‐saturated samples: (a) strength characteristics and (b) volumetric
strain; water‐saturated samples: (c) strength characteristics and (d) volumetric strain. Sh = 0.22: (e) Strength characteristics and (f) volumetric strain; Sh = 0.33–
0.36: (g) Strength characteristics and (h) volumetric strain. (Solid lines: Simulation results. Dotted lines: Experimental data)
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consolidation and formation was started from a frozen sample specimen (Hyodo, Li, et al., 2013; Miyazaki,
Masui, et al., 2011; Priest et al., 2006). Consolidation after GH formation might, in contrast to
consolidation before GH formation, result in different strength characteristics of GHBS, since
consolidation could affect GH‐sediment fabrics. However, evidence for this assumption is still lacking
(Hyodo, Yoneda, et al., 2013). GH formation time intervals in this study (3–15 days) were substantially
longer than in earlier studies (usually 24 h, Hyodo et al., 2014; Masui et al., 2005; Miyazaki, Masui, et al.,
2011). In our studies, GH formation was clearly not completed after 24 h, which suggests that GH
formation must have been faster in other studies. However, the results from this study indicate that the
length of hold times after GH formation enables further strengthening of GH‐sediment fabrics, potentially
resulting from restructuration of GH through Ostwald ripening. Overall, this study confirms that GH
alteration during aging changes the mechanical characteristics of GHBS and must be considered for the
mechanical assessment of natural GHBS.

The hardening‐softening behavior of the GHBS was clearly influenced by strain rates with substantial differ-
ences in loading‐unloading behavior depending on the axial strain rate. The analysis of stress‐strain behavior
based on Rowe's stress‐dilatancy theory suggests that GHs contribute a structuration effect in GHBS. This
effect was substantial in water‐limited systems with structuration strength (c′) up to 2 MPa at the onset of
dilation and 1.6 MPa at peak strength (Figure 6b and supporting information Table S3), which was high
compared to results from other experimental studies with GHBS (e.g., Choi et al., 2018; Ghiassian &
Grozic, 2013; Kajiyama, Wu, et al., 2017; Yoneda et al., 2016). However, in water‐saturated specimen c′
was substantially lower, reaching values of 0.4 MPa at the onset of dilation and 0.6 MPa at peak strength.
In accordance to that, the test results clearly showed a delayed dilation, which is typical also for cemented
sands (Lade & Trads, 2014; Leroueil & Vaughan, 1990; Wang & Leung, 2008). Interestingly, in our studies
we observe a conspicuous secondary hardening response of GHBS, which was characterized by partial or
even full recovery of apparent structuration strength.

The overall stress‐strain behavior of GHBS in this study suggests that GH structures and GH‐sediment fab-
rics dynamically rearrange in response to specific strain histories and loading events, and sediment shear
strength is influenced by how fast plastic deformation occurs. This strain rate dependency of hardening‐
softening characteristics should be considered in constitutive modeling of GHBS.

4.2. Potential Mechanisms of Hardening‐Softening Behavior

The hardening‐softening behavior of GHBS depends on microstructural characteristics of the GH‐sediment
fabrics and is influenced by GH formation and sediment loading histories. Hardening‐softening

Figure 6. Peak strength and structuration effects. (a) The magnitude of peak strength (σ1‐σ3) is dependent on GH satura-
tion and pore fluid composition. (b) Transient increase of isotropic effective stress by 1 order of magnitude to 10 MPa
(overconsolidated samples) degrades the structuration effect in gas‐saturated GHBS (gray ellipse) and enhances the
structuration effect in water‐saturated sediments. Fast strain rates result in low structuration strength (orange ellipse).
Grouping does not have a statistical meaning and is only included for illustrative purpose. Labels refer to test numbers in
supporting information Tables S1–S3.
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characteristics and stress‐strain behavior of GHBS in natural environments could be influenced by dynamic
GH formation when sediment yielding results in the redistribution of pore fluids, since GH formation is
rapid within GH stability boundaries given the presence of GH‐forming molecules in contact with water
(supporting information Figure S4 and Table S1). Residual water estimates from calculation of GH inven-
tories indicate the presence of small amounts of water at the onset of the compression tests in this study
(2.3 and supporting information S4). Thus, the observed hardening‐softening characteristics and strength
recovery were potentially affected by dynamic GH formation with residual water in response to fluid redis-
tribution during plastic yielding, similar to what is expected for natural GHBS. Differences in compression
test results with GHBS after different hold times (3–15 days, supporting information Figure S9) confirm that
GH aging in the absence of net GH formation likewise influences the mechanical behavior and must
be considered.

