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1  | INTRODUC TION

The increasing availability of spatio-temporal land surface temperature (LST) satellite data has invoked the need 
to analyze historical information to achieve better accuracy for LST prediction and forecasting (Deng et al., 2018; 
Lussana, Tveito, & Uboldi, 2018; Romaguera et al., 2018). LST is an influential factor for climate change, global 
warming, urban heat islands, drought, and other environmental threats (Trigo et  al., 2011). One of the major 
challenges reported in the LST literature is the problem of handling missing pixels, line gaps, cloud cover, etc. in 
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Abstract
Spatio-temporal prediction and forecasting of land surface 
temperature (LST) are relevant. However, several factors 
limit their usage, such as missing pixels, line drops, and cloud 
cover in satellite images. Being measured close to the Earth's 
surface, LST is mainly influenced by the land use/land cover 
(LULC) distribution of the terrain. This article presents a spa-
tio-temporal interpolation method which semantically mod-
els LULC information for the analysis of LST. The proposed 
spatio-temporal semantic kriging (ST-SemK) approach is 
presented in two variants: non-separable ST-SemK (ST-
SemKNSep) and separable ST-SemK (ST-SemKSep). Empirical 
studies have been carried out with derived Landsat 7 ETM+ 
satellite images of LST for two spatial regions: Kolkata, India 
and Dallas, Texas, U.S. It has been observed that semanti-
cally enhanced spatio-temporal modeling by ST-SemK yields 
more accurate prediction results  than spatio-temporal  
ordinary kriging and other existing methods.

www.wileyonlinelibrary.com/journal/tgis
mailto:﻿
http://orcid.org/0000-0002-6288-0942
mailto:﻿
http://orcid.org/0000-0002-6350-6610
http://orcid.org/0000-0001-8359-581X
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:shrutilipi.2007@gmail.com
mailto:jia.chen@tum.de


190  |     BHATTACHARJEE et al.

satellite raster images (Chen, Huang, Chen, & Xu, 2017; Gerber, de Jong, Schaepman, Schaepman-Strub, & Furrer, 
2018; Weiss et al., 2014). This work uses Landsat 7 ETM+ satellite images; Figure 1a shows a raw band image 
(http://landsat.usgs.gov/) with line gaps. A magnified view is shown in Figure 1b, where small white patches of 
cloud cover are also visible.

To generate a comprehensive image of LST for further analysis, there is a need to analyze its past trends. 
Geo-statistical spatial interpolation (Dixon & Uddameri, 2016) is a popular technique in the remote sensing of 
LST which predicts missing pixels from the surrounding measured locations. The first law of geography (Tobler, 
1970) is the building block to model the dependency among the sampled locations in the interpolation process for 
assigning optimal weights. In traditional spatio-temporal interpolation, the weights assigned to the sample points 
depend on the Euclidean distances and the temporal measurement lag with respect to the prediction point. A 
trade-off analysis is needed between spatial and temporal scales to model optimal weights by the interpolation 
process. Variety exists among different techniques based on how pragmatically this spatio-temporal autocorrela-
tion is modeled.

