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Abstract In this article, we perform a parameter study for a recently developed karst hydrological
model. The study consists of a high-dimensional Bayesian inverse problem and a global sensitivity
analysis. For the first time in karst hydrology, we use the active subspace method to find directions in the
parameter space that dominate the Bayesian update from the prior to the posterior distribution in order to
effectively reduce the dimension of the problem and for computational efficiency. Additionally, the
calculated active subspace can be exploited to construct sensitivity metrics on each of the individual
parameters and be used to construct a natural model surrogate. The model consists of 21 parameters to
reproduce the hydrological behavior of spring discharge in a karst aquifer located in the Kerschbaum
spring recharge area at Waidhofen a.d. Ybbs in Austria. The experimental spatial and time series data for
the inference process were collected by the water works in Waidhofen. We show that this case study has
implicit low dimensionality, and we run an adjusted Markov chain Monte Carlo algorithm in a
low-dimensional subspace to construct samples of the posterior distribution. The results are visualized and
verified by plots of the posterior's push-forward distribution displaying the uncertainty in predicting
discharge values due to the experimental noise in the data. Finally, a discussion provides hydrological
interpretation of these results for the Kerschbaum area.

1. Introduction
Models are commonly used in karst systems to investigate the dominant hydrological processes and the
quantity and quality of water resources in well-defined surface or subsurface catchments. Various karst mod-
eling approaches exist, ranging from black box models (Labat et al., 2000; 1999; Jukić & Denić-Jukić, 2008),
that is, transferring an input signal to a desired output signal, over lumped parameter models (gray box;
Fleury et al., 2009; Mazzilli et al., 2017; Sivelle et al., 2019) to distributed process-based models (Reimann &
Hill, 2009; Giese et al., 2018; Henson et al., 2018; Sauter et al., 2006). Given their ability to represent the phys-
ical characteristics of a catchment in detail, distributed process-based models are usually the first choice in
water resources research. In the particular case of karst aquifers, however, acquiring the relevant data for
these models is challenging due to the heterogeneous nature of karstic systems and their mostly unknown
subsurface drainage systems (Xu et al., 2018). Also, past studies have shown that even if physical parame-
ters may be obtained from field observations, the fact that they mostly represent point measurements can
lead to a severe mismatch when using these parameters in distributed hydrological models (Hogue et al.,
2006; Rosero et al., 2010). For these reasons, lumped process-based models are commonly accepted model-
ing approaches in karst water resources research (Jukić & Denić-Jukić, 2009; Jourde et al., 2015; Hartmann
et al., 2013). The parameters of such lumped modeling approaches are typically not directly measurable in
the field and need to be estimated in the framework of model calibration (Hartmann et al., 2017). This leads
to a decisive trade-off: on the one hand, lumped models based on a low number of calibration parameters,
for example, 4 to 6, are less prone to nonuniqueness in parameter identification (Jakeman & Hornberger,
1993; Beven, 2006), that is, different parameter combinations lead to the same result. However, the repre-
sentation of the dominant hydrological processes in karst systems may be too simple and not sufficiently
represented by this low number of parameters (Hartmann et al., 2013). In contrast, by including more cali-
bration parameters to better represent relevant processes in the model structure, such as the effect of land use
changes on spring discharges, the parameters may become unidentifiable, which can reduce the prediction
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accuracy of the model (Hartmann et al., 2014). To tackle the challenge of applying lumped parameter models
with a high-dimensional parameter space for karst hydrological research studies, there is a need to perform
comprehensive parameter studies to avoid model overparametrization and to reduce model parameter and
output uncertainties.

With the rise of computational power in the last two decades, Bayesian inverse problems have become a
popular part of comprehensive parameter studies for hydrological models (Engeland & Gottschalk, 2002;
Kavetski et al., 2006; Kitanidis & Lee, 2014; Thiemann et al., 2001). In contrast to classical inverse problems,
whose formulation is often ill-posed, a Bayesian problem formulation introduces regularizing prior infor-
mation which gives a different formulation that is mathematically well behaved. Bayesian inversion aims at
finding a posterior distribution on the model parameters incorporating the information of measured, noisy
data, for example, spring discharge. The posterior, which is also used to quantify uncertainty in the inferred
parameters, is proportional to the product of the likelihood function and the prior, a distribution that is
assumed to be known for the model parameters based on prior knowledge, for example, resulting from field
campaigns or manual model calibration.

The most common strategy used for approximating a posterior is to construct samples from the distribution
with desired properties. Markov chain Monte Carlo (MCMC) and its derivatives are popular sample-based
techniques (Vrugt et al., 2008; Martín-Arias et al., 2020); however, they present computational challenges.
These algorithms generally require a very large number of evaluations of the model to provide an accept-
able result. In the hydrological community, where a single model evaluation is often quite computationally
expensive, naive implementations of these methods may not be viable, and having too few samples causes
the solution to be polluted with sampling error. One way to reduce this effect is to construct a surrogate
model that has a much lower computational cost. Common approaches for global surrogate models include
stochastic finite element approaches for forming polynomial approximations (Xiu & Karniadakis, 2002;
Wan & Karniadakis, 2006; Le Maître et al., 2004; Le Maître et al., 2004) and using tensor grid or sparse grid
stochastic collocation methods (Almeida & Oden, 2010; Nobile et al., 2008). Another strategy is to use adap-
tive sampling methods to reduce sample-based error as shown in, for example, Haario et al. (2006), Vrugt
et al. (2009), and Mattis and Wohlmuth (2018). Another attribute that affects the computational expense of
sample-based approximation methods is high dimensionality in the space of uncertain parameters because
it may slow the identification of areas of high probability and has the tendency to produce highly correlated
samples. There has been much effort in developing algorithms that are more efficient and reduce compu-
tational expense due to high-dimensional parameter spaces by effectively reducing the dimension (Boyce &
Yeh, 2014; Bui-Thanh & Girolami, 2014; Constantine et al., 2016; Cui et al., 2016).

A relatively new technique for dimension reduction is the active subspace method presented in Constantine
et al. (2014), Constantine (2015), and Russi (2010), which seeks orthogonal directions in the space of
parameters that dominate the Bayesian update from the prior to the posterior distribution. These dominant
directions span the subspace and define a new coordinate system a low-dimensional Markov chain can move
in. Chains in lower dimensions have preferable properties concerning autocorrelation times which makes
them more efficient when producing posterior samples of hydrological model parameters. As a bonus, the
active subspace can be exploited also to calculate global sensitivity metrics for individual parameters as
shown in Constantine and Diaz (2017). The active subspace method has previously been successful in reduc-
ing the effective dimension of parameter spaces, for example, for efficient Bayesian inversion of a complex
subsurface process (Teixeira Parente et al., 2019) or to study sensitivities in a hydrological model (Jefferson
et al., 2015). An added benefit of the active subspace method is that there is a natural cheap global surrogate
model embedded in the method via global polynomial regression in the low-dimensional active subspace.
Thus, the advantage of the active subspace method is threefold: it effectively reduces the dimension of the
Bayesian inverse problem, it easily produces global sensitivity metrics, and it naturally allows for the con-
struction of a cheap global surrogate model. All of these are gained from the same moderate number of
forward model evaluations.

While several hydrological studies address the issue of model parameter sensitivities for inference (e.g.,
Cuntz et al., 2016, Mockler et al., 2016, Vanuytrecht et al., 2014), there has been little effort in karst hydro-
logical research to investigate the low dimensionality of a corresponding parameter estimation problem
(e.g., Sarrazin et al., 2018). Our approach is different from these studies in the sense that we study domi-
nant directions in parameter spaces and do not focus on sensitivities of coordinate aligned, that is, individual
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parameters. In this regard, the objective of this manuscript is the introduction of the active subspace method
to the field of karst hydrology as a technique for dimension reduction and sensitivity analysis in parameter
studies. We demonstrate this method and its mentioned advantages by investigating parameter relation-
ships in the LuKARS model, a lumped karst aquifer model with a high-dimensional parameter space that
was recently developed by Bittner et al. (2018) to perform land use change impact studies in karstic envi-
ronments. We hypothesize that it is possible to reduce the dimensions of the parameter space in LuKARS,
thus saving computational cost, and to better constrain the parameter ranges of the most sensitive model
parameters leading to a reduction in model parameter and model result uncertainties.