The structural and mechanical details of GHBS hardening‐softening behavior are not fully understood, and
it is unclear to what extent mechanical effects are to be attributed to changes in friction, dilatancy, or struc-
turation parameters in constitutive modeling. This study suggests that the dynamic alteration and regenera-
tion of GH‐sediment fabrics strongly influence the hardening‐softening behavior, leading to continuous
rearrangement and restrengthening of GHBS during yielding events. Whereas at similar Sh the magnitude
of peak strength was similar at strain rates between 0.006 and 0.6%/min, residual strength, softening char-
acteristics, and apparent strength recovery were clearly different. At the highest shear rate the sample speci-
men showed very high stiffness and brittle failure characteristics, with rapid softening and mobilization of
dilatancy after passing the point of peak strength. However, after only partial unloading the dilation
response was suspended above residual strength values of reference samples. At slower strain rates the sam-
ple ductility was enhanced and correlated with slower and more extended mobilization of dilatancy.

In agreement with earlier studies (Miyazaki et al., 2017), we hypothesize that the alteration of GH‐sediment
structures during plastic deformation can partly be assigned to creep and viscous deformation of GH. In con-
trast to our results with gas‐saturated samples, former studies with water‐saturated samples indicate higher
peak strength values at faster strain rates (Miyazaki et al., 2010), which suggests that strain‐induced altera-
tion of GH structures in water‐saturated sediments is different from gas‐saturated systems. This is in agree-
ment with our observation of different hardening characteristics of GHBS after pore fluid exchange, which is
proposed to result from dynamic alteration of GH‐sediment fabrics during yielding. The differences in soft-
ening behavior with only partial unloading at fast strain rates indicate that the regeneration of GH‐sediment
fabrics depends on the rate of strength mobilization and unloading. We hypothesize that the brittle behavior
and rapid softening at fast shear rates is influenced by transient GH dissociation through thermal stimula-
tion or depressurization in a narrow dilation or shear zone (Figure 7). This argument is similar to
Miyazaki et al. (2010), who suggest that load‐induced heating at grain contacts causes GH dissociation.
Transient dissociation and immediate reformation of GHs during brittle softening at fast shear rates could
explain suppressed dilatancy and higher post‐peak residual strength. Estimates for the local temperature
increase from frictional heating in the shear zone suggest that 0.5–1.6 J/cm2 could be dissipated as heat,
which is in agreement with energy requirements to increase the temperature by 10 K in a layer of 1–2 mean
particle diameters (supporting information Figure S10 and see also supporting information S10 for calcula-
tions). However, compared to gas‐saturated systems it is less likely that heat dissipation from shear move-
ments would be sufficient to trigger fast GH dissociation in water‐saturated sediments, because the heat
capacity of water would prevent T increase and destabilization of GH. Similar to thermal stimulation, GH
dissociation in the shear zone could be caused by a local decrease in pore pressure during fast mobilization
of dilatancy and increase in sediment volume. In this case, GH reformation would occur once pore pressure
has recovered in response to local pressure gradients and sediment permeability. Clearly, thermal stimula-
tion and depressurization in the shear zone are complementary mechanisms, and the overall stress‐strain
behavior could be a response to both mechanisms acting simultaneously.

Since softening intervals were followed by the apparent recovery of peak structuration strength, independent
of cumulative axial strain at failure, we consider that also this large‐strain behavior was influenced by the
successive structural rearrangement of GH, once the dilatancy in the shear zone was mobilized. However,
this secondary hardening response could be related to experimental artifacts during large‐strain sample
deformation, strain localization, and progression of failure. Since GHBS could be loaded to higher deviatoric
stresses than reference samples and particle crushing is supposed to be inhibited in intact GHBS, particle
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crushing could occur rapidly and locally in the shear zone during unloading and failure. This would decrease
the local void ratio and presumably change the mechanical properties. However, since secondary hardening
was largely independent of peak stress ratios η, we suppose that particle crushing only played a minor role.
Still, if it would be relevant it would need to be considered as a secondary effect of GH dynamics, and it
would be treated similarly in the context of constitutive modeling. Further, we consider that our results at
larger strains could be biased by the experimental setup to some extent. First, we use a combination of two
sleeves for sample mounting in the triaxial cell. The inner sleeve is a FKM sleeve (thickness 1.5 mm) that
is used to prepare and mount the sample without freezing. The outer sleeve is a latex sleeve (thickness 1
mm), which improves the sealing and avoids leakage of hydraulic fluid (glycol‐water) into the sample pore
space over long experimental periods. This combination of sleeves could increase the apparent strength of
the sample during deformation. However, we tested if sleeve effects could explain the observed apparent
secondary hardening using reference samples (test cylinders with predefined shear planes at 30°, 45°, or
60°) but could not find evidence for that (data no shown). Second, the axial strain is transferred through
fixed platens that restrict the deformation of the sample. The use of fixed platens can influence strain
localization and induce barreling or multiple shear banding (Alshibli et al., 2003; Gao & Zhao, 2013). In
addition, individual experiments could be influenced by bedding errors and heterogeneity of GH
formation. However, the similarity between individual tests and the onset of apparent secondary
hardening after softening independent of the cumulative axial strain suggest that these effects would
be minor.