Several studies have been reported in the field of spatio-temporal interpolation of LST. The performance 
of the methods is mainly data-specific and application-dependent (Foster & Evans, 2008). The following para-
graph has identified some recent works on the existing spatial interpolation methods (such as inverse distance 
weighting (IDW), nearest neighbors (NN), splines (SP) and different variants of kriging) for LST-based applica-
tions. Spadavecchia and Williams (2009) compared three kriging methods: simple kriging, ordinary kriging (OK) 
and kriging with an external drift (KED), with a baseline inverse distance weighting (IDW) algorithm (Shiode & 
Shiode, 2011). They found KED to perform better in the estimation of maximum and minimum temperatures and 
precipitation in terms of mean absolute error (MAE) and root mean square error (RMSE). Chen, Li, Chen, Rao, 
and Yamaguchi (2014) applied thin-plate splines (TPS) to sharpen thermal images, which is useful for any LST 
application, such as urban heat island assessment and drought monitoring. Carrera-Hernández and Gaskin (2007) 
analyzed the spatio-temporal variations of temperature and rainfall in the Mexico Basin and their correlation 
with elevation. They considered five kriging methods: OK, KED, block kriging with external drift, OK in a local 
neighborhood, and KED in a local neighborhood. Estimation accuracy was observed to be improved by taking 
elevation as the auxiliary variable. Colombi, De Michele, Pepe, Rampini, and Michele (2007) proposed a numerical 
method for calculating spatially distributed daily mean temperature and compared it with the IDW interpola-
tion method. They obtained a satisfactory result, reporting an RMSE of approximately 2°C. Metz, Andreo, and 
Neteler (2017) combined temporal and spatial interpolation methods to reconstruct the MODIS LST images for 
central Europe and reported an RMSE of 0.5 K. They considered emissivity and elevation as the covariates for 

F I G U R E  1   Landsat 7 ETM+ satellite image (single band) with line gaps (black lines) and cloud cover (white 
patches): (a) Raw satellite image with line gaps; and (b) Magnified view of the selected area (yellow box)
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the spatial interpolation. Yang, Wang, and August (2004) presented a method to estimate LST by calibrating four 
spatial interpolation methods using satellite-derived surface emissivity: IDW, spline, kriging and cokriging. They 
recommended kriging for LST interpolation if surface emissivity data are not available. Interpolation uncertainty 
was reduced here from 10 to 1.56°C after calibration. Xu, Wang, Hu, and Li (2013) introduced a novel technique 
called the point estimation model of Biased Sentinel Hospitals-based Area Disease Estimation (P-BSHADE) to in-
terpolate missing data in temperature data sets and compared it against three estimators: kriging, IDW and spatial 
regression test (SRT). They applied and validated the new method with an annual Chinese temperature data set 
and found better results than others. Hengl, Heuvelink, Tadić, and Pebesma (2012) presented an interesting idea 
of predicting LST in Croatia from MODIS LST images. They found that LST is a function of coordinate location, 
LULC, orography, precipitation, and industrial activities.

As identified in previous work (Bhattacharjee, Mitra, & Ghosh, 2014; Hengl et al., 2012), LST is highly influ-
enced by the LULC distribution on the Earth's surface (Hulley, Veraverbeke, & Hook, 2014; Tsendbazar, De Bruin, 
Fritz, & Herold, 2015). Similarly, the temporal change in LULC is also correlated with the temporal dynamics of LST. 
Hence, this auxiliary knowledge of LULC can be incorporated into the spatio-temporal LST interpolation process 
to achieve better accuracy. Here we have assumed that the amount of residual change in LST at a given location 
is introduced due to the temporal change in LULC. We present a new spatio-temporal interpolation method by 
extending the spatial semantic kriging (SemK) method (Bhattacharjee & Chen, 2019b; Bhattacharjee & Ghosh, 
2017), which is intended for LST mapping (Bhattacharjee & Ghosh, 2015b). The SemK-based interpolation method 
has been applied for the incorporation of LULC information into the prediction process of LST. LULC is considered 
as the semantic knowledge of the terrain, modeled by the processing of its ontology hierarchy (Bhattacharjee & 
Ghosh, 2014; Bhattacharjee, Prasad, Dwivedi, Dasgupta, & Ghosh, 2012). However, this method can be applied 
for any meteorological variable that is influenced by LULC dynamics. The temporal behavioral change of LULC is 
modeled as the change in “semantics” of the sample points and is incorporated into the prediction process. The 
proposed method belongs to the kriging family (Hui, Hu, Yevenyo, & Yu, 2016) and is referred to as spatio-tempo-
ral semantic kriging (ST-SemK). The major advantage of ST-SemK over spatial SemK is that the ST-SemK is capable 
of modeling time-series LST data; hence, it can facilitate forecasting. It is also better than SemK when sample den-
sity is low in the prediction time instance, but higher in the past. However, the performance of ST-SemK is highly 
dependent on the study region, and spatial autocorrelation, LULC–LST correlation, and the diversity of the LULC 
distribution (entropy) are the major contributing factors. Thus, while choosing the region of interest (RoI) for the 
empirical study, the LULC-based entropy analysis (Bhattacharjee et al., 2014), LULC–LST correlation study, and 
the performance evaluation lemmas (Bhattacharjee & Ghosh, 2015a) can be performed beforehand to check the 
suitability of ST-SemK for that particular RoI. The objectives of the proposed work are as follows:

