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Abstract Micro-macro models for dissolution processes are derived from detailed pore-scale models
applying upscaling techniques. They consist of flow and transport equations at the scale of the porous
medium (macroscale). Both include averaged time- and space-dependent coefficient functions
(permeability, porosity, reactive surface, and effective diffusion). These are in turn explicitly computed
from the time- and space-dependent geometry of unit cells and by means of auxiliary cell problems defined
therein (microscale). The explicit geometric structure is characterized by a level set. For its evolution,
information from the transport equations solutions is taken into account (micro-macro scales). A
numerical scheme is introduced, which is capable of evaluating such complex settings. For the level-set
equation a second-order scheme is applied, which enables us to accurately determine the dynamic reactive
surface. Local mesh refinement methods are applied to evaluate Stokes type cell problems using P2/P1
elements and a Uzawa type linear solver. Applications of our permeability solver to scenarios involving
static and evolving geometries are presented. Furthermore, macroscopic flow and transport equations are
solved applying mixed finite elements. Finally, adaptive strategies to overcome the computational burden
are discussed. We apply our approach to the dissolution of an array of dolomite grains in the micro-macro
context and validate our numerical scheme.

1. Introduction
Porous media applications naturally exhibit at least two different spatial scales, on which measurements,
modeling, and simulations are possible: The pore scale/microscale is the fundamental scale, on which
processes take place with pore (void) space and solid being distinguishable. On the other hand, the
macroscale/continuum scale, that is, the scale of the porous medium, is ultimately of practical relevance
for reactive transport computations. However, geochemical behavior cannot be understood considering this
larger scale alone and investigations become increasingly difficult if the dynamically evolving pore-scale
structure is taken into account. Approaching such situations, pore network models (Xiong et al., 2016),
hybrid models (Battiato et al., 2011; Tartakovsky et al., 2008), microcontinuum models (Soulaine et al., 2017,
2018), and micro-macro models (Bringedal et al., 2019; Ray, Oberlander, et al., 2019; van Noorden, 2009a)
are available in the literature. For recent reviews in the context of reactive transport modeling, we further
refer to Steefel et al. (2015) and Molins and Knabner (2019).

In this research we focus on micro-macro models resulting from averaging theory, which are additionally
capable of representing evolving interfaces. We numerically investigate a micro-macro model similar to that
stated in Ray, Oberlander, et al. (2019) and van Noorden (2009a). In this model, mineral precipitation and
dissolution reactions alter the porous medium's structure. More precisely, dissolved chemical species are
transported by convection and diffusion through the porous medium and react to a mineral with nonnegligi-
ble volume fraction and density 𝜌. The micro-macro model then consists of flow and transport equations for
the species' concentrations at the scale of the porous medium (macroscale). Both include averaged time- and
space-dependent parameters such as permeability, porosity, reactive surface, and effective diffusion tensor.
These parameters are deduced from unit cells with evolving geometries and auxiliary cell problems defined
therein (microscale). Structural changes of the underlying geometry due to the dissolution reactions as well
as the interface between the mineral and the liquid are characterized by means of a level set, which is a clas-
sical way to include evolving interfaces into a model. An extension of formal two-scale asymptotic expansion
including a level-set description for an evolving solid-liquid interface was introduced in van Noorden (2009a,
2009b). This method has been applied to precipitation/dissolution reactions (van Noorden, 2009a, 2009b;
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van Noorden et al., 2010), locally periodic media (Muntean & van Noorden, 2013), biofilm growth (Ebigbo
et al., 2010; Schulz & Knabner, 2017a, 2017b), nonisothermal reactive flow (Bringedal et al., 2016), colloid
dynamics (Ray et al., 2012), drug delivery (Ray et al., 2013), and reactive flows under dominant convection
in (Kumar et al., 2011; Ray & Schulz, 2019). On the other hand, information from the macroscopic trans-
port equations solutions is taken into account to determine the level-set evolution (micro-macro scale). If
applicable an ansatz similar to the one proposed in Ray, Oberlander, et al. (2019) is applied to include the
impact of the magnitude and direction of the flow velocity on the dissolution pattern. Since the overall
model comprises several levels of couplings (cf. Figure 2a), thus far, mainly restrictive geometrical settings,
for example, radially symmetric situations, have been investigated numerically (Bringedal & Kumar, 2017;
Schulz et al., 2017; van Noorden, 2009a). This has led to a greatly simplified set of equations: Instead of the
level-set equation, an ordinary differential equation is solved and coupled to the partial differential equations
for transport. In Ray, Oberlander, et al. (2019) the fully coupled micro-macro problem in the situation of
prescribed velocity was considered. Recently, similar models based on a phase-field formulation have been
studied numerically including Darcy flow (Bastidas et al., 2020).

In this paper, we address the numerical investigation of the full problem including both liquid flow and
the level-set equation. As a motivation, we study the evolution of and relation between the porosity and
reactive surface, also in the situation of a changing topology. Moreover, the permeability is investigated for
a microfluidic device similar to Ahkami et al. (2018) as well as for the dissolution of mineral composites
adapted from Ellis et al. (2011). We observe that eigenvalues with value zero may become positive in a setup
involving topological changes in the microstructure. Ultimately, we investigate the dissolution of an array
of dolomite grains similar to Molins et al. (2017), but in the micro-macro context. The evolution and the
strong coupling of scales generally necessitates solving as many cell problems as there are elements in the
discretization on the macroscale. However, in the situation of a small Péclet or Damköhler number, a drastic
reduction in complexity is possible since it then becomes evident that compact or uniform dissolution takes
place; see Golfier et al. (2002) for a thorough investigation of dissolution regimes with a focus on worm-
hole formation and (Battiato et al., 2009, 2011) for a study on the validity of upscaled models in different
regimes. For compact dissolution it is reasonable to consider only one representative, but evolving unit cell
and corresponding cell problems per vertical slice (cf. Ray, Oberlander, et al., 2019). Another strategy that is
applied throughout this research in order to cope with the micro-macro problem's complexity is adaptivity.
Here, we aim to minimize the number of evaluations of cell problems, that is, recomputations of effective
parameters. To this end, we evaluate how the current geometry deviates from a circular geometry or from
previous geometries. These strategies in combination with parallelization lead to weak scalability and result
in reasonable computation times.

As discretization methods for the level set, we apply a second order upwind scheme (Sethian, 1998a).
EXtended Finite Element Methods are used to evaluate the auxiliary cell problems for the diffusion ten-
sor, whereas adaptive mesh refinement strategies are applied for the Stokes type cell problems. These are
discretized with P2/P1 elements and solved using a Uzawa type algorithm. For the macroscopic flow and
transport equations, Mixed Finite Elements are applied. We quantitatively validate our numerical scheme
by providing orders of convergence in the micro and macro discretization parameters and compare our sim-
ulation results to the outcome of a pore-scale simulation for the dissolution of an array of dolomite grains. To
further prove the applicability of our method, we investigate dissolution in domains with randomly chosen
porosity and illustrate the performance of our adaptivity scheme.

Outline: In section 2, a pore-scale model including dissolution reactions and the corresponding micro-macro
model are stated. In section 3, the discretization methods and the overall solution strategy are discussed. In
section 4, various illustrative examples are numerically investigated to show the importance of an accurate
parametrization. Thereafter in section 5, the fully coupled micro-macro problem is investigated with the
outcome being evaluated quantitatively.