4.3. The Concept of Nonconstant Residual Friction of GHBS

The hardening‐softening behavior of GHBS appears to be controlled by dynamic changes of GH‐sediment
fabrics during plastic strain events. These strain and strain rate‐dependent effects from alteration,

Figure 7. Model assumptions relevant for frictional heating during fast and brittle softening. (a) Saw‐tooth model after
Rowe (1962); figure modified after De Josselin De Jong (1976), (b) frictional heating and transient GH dissociation in a
narrow shear zone after structuration strength depletion during softening and fast dilatancy mobilization, and (c) GH
reformation and strength recovery in the shear zone.
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rearrangement, and reformation of GH in the sediment matrix were conceptualized as nonconstant residual
friction in elasto‐plastic constitutive modeling by extending the approach of Andrade, et al. (2012), who
considered rate‐dependent residual friction for describing the fluid‐like plasticity of granular media, for
example, during shear banding.

The evolution functions for dilatancy and residual friction (equations (14) and (15)) postulate that the pri-
mary hardening occurs due to the dilatancy of the sample, while the softening and strength recovery occur
due to an increase in residual frictional resistance under plastic loading depending on the plastic strain and
strain rates (Figure 8). The cumulative volumetric strain was largely different in the individual experiments,
and tests with GHBS usually showed lower overall cumulative strains and distinct shear banding compared
to reference sand samples. Despite these differences in cumulative volumetric strains, peak dilatancy βmax

was very similar, which suggests that the differences in stress‐strain behavior at different Sh were not
strongly related to changes in dilatancy.

Hardening‐softening characteristics, strain localization, shear band evolution, and post‐peak failure appear
to be strongly dependent on strains and strain rates. Once dilatancy was fullymobilized inside the shear band
and the cumulative volumetric strain remained to be largely constant, the residual friction αres increased at a
constant rate and resulted in apparent strength recovery in the shear band (Figure 8). For a given loading
rate, there is a clear difference in the evolution of αres between the gas‐saturated and the water‐saturated
samples (see Figures 8a and 8b). In the gas‐saturated samples, αres increased abruptly for loading beyond
the peak strength, whereas, for the water‐saturated samples, the evolution of αres is rather smooth. In gen-
eral, the slower the rate at which dilatancy is mobilized, the smoother is the evolution of residual friction.
This trend is also visible in Figures 8c and 8d, where at lower axial strain rates the dilatancy is mobilized

Figure 8. Residual friction (αres, dotted lines) and dilation (β, thin lines) coefficients. (a) Gas‐saturated samples, (b) water‐
saturated samples, (c) different strain rates, Sh = 0.22, and (d) different strain rates, Sh = 0.33–0.36.
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at a lower rate, and the evolution of the residual friction is smoother. The parametersΔαres and _λ* control the
evolution of αres (refer to equation (15)). In Table 1, we observe that Δαres shows a direct correlation with

both Sh and the axial strain rate, while _λ* directly correlates only with the axial strain rate and appears to
be independent of Sh. While this correlation appears to be straightforward, the combined effect on the evo-
lution of αres is in fact quite complex, and additional experimental data are required for further model
calibration.

The microstructural aspects of GH alteration are currently unknown, and the micromechanical concepts are
speculative and would require thorough micromechanical investigations, as well as mathematical homoge-
nization and upscaling studies. However, we propose that the assumption of a nonconstant residual friction
could act as a unifying concept, which also appears to be a reasonable basis for further model refinement as
soon as data from geotechnical testing with high‐resolution tomographical imaging become available in
the future.

5. Conclusion

This study shows that strain rate‐dependent effects influence the hardening‐softening characteristics and
stress‐strain behavior of GHBS. We propose that this strain rate‐dependency results from dynamic structural
alterations of GH‐sediment fabrics and provide evidence that brittleness and ductility characteristics during
softening, shear band evolution, and strength recovery are influenced by the capacity of structural recovery
of GH‐sediment fabrics.

We hypothesize that the stress‐strain response of GHBS on a micromechanical level is very complex and
dependent on various processes and process interactions. Thus, it is very important to apply advanced geo-
technical testing devices with tomographical imaging tools for time‐resolved analysis of deformation and
shear band development. However, we propose that on the level of constitutive modeling the dynamic
alteration of GH‐sediment fabrics can be conceptualized as a nonconstant residual friction term. In fact,
we hypothesize that introducing the unifying concept of nonconstant residual friction might also advance
the physical understanding of the apparent structuration strength of GHBS.

Our findings are highly relevant for the understanding of mechanical properties of natural GHBS, marine
slope stability, and natural gas production scenarios. The recovery of strength of GHBS during plastic defor-
mation and failure is supposed to act as an efficient self‐stabilizing mechanism, which would be character-
ized by fast strength recovery in the event of fast deformation, and high residual strength in the presence of
high Sh. Thus, the structural recovery of GH‐sediment fabrics through slow rearrangement or fast
dissociation‐reformation events in the failure zone is expected to mitigate or counteract large‐strain defor-
mation of natural GHBS. This strain‐induced self‐stabilizing effect would be most pronounced in water‐
limited sediments, for example, in natural environments at marine gas seeps or in gas production scenarios.
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