•	 to analyze the behavior of temporal semantic change of the LULC distribution and incorporate this behavior to 
model the residual LST change for each sample point;

•	 to extend the traditional spatio-temporal autocorrelation model with the semantic LULC information and carry 
out the spatio-temporal prediction and forecasting of LST; and

•	 to compare the proposed method in terms of accuracy with some popular spatio-temporal interpolation 
methods.

2  | SPATIO -TEMPOR AL SEMANTIC KRIGING

This section presents a detailed description of the proposed ST-SemK approach. The spatio-temporal interpolation 
methods estimate the variable value Z at the location x0 in the prediction time instance t0 from the known sample 
points (xi, tai), where ith year ai∈{0,⋯ ,−∞}. In this study, Z is LST, but can be any other variables, such as carbon 
dioxide or solar-induced fluorescence. However, the difference in spatio-temporal prediction and forecasting lies 
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in the choice of the sampled data from different time instances. For prediction, the samples from the previous, 
present and following years can be chosen to gap-fill the raster images with missing pixels, line drops, cloud cover, 
etc. For forecasting, the sampled data should be chosen from the previous years only. Here  we choose present 
and past data for prediction in 2015. Hence, ai∈{0,⋯ ,−10}. The theoretical interpolation estimator is modeled 
as follows:

where Ẑ(x0, t0) is the predicted LST value at the prediction point x0 at t0, Z(xi, tai ) is the measured LST value at the ith 
sampled location xi at tai, ai is either a present or past time instance. wi is the weight assigned to the sample point (xi, tai ) 
which forms the weight vector W for N interpolation points. Therefore, the weight vector is the function of spatial lag 
h and temporal lag t. The existing approaches of spatio-temporal interpolation are broadly classified into two catego-
ries: (a) separable (purely spatial and purely temporal models); and (b) non-separable (inseparable space-time trade-off 
model) (Yang et al., 2013). The components of spatio-temporal analysis are depicted in Figure 2.

For the separable approach, the spatial and the temporal component are shown separately in the figure. 
However, for the latter approach, a non-separable component is shown as the “hypotenuse” of the spatio-tem-
poral lag triangle. The proposed ST-SemK is implemented for both the approaches as separable ST-SemK (ST-
SemKSep) and non-separable ST-SemK (ST-SemKNSep). It follows the concept of time-forward kriging (Yang et al., 
2013) along the temporal and spatial axes and extends the first law of geography (Tobler, 1970) in spatial, tempo-
ral, and semantic dimensions. It assumes that the change in LST is the function of coordinate location, time, and its 
semantics (LULC). The process flow diagram of ST-SemK is depicted in Figure 3. The input to this framework is the 
spatio-temporal LST data, classified (supervised) LULC data, and the ontology hierarchy of LULC classes depicted 
in Figure 4 (Bhattacharjee et al., 2014).