2. Mathematical Model
In this section, we recapitulate a pore-scale model for mineral dissolution reactions and the corresponding
upscaled micro-macro model similar to van Noorden (2009a). For all subsequently introduced quantities
the related dimensions are given in terms of length L, time T, and number of particles N. We consider
transport and flow in porous media on a rectangular domain Ω ⊂ R2 with boundary 𝜕Ω. In the context
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Figure 1. Partition of domain Ω in 𝜀-scaled reference cells. Each of the corresponding unit cells (right) is time
dependently decomposed into solid part Y s(t) and liquid part Y l(t), separated by interface Γ(t). Ω𝜀 denotes the entirety
of all liquid parts in Ω, colored in gray.

of micro-macro simulations, an underlying microstructure is attached to this macroscopic domain in each
grid point. Assuming an ideal porous medium, a periodic partition of Ω with 𝜀-scaled unit squares Y 𝜀: = 𝜀Y
with scale parameter 𝜀≪ 1 is performed. Y is decomposed into a time-dependent solid part Y s(t) and liquid
part Y l(t). Likewise, each Y i,𝑗

𝜀
is decomposed into the time-dependent scaled versions Y i,𝑗

s,𝜀(t) and Y i,𝑗
l,𝜀 (t) with

indices i, 𝑗 ∈ N denoting row and column indexes within the regular array; see Figure 1. That is, for all 𝜀> 0

Y ∶= Ys ∪ Yl, Y =
[
−1

2
,

1
2

]2
[L2], Ω = ∪

i,𝑗
Y i,𝑗
𝜀

[L2], Ω𝜀 ∶= ∪
i,𝑗

Y i,𝑗
l,𝜀 .

Since chemical reactions take place at the solid surface, the liquid-solid interfaces (interior boundaries)
Γi,𝑗
𝜀

∶= Y i,𝑗
l,𝜀 ∩ Y i,𝑗

s,𝜀 capture the time evolution of the system. We further denote

Γ𝜀 ∶= ∪
i,𝑗
Γi,𝑗
𝜀

[L].

2.1. Pore-Scale Model

In the following we consider a sequence of problems depending on the scaling parameter 𝜀. Therefore,
all occurring quantities are equipped with a subscript 𝜀. In order to deal with time-evolving domains, the
level-set method is applied (Osher & Sethian, 1988; Sethian, 1999; Xu et al., 2012). That is, the current
domain Ω𝜀(t) is encoded as the zero sublevel set of a real-valued function L𝜀 ∶ (0,T) × Ω → R [−] defined
on a fixed maximal domain Ω. For our setting, we define

L𝜀(t, x) =
⎧⎪⎨⎪⎩
< 0 liquid phase/pore space,
= 0 interface,
> 0 solid phase.

Solving the level-set equation

𝜕tL𝜀 + vn,𝜀|∇L𝜀| = 0, x ∈ Ω, t ∈ (0,T),
L𝜀(0, ·) = L0

𝜀
, x ∈ Ω,

(1)

with vn,𝜀 ∶ (0,T)×Ω → R [LT−1], results in a movement of the interface with speed vn,𝜀 in normal direction.
In the context of geometry changes due to dissolution processes at the interface, it is reasonable to relate vn,𝜀
to the surface reaction rate f [N(LT)−1] at the interface in a mass conserving way:

v
n,𝜀|Γ𝜀 = 𝛼𝑓

(
c|Γ𝜀

)
[LT−1], (2)

with inverse mineral density 𝛼 = 1
𝜌
[L2 N−1] (Li et al., 2010; van Noorden, 2009a). The fact that vn,𝜀 must

be defined globally on Ω to solve (1) will necessitate the introduction of a suitable extension operator, for
example, as proposed in Frolkovič (2012) and Osher and Fedkiw (2006).
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Examining again the case of surface reactions with rate f , we consider 𝜀-scaled transport equations for the
vector of concentrations c𝜀 [N L−2] as follows:

𝜕tc𝜀 − ∇ · (−v𝜀c𝜀 + D∇c𝜀) = 0, x ∈ Ω𝜀(t), t ∈ (0,T),
(−v𝜀c𝜀 + D∇c𝜀) · 𝜈𝜀 − 𝜀𝛼𝑓 (c𝜀)(c𝜀 − 𝜌) = 0, x ∈ Γ𝜀(t), t ∈ (0,T),

c𝜀 = c0, x ∈ Ω𝜀(0),
(3)

with molecular diffusion D [L2 T−1] and outer normal unit vector 𝜈𝜀. The scaling with 𝜀 is chosen such that
Γ𝜀 ∼ 𝜀−1 is balanced and a reasonable velocity limit is obtained (cf. Hornung, 1997; van Noorden, 2009a).
The advective velocity field v𝜀 and its corresponding pressure field p𝜀 [N T−2] are obtained as the solution
of an 𝜀-scaled Stokes problem

−𝜀2𝜇Δv𝜀 + ∇p𝜀 = 0, x ∈ Ω𝜀(t), t ∈ (0,T),
∇ · v𝜀 = 0, x ∈ Ω𝜀(t), t ∈ (0,T),

v𝜀 = vn,𝜀𝜈𝜀, x ∈ Γ𝜀(t), t ∈ (0,T),

with dynamic viscosity 𝜇 [N T−1] and interface normal velocity vn,𝜀. The condition imposed on Γ𝜀(t) corre-
sponds to a no-slip boundary on the time evolving domain. Supplementary exterior boundary conditions for
both equations close the model. These will be specified within the scenarios discussed in section 5.

2.2. Micro-Macro Model

The micro-macro model for mineral reactions results as the leading order approximation of the asymptoti-
cally expanded pore-scale model (van Noorden, 2009a), that is, in order 0, which is indicated in the following
using the subscript .0. In order to additionally account for nonisotropic dissolution processes, we apply the
approach from Ray, Oberlander, et al. (2019). More precisely, a modulation of the interface normal velocity
is introduced.

The time evolving liquid domain at the microscale is characterized as Y l,0(t,x): = {y∈Y : L0(t,x,y)< 0}, its
solid-liquid interface accordingly asΓ0(t,x): = {y∈Y : L0(t,x,y) = 0}. L0 is propagated via the level-set equation

𝜕tL0 + vn,0|∇𝑦L0| = 0, in (0,T) × Ω × Y ,

L0 periodic in Y ,

with normal velocity vn,0 defined by

vn,0(t, x, 𝑦) = 𝛼𝑓 (c0(t, x)) · m(v̄0(t, x), x, 𝑦), (4)

with leading order macroscopic concentration c0, averaged advective velocity v̄0, and speed modulation func-
tion m ∶ R2 ×Ω× Y → R+ [−]. In order to obtain a mass conserving constitutive law, m = 1 poses a natural
choice (Bringedal et al., 2016; van Noorden, 2009a). However, this would restrict all considerations to a
locally isotropic case. On the contrary, the admission of heuristic functions m≠ 1 allows for anisotropic dis-
solution. Taking the magnitude of the macroscopic velocity field |v̄0| as well as the angle with respect to the
solid surface into account, we use the anisotropic speed modulation function introduced in Ray, Oberlander,
et al. (2019):

m(v̄0(t, x), x, 𝑦) ∶= g(v̄0(t, x) · 𝜈0(𝑦)),

g(x) ∶=
{

exp(−𝜇x2), x ≤ 0
(1 − 𝜆) exp(−𝜇x2) + 𝜆, x > 0

(5)

with suitable parameters 𝜇 > 0 [T2 L−2], 0≤ 𝜆≤ 1 [−], where 𝜈0 again denotes the outer normal vector. For
simple geometries the angle is expected to indicate whether a surface point is located in the upstream or
downstream regime (magnitude of difference in behavior controlled by 𝜆), while the fluid velocity deter-
mines the extent of deviation from uniform dissolution. As𝜇 governs the sensitivity with respect to the angle,
both quantities determine the dissolution pattern and are therefore related to the Péclet and Damköhler
number. The specific choice of 𝜇, 𝜆 ensures the formation of droplet shaped solids, respecting the deviation
in ratio of volume and surface compared to the circular case. Throughout this paper values of 𝜆= 0.75 and
𝜇 = 5,000 s2 dm−2 are used as they reproduce the typical shape evolution of a circular grain known from
microscopic simulations (Molins et al., 2017; Ray, Oberlander, et al., 2019) in a reasonable range of reactive
transport regimes.
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The transport equations for the species' concentrations c0 read

𝜕t(𝜙c0) + ∇x · (v̄0c0) − ∇x · (D∇c0) = −𝜎𝑓 (c0) in (0,T) × Ω, (6)

with porosity 𝜙 and specific surface 𝜎 naturally given by

𝜙 =
|Yl,0||Y | [−], 𝜎 =

|Γ0||Y | [L−1]

and effective diffusion tensorD [L2 T−1] given below. Note that the leading order term in the concentrations'
expansion c0 does not depend on y due to standard upscaling results (Hornung, 1997; van Noorden, 2009a).