This article is organized as follows. Section 2 provides a brief introduction into the study area and the struc-
ture of the LuKARS model. In section 3, we explain Bayesian inversion, how we exploit active subspaces for
it, the construction of global sensitivity values, and the concrete setting for our application. The computa-
tional results are presented in section 4, followed by a comprehensive discussion in section 5 in which we
also comment on limits and transferability of the proposed method. Finally, we conclude with a summary
in section 6.

2. Case Study
2.1. Kerschbaum Spring Recharge Area
The karst spring that we investigate in the present study is the Kerschbaum spring located about 10 km
south of the city of Waidhofen a.d. Ybbs (Austria) (Figures S1a and S1b in the supporting information). Its
recharge area was delimited in a former study by Hacker (2003) and comprises about 2.5 km2. This pre-alpine
catchment is part of the easternmost foothills of the Northern Calcareous Alps with the lowest elevation
of 435 m at the Kerschbaum spring and a maximum elevation of 868 m on the summit of the mountain
Glashüttenberg. The climate of the study area can be described as warm moderate, with an annual mean
temperature of 8 ◦C and an annual mean precipitation of 1,379 mm, both determined from daily measuring
data recorded at the Hinterlug weather station between 1981 and 2014. Forests represent the dominant land
cover in the study area with beeches as primary tree species. Moreover, parts of the recharge area are used
for dolomite mining.

From a geological point of view, the entire recharge area of the Kerschbaum spring is dominated by a litho-
logic sequence of Triassic dolostones (Figure S1c). Apart from the absence of significant sinkholes in the
regarded recharge area, leading to the fact that diffuse infiltration plays a key role for groundwater recharge,
Hacker (2003) also provided evidence for a deep karstified aquifer system with a well-connected drainage
system through fractures and conduits in the Kerschbaum spring aquifer. It is important to note that the
Kerschbaum spring represents the most important source for the freshwater supply of the city and the
surroundings of Waidhofen and is thus of particular interest for water resources research studies (Bittner
et al., 2018).

2.2. The LuKARS Model
The LuKARS model was recently proposed by Bittner et al. (2018) with the aim to investigate the hydro-
logical effects of land use changes in karst systems. LuKARS therefore considers the dominant hydrotopes
in a defined recharge area, that is, areas characterized by homogeneous soil and land cover properties, as
distinct spatial units. The sum of the individual hydrotope responses to a given input signal (e.g., precipita-
tion) plus the contribution of a shared linear baseflow storage is then the total spring discharge that should
be modeled at a catchment's outlet. As input data, the model itself needs a precipitation time series as well
as the hydrotope soil information to run. If further processes affecting the effective precipitation are consid-
ered, such as interception and evapotranspiration, further input data are required. In our case, we also take
into account snow melt and accumulation, interception, and evapotranspiration for which we further need
a temperature time series with a daily resolution. Moreover, a measured discharge time series is needed from
the spring of interest to calibrate and validate the model. In the particular case of the Kerschbaum spring,
the discharge is measured with a flowmeter directly in the spring. The discharge, precipitation, and tem-
perature time series with a daily resolution for our model period from 2006 to 2008 were kindly provided by
the water works Waidhofen a.d. Ybbs. The input time series are shown in Figure S3. The LuKARS model
for the Kerschbaum spring in Waidhofen a.d. Ybbs was set up in Bittner et al. (2018) and includes four spa-
tially lumped dominant hydrotopes in the considered recharge area, shown in Figure S2. Hydrotopes 1–3
have beeches as dominant tree species; however, they differ in terms of their individual soil characteris-
tics and spatial shares. While the first hydrotope (denoted by Hyd 1) covers 13% of the recharge area and is
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characterized by shallow soils with mostly coarse-grained soil particles, hydrotope 3 (denoted by Hyd 3), in
contrast, covers 27% of the catchment and is defined by deeper and fine textured soils. Hydrotope 2 (denoted
by Hyd 2) has the largest spatial share in the Kerschbaum spring recharge area (56%) and represents a tran-
sition hydrotope between Hyd 1 and Hyd 3 with moderate soil thicknesses and coarse to fine-textured soils.
Hydrotope Q (denoted by Hyd Q) characterizes the dolomite quarries, which covered about 4% of space in
the recharge area during the model period (2006–2008) in this study.

From a hydrological point of view, the areas of the dolomite quarries are drained by surface runoff and do
not contribute to the Kerschbaum spring discharge. As an obligation to avoid a possible contamination of
the aquifer from the quarry areas, a protective layer consisting of fine material prevents infiltration into the
groundwater system. Thus, Hyd Q is excluded from model calibration and will not be mentioned hereafter.
Also, Bittner et al. (2018) derived the baseflow coefficient kb to match the relatively constant baseflow dis-
charge of the Kerschbaum spring with its low temporal variability. For this reason, as well as to put the focus
on calibrating the hydrotope parameters, kb was chosen as calibrated by Bittner et al. (2018). More details
about the LuKARS model, that is, a description of the equations used in LuKARS and the relevant parame-
ters, are provided in Appendix A. In the following, we use an index i ∈ {1, 2, 3} to denote specifications for
Hyd i.

Each hydrotope is modeled as an independent bucket that has three different discharge components. The
first, representing quickflow (Qhyd,i) occurring via preferential flow paths (e.g., conduits), is described by a
nonlinear hysteresis function that is activated once a defined storage threshold (emax,i) is reached and stops
after the storage value falling below a predefined minimum storage value (emin,i). The second and third dis-
charge components are both implemented by a linear discharge function and represent the discharge to a
shared baseflow storage (Qis,i) as well as secondary spring discharge (Qsec,i), that is, a discharge component
that transfers water out of the catchment and does not contribute to the spring discharge. All together, seven
parameters need to be calibrated for the implementation of each single hydrotope. These are the discharge
parameter khyd,i and the dimensionless exponent 𝛼i for Qhyd,i, the storage thresholds for the quickflow acti-
vation (emin,i) and (emax,i), parameter kis,i as the discharge coefficient of Qis,i, and finally, ksec,i and esec,i as
the discharge coefficient and the activation level for Qsec,i, respectively. Given the different physical char-
acteristics of all defined hydrotopes, the parameters of one hydrotope need to follow some constraints with
respect to the parameters used for the implementation of other hydrotopes. From a practical point of view,
this means that a hydrotope with shallow and coarse-grained soils (e.g., Hyd 1) needs to have a lower stor-
age capacity and higher discharge coefficient as compared to a hydrotope with deep and fine-textured soils
(e.g., Hyd 3). For the particular case of the three hydrotopes in the Kerschbaum spring recharge area, the
parameter constraints are given as follows:

khyd,1 ≥ khyd,2 ≥ khyd,3

emin,1 ≤ emin,2 ≤ emin,3

emax,1 ≤ emax,2 ≤ emax,3

𝛼1 ≥ 𝛼2 ≥ 𝛼3

kis,1 ≥ kis,2 ≥ kis,3

ksec,1 ≥ ksec,2 ≥ ksec,3

esec,1 ≤ esec,2 ≤ esec,3.

(1)

Although the introduced condition for the 𝛼 values is not strictly necessary, we implemented it to further
enhance the quick response of hydrotopes with a low difference between emin,i and emax,i and a generally
low value of emax,i during high precipitation events. Bittner et al. (2018) manually calibrated the LuKARS
model for the Kerschbaum spring recharge area. Based on this trial-and-error calibration, it was possible to
reliably determine possible ranges of all model parameters. These are shown in Table 1 and will be used as
prior parameter intervals for the presented study in a Bayesian setting.