First, for each of the interpolation points in t0, N sample points are collected from the present and past time 
instances. The traditional temporal, spatial semivariogram models (for the separable approach), or the spatio-tem-
poral semivariogram model (for the non-separable approach) are built by following the concepts of the traditional 
OK method (Snepvangers, Heuvelink, & Huisman, 2003). In these traditional semivariogram models, the spa-
tial semivariance (γ(h)), temporal semivariance (γ(t)), and spatio-temporal semivariance (γ(h,t)) of LST are plotted 
against the spatial lag (h), temporal lag (t), and the anisotropy ratio (α), respectively (Arslan, 2012). The first two 
models are implemented in the separable ST-SemK approach and the third in the non-separable approach. α is 
defined as (h/t), that is, spatial lag divided by temporal lag (for example, kilometers per year). This whole process of 
traditional semivariogram modeling is referred to as “Euclidean-distance-based spatio-temporal proximity” mod-
eling in Figure 3.

To model the “spatio-temporal change in semantic proximity” in Figure 3, the semantic metrics of spatial SemK 
(Bhattacharjee et  al., 2014) are extended into temporal or spatio-temporal dimensions (for the separable and 

(1)Ẑ(x0, t0)=

N∑
i=1

wiZ(xi, tai ), such that ai∈{0,⋯ ,−∞}

F I G U R E  2   Simplified conceptual view of the components of spatio-temporal analysis, considering spatial, 
temporal and spatio-temporal lags between two LST sampled locations (x0,t0) and (x1,t−1)
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non-separable approaches, respectively). Then the traditional semivariance and covariance scores are extended 
with these semantic metrics, which are used in the ST-SemKNSep and ST-SemKSep approaches. These approaches 
are further elaborated in Sections 2.1 and 2.2, respectively.

F I G U R E  3   The ST-SemK framework considering semantic land–atmospheric interaction modeling as the core 
of the framework. The process flow of both separable and non-separable ST-SemK are presented in the block 
diagram

F I G U R E  4   An example LULC ontology for LST interpolation. It is defined by the domain experts as LULC 
classification in Mendiratta et al. (2008)
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2.1 | Non-separable ST-SemK

In ST-SemKNSep, the space and time dimensions are made comparable to each other by defining an anisotropy ratio 
(α) to deal with different units and weighted distances along spatial and temporal dimensions. As reported in dif-
ferent literature, the separable model may suffer from some impractical hypotheses, which can be overcome by 
proper empirical estimation of the α value. Heuvelink & Griffith (2010) have  explained the notion of traditional 
“sum metric” model for the spatio-temporal semivariogram modeling, which is adopted by ST-SemKNSep. The semi-
variance (γ) of two sample points (xi,tai) and (xj,taj), h distance and t temporal lag apart, consists of three components 
as follows:

where �(xi ,xj)(h) is a purely spatial semivariance, �(tai ,taj )(t) is a purely temporal semivariance, and �[(xi ,xj),(tai ,taj )](h,t) is a spa-

tio-temporal semivariance where the two dimensions are made comparable with respect to α (see Figure 2). Evaluation 
of α between two dimensions is complex. This ratio can be empirically evaluated from the available sampled locations 
of the RoI. To make the proposed ST-SemKNSep process more pragmatic, the local anisotropy ratios can be calculated. 
This is because the α may vary (different semivariogram sills in different directions) with the group of sampled loca-
tions considered (Hengl et al., 2012; Snepvangers et al., 2003).

If CovST(Zi,Zj) is the spatio-temporal covariance between the sample points (xi,tai) and (xj,taj) with distance lag h 
and temporal lag t, and the space-time anisotropy ratio α, then CovST(Zi,Zj) is modeled as follows:

Equation (3) indicates that the covariance is a function of semivariance which can be evaluated with the experimental 
semivariogram models. For ST-SemKNSep, the traditional spatio-temporal covariance matrix (ℂST

ij [N×N]
) and distance 

matrix (�ST
0i [N×1]

) are given below, where VarST(Zi) denotes the covariance of (xi,tai) with itself (i.e., variance):