The averaged velocity field v̄0 [L T−1] is obtained from Darcy's law

v̄0 = −K

𝜇
∇p0 in Ω, t ∈ (0,T),

∇ · v̄0 = 0 in Ω, t ∈ (0,T),

∫
Ω

p0 dx = 0,

(7)

with permeability tensor K [L2] and macroscopic pressure field p0 [N T−2]. Requesting vanishing mean
pressure leads to a uniquely solvable system. Note that v̄0 is set to be divergence free as opposed to
van Noorden (2009a) since the time scale of porosity changes is orders of magnitude larger than that of the
fluid flow. Therefore, this quasistatic approximation does not impair accuracy but facilitates simulations.
Diffusion and permeability tensor are defined via solutions of standard auxiliary cell problems as follows
(Hornung, 1997; van Noorden, 2009a).

Diffusion tensor: Di,𝑗(t, x) ∶= ∫Yl,0(t,x)
D
(
𝜕𝑦i

𝜁𝑗 + 𝛿i𝑗
)

d𝑦 for i,j∈ {1,2}, where 𝜁 j are the solutions to

−∇𝑦 · (∇𝑦𝜁𝑗) = 0 in Yl,0(t, x),
∇𝑦𝜁𝑗 · 𝜈0 = −e𝑗 · 𝜈0 on Γ0(t, x),

𝜁𝑗 periodic in 𝑦, ∫
Yl,0

𝜁𝑗 d𝑦 = 0,
(8)

ei denoting the ith canonical vector and 𝛿ij the Kronecker delta.

Permeability tensor: Ki,𝑗(t, x) ∶= ∫Yl,0(t,x)
𝜔i
𝑗

d𝑦 for i,j∈ {1,2}, where (𝜔j,𝜋j) are the solutions to

−Δ𝑦𝜔𝑗 + ∇𝑦𝜋𝑗 = e𝑗 in Yl,0(t, x),
∇𝑦 · 𝜔𝑗 = 0 in Yl,0(t, x),

𝜔𝑗 = 0 on Γ0(t, x),

𝜔𝑗 , 𝜋𝑗 periodic in 𝑦, ∫
Yl,0

𝜋𝑗 d𝑦 = 0.

(9)

Again, the mean values are set to zero to ensure the unique solvability of the systems.

3. Numerical Methods
3.1. General Approach

A simple operator splitting approach between microscale and macroscale allows connecting transport/flow
solvers with the cell problem solvers via a bidirectional transfer of input data. Such methods are commonly
used in multiscale simulations (Bastidas et al., 2020; Ray, Oberlander, et al., 2019). A graphical representa-
tion of our complete algorithm is presented in Figure 2 (cf. Ray, Oberlander, et al., 2019). As discussed in
section 3.4.2, our adaptivity scheme can partially circumvent an update of the evolution operator associated
with the microscale. One cycle in the diagram can correspond to a whole macroscopic time step. As part of
an interior fixed-point iteration, also, multiple cycles per time step may be taken.
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Figure 2. Overall solution algorithm showing operator splitting among bidirectionally coupled scales (a). Adaptivity
may partially circumvent the solution of the cell problems (8) and (9). Image (b) displays the principles of the
adaptivity scheme minimizing the number of cell problems completely reevaluated. Green exits indicate a subordinate
computation time.

In the extreme case of a unit cell being attached to each macroscopic finite element (Figure 3a), the pre-
sented method is still practically not feasible due to the enormous overhead. An apparent remedy is the
parallelization of the evaluation of the cell problems (8) and (9) as applied in Bastidas et al. (2020). Since
these operations can be performed independently of each other, weak scalability is expected and observed;
see section 5.

3.2. Discretization of Macroscopic Equations

As one major advantage of our micro-macro approach, the whole time dependency of the computa-
tional domain is reflected within the cell problems, whereas flow and transport equations are to be
solved on the fixed macroscopic domain Ω . Therefore, we can deploy standard transport solvers, such as
included in the MATLAB©Toolbox HyPHM (Frank, 2014). All implementations in this paper are based on
MATLAB©Version R2019a (MATLAB, 2019) and the framework of HyPHM, a flexible numerical toolbox for
flow and transport simulations. Its problem class “transport” comprises an implementation of mixed finite
elements with lowest order Raviart-Thomas elements RT0 on 2-D triangular unstructured grids and allows
for time- and space-dependent coefficient functions. The package routines are coupled to a Newton solver
to treat several nonlinearly coupled equations with implicit Euler time stepping. HyPHM is able to handle
both types of macroscopic equations—Darcy—and transport equation(s)—in a similar and compatible way.
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Figure 3. Different possibilities of matching cell problems to macroscopic domain. (a) Macroscopic triangulation 𝜏H(Ω): A microcell Y Ti is attached to each
element Ti (general approach). (b) Macroscopic triangulation 𝜏H(Ω): A microcell Y Si is attached to each vertical stripe Si (effectively one-dimensional situation;
cf. section 5).

This software has already been used successfully in simulations of micro-macro problems (see Frank, 2013;
Ray, Oberlander, et al., 2019).

Due to the full coupling of the transport processes in (6) via nonlinear right hand sides, the system matri-
ces arising in every step of Newton's iteration are large in size, badly conditioned and show a complex
sparsity pattern. Therefore, iterative solvers with powerful preconditioners are needed. We choose the
MATLAB©compatible library ilupack (Bollhöfer & Saad, 2006) for this purpose, providing reordering and
rescaling routines as well as multilevel ILU decomposition templates and a variety of Krylov subspace meth-
ods. In the literature many different methods for efficiently solving the arising sequence of linear systems
are discussed (e.g., in Duintjer Tebbens & Tůma, 2007). As the system matrix varies only a little during
one call of the Newton solver, we apply the common method of freezing the preconditioner of the first iter-
ation in combination with GMRES. In this sense, we trade the quality of all subsequent preconditioners
against a possibly higher number of Krylov steps. Since Newton's algorithm involves some robustness, only
weak tolerances must be met for the residuals of the linear systems. This allows an efficient distribution of
computation time among the sequence of similar systems.

3.3. Level-Set Evolution

Since the solution of the level-set equation is nothing but an auxiliary construct to implicitly encode the
current domain within each unit cell, an efficient treatment is desirable. As the cell problems are defined on
a unit square, an explicit finite difference scheme on a structured grid with mesh parameter h is appropriate.
However, standard finite differences are known to cause spurious behavior due to the advective nature of the
level-set equation. In an earlier paper (Ray, Oberlander, et al., 2019), a first-order upwind scheme introduced
by Rouy and Tourin (1992) was applied to ensure stability in this context. However, this approach might
lead to unsatisfying accuracy.