3. Parameter Inference
In this section we present our approach for solving the Bayesian inverse problem of inferring parameter
information for the LuKARS model. Since high-dimensional parameter spaces complicate Bayesian infer-
ence, we utilize the active subspace method, a recent emerging set of tools for dimension reduction. We
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Table 1
Prior Intervals for Physical Parameters

No. Parameter Lower bound Upper bound Unit Description
1 khyd,1 9 900 m2/day Discharge parameter for Qhyd,1

2 emin,1 10 50 mm Min. storage capacity Hyd 1
3 emax,1 15 75 mm Max. storage capacity Hyd 1
4 𝛼1 0.7 1.6 — Quickflow exponent of Hyd 1
5 kis,1 0.002 0.2 m·mm−1·day Discharge parameter for Qis,1

6 ksec,1 0.0095 0.95 m·mm−1·day Discharge parameter for Qsec,1

7 esec,1 25 70 mm Activation level for Qsec,1

8 khyd,2 8.5 850 m2/day Discharge parameter for Qhyd,2

9 emin,2 40 80 mm Min. storage capacity Hyd 2
10 emax,2 80 160 mm Max. storage capacity Hyd 2
11 𝛼2 0.5 1.3 — Quickflow exponent of Hyd 2
12 kis,2 0.00055 0.055 m·mm−1·day Discharge parameter for Qis,2

13 ksec,2 0.0023 0.23 m·mm−1·day Discharge parameter for Qsec,2

14 esec,2 130 220 mm Activation level for Qsec,2

15 khyd,3 7.7 770 m2/day Discharge parameter for Qhyd,3

16 emin,3 75 120 mm Min. storage capacity Hyd 3
17 emax,3 160 255 mm Max. storage capacity Hyd 3
18 𝛼3 0.2 0.7 — Quickflow exponent of Hyd 3
19 kis,3 0.00025 0.025 m·mm−1·day Discharge parameter for Qis,3

20 ksec,3 0.0015 0.15 m·mm−1·day Discharge parameter for Qsec,3

21 esec,3 320 450 mm Activation level for Qsec,3

focus the inference process only with a few linear combinations of parameters that are dominantly driving
the update from the prior to the posterior distribution. After the method is explained formally, but with links
to the actual hydrological problem, we explain Bayesian inversion and its application in detail.

3.1. Active Subspaces
The active subspace method, introduced in Constantine et al. (2014), Constantine (2015), and Russi (2010),
identifies dominant directions in the domain of a multivariate, scalar-valued function f ∶ Rn → R. In our
context, f is a data misfit function (details in section 3.3) which quantifies the mismatch between observed
and simulated spring discharge and is defined on the space of parameters to be calibrated. In other words,
we seek directions on which f varies more than on other directions, on average. Consider a function f of the
form f(x) = g(A⊤x) for each x ∈ Rn, where A ∈ Rn×k, 0 < k < n, is a rectangular matrix. Such functions are
called ridge functions; see Pinkus (2015). Take a vector v ∈ Rn from the null space of A⊤, that is, A⊤v = 0,
and compute

𝑓 (x + v) = g(A⊤(x + v)) = g(A⊤x) = 𝑓 (x). (2)

This equation shows that f is constant along the null space of A⊤ meaning that the n-dimensional function
is actually intrinsically k-dimensional. In practice, the goal is relaxed to finding approximations g and A
such that it holds that f(x) ≈ g(A⊤x). For the hydrological problem of interest, it means that we try to find a
few directions in the parameter space that are significantly informed by the discharge data. We will see that
some, but not all, directions change from the prior to the posterior distribution. This fact is exploited to save
a considerable amount of computational expense.

Note that this is a different approach compared to other sensitivity analysis methods like total sensitivity
indices (or Sobol indices; Sobol, 2001) and Factor Priorization; Saltelli et al., 2008). These methods investigate
coordinate-aligned sensitivities, that is, associated with a particular parameter (factor) of a hydrological
model. Active subspaces can be viewed as a generalization in the sense that we study dominant “directions”
within a parameter space, or, more precisely, we look for linear combinations of parameters that dominate
the model output (here, spring discharge) on average.
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In the following, we assume that f is continuously differentiable and has partial derivatives that are square
integrable with respect to a given probability density function 𝜌. We study a matrix which is the 𝜌-averaged
outer product of the gradient of f with itself, that is,

C ∶= E[∇𝑓 (X)∇𝑓 (X)⊤] = ∫Rn
∇𝑓 (x)∇𝑓 (x)⊤𝜌(x) dx. (3)

In the parameter estimation problem, the weighting probability density 𝜌 is the prior density, defined for
every model parameter, from the Bayesian inversion context (section 3.3). Note that C ∈ Rn×n is symmetric
and positive semidefinite. For some vector v ∈ Rn, compute

v⊤Cv = E[(v⊤∇𝑓 (X))2]. (4)

Thus, v⊤Cv displays the averaged variation of our objective function f along v. This quantity is maximized
(in the set of unit vectors) by the normalized eigenvector v1 of C corresponding to the largest eigenvalue 𝜆1
and gives

E[(v⊤

1 ∇𝑓 (X))2] = 𝜆1. (5)

For example, if v1 = e1 ∶= (1, 0, … , 0)⊤, it means that f is most sensitive (on average) with respect to changes
of the first parameter. Since small eigenvalues mean a small variation in the direction of corresponding
eigenvectors, this observation suggests to compute an orthogonal eigendecomposition C = WΛW⊤, where
W = [w1, … ,wn] contains the eigenvectors and Λ = diag(𝜆1, … , 𝜆n) contains corresponding eigenvalues
in decreasing order. The symmetry of C allows us to choose wi giving an orthonormal basis of Rn. The eigen-
values and eigenvectors can be exploited to span a lower-dimensional space along which f is dominantly
varying. We can decide to split W after the kth column and to neglect the space spanned by wk+1, … ,wn,
that is,

W = [W1 W2] (6)

such that W1 ∈ Rn×k and W2 ∈ Rn×(n−k). We write

x = WW⊤x = W1y + W2z, (7)

where y ∶= W⊤
1 x is called the active variable and z ∶= W⊤

2 x the inactive variable. The span of W1, that
is, (W1) ∶= {W1v|v ∈ Rk}, is called the active subspace (of f ). In other words, the coordinate system
is transformed to a new orthogonal basis given by the eigenvectors. The new axes corresponding to the
eigenvector with the largest eigenvalue are aligned to the direction of maximum averaged variation of f in
the original coordinate system.

The matrix C is generally not available exactly in practice and must be approximated. Constantine and Gleich
(2014), Holodnak et al. (2018), and Lam et al. (2018) proposed and analyzed a Monte Carlo approximation,
that is,

C ≈ C̃ ∶= 1
N

N∑
𝑗=1

∇𝑓 (X𝑗)∇𝑓 (X𝑗)⊤, (8)

where Xj ∼ 𝜌, j = 1, … ,N > 0. The recommended number of samples N required to get a sufficiently
accurate estimate of eigenvalues and eigenvectors is heuristically given by

N ≈ 𝛽m log(n) (9)

for a so-called sampling factor 𝛽 ∈ [2, 10]. The factor m ∈ N denotes the number of eigenvalues/eigenvectors
to be estimated accurately. The heuristic is motivated in Constantine and Gleich (2014) by results from
random matrix theory in Tropp (2012). We utilize bootstrapping (Constantine & Gleich, 2014; Efron &
Tibshirani, 1994) to ensure that the number of gradient samples N provides a sufficiently good approxima-
tion of the eigenvalues of C̃. Since C̃ is only an approximation/perturbation of the exact matrix C, eigenvalues
and eigenvectors are also only available in perturbed versions, that is,

C̃ = W̃Λ̃W̃⊤. (10)

Perturbed active and inactive variables are denoted by ỹ ∶= W̃⊤
1 x and z̃ ∶= W̃⊤

2 x, respectively.
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We additionally need a function g̃ defined on the low-dimensional (perturbed) active subspace approximat-
ing f as a ridge function, that is,

𝑓 (x) ≈ g̃(W̃⊤

1 x) (11)

for each x ∈ Rn. It is known that the best approximation in an L2 sense is the conditional expectation
conditioned on the active variable ỹ, that is,

g̃(ỹ) = ∫Rn−k
𝑓 (W̃1ỹ + W̃2z̃)𝜌Z̃|Ỹ(z̃|ỹ) dz̃. (12)

The conditional probability density function 𝜌Z̃|Ỹ is defined in the usual way; see, for example, (sections 20
and 33; Billingsley, 1995).

In section 4, we make use of a cheap response surface to g̃ gained by a polynomial regression approach since
evaluating g̃, or even a Monte Carlo approximation of it, can get costly due to additional evaluations of f
required. This surrogate is constructed according to instructions described in Algorithm 1.There are several
examples in the literature that show that a polynomial approximation can be useful in the context of active
subspaces, for example, (Cortesi et al., 2017; Teixeira Parente et al., 2019). The accuracy of a regression fit is
measured by the r2 value, or coefficient of determination (see, e.g., Glantz & Slinker, 1990).

3.2. Global Sensitivity Analysis With Active Subspace
Constantine and Diaz (2017) show that it is possible to get global sensitivity values from the active subspace
that are comparable, in practical situations, with more familiar metrics like variance-based sensitivities, also
known as total sensitivity indices or Sobol indices (Saltelli et al., 2008; Sobol, 2001).

Since the expensive computations for building the matrix C̃ are already done, no further huge computational
costs are needed. By “global” we mean that the sensitivities, assigned to each parameter individually, are
averaged quantities. In particular, the matrix C from equation (3), which will be exploited to compute global
sensitivities, is constructed with gradients of the function of interest f at different locations weighted with a
given probability density 𝜌. For our application of the LuKARS model, the function f and the density 𝜌 are
taken to be data misfit function and the prior density of the model parameters from the Bayesian context
described in section 3.3.

The vector of sensitivities s ∈ Rn, in which the ith component displays the (global) sensitivity of f with
respect to parameter xi, is in Constantine and Diaz (2017) computed via

si ∶= si(m) ∶=
m∑
𝑗=1

𝜆𝑗w2
i,𝑗 , i = 1, … ,m, 0 < m ≤ n. (16)

Here, we will set m = n. Thus, we can write more compactly

s(n) = (W◦W)𝛌, (17)

where 𝛌 = (𝜆1, … , 𝜆n)⊤ ∈ Rn is the vector of eigenvalues and ◦ denotes elementwise multiplication.
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Similar to the estimated quantities in previous sections, we will only have an estimate s̃ available due to the
finite approximation of C. In general, it is hard to give strict bounds for the number of samples N required to
get a sufficiently accurate approximation to s. Hence, we use as many samples as were shown to be sufficient
in (Constantine & Diaz, 2017).

3.3. Bayesian Inversion
The aim of Bayesian inversion is to approximate a posterior probability distribution on the space of parame-
ters x ∈ Rn, n ∈ N, that incorporates uncertainty in the estimated parameters due to noise in the measured
discharge data. Stuart (2010) gives a rigorous mathematical framework for Bayesian inverse problems, even
in infinite-dimensional parameter spaces. The starting point in Bayesian inversion is a prior probability
distribution 𝜌prior that serves as a first guess on the distribution of the model parameters without any incor-
poration of measured hydrological data. The prior also serves to regularize the inverse problem. This choice
is often driven by intuition or expert knowledge. Mathematically speaking, we seek a distribution on x
conditioned on the observation of specific measured data. This leads directly to the well-known Bayes's
theorem.

Data d ∈ Rnd , nd ∈ N, are here modeled as
d = (x) + 𝛈, (18)

where 𝛈 ∼  (0,Γ) is additive Gaussian noise, modeling measurement errors, with mean zero and covari-
ance matrixΓ ∈ Rnd×nd and ∶ Rn → Rnd is called the parameter-to-observation map. This map is composed
of a forward operator G ∶ Rn → V, displaying, for example, the solution to a partial differential equation, and
an observation operator  ∶ V → Rnd , being, for example, a linear functional on the solution space V . For
the LuKARS model,  is the mapping from the calibration parameters x (related to parameters in Table 1 and
described in section 3.5) to the discharge values. By Bayes's theorem, we can define the posterior density as

𝜌post(x) ∶= 𝜌post(x|d) = 𝜌like(x)𝜌prior(x)
Z

, (19)

where Z ∶= ∫Rn𝜌like(x′)𝜌prior(x′)dx′ is a normalizing constant to get a proper probability density with unit
mass. The likelihood 𝜌like denotes the probability that a parameter x is explaining the discharge data d
corrupted by noise. In this context, that is, assuming additive Gaussian noise, the likelihood is given by

𝜌like(x) ∝ exp(−𝑓d(x)) (20)

with the data misfit function𝑓d(x) ∶=
1
2
||d−(x)||2Γ and ||·||Γ ∶= ||Γ−1∕2 ·||2. Note that the data misfit function

is not a typical squared error function but involves weights by the noise covariance matrix Γ.

The posterior density is often intractable since its evaluation requires the solution of a potentially com-
putationally intense problem hidden in the forward operator G. The situation becomes even worse if the
inverse problem is stated in a high-dimensional parameter space. Whereas a single run of the LuKARS
model is sufficiently cheap in our case study, the issue is the high dimensionality of the problem. A com-
mon way to approximate an expensive posterior distribution is to construct samples distributed according
to the posterior. However, many sampling techniques suffer from the curse of dimensionality. Well-known
sampling approaches comprise, for example, MCMC, Sequential Monte Carlo, Importance Sampling, and
combinations of them.

In this work, we use a Metropolis-Hastings algorithm from Hastings (1970) which belongs to the class of
MCMC methods. The algorithm constructs a discrete Markov chain whose components are taken as sam-
ples and are stationarily distributed according to the desired distribution which is the posterior here. The
samples are naturally correlated which is a drawback compared to other sampling techniques that produce
independent samples. However, advantages of this algorithm are the absence of restricting assumptions and
the fact that it does not suffer from the curse of dimensionality as badly as other samplers. Nevertheless,
MCMC methods can have deteriorating behavior in higher dimensions because the number of steps needed
to get a sufficiently small correlation between two samples can be rather large. Since the forward operator
G is evaluated in every step in the Metropolis-Hastings algorithm, the standard usage of the algorithm can
get computationally expensive, especially if G is costly.

In this manuscript, we run a standard Metropolis-Hastings algorithm in low dimensions. For finding
low-dimensional structure in our problem, we apply the active subspace method, described in the previous
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subsection, which allows to find dominant directions in a parameter space that drive the update from the
prior to the posterior distribution in Bayesian inverse problems. Additionally, it provides a cheap surrogate
of the data misfit function in the low-dimensional space (see section 3.1).

3.4. MCMC in the Active Subspace
For Bayesian inversion, the function of interest that we aim to approximate with a low-dimensional
approximation is the data misfit function fd from equation (20), that is,

𝑓d(x) ∶=
1
2
||d − (x)||2Γ. (21)

The gradient of fd needed for the computation of C̃ is

∇𝑓d(x) = ∇(x)⊤Γ−1((x) − d), (22)

where ∇ denotes the Jacobian matrix of the parameter-to-observation operator  which models the
relationship between model parameters and discharge values in the LuKARS model.

Not only the perturbed active subspace but also a cheap surrogate G̃d for g̃d, given by

g̃d(ỹ) = ∫Rn−k
𝑓d(W̃1ỹ + W̃2z̃)𝜌Z̃|Ỹ(z̃|ỹ) dz̃, (23)

can be exploited for an accelerated MCMC algorithm in lower dimensions producing posterior samples for
a Bayesian inverse problem as shown in Constantine et al. (2016). The construction of G̃d as a polynomial
approximation is described in Algorithm 1. Note that there are no additional full model evaluations neces-
sary for this construction. The full model evaluations that we get as a byproduct of the gradient calculations
(see equation (22)) can be reused. By acceleration, we mean that the mixing behavior of the resulting Markov
chains constructed by a standard Metropolis-Hastings algorithm can improve in lower dimensions. As a
consequence, the computational effort to produce a certain number of posterior samples is reduced.

In a first step, we compute samples of the posterior distribution defined on the low-dimensional subspace,
called active posterior samples. In order to evaluate the (approximate) posterior density 𝜌̃post,Ỹ in the active
subspace given by

𝜌post,Ỹ(ỹ) ≈ 𝜌̃post,Ỹ(ỹ) ∝ exp(−G̃d(ỹ))𝜌prior,Ỹ(ỹ), (24)

where G̃d is the response surface approximating g̃d, we need an approximation to 𝜌prior,Ỹ denoting the
marginal prior density on the perturbed active variable. The marginal prior density is in general not ana-
lytically available and has to be estimated, for example, with kernel density estimation. Note that for the
Metropolis-Hastings algorithm it is only important to know the density up to a constant. The algorithmic
details are given in Algorithm 2.