By construction, the normal velocity field vn,0 defined in Equation 4 is continuous and piecewise smooth. We
exploit that fact by using a second-order discretization for the spatial gradient as stated in Sethian (1998a).
Therefore, not only a more accurate prediction of the volume of the cell's solid is to be expected but also a
precise representation of its shape. In Figure 4, an initial circle (green) is contracted by prescribing a uni-
form interface velocity, and first- and second-order schemes are compared. The zoom-in version on the right
visualizes the aforementioned differences. As elaborated in Ray et al. (2018) and Schulz et al. (2019), both
properties—volume and shape—have a significant influence on permeability and diffusivity. Although the
higher-order correction increases the computational effort by a factor of approximately 3, the total com-
putation time of the level-set solver is still almost negligible; see Figure 10. Furthermore, an increased
order of convergence is observed for subsequent calculations performed on the geometry (cf. section 5).
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Figure 4. Uniform contraction of a circle via constant normal velocity vn. Comparison of different order upwind
schemes against the analytical solution, showing shape preserving property of second-order method after the same
number of time steps. Right image depicts a magnification of the center of contraction.

Consequently, we apply a second-order scheme in this research when normal velocities are sufficiently
smooth.

Let (D±i)k denote the usual forward/backward difference quotient of order k along the i axis and Ln
i𝑗 the

approximation of the level set at grid point {i,j} and time step n. Then, in two dimensions the second-order
upwind scheme is written as

Ln+1
i𝑗 = Ln

i𝑗 − 𝜏
(
max{vn,0, 0}∇+ + min{vn,0, 0}∇−)

with time step size 𝜏 > 0; see Sethian (1998b). ∇± denotes the part of the discretization of the spatial gradient
related to the upwind and downwind regime (in relation to a positive interface velocity), respectively. The
scheme involves information arriving from the direction of the source. See Gärttner et al. (2020) and Sethian
(1999) for further details. A standard CFL-condition of the form

𝜏 ≤ C h
max |vn,0| , C > 0,

yields a stable and efficient second-order algorithm. All operations are implemented in a fully vectorized
manner.

3.4. Discretization and Adaptivity of Cell Problems
3.4.1. Discretization of Cell Problems
As elaborated in the last section, the level-set approach allows a convenient implicit representation of the
time-dependent liquid-solid interface Γ0(t). For the purpose of extracting properties from the underlying
microstructure, these interfaces within the cells must be handled properly. The calculation of porosity and
specific surface can easily be performed using a piecewise linear reconstruction of Γ0(t). As discussed in
section 2.2, the effective diffusion and permeability tensors are determined from solutions of the auxiliary
cell problems (8) and (9). For the treatment of the diffusion tensor defined via the solution of Equation 8, we
maintain our EXtended Finite Elements (XFEM) scheme on a Friedrichs-Keller triangulation as presented
in Ray, Oberlander, et al. (2019). This allows using the same nodal points for the level-set evolution as well
as for the elliptic diffusion problems, since the entire geometric information of the cell domains Y l,0 is pro-
cessed within the matrix assembly. In particular, the total number of degrees of freedom is small and not
varying over time. The final construction of the diffusion tensor requires an integration of the fluxes of the
PDEs' solutions. To do so, numerical differentiation is inevitable in our framework, bearing the danger of
inaccurate results. We investigated this threat by means of a comparison to a mixed finite element approach
on an accordingly refined mesh. For our purposes, the observed gain in accuracy could not compensate the
increase of computation time.

In order to calculate the permeability tensor from the geometry within the unit cells, one stationary Stokes
problem per dimension, that is, two in 2-D, must be computed. We use a stable P2/P1 discretization for the
velocity and pressure space and impose zero Dirichlet boundary conditions for the velocity at the solid-liquid
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interface. The computational efficiency of our Stokes solver is based on a fully vectorized system assembly
(see Japhet et al., 2013) and the application of Uzawa's algorithm, a linear solver specifically tailored for sad-

dle point problems of the form S =
(

A −BT

−B 0

)
; see Koko (2019). Within this iterative scheme, the pivotal

operation is the solution of the linear subsystem A—originating from the Laplace-part of the equation—with
changing right-hand sides. We therefore precompute a Cholesky decomposition of A, basically reducing
the computational effort of each iteration to substitution operations. In order to improve convergence, the
pressure part B is preconditioned by a diagonal matrix derived from the mass matrix to counteract different
scaling behavior of the entries in the microscopic mesh parameter h. Since the permeability is very sensitive
to geometrical changes, properly accounting for the current interface position is crucial; see illustrations in
Figures 7 and 8. In settings where the interface is not tracked precisely, as it is usually the case for diffuse
interface models, predicted permeabilities tend to be inaccurate (Bringedal et al., 2019).

Unfortunately, the enrichment of the velocity field with appropriated cut-off functions—as usually per-
formed in the scope of XFEM methods—is known to suffer from stability issues and poor accuracy
improvements (Sauerland, 2013). Therefore, local mesh refinement strategies in the proximity of the inter-
face are deployed. Adapting the scheme presented in Li and Song (2012) to our FEM framework, a first-order
refinement algorithm is applied.

More precisely, we use a linear interpolation of the level-set values at the nodal points Ln
i𝑗 along the edges

of each triangle and possibly add the zeros as new points to the interface. Again, for sake of stability, this
procedure includes a regularization parameter. If a new point is closer to an already existing one in the grid
than the prescribed threshold, it will be disregarded. Instead, this neighbor is set to be a root of the level set.
Thereby, mesh regularity is maintained preserving numerical stability. Special attention must be paid at the
refinement along the exterior boundary 𝜕Y due to the periodic boundary conditions (Kim & Swan, 2003). We
therefore deactivate the mesh adjustments along 𝜕Y to avoid impairment of the folding procedure. Applica-
tion of a standard Delaunay triangulation algorithm restores the Friedrichs-Keller triangulation away from
the interface and ensures a globally conforming grid.
3.4.2. Adaptivity
In the context of adaptive numerical homogenization and heterogeneous micro-macro methods (HMM),
adaptive methods are often based on a posteriori error indicators; see, for example, Bastidas et al. (2019).
These may in general decide about local refinement or coarsening of the discretization, control the size of the
domain where microscale simulations are performed, or include any kind of learning algorithm (Bastidas
et al., 2019; Redeker, 2014; Redeker & Eck, 2013; Weinan et al., 2007).

For realistic applications including many cell problems, such as investigated in section 5, a minimization
of the number of cell problems' reevaluation is crucial. We adapt the scheme presented in Redeker and Eck
(2013); see Figure 2b. The approach relies on the assumption that similar input data to the cell problems
lead to similar output data. Although sharp estimates of the error amplification are usually unavailable,
the degree of uncertainty of the input data is a useful indicator for whether a recalculation will increase
the quality of the output data. Our specific criterion is presented later in this section. In Redeker and Eck
(2013), the adaptive strategy is based on the input data arising from the evolution of the macroscopic fields.
In our framework, the back coupling from the macroscale to the microscale is realized by the prescription
of the normal interface velocity via (4). Since the evolution of the level set is of subordinate complexity,
information about the magnitude of evolution as well as the current microgeometry is available at any time.
We therefore base our adaptivity scheme directly on the level-set function.