The active posterior samples are naturally correlated. Nevertheless, the autocorrelation time is much
lower compared to higher-dimensional Markov chains. The so-called effective sample size (ESS) displaying
estimation quality of a sequence of samples can be computed by a formula from Brooks et al. (2011),

Nỹ(𝓁) ,ESS =
Nỹ

1 + 2
∑Jmax

𝑗=1 r(𝓁)
𝑗

. (26)
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Figure 1. (a) Flowchart displaying the main steps in the present Bayesian inference process with active subspaces.
(b) Visualization of a one-dimensional active subspace in a three-dimensional parameter space. The parameter x ∈ R3

is projected on the active subspace spanned by w1 giving the active variable 𝑦1 = w⊤
1 x. MCMC stands for Markov

chain Monte Carlo.

The 𝓁th component of a sample ỹ is denoted by ỹ(𝓁) and the number of samples available by Nỹ. The expres-
sion r(𝓁)

𝑗
describes the autocorrelation between the 𝓁th component of samples ỹ with lag j. The maximum

lag regarded is given by Jmax. We determine the final effective sample size with

NESS = min
𝓁=1,… ,k

Nỹ(𝓁) ,ESS. (27)

After completing Algorithm 2, the entire set of active posterior samples ỹ is reduced to a set of size NESS by
taking every pth sample in the chain (where p is chosen such that we get a set of size NESS). The autocorrela-
tion of the chosen samples is thus reduced. This technique is called thinning (see, e.g., Link & Eaton, 2012).
The adequacy of the size of samples depends on their application in general. However, it is possible to check
it, for example, by bootstrapping or, if the surrogate is cheap enough, by construction and comparison of
multiple Markov chains having different lengths.

Our final goal is to construct samples of the posterior distribution in the original n-dimensional space.
Equation (7) suggests to sample z̃-components for each ỹ from the reduced set of samples gained from Algo-
rithm 2. Since it is generally not trivial to sample from the conditional distribution of z̃ given ỹ, 𝜌Z̃|Ỹ(z̃|ỹ),
we have to run another Metropolis-Hastings algorithm. Note that for this sampling, we only need to sample
from 𝜌prior(W̃1ỹ+W̃2z̃) because 𝜌Z̃|Ỹ is proportional to that distribution. We again compute (nearly uncorre-
lated) samples of z̃ given a particular sample ỹ to finally translate them to posterior samples x = W̃1ỹ+W̃2z̃
in the original full-dimensional parameter space.

A summarizing flowchart displaying the described steps of our approach is depicted in Figure 1a. We empha-
size that full model evaluations are only necessary for the construction of the active subspace. The surrogate
can be constructed with model evaluations (xi) that we get as a byproduct from the calculation of gradients;
see equation (22). However, if it is required to perform a check for the potential issue of overfitting in the
regression fit, additional model evaluations are necessary. For example, we computed another 20,000 model
simulations to prevent overfitting, although the original 1,000 evaluations would have been enough (see
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section 4). Eventually, Figure 1b visualizes the fact that the active subspace method is looking for dominant
directions in a high-dimensional parameter spaces instead of studying sensitivities of coordinate-aligned,
individual parameters.

3.5. Parameter Setting
Before we describe the results of the parameter study in the next section, we discuss the calibrated parame-
ters and their notation. As mentioned in section 2, there are three hydrotopes with seven variable parameters
each. These parameters are called physical parameters in the following. All of the seven parameters have the
same physical meaning for each hydrotope.

There are two reasons that lead to the introduction of artificial parameters which we call calibration param-
eters in the following. One reason is that the k* values are calibrated on a log scale. Therefore, we define

klog
∗ = log(k∗) (28)

for each k* ∈ {khyd,i, kis,i, ksec,i}, i = 1, 2, 3. The second reason is the dependence of the physical parame-
ters which needs to be circumvented since the application of active subspaces in Bayesian inverse problems
prefers independently distributed and normalized parameters. There exist two types of dependencies,
namely,

1. cross-hydrotope dependencies caused by equation (1) and
2. a dependence between parameters emin,i and emax,i, since emin,i ≤ emax,i.

The first point concerns only parameters in hydrotopes 2 and 3. Hence, we write

pi = pi,lb +△p(i−1,i)(min{pi,ub, pi−1} − pi,lb) (29)

or

pi = max{pi−1, pi,lb} +△p(i−1,i)(pi,ub − max{pi−1, pi,lb}), i = 2, 3, (30)

depending on whether the physical parameter pi ∈ {klog
hyd,i, emin,i, 𝛼i, klog

is,i , klog
sec,i, esec,i} follows a decreasing or,

respectively, increasing behavior (see equation (1)). The fixed values pi,lb and pi,ub denote the lower and
upper bounds of respective physical parameters given in Table 1. The parameters △pi ∈ [0, 1] are the newly
introduced calibration parameters. They are independent of other calibration parameters. For the second
point, we replace (for the purpose of calibration) the parameters emax,i by △ei and set

emax,i = emin,i +△ei, i = 1, 2, 3. (31)

The parameter △ei is now independent of emin,i. Minimum and maximum values for △ei are computed
with respective intervals from Table 1, that is, we have

emax,i,lb − emin,i,lb ≤ △ei ≤ emax,i,ub − emin,i,ub, (32)

which is valid since it holds that emax,i,lb − emin,i,lb ≤ emax,i,ub − emin,i,ub for every i = 1, 2, 3.

Finally, all calibration parameters need to be normalized, that is, they are mapped from their corresponding
interval to [−1, 1]. Normalized parameters are denoted with a bar. Summarizing, the vector of all normalized
independent calibration parameters is

x = (k̄log
hyd,1, ēmin,1,△ē1, 𝛼̄1, k̄log

is,1, k̄log
sec,1, ēsec,1,

△ k̄log
hyd,(1,2),△ēmin,(1,2),△ē2,△𝛼̄(1,2),△k̄log

is,(1,2),△k̄log
sec,(1,2),△ēsec,(1,2),

△k̄log
hyd,(2,3),△ēmin,(2,3),△ē3,△𝛼̄(2,3),△k̄log

is,(2,3),△k̄log
sec,(2,3),△ēsec,(2,3))⊤ ∈ R21.

(33)

4. Results
In the following, we assume a normally distributed measurement error (noise) at a level of 5% for the mea-
sured spring discharge as it was kindly provided by the water works owner Waidhofen a.d. Ybbs for the
applied flowmeter. This translates to Γi𝑗 = (0.05 × di)2𝛿i𝑗 , i, j = 1, … ,nd, where Γ is the covariance matrix.
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Figure 2. Spectrum of the matrix C̃ for the data misfit function fd with a 5%
noise level. The light blue area around the eigenvalues indicates variability
of the eigenvalues caused by the random nature of the approximation C̃.

Additionally, we assume a uniform distribution on the calibration param-
eters from equation (33), that is, x ∼  [−1, 1]21. The prior intervals for
the physical parameters are given in Table 1. Note that the prior distribu-
tion on the physical parameters is not uniform due to the transformation
described in section 3.5.

For the computation of C̃ from equation (8), we use N = 1, 000 gradient
samples of ∇fd, although only about 250 samples would be necessary to
estimate the first m = 8 eigenvectors sufficiently accurately according to
equation (9) with a pessimistic sampling factor 𝛽 = 10. The reason for
choosing this rather large number is to make sure that the global sensi-
tivity values, for which such heuristics do not exist, are also estimated
accurately. The gradient was approximated by central finite differences.
Using seven cores of type Intel(R) Xeon(R) E5 at 3 GHz each, the required
1, 000 × (21 × 2 + 1) = 43, 000 forward runs need about 4.3 hr since it
required 2.5 s for a single run of the model.

The resulting eigenvalues and first four eigenvectors are plotted in
Figures 2 and 3a–3d, respectively. Figure 2 shows the spectral decay on
a logarithmic scale. The light blue area around the eigenvalues displays
minimum and maximum eigenvalues gained from bootstrapping and

indicates the variability of eigenvalues due to the random nature of the approximation C̃ (see equation (8)).
Gaps after the first and fourth eigenvalue suggest the existence of one-dimensional and four-dimensional
active subspaces. Figures 3a–3d show eigenvectors with components colored according to the hydrotope they
are supposed to model. It shows that parameters 5, 12, and 19, having large contributions in the first three
eigenvectors, take a dominant role. All of these parameters involve the kis value for each hydrotope. More-
over, we can observe a ranking between the corresponding hydrotopes of these parameters, with decreasing
order of the kis values from Hyd 2, Hyd 1, and Hyd 3 in the first eigenvector. A different pattern is observed
for the contributions of parameters related to khyd, represented by parameters 1, 8, and 15 for Hyd 1, Hyd
2, and Hyd 3, respectively. These parameters appear in eigenvectors 2 to 4 and show a different ranking as
compared to the kis parameters, with a decreasing contribution from Hyd 1, Hyd 2, and Hyd 3. It is impor-
tant to highlight that parameter 15 only shows a small contribution in eigenvector 3 and 4. A third important
parameter group is related to ksec, here represented by parameters 6, 13, and 20. They appear in eigenvec-
tors 2 to 4 and have comparable contributions in Hyd 1 and Hyd 2 (parameters 6 and 13) but only a minor
contribution in Hyd 3 (see eigenvector 4). Interestingly, for hydrotopes 1 and 2 the same parameters show
up with a similar shape in eigenvector w̃4.

It is important to emphasize that the resulting eigenvectors for the Bayesian data misfit can look different
to ones gained from using the Nash-Sutcliffe model efficiency coefficient, which is a more common misfit
function in hydrology, introduced in Nash and Sutcliffe (1970). This can be explained by the fact that the
Nash-Sutcliffe model efficiency coefficient is focusing on high-flow conditions as it is a (nonweighting)
squared error function (Gupta et al., 2009), whereas the Bayesian data misfit function is a weighting/relative
squared error function (weights are given by entries in the noise covariance matrix Γ) and, thus, does not
favor low- or high-flow conditions.

With the eigenvalue/eigenvector plot, we have already gained some insight in the parameter sensitivities.
Figure 3e shows the global sensitivities of the data misfit function fd normalized to [0, 1]. The most sensitive
parameter is △kis,(1,2), and also, k̄is,1 and △kis,(2,3) have their contributions since they show up in w̃2 and
w̃3, respectively, with nonnegligible corresponding eigenvalues. At the same time, parameters 6, 13, and 20,
involving ksec values in the hydrotopes, show sensitive in the first eigenvectors. Parameters displaying khyd
values have small contributions but only in hydrotopes 1 and 2. All other parameters do not show much
sensitivity since their components contribute only to eigenvectors having eigenvalues that are orders of mag-
nitudes smaller than the first four. As a consequence, we expect that the more sensitive parameters change
their distribution (and also joint distributions) from the prior to the posterior during Bayesian inference.

We decide for a 4-D subspace and compute a fourth-order polynomial to get the response surface G̃d of g̃d by
Algorithm 1. Since polynomials of fourth order already have 70 degrees of freedom in four dimensions, we
compute another 20,000 samples of fd(x), with x following the prior, to preclude overfitting. Nevertheless,
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Figure 3. The subfigures show sensitivities with respect to the calibration parameters described in section 3.5. (a–d)
First four eigenvectors of the matrix C̃ (w̃i, i = 1, 2, 3, 4) for the data misfit function fd with a 5% noise level. Along
these directions, the data misfit function changes much more, on average, than along other directions (eigenvectors).
The colors distinguish the three hydrotopes (blue: Hyd 1, orange: Hyd 2, green: Hyd 3). (e) Global sensitivity values of
the data misfit function fd with a 5% noise level. These values are computed using the eigenvalues and eigenvectors of
C̃ described in section 3.2. The ratio of maximum and minimum sensitivities is 3.6 × 106.

the 1,000 samples from the computation of C̃ would have been enough to get the same r2 score which is
≈ 0.77. This score, also called coefficient of determination, is a statistical measure for the goodness of fit and
reflects the percent of variance explained. If predictions of a regression match perfectly well with the data
points, the r2 score becomes 1. In contrast, it can become less than zero, if the predicted values are worse
than choosing the constant mean value of the data. In this regard, our r2 score indicates that our surrogate
is a sufficiently well-behaved fit.

The Metropolis-Hastings algorithm described in Algorithm 2 is used to construct a Markov chain giving
(correlated) posterior samples in the active subspace. Its proposal variance was adjusted to 0.005 in order
to give an acceptance rate of ≈ 35%. We compute 1,000,000 samples and regard the first 100,000 samples
as part of the burn-in which are not considered as part of the final distribution. The remaining samples
give an effective sample size of about 12,000 which is enough to sufficiently represent a distribution in four
dimensions. The resulting distribution on the active variables, attained from the about 12,000 samples, is
displayed in Figure 4. Note that the x scales of the upper and lower row of plots are quite different. This
due to the fact that if we did not change the lower x scale, the lower histograms would basically become
thin lines displaying no information about the variance of the distribution. However, we see that the active
variables are substantially informed which is exactly what we hoped to achieve. Also note that the first plot
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Figure 4. The 1-D marginal prior and posterior distributions in the 4-D active subspace.

in the upper row, displaying the 1-D marginal prior distribution of the first active variable 𝑦̃1 = w̃⊤
1 x, is

almost a classical (rectangular) uniform distribution. This is caused by the large contribution of only one
parameter in w̃1 which is △kis,(1,2) in this case. The more parameters contribute to an active variable, the
more its marginal prior distribution differs from a rectangle; see 𝑦̃4 = w̃⊤

4 x for example.

The samples in the inactive subspace z̃ are computed as described in section 3.4 and composed with active
posterior samples to give posterior samples in the original space. Resulting 1-D marginal statistics of the
physical parameters are given in Table 2a. As expected, the physical parameters related to calibration param-
eters with significant components in the active subspace are highly informed. The first calibration parameter
(k̄log

hyd,1) having a small but not negligible contribution according to the sensitivity values in Figure 3e is
already only mildly informed. The other parameters do not change or only very little because of the choice
of the active subspace.

Additionally, Table 2b displays the highest resulting two-dimensional posterior correlation coefficients of
the physical parameters in LuKARS. They are consistent with the components of corresponding calibration
parameters that show up in the 4-D active subspace. The largest correlation occurs between emin,1 and emax,1.
A large correlation coefficient of 0.7 is also found between the respective storage values of Hyd 2 and Hyd
3, emin,2 and emax,2, and between emin,3 and emax,3.

As a verification for our choice of a 4-D subspace, we show that the uncertainty in the approximated pos-
terior distribution is dominated by the uncertainty in the data and not by approximation errors caused by
dimension reduction. We do this by approximating the posterior's push-forward distribution, that is, the dis-
tribution gained by propagating the approximated posterior through the parameter-to-observation operator
, which models the discharge values for a given input parameter. Hence, we computed 1,000 samples of the
distribution 𝜇post({x|(x) ∈ ·}), where 𝜇post denotes the posterior distribution with density 𝜌post. Figure 5a
shows the 95% quantile band around the data with 5% additive Gaussian noise assumed together with a
75% quantile band around the median of the posterior's push-forward distribution. More loosely speaking,
the plot shows that around 75% of discharges simulated with random parameters drawn from the posterior
will lie within the inherent uncertainty of the observed discharge. The uncertainty in the dynamics around
the measured discharges in the Kerschbaum spring is matched well by the uncertainty of the push-forward
posterior distribution which confirms the choice of a 4-D subspace. Since we started with an uninformed
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Table 2a
Posterior Means and Standard Deviations of Physical Parameters

No. Physical parameters Mean Std.
1 khyd,1 3.07 × 102 2.34 × 102

2 emin,1 29.86 11.57
3 emax,1 44.49 12.90
4 𝛼1 1.17 0.26
5 kis,1 5.18 × 10−2 3.98 × 10−3

6 ksec,1 0.17 0.22
7 esec,1 47.78 12.95

8 khyd,2 70.62 55.81

9 emin,2 60.46 11.27
10 emax,2 1.20 × 102 16.14
11 𝛼2 0.82 0.21
12 kis,2 4.52 × 10−3 1.61 × 10−4

13 ksec,2 2.03 × 10−2 3.23 × 10−2

14 esec,2 1.76 × 102 25.99

15 khyd,3 25.94 21.75

16 emin,3 95.71 14.18
17 emax,3 2.06 × 102 20.23
18 𝛼3 0.43 0.14
19 kis,3 6.35 × 10−4 1.69 × 10−5

20 ksec,3 6.21 × 10−3 1.07 × 10−2

21 esec,3 3.85 × 102 37.48

Note. The informed parameters are highlighted in bold.

prior (a uniform distribution), we cannot expect to end up with a push-forward posterior much more cer-
tain than the uncertainty in the experiments. At this point, we would like to emphasize that it is possible to
get a reasonably good approximation of the posterior by considering only four directions in the space of 21
parameters. In this manner, particularly regarding the low flow conditions and the recession limbs of the
peak discharges, we can observe a variation of only up to ±5l/s which is roughly the variation due to exper-
imental noise. Also, the mean and the median of the push-forward distribution give results agreeing with
the data which, in addition, support the decision for a 4-D subspace.