Diffusion and permeability are expected to depend continuously on the solid part Y s,0. In order to avoid the
effort of calculating local error estimates, we exploit the directly accessible information about the extent of
microscopic evolution. Evaluation of the expression sup

𝑦∈Y
{|vn,0|} · 𝜏 with macroscopic time step size 𝜏 allows

estimating the magnitude of alternation taken place since the last macroscopic time step. If the expected
changes from the previous geometry are small, we reuse the old data without performing a reevaluation. In
order to preserve the desired level of accuracy, the quantity,

k∑
i=𝑗

sup
𝑦∈Y

{|vn,0(t = ti)|} · 𝜏(t = ti),
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Figure 5. Dependence of specific surface area 𝜎 [L−1] on porosity 𝜙 for two different geometrical settings illustrating the impact of topological changes. Initial
(a) and final (b) geometry in the merging circles scenario are depicted, as well as the actual specific surface area—porosity relation (red) in comparison to a
standard power law (blue) (c).

where tk denotes the current discrete time and tj the time of last reevaluation of the respective cell, should be
small. More precisely, we do not consider variations of the input data far below the discretization parameter
h since no gain in accuracy of the output data can be expected from such variations. This is due to the fact that
the discretization errors limit the accuracy. Likewise, the uncertainty of measurements or input data with
restricted spatial resolution (directly relating to the discretization parameter h), for example, from voxelized
CT data, leads to a restriction in accuracy. In the experiment conducted in section 5.3, the threshold is set to
20% of the mesh parameter. This procedure can be interpreted as a spatially local coarsening of the micro-
scopic time discretization. The approach presented allows focusing computation power to the subdomains
of Ω experiencing pertinent changes of the underlying microstructure.

Additionally, another strategy is implemented to possibly reduce the number of cell problems evaluated in
highly symmetrical scenarios. After initializing the solid part of the cell domains Y s,0 as circular, the circular
shape is approximately preserved over a certain time interval. Therefore, we treat these situations separately
by checking for this property in advance, using methods known from data analysis (Sehgal et al., 2014).
More precisely, we use a linear interpolation of the level set and sample the solid part on a refined mesh.
The resulting point cloud is then used to check for symmetry properties and approximate the center of mass
position as well as a possible radius. In case of a circular solid, we use that information to calculate the
associated diffusion and permeability tensors from a linear interpolation of look-up tables as suggested in
Frank (2013). Alternatively, analytical expressions linking porosity to these quantities can be deployed; see
Ray et al. (2018) and Schulz et al. (2019). In the case of a unit cell containing an approximate circular shape,
our tests show the time for shape detection and tensor evaluation to be less than 1% compared to solving the
cell problems. This part of our adaptivity approach can be understood as an a priori learning method.

4. Simulations of Hydraulic Parameters
In this section, we present some test problems for the calculation of the effective parameters from the
level-set function used later in the micro-macro simulation. The impact of varying diffusion tensors on
the macroscopic solution and its dependence on pore-scale geometry has been discussed extensively in
Ray, Oberlander, et al. (2019). We will therefore illustrate the relation between topological changes at the
microlevel and the reactive surface area as well as evolving permeability tensors.

4.1. Porosity and Surface Area

Considering the reactive transport equation given in (6), it is evident that the specific surface area 𝜎 controls
the strength of the source term. Whereas the evolution of the porosity 𝜙 in time can easily be deduced from
the local mass conservation property of the transport equation (and its discretization for RT0/P0 elements),
the specific surface area is a quantity generally not accessible from macroscopic information. As a remedy,
the following relation between 𝜎 and 𝜙 is often assumed in three dimensions (Seigneur et al., 2019):

𝜎 = 𝜎0

(
1 − 𝜙

1 − 𝜙0

) 2
3
,
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Figure 6. Binary porosity map characterizing the geometry of a microfluidic device. Porous matrix within the flow
channel consisting of square-shaped solids. The upper matrix exhibits a porosity of 0.21, the lower one of 0.29.

with reference surface area 𝜎0 at 𝜙0. In our two-dimensional setup this transfers to 𝜎 =
√

4𝜋(1 − 𝜙) for cir-
cular grains. In contrast, with our level-set approach we are able to calculate the (specific) surface explicitly
based on the underlying reactive processes. To illustrate the order of magnitude the heuristic law devi-
ates from the real porosity, (specific) surface relation in scenarios involving topological changes of the solid
domain Y s, we consider the merging of two circles; see Figure 5. In application, this situation may for
instance occur due to substantial precipitation. We position two circles of radius 0.05 at a distance of 0.2
and let the interface evolve in normal direction with unit speed. By a linear reconstruction of the level-set
function on each triangle of the underlying discretization, both 𝜙 and 𝜎 are easily determined. In Figure 5c,
the resulting relation between both quantities is depicted (red line). As a reference, the corresponding rela-
tion without changes in topology 𝜎 =

√
8𝜋(1 − 𝜙) is displayed as well (blue line). The critical porosity

𝜙crit = 1 − 𝜋

50
≈ 0.9372, that is, when the two circles touch each other in a single point, is clearly visible

as a kink in Figure 5c. More precisely, monotonicity behavior is inverted locally at the critical value. For
low porosities, both graphs differ by a factor of

√
2. We therefore expect reaction properties to change dra-

matically under exchange of the aforementioned cell geometries. Due to this strong impact, it is essential
to include a detailed description of the 𝜙-𝜎 relation for accurate modeling, which is easily possible in the
level-set context. The same reasoning immediately translates into the poor approximation capabilities of
similar power laws approximating diffusivity and permeability for such scenarios (cf. Figure 7). This justifies
the computational effort invested in geometry evolution and evaluation by our approach.

4.2. Permeability Tensors

In order to evaluate the quality of the permeability solver described in section 3.4.1, quantitative comparisons
have been rendered against the literature (see Frank, 2013; Guibert et al., 2016; Sobera & Kleijn, 2006).
Moreover, we validated translational invariance arising from the periodic boundary conditions. Note that
all shapes are defined via suitable level-set functions on a fixed grid.

First, to underline the flexibility of our algorithm, we calculate the permeability of a microfluidic device. Sim-
ilar to the setup presented in Ahkami et al. (2018), we consider a two-dimensional device hosting a fractured
porous medium with an inlet at the left end. More precisely, one horizontal fracture in the direction of main
flow separates two porous matrices of porosity 0.21 (upper) and 0.29 (lower), consisting of square-shaped
inclusions. Additionally, another diagonal fracture is embedded into the lighter matrix. The porosity map
describing this complex geometry is depicted in Figure 6.
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Figure 7. Dissolution of a composite material and simultaneously calculated permeability. The initial configuration is shown in (a), consisting of calcite (gray)
and dolomite (black). For T = 0.4 s and T = 0.8 s the current interface is depicted in blue, the initial configuration in red (b, c). The bottom row shows the
diagonal components of the associated permeability tensor in comparison to Kozeny-Carman (d) as well as the porosity evolution (e) over time.

Calculations on a regular 1,000 × 1,000 grid predict a permeability of

K = 10−5 ·
(

3.870 0.000
0.000 0.000

)
[L2].

As expected, the setup is only permeable along the x axis while all other entries of the tensor are at least 8
orders of magnitude smaller in modulus.

Second, in order to test the interplay of permeability, and level-set solver, we investigate the dissolution of a
composite material in generalization of Molins et al. (2017) and Ray, Oberlander, et al. (2019); see Figure 7.
In this scenario, two different dissolving materials are considered with interface velocities differing by a
factor of 10 (Figure 7a). Starting from a central channel at time T = 0, both materials are dissolving with their
respective speeds in normal direction and the current interface between the materials, and the void space
is traced (cf. Figures 7b and 7c). For every evolution step of the level set a recalculation of the permeability
tensor is implemented (Figure 7d). We also compared the results to a standard Kozeny-Carman power law
of the type (Schulz et al., 2019)

K =
c0

𝜎SV

𝜙3

(1 − 𝜙)2 ,

where 𝜎SV [L−1] denotes the specific surface with respect to the unit volume of the solid part and c0 is a
geometry dependent constant. All calculations were performed on a regular 64 × 64 grid.

The permeability in y direction increases over time whereas the configuration remains impermeable in x
direction for small times T. After about 0.8 s, the wormholes are formed. Accordingly, a permeability tensor
with two positive eigenvalues is obtained. However, such rapid structural changes are not displayed using the
Kozeny-Carman relation; see Figure 7d. As the permeability tensor enters Darcy's equation (7), deviations
in K have direct impact on the macroscopic flow field.