Table 2b
Highest 2-D Correlations for Physical Parameters

Physical parameters Correlation coefficient
emin,1 emax,1 0.89
kis,1 kis,2 0.77
emin,3 emax,3 0.70
emin,2 emax,2 0.70
khyd,2 ksec,2 0.66

kis,1 khyd,2 0.64

kis,1 ksec,2 0.63
khyd,2 kis,2 0.59

ksec,1 kis,3 0.57
ksec,2 ksec,3 0.56
kis,2 ksec,2 0.52
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Figure 5. Push-forward distributions of the posteriors gained with a 4D (a) and 1D (b) subspace, assuming a 5% and
10% noise level, respectively, along with their mean and median.

Additionally, this type of plot shows that different decisions for the dimension of the active subspace lead
to different posterior approximations. Figure 5b shows the push-forward distribution of a posterior gained
with a 1-D subspace. However, interestingly, assuming a noise level of 10% and taking only a 1-D subspace
also leads to usable results in the sense that the corresponding approximation to the posterior's push-forward
distribution matches the inherent uncertainty in the data well. However, note that the r2 score of G̃d was only
about 0.23 in this case. Although we see that the assumptions are rather unrealistic and the approximation
quality of G̃d is too bad, it is worth noting that already the first eigenvector contains some information
about the posterior meaning that the mean and median of the corresponding push-forward posterior give
reasonable discharge values in comparison with the data as shown in Figure 5b.

5. Discussion
Besides the introduction of the active subspace method as a technique for dimension reduction in Bayesian
inverse problems to the karst hydrology community, a major aim of our work, as mentioned in section 1,
was to perform a parameter inference in the Bayesian sense providing information about the behavior of
our model and its uncertainties. For the LuKARS model of the Kerschbaum spring in Waidhofen a.d. Ybbs,
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we found a four-dimensional subspace of the original 21-dimensional parameter space. This does, however,
not mean that only four individual physical model parameters are informed by the discharge data since
an active subspace represents a linear combination of sensitive parameters, represented by the parameters
in the eigenvectors corresponding to dominant eigenvalues. In this regard, the relation between sensitive
parameters in each dimension of the active subspace provides deeper insights into the model behavior than
just the sensitivities of individual parameters. The results, from a broader perspective, show that seven phys-
ical/model parameters are most sensitive. These parameters consist of coefficients for the baseflow storages
(kis,i, i = 1, 2, 3), for the quickflow storages (khyd,i, i = 1, 2), and for the secondary spring discharges (ksec,i,
i = 1, 2).

The remaining paragraphs in this section are devoted to give a detailed hydrological interpretation of the
results showed in the previous section. These interpretations are based on the following information. The
observed spring discharge is modeled as the sum of the relative contribution of each hydrotope. Moreover,
the LuKARS model of the Kerschbaum spring has fast responding hydrotopes (i.e., hydrotopes that quickly
deliver water to the karst spring after precipitation events; e.g., Hyd 1) and slow responding hydrotopes (i.e.,
hydrotopes, which slowly deliver water to the spring after precipitation events; e.g., Hyd 3).

Parameters 5, 12, and 19 show the largest contributions in the first four eigenvectors in Figures 3a–3d.
These parameters correspond to the kis physical parameters, which delimit the flow contributions from the
hydrotopes to the linear baseflow storage. As derived in Bittner et al. (2018), the baseflow storage exhibits a
relatively constant discharge behavior with a small temporal variability and its discharge coefficient kb was
not changed within the presented research study. Since the outflow from the baseflow storage is controlled
by its variable storage (eb) and its constant discharge coefficient (kb), the hydrotope discharge coefficients
for the groundwater recharge (kis) also affect the baseflow discharge and its temporal dynamics since they
control eb. Given that kb was not included as a calibration parameter, the kis parameters are responsible to
maintain the baseflow contribution as derived by Bittner et al. (2018) and are most informed in the first
eigenvector when applying the active subspace method.

Although parameters 5, 12, and 19 have the same physical interpretation, we can observe that they display
different sensitivities for the different hydrotopes. This is due to the fact that different hydrotopes cover areas
which are different in extension (Hyd 1—13%, Hyd 2—56%, and Hyd 3—27%). Therefore, the interpretation
of the most important parameters occurring in an eigenvector should consider both the physical meaning of
the parameter and the relative contribution of each single hydrotope to the total spring discharge, which is
highly affected by the relative area covered by the hydrotope. In this specific case, parameter 12, associated
with Hyd 2, displays the largest value since it covers the largest area in the Kerschbaum spring catchment
and thus has a significant contribution to the total spring discharge. Parameter 5 has the second largest value
although Hyd 1 ranks as third in terms of coverage area. This is explained by the fact that Hyd 1 provides
the most dynamic and variable discharge behavior of all hydrotopes. Hence, the discharge contribution
from Hyd 1 is essential to reproduce the discharge dynamics observed in the Kerschbaum spring. Hyd 3 has
the smallest contribution in eigenvector 1, which can be explained by its more constant and less variable
discharge behavior as compared to Hyd 1 and its smaller spatial share as compared to Hyd 2. Hence, although
Hyd 3 has a larger area covered than Hyd 1, parameter 19 is less dominant than parameter 5.

Although parameters 1 and 8 (involving khyd values of Hyd 1 and Hyd 2) do not show up in eigenvector 1,
their contribution to eigenvectors 2 to 4 is worth discussing. These parameters follow a different ranking as
compared to the kis parameters, suggesting a larger sensitivity of parameter 1 from Hyd 1 as compared to
parameter 8 from Hyd 2. Since the khyd parameters constrain the quickflow dynamics originating from each
hydrotope, we argue that this ranking is the result of the different hydrological behaviors each hydrotope
is supposed to simulate. Considering that Hyd 1, which shows the most dynamic behavior in response to
precipitation or melt events, has a large contribution to the temporal variability of the discharge in the
Kerschbaum spring, the importance of adequately representing the quickflow dynamics from Hyd 1 can be
regarded as more important than the relative space covered by each hydrotope.

It is interesting to observe that the posterior means of the informed physical model parameters (kis,i, i =
1, 2, 3; see Tables 2a and 2b) are close to corresponding calibrated parameters found by Bittner et al. (2018).
Moreover, the standard deviations of the kis parameters in the posterior distribution are smaller as compared
to the standard deviations found for the posterior distributions of all other physical parameters. This provides
evidence that we can use the components of the first eigenvectors derived from the active subspace method
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to show which parameters get individually updated from the prior to the posterior distribution. Moreover,
in comparison to the parameters obtained by manual calibration, we additionally obtain an uncertainty
specification related to any model parameter.

It is striking that the correlations between emin,i and emax,i (for each i = 1, 2, 3) are high although they
are not very dominant according to the first four eigenvectors. The reason for this is that this correlation
is already present in the prior distribution on the physical parameters (see equation (31)). However, we
argue that the higher positive correlation coefficient between emin,1 and emax,1 results from the dependence
of the overall model output on the quickflow dynamics of Hyd 1 (Bittner et al., 2018). The dynamics of the
quickflow depend strongly on the difference between emin,i and emax,i (see equation (A5)) and thus results
in a high correlation coefficient between both storage thresholds. The positive correlations between the dis-
charge coefficients of Hyd 2, in particular between khyd,2 and ksec,2, khyd,2 and kis,2 and between kis,2 and ksec,2,
highlight the strong interdependence of all discharge components that originate from Hyd 2. The strongest
correlation (0.66) is between the discharge coefficient of the quickflow (khyd,2) and the discharge coefficient
of the secondary spring discharge (ksec,2). This means that, if we increase khyd,2 and not ksec,2, the quickflow
contribution increases disproportionately and the total simulated spring discharge would overestimate the
observed peak discharges. The same relationship holds for the strong correlation (0.59) between the dis-
charge coefficient of the quickflow (khyd,2) and the discharge parameter of the groundwater recharge (kis,2) as
well as between the kis,2 and ksec,2 (0.52). These correlations confirm the fact that if we increase the discharge
coefficient of one discharge component in a certain hydrotope, we need to simultaneously increase all other
discharge coefficients in the same hydrotope to get a similar model output. If the other coefficients were not
changed accordingly, we would disproportionately increase one discharge component (e.g., quickflow from
Hyd 2) relative to others (e.g., kis,2 or ksec,2), so the hydrotope would show a different hydrological behav-
ior. This highlights that the parameter dependencies within each hydrotope individually help to maintain
the hydrological behavior that is typical for each hydrotope. The reason why only the discharge parameters
of Hyd 2 show high correlation coefficients is that Hyd 2 covers more than 50% of the Kerschbaum spring
recharge area and, thus, has the highest contributions to the total spring discharge. The correlations between
various discharge coefficients of different hydrotopes, for example“ kis,1 and kis,2, are interpreted as a con-
sequence of the parameter constraints introduced in equation (1), similar to the dependence between emin,i
and emax,i values.

We conclude by commenting on the limits and transferability of the active subspace method. One of the
major disadvantages of the method is the need for gradients in the identification of the active subspace.
Computing gradient information can be computationally expensive, especially if there are no alternatives
to using a finite difference approach as, for example, adjoint formulations (Plessix, 2006). In the given case,
the computational costs for using central finite differences are reasonable since the model is sufficiently
cheap. However, for more expensive models such an approach can be intractable. There are recent advances
for computing active subspaces in a derivative-free way (Tripathy et al., 2016); however, the computation
of derivatives is replaced by a nontrivial nonconvex optimization problem. Since the framework of active
subspaces is quite general and formulated without too many restricting assumptions, we consider its appli-
cation as highly transferable. This claim is supported by several applications of the method for complex
physical models, for example, Erdal and Cirpka (2019); Constantine et al. (2015); Constantine and Doostan
(2017); Diaz et al. (2018); Jefferson et al. (2015). The proposed use of the active subspace method extends
the available tools for parameter and uncertainty estimation in hydrology. A comparison among all avail-
able methods is out of the scope of this work and should be pursued in the future through a collaborative
work in the community. We hence provide only a brief comparison with DREAM, described in Vrugt (2016)
and used to accelerate MCMC in Vrugt et al. (2009), as it has found wide recognition in Bayesian analysis
of hydrological models. The main differences of DREAM compared to the presented approach are twofold.
First, basic DREAM runs multiple Markov chains in parallel, exchanging chain elements in a way retain-
ing favorable properties like ergodicity and the Markov property (memorylessness). Second, a randomized
subspace sampling strategy is then used to avoid inefficient mixing of Markov chains in higher dimensions.
Our proposed approach, however, does not need an additional sampling strategy, since the Markov chains
are moving in the dominant low-dimensional subspace, whereas for DREAM the chain is still evolving in
the full-dimensional space.
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6. Summary
This manuscript shows results from a parameter study of a karst aquifer model for the Kerschbaum
spring recharge area. The model uses 21 parameters to simulate the discharge behavior of the Kerschbaum
karst spring in Waidhofen a.d. Ybbs. The study consists of a parameter inference in the Bayesian sense
and a (global) sensitivity analysis. Since these problems have a nontrivial dimension, we first check for
low-dimensional structure, if present, hidden in the inference process and exploit the so-called active sub-
space method for this. Additionally, without further expensive computations, we are then able to derive
global sensitivity metrics.

It seems that the inference process is indeed intrinsically low dimensional. Although the LuKARS model for
the Kerschbaum spring has 21 calibration parameters, given the parameter constraints in equation (1), we
find its dominant parameters and obtain well-constrained values for them by means of Bayesian inversion
in the identified active subspace. In particular, we decide to reduce the Bayesian inverse problem from a
21-D to a 4-D problem which is verified by showing that the push-forward distribution of the approximated
posterior has a promising similarity with the uncertainty in the data. The 1-D and 2-D posterior statistics,
which differ a lot from corresponding prior statistics for dominant parameters, are computed to quantify
uncertainty in the inference caused by measurement errors in the data.

Eventually, the active subspace method shows again to be valuable for Bayesian inference and sensitivity
analysis in complex high-dimensional problems. The results are, however, rather useful from a computa-
tional perspective. The in-depth validation of the model with further sensitivity analyses, more interesting
from a hydrological perspective, and a discussion of the consequences for the community are out of scope
and, hence, not part of this study but will follow in future research. In particular, we want to investigate the
hydrological features that lead to the present dimensional reduction.

Appendix A : Model Equations
In LuKARS, the following balance equation is solved for each individual hydrotope:

dei

dt
=

{
Si −

Qsec,i+Qis,i+Qhyd,i

ai
if ei > 0

0 if ei = 0
(A1)

ei is the water level (L) in hydrotope i, t (T) indicates the time, and Si is a hydrotope-specific sink and source
term in form of a mass balance of precipitation, snow melt, evapotranspiration, and interception. We used
the temperature index approach from Martinec (1960) to calculate snow melt. Interception was estimated
based on indications for beech forests in DVWK (1996). Then, evapotranspiration was calculated based on
the method of Thornthwaite (1948). Qsec (L3/T) summarizes all flow terms that do not contribute to the
discharge at an investigated karst spring, that is, secondary spring discharge and overland flow. Qis,i (L3/T)
represents the discharge from hydrotope i to a linear baseflow storage, considered as groundwater recharge.
Qhyd,i (L3/T) is a hydrotope-specific quickflow component through preferential flow paths (e.g., subsurface
conduits) with a direct connection to the spring outlet. ai (L2) is the space covered by a respective hydrotope.

The following balance equation is solved for the baseflow storage:

deb

dt
=

{
Σ(Qis,i)−Qb

A
if eb > 0

0 if eb = 0,
(A2)

eb is the water level (L) in the baseflow storage and Σ(Qis,i) (L3/T) integrates the flows from all hydrotopes
to the baseflow storage. Qb (L3/T) indicates water flow from the storage B to the spring and simulates the
matrix contribution from the saturated zone to the spring discharge. The variable A (L2) is the space of the
entire recharge area. The discretized forms of (A1) and (A2), as shown in (A3) and (A4), are solved for each
time step n

ei,n+1 = max
[

0, ei,n +
(

Si,n −
Qsec,i,n + Qis,i,n + Qhyd,i,n

ai

)
∗ Δt

]
, (A3)

eb,n+1 = max
[

0, eb,n +
(Σ(Qis,i,n) − Qb,n

A

)
∗ Δt

]
. (A4)
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The discharge terms are computed as follows:

Qhyd,i,n = 𝜀

[max(0, ei,n − emin,i)
emax,i − emin,i

]𝛼i

∗
khyd,i

lhyd,i
∗ ai, (A5)

Qis,i,n = kis,i ∗ ei,n ∗ ai, (A6)

Qsec,i,n = ksec,i ∗ max(0, ei,n − esec,i) ∗ ai, (A7)

Qb,n = kb ∗ eb,n ∗ A. (A8)

emax,i (L) and emin,i (L) are the upper and lower storage thresholds of hydrotope i. The exponent 𝛼i controls
the magnitude of the quickflow component from each hydrotope. esec,i (L) represents a hydrotope-specific
activation level for Qsec. kis,i (L/T) and ksec,i (L/T) are the specific discharge parameters for Qis,i (L3/T) and
Qsec,i (L3/T). khyd,i (L2/T) indicates the specific discharge parameter for the quickflow, and lhyd,i (L) is the
mean distance of hydrotope i to the adjacent spring, allowing to account for the relative location and distri-
bution of hydrotope i in a specific recharge area. The ratio between khyd,i and lhyd,i is the hydrotope discharge
coefficient. Then, the dimensionless connectivity/activation indicator 𝜀 is defined as follows:

𝜀n+1 = 0 if
{

𝜀n = 0&ei,n+1 < emax,i or
𝜀n = 1&ei,n+1 ≤ emin,i,

(A9)

𝜀n+1 = 1 if
{

𝜀n = 0&ei,n+1 ≥ emax,i or
𝜀n = 1&ei,n+1 > emin,i.

(A10)
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