In a last example, we present an application that couples our permeability solver to reactive transport.
Inside the square [0, 0.1]2 [dm]2, a circle of radius 0.03 dm is considered, being horizontally subdivided into
two semicircles. Each of them is composed of a different mineral (e.g., calcite and dolomite) with different
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Figure 8. Calculation of permeability tensors on an evolving domain. A circle of composite mineral (a) is dissolved in a microscopic reactive transport
simulation, causing anisotropic shape deformation (b). The evolution of the related permeability tensor [m2] is depicted in (c).

reaction pathways and dissolution speeds; see Figure 8a. The dolomite part dissolves via the equation
presented in section 5, the calcite part according to Ray, Oberlander, et al. (2019):

rm =
(

k1cH+ + k3
)(

1 −
cCa2+cCO2−

3

Ks,cal

)
, R⃗cal(c⃗) =

⎛⎜⎜⎜⎝
−k1cH+

(
1 −

cCa2+ cCO2−
3

Ks,cal

)
rm
rm

⎞⎟⎟⎟⎠
with k1 = 0.89 [mol m−1 s−1], k3 = 6.6 · 10−7[mol m−1 s−1], Ks,cal = 10−8.234, and c⃗ =

(
cH+ , cCa2+ , cCO2−

3

)T
. The

shape development of the solid-liquid interface depicted in Figure 8b stems from an actual microsimulation
including reactive flow. Since the solid part will not preserve its symmetry, we expect the permeability tensor
to become gradually more anisotropic. Its dependence on the porosity is also depicted in Figure 8c. For
comparison, the Kozeny-Carman approximation is plotted as well, being scaled to fit the calculation at the
initial geometry. As it is evident from our results, the Kozeny-Carman relation cannot yield an accurate
description since it cannot capture the anisotropic behavior simultaneously in both spatial directions.

5. Micro-Macro Simulations
We now apply our fully coupled micro-macro approach to the dissolution of dolomite. More precisely, the
reaction path

CaMg(CO3)2−−−−⇀↽−−−− Ca2+ + Mg2+ + 2CO2−
3

with rate

rm = ka0.5
H+

⎛⎜⎜⎝1 −
aCa2+aMg2+a2

CO2−
3

Ks,dol

⎞⎟⎟⎠
as used in Molins et al. (2017) is considered. Equilibrium constant Ks,dol and rate coefficient k are set to

Ks,dol = 10−16.5, k = 4.5 · 10−4 mol m−1s−1.

See Michaowski and Garcia Asuero (2012) and Molins et al. (2017). For simplicity, we regard concentration
c and activity a of the chemical species as identical in value, dropping units. Denoting the vector of solutes'
concentrations by c⃗ =

(
cCa2+ , cMg2+ , cCO2−

3
, cH+

)T
, the complete reaction vector is given by

R⃗(c⃗) =

⎛⎜⎜⎜⎜⎝

rm
rm

2rm
0

⎞⎟⎟⎟⎟⎠
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according to the stoichiometric coefficients. On the rectangular domain Ω= [0,1]× [0,0.5] [cm2] we
consider the following macroscopic transport equations and boundary/initial conditions adopted from
Ray, Oberlander, et al. (2019):

𝜕t(𝜙c⃗) + c⃗ = 1
𝜀
𝜎R⃗(c⃗) in (0,T) × Ω,(c⃗

)
∶ = ∇ ·

(
c⃗ ⊗ v⃗ − D∇c⃗

)
,

(c∗v⃗ − D∇c∗) · 𝜈 = 0 on (0,T) × Γ±,

∗∈ {Ca2+,Mg2+,CO2−
3 ,H+},

(c†v⃗ − D∇c†) · 𝜈 = 0 on (0,T) × Γin,

† ∈ {Ca2+,Mg2+,CO2−
3 },

(cH+ v⃗ − D∇cH+ ) · 𝜈 = 10−5v⃗ · 𝜈 on (0,T) × Γin,

−D∇c∗ · 𝜈 = 0 on (0,T) × Γout,

c†(0, ·) = 0 in Ω,
cH+ (0, ·) = 10−5 [mol dm−2] in Ω,

with Γin = {0}× (0,0.5) (left), Γout = {1}× (0,0.5) (right), Γ± = (0,0.5)× {0,1} (top/bottom). These equations
model the injection of an acidic solution at pH 5 from the left boundary. While no-flux conditions are posed
at the upper and lower boundary for all species, the right edge corresponds to an outflow boundary.

Instead of an artificially prescribed advective velocity field v⃗ as in Ray, Oberlander, et al. (2019), we solve
Darcy's equation

v⃗ = −K

𝜇
∇p in Ω, t ∈ (0,T),

∇ · v⃗ = 0 in Ω, t ∈ (0,T),
v⃗ · 𝜈 = −10−2 or − 10−1 [cm/s] on Γin, t ∈ (0,T),
v⃗ · 𝜈 = 0 on Γ±, t ∈ (0,T),

p = 0 on Γout, t ∈ (0,T).

Accordingly, the system is driven by an inflow over the left boundary Γin. The obtained velocities cor-
respond to Péclet numbers 500 or 5,000, respectively. Diffusion coefficient and dynamic viscosity are set
to D = 2 · 10−9 m2 s−1 and 𝜇 = 1.1 · 10−3 kg s−1, respectively (Rumble, 2018; Wang, 1965). As discussed in
section 2.2, the normal interface velocity takes the form vn = 𝜀−1Vmrm(c⃗)·m with speed modulation function
m defined in (5) and molar volume Vm = 6.412 · 10−2 dm2 mol−1 (WWW-MINCRYST, 2014). Additionally,
level set and cell problems as formulated in section 2 supplement the model.

5.1. Choice of Discretization Parameters and Convergence Studies

Our solution algorithm for micro-macro models presented in section 3.1 leaves the choice of two mesh
parameters h and H. The microscopic parameter h determines the fineness of the grids within each unit cell
Y ; the macroscopic parameter H prescribes the fineness of the discretization ofΩ as a fraction of the domain's
extent in x direction. As the microscopic model part only delivers auxiliary information to the macro prob-
lem, its share of computational time should be rather small. Nevertheless, convergence to the continuous
solution can only be expected for h, H → 0. We therefore discuss reasonable choices for the relation between
h, H in order to satisfy both requirements in terms of efficiency and accuracy.

First, a simplified setting with only one single cell encoding the underlying microstructure of Ω is consid-
ered, yet involving the full reactive system. After a simulated dissolution time of 600 hr, we compare the
calculated calcium concentration for a variety of mesh parameters to a reference solution (belonging to the
finest meshes). Therefore, the overall mass defect (L1 error) is determined using quadrature and depicted
in Figure 9. Note that all simulations feature the same time stepping scheme. In case of large values of H, a
refinement of the microscopic mesh did not lead to an improved approximation quality, indicating misspent
computational effort. Conversely, refinement of h does significantly reduce the error for small values of H,
again indicating badly balanced computation time. In Table 1, the convergence behavior with respect to
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Figure 9. Comparison of quality of solutions calculated with different mesh parameters h, H, showing relative L1 error
in macroscopic calcium concentration to reference solution. Each color refers to a fixed microscopic mesh size.

microscopic and macroscopic mesh parameter is presented quantitatively. There, we additionally consider
the corresponding L2 errors and the estimated order of convergence (EOC) according to the formula

EOC(Lp) = log2

( ||c𝑗 − c𝑗+1||Lp||c𝑗+1 − c𝑗+2||Lp

)
,

where cj denotes the concentration belonging to the jth refinement level. As expected for lowest-order
Raviart-Thomas elements, linear convergence is obtained in H. In the microscopic discretization parameter
h a quadratic convergence can be concluded. Such a behavior has already been observed in Ray, Oberlander,
et al. (2019) but only as superconvergence in an isotropic dissolution scenario. We therefore conclude
quadratic convergence to be the result of the second-order level-set solver. In the realm of multiscale
finite elements, convergence results with optimal order in both microscopic and macroscopic discretization
parameters are known and also proven for elliptic equations (Hesthaven et al., 2014). Therefore, quadratic

Table 1
Errors and EOC in Calcium Concentration w.r.t. to the Microscopic and Macroscopic Discretization Parameters h, H at
Pe = 5,000

Convergence in H at h = 1/400

H ||cCai−1
− cCai

||L2
||cCai−1−cCai ||L2||cCai ||L2

EOC (L2) ||cCai−1
− cCai

||L1
||cCai−1−cCai ||L1||cCai ||L1

EOC (L1)

1
15 — — — — — —
1

30 3.9581e−8 1.2957e−1 — 1.4166e-9 7.7043e−2 —
1

60 2.7826e−8 9.0779e−2 0.5133 8.9232e−10 4.8145e−2 0.6783
1

120 1.157e−8 3.7757e−2 1.2656 2.8277e−10 1.5275e−2 1.6562
1

240 4.8345e−9 1.5765e−2 1.2600 1.1941e−10 6.4462e−3 1.2447

Convergence in h at H = 1/240

h ||cCai−1
− cCai

||L2
||cCai−1−cCai ||L2||cCai ||L2

EOC (L2) ||cCai−1
− cCai

||L1
||cCai−1−cCai ||L1||cCai ||L1

EOC (L1)

1
25 — — — — — —
1

50 7.0742e−10 2.3091e−3 — 4.2664e−11 2.3053e−3 —
1

100 2.2721e−10 7.4110e−4 1.6385 1.3699e−11 7.3970e−4 1.6389
1

200 5.7793e−11 1.8847e−4 1.9751 3.4846e−12 1.8811e−4 1.9751
1

400 1.4660e−11 4.7807e−5 1.9790 8.8395e−13 4.7718e−5 1.9789
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Figure 10. Computation time spent on solving different subproblems for mesh parameters h = 1/50, H = 1/70. In this
test scenario, one complete reevaluation of the single microcell is enforced. Entity of micro subproblems requires a
subordinate amount of computation time.

convergence estimates in h are expected in our application, although the diffusion solver used is only lin-
early convergent. Since the examples provided deal with highly advection dominated transport (Pe = 5,000),
those linear contributions seem to play a subordinate role up to the resolutions considered. However, the
macroscopic solution is more sensitive to H than h. Taking sensitivity and order of convergence into account,
a meaningful relation between the microscopic and macroscopic mesh parameters can be deduced as done
in Hesthaven et al. (2014). Using the data presented in Figure 9, we deduce the recommendation h2 ∼ H

30
as a rule of thumb for our further calculations in order to keep the errors related to the microscopic mesh
considerably lower than those arising from the macroscopic discretization. Certainly, this proportionality
factor depends in general on the input parameters.

In order to underline the efficiency of our solution algorithm, we analyze the time spent on each subproblem
in case of a reasonable h,H relation; see Figure 10. For this simulation all adaptivity features are disabled,
enforcing the solution of the single cell problem at each time step. In fact, the amount of computational
time invested in gaining supporting information from the microscale accounts for about 15% of the total
time. Exploitation of weak scalability and application of adaptive methods (see section 3.4.2) will approx-
imately preserve this ratio as the number of cell problems increases. In Table 2, computation times for a
constant number of cells-CPU cores ratio are depicted as achieved by exploitation of parallel for-loops in
MATLAB©. Up to 16 cores a reasonable parallel efficiency is achieved. In the realm of higher parallelization
on our test system, the effects of internodal transport and load imbalance seem to play an important role but
might be mitigated by refined parallelization methods. An overview of commonly encountered performance
bottlenecks in parallel computing is given in Rajput and Katiyar (2013).

Table 2
Weak Scalability in the Number of Cell Problems

Number of cores Time in s Parallel efficiency
1 85.5 1
2 90.5 0.945
4 91.9 0.930
8 93.4 0.915
16 101.1 0.846
32 149.7 0.571

Note. Total time spent on microcalculations for different numbers of CPU
cores in seconds. Computation of twice as many cell problems as cores
with micromesh parameter h = 1/64. Calculations performed on a four
NUMA-node system, each node powered by anIntel®Xeon® E7-4870 CPU.
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Figure 11. Dissolution of a random porosity field: The top row illustrates a porosity map of the macroscopic domain Ω at time steps 0 (a) and 25 (b). Images
(c–f) depict the recalculated cell problems in dark blue for the following time steps: 17 (c), 20 (d), 30 (e), and 40 (f). The label “1” corresponds to a complete
reevaluation of permeability and diffusion tensors for the related micro cell. In (g) the calcium concentration in mol dm−2 at time step 25 (blue/low to red/high
concentration) is shown. Nonparallel stream lines (gray arrows) are visible due to a nonuniform permeability field.

Considering the effects of adaptivity and weak scalability, our micro-macro simulation is comparable to pure
macroscale models in terms of computation time.

5.2. Random Porosity Field and Adaptivity Testing

In the following, we consider the macroscopic domain Ω being subdivided into an array of 6 × 3 squares.
A microcell is attached to each of them and initialized with a quadratic solid of random size, such that
the arising porosities are randomly distributed in the interval [0.36,0.80] (Figure 11a). In this example, we
examine the development of the local porosities as the dolomite structure deteriorates under the inflow of an
acidic liquid over the left boundary. A coarse time discretization is chosen in this purely illustratory example
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in order to clearly demonstrate the functionality of the adaptivity procedure. As expected, the porosity rises
fastest in proximity of the inlet. Far away from the left boundary, the concentration of solutes is already close
to equilibrium inhibiting the dissolution process; see Figure 11b.

In this scenario, 70% of computational effort related to cell evaluations was saved by the methods of adaptiv-
ity presented in section 3.4.2. As in Ray, Oberlander, et al. (2019), the initial data of the transport equations
are far away from equilibrium. Therefore, an exponential time stepping capped at a maximal step size was
used. Since the time scale of dissolution reactions is orders of magnitude larger than the initial time step,
no reevaluation of the cell problems (8) and (9) was necessary within the first 16 steps. In the course of the
simulation, the dissolution front migrates toward the right boundary. Our efficient solution algorithm con-
centrates computational effort on the cell problems related to this moving front. In Figures 11c–11f, regions
with recalculated cell problems are highlighted for different time steps. In total, 515 out of 720 solver calls
were saved.

As already mentioned in section 4.2, nonuniform permeability conditions in Ω will lead to distortions in
the flow field, influencing solutes' transport. In Figure 11g, the concentration of calcium ions within the
liquid is depicted. Comparing to the porosity maps in Figures 11a and 11b, regions of lower permeability
show a stronger accumulation of calcium. Moreover, curved flow lines are visible, focusing transport to
areas of high permeability, which could not be accounted for in Ray, Oberlander, et al. (2019). Since the
solutes' concentration distribution determines local dissolution speeds, major improvements on accuracy
are expected by solving Darcy's equation.

5.3. Comparison to Pore-Scale Simulation

In this section, we compare our micro-macro algorithm with a purely microscopic simulation in terms of
computational effort and accuracy. In order to solve the microscopic equations presented in (3), we extended
the HyPHM solvers to work on domains implicitly given by a level-set function. This allows for a direct cou-
pling to the level-set solver. Exploiting the local conservation properties of our discretization for the transport
equation, an equivalent rewriting of the interior boundary conditions as local source terms allows for the
usage of the aforementioned Newton solver without further adaptations. This reformulation is commonly
used in finite volume methods; see Moukalled et al. (2016). For the evaluation of the Stokes problem, we
exploit the same algorithm used within the permeability solver. In this case, a first-order level-set solver is
applied to account for the lower smoothness of the velocity field. Nevertheless, roughness has been coun-
teracted by projecting the concentration field into the solid before calculating the normal velocity globally
on Ω according to the formula presented in (2) (cf. Li et al., 2008). The quality of this algorithm has been
assessed by comparison to the benchmarks presented in Molins et al. (2020). Predicted dissolution rates in
a static scenario (Benchmark Part I) as well as solid deformation in a dynamic case (Benchmark Part II) are
in good agreement with our calculations.

In the following, we consider the dissolution process of an array of dolomite grains, similar to test scenarios
found in the literature (Molins et al., 2017; Ray, Oberlander, et al., 2019). In particular, 27× 13 circular grains
are arranged within the rectangular domain Ω representing a dolomite structure with a porosity of 0.75; see
Figure 12a. In order to illustrate the applicability of our micro-macro simulation to realistic scenarios like
flow-channel experiments, we refrained from choosing a perfectly periodic array in terms of a tessellation
with reference cells. Instead, columns of grains are shifted against each other; the fringe of the array does
not match grain spacing and boundary conditions are nonperiodic. For the microscale simulation, Stokes
equations exterior boundary conditions are chosen as follows:

v⃗ = 0 on (0,T) × Γ±,

v⃗ = [10−2, 0]T [cm/s] on (0,T) × Γin,

p = 0 on (0,T) × Γout,

resulting in a Péclet number of 500. The calculations were performed on a regular 800 × 400 grid, allowing
to capture the shape of each grain properly.

For our micro-macro simulation, slight simplifications are applied exploiting the symmetry of the problem.
In anticipation of an effectively one-dimensional dissolution process along the x axis, we assign one unit cell
to each column of the array; see Ray, Oberlander, et al. (2019). As depicted in Figure 3b, the macroscopic
discretization elements are grouped by the x coordinate of their barycenter and propagate their averaged
concentration values to the respective unit cell. Accordingly, the quantities calculated therein are propagated
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Figure 12. (a) Normalized difference of calcium concentration distribution between micro-macro and pore-scale
simulation in Ω after 7 min. For convenience, the microscopic solutes' concentrations in the solid part are extended to
zero. The corresponding concentration distributions averaged along the vertical axis are depicted in (b), adjusted for
porosity. The same quantities are displayed in (c) and (d) at the final time of 600 hr.

GÄRTTNER ET AL. 19 of 23



Water Resources Research 10.1029/2020WR027585

Table 3
Parameters Used in the Micro-Macro Simulation

Parameter Value
macroscopic domain Ω [0,1]× [0,0.5] ; [cm2]
number of unit cells 27
cell resolution 64 x 64
microscopic mesh parameter h 1/64
macroscopic resolution 108 × 54
macroscopic mesh parameter H 1/108 [cm]
inlet velocity 10−4 m/s
Péclet number 500
simulation time 2.16 · 106 s
number of time steps 53
initial porosity 0.75
initial unit cell geometry circular

back to all related macroscopic elements. All solids Y s are initialized as
circles matching the overall porosity of 0.75. Further parameters are listed
in Table 3.

We conduct a comparison of both simulation results arising from differ-
ent modeling approaches similarly to the procedure presented in Molins
et al. (2020). First, we look at the static scenario, that is, short simula-
tion times without substantial changes to the underlying microstructure.
In Figures 12a and 12b, the predicted calcium concentration field by
micro-macro and pore-scale simulations are compared after a time of
7 min, referring to the fourth time step. Since the inflow velocity is quite
low in comparison to the reaction speed, we expect mineral and liquid to
reach chemical equilibrium quickly as the solutes are transported toward
the right boundary. It is evident from illustration (b) in Figure 12 that our
micro-macro simulation captures the position and slope of the dissolution
front quite accurately. Minor deviations at the fringe of the dissolution
front might be caused by boundary effects in the bottom part of the
domain where the distance between the array and the boundary is partic-
ularly large or due to insufficient spatial resolution of the macrodomain

in this area. Note that the dissolution front in case of our micro-macro simulation is only resolved by about
20 finite elements in diameter. Since the predicted concentrations are almost equal in proximity to the out-
flow boundary, similar speeds of the dissolution fronts are expected due to mass conservation. From these
data a total dissolution time of the array of approximately 8 · 106 s is deduced.

In a second step, we investigate the long-term behavior of both solutions. For that reason, a time horizon of
600 hr is chosen, expecting the dissolution front to move approximately 2.5 mm toward the right boundary.
For both simulations an identical time stepping scheme is applied. After an exponential growing phase to
basis two starting from an initial time step of 60 s, step sizes are capped at 50,000 s. As it is deduced from the
results of the static experiment, this temporal discretization should allow for each dolomite grain to dissolve
within several time steps. Therefore, the operator splitting error between transport and domain evolution
is reasonably small. As the implicit Euler method is unconditionally stable, there are no theoretical restric-
tions on the time step size. Again, normalized deviation between both solutions as well as a comparison of
the horizontal concentration distribution are depicted in Figures 12c and 12d. According to our prediction,
both dissolution fronts move to the right, still commencing at the same value of x. As it is evident from image
Figure 12c, boundary effects in the microscale simulation distorted the front. Instead of a vertical course,
roundings have formed close to the lateral flow boundary. Moreover, deviations in the width of the disso-
lution front as well as the total outflow of mass are detected. Nevertheless, both simulations are in good
agreement considering the massive difference in computational effort invested.

To close the comparison of both simulation and modeling methods, we dedicate ourselves to the computa-
tion times. Aforementioned micro-macro simulation was executed on a system running an Intel® Core™

i7-4790 CPU with a base clock of 3.6 GHz and 16 GB of ram. A total run time of 780 s was measured. In con-
trast, the microscale computations were performed on an Intel® Xeon® E5-2630 v4 at 2.2 GHz base clock
and 126 GB of ram due to the enormous memory consumption of the Newton solver. Here, a total run time
of 27,300 s was identified. In both cases, most of the computation time was spent on the nonlinear trans-
port problem. For the sake of a reasonable comparison in computation time, the micro-macro simulation
was performed on the server CPU as well, terminating after 1,080 s. Hence, the micro-macro simulation
presented in this paper has shown to be about 25 times faster.

6. Conclusion
In this paper, we proposed an efficient numerical scheme for reactive flow and transport problems in evolv-
ing heterogeneous porous media. Based on a detailed microscopic model and its upscaling, an algorithm
has been developed accounting for the bidirectional coupling of the inherent microscale and macroscale.
Building upon recent research, existing approaches are extended by taking nonhomogeneous permeabil-
ity conditions and therefore nontrivial flow fields into account. Since it is evident that there cannot
be a simple Kozeny-Carman type relation delivering good approximations for a variety of geometries
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(Schulz et al., 2019), detailed microscopic information is needed and must be taken into account to achieve
high accuracy. Our algorithm is well suited to properly account for complex solid geometries of the under-
lying microstructure. In this way, situations going beyond the applicability of classical substitutional power
laws for macroscopic parameters such as Kozeny-Carman are accessible. Throughout our elaborations a spe-
cial emphasis has been laid on efficiency. Thanks to a parallel treatment of the cell problems and a tailored
adaptivity scheme, we could prove computational time of our micro-macro approach to be comparable to
purely macroscopic simulations. Furthermore, a comparison to pure microscale simulations in a realistic
test scenario has been performed, underlining the predictive power of our simulation in terms of accuracy.
Current research addresses dissolution and precipitation reactions involving several minerals. The direct
interaction of different solid phases naturally leads to unsymmetrical and irregular geometries, which can
be tackled numerically with the methods described in this paper. Future research will entail error analysis
for the presented numerical scheme.

Data Availability Statement
The data associated with this paper will be made available via 4TU.Center for Research Data.
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