2.1.1 | Evaluation of spatio-temporal semantic dependence

To evaluate semantic dependence in the non-separable ST-SemK approach, the two spatial semantic metrics of 
SemK (Bhattacharjee et al., 2014), semantic similarity and spatial importance, are extended in the spatio-temporal 
domain (Bhattacharjee & Ghosh, 2017). As the semantic relations between the LULC classes in the ontology 
hierarchy remain unchanged over time, the structure of the ontology remind constant over time. The ontology 
hierarchy consists of all possible LULC classes of every time instance and is exhaustive. The semantic similarity 
metric is dependent on the structure of the ontology. As the temporal lags among the sampled locations do not 
affect this structure, this metric does not need modifications for its spatio-temporal change analysis. Therefore, 

(2)�(h,t)= �(xi ,xj)(h)+�(tai ,taj )
(t)+�[(xi ,xj),(tai ,taj )]

(h,t)

(3)

Cov
ST
(Zi,Zj) =Cov(h,t)

=Cov(h)+Cov(t)+Cov

(√
h2+ (�t2)

)

=≤(�(xi ,xj)(h)+�(tai , taj )
(t)+�[(xi ,xj),(tai ,taj )]

(h,t))

(4)ℂ
ST
ij [N×N]

=

⎡⎢⎢⎢⎢⎢⎢⎣

Var
ST
(Z1) Cov

ST
(Z1,Z2) ⋯ Cov

ST
(Z1,ZN)

Cov
ST
(Z2,Z1) Var

ST
(Z2) ⋯ Cov

ST
(Z2,ZN)

⋮ ⋮ ⋱ ⋮

Cov
ST
(ZN,Z1) Cov

ST
(ZN,Z2) ⋯ Var

ST
(ZN)

⎤⎥⎥⎥⎥⎥⎥⎦

,𝔻ST
0i [N×1]

=

⎡⎢⎢⎢⎢⎢⎢⎣

Cov
ST
(Z0,Z1)

Cov
ST
(Z0,Z2)

⋮

Cov
ST
(Z0,ZN)

⎤⎥⎥⎥⎥⎥⎥⎦
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the process of evaluating the spatio-temporal semantic similarity will be the same as that of the spatial semantic 
similarity evaluation process in Bhattacharjee et al. (2014).

However, as the spatio-temporal importance evaluation process deals with correlation analysis with sampled 
LST data, the temporal lag is significant here. This is because the same locations on the Earth's surface may have 
different LST measures at two distinct time instances. To evaluate the spatio-temporal importance, the whole RoI 
is divided into k random zones. Given two sample points (xi,tai) and (xj,taj) with their representative LULCs fi and 
fj, k pairs of sample points are chosen for both fi and fj, but from different time instances, tai and taj, respectively. 
Therefore, the extended spatial importance metric is termed spatio-temporal importance (SIST), and for (xi,tai) and 
(xj,taj) it is modeled as follows:

where Ztap (fpq ) is the LST value (Z) of the qth sample point representing the LULC class fp at the time instance tap. 
Z
tap (fp) is the average of the LST values of the LULC class fp over the k sample points at the time instance tap. Being a 

correlation coefficient score, it lies in [−1,1]. It is further normalized to a positive range to avoid the negative mapping 
of the covariances. Now, the total spatio-temporal semantic score for the pair (fi and fj) is given as SISST

ij
, which is equal 

to SIST
ij
⋅SSij.

In spatio-temporal analysis, the semivariance scores are plotted against the anisotropy ratio α to build the 
experimental semivariogram model in the spatio-temporal domain. An example of an experimental semivariogram 
model is presented in Figure 5 to show that the semivariance scores vary with respect to the semantic scores, and 
is simulated using some randomly chosen locations of the spatial region of Kolkata. In this figure, the Y-axis rep-
resents the �ST−SemK

ij
 scores against α on the X-axis, and the corresponding fitted semivariograms are shown. Three 

different semivariograms are shown in solid lines for three semantic scores (0.25, 0.5, and 0.75). The violet dotted 
line represents the semivariograms for the baseline ST-OK method. The experimental details of these models are 

(5)SIST
ij
=CorrLST(f

tai
i ,f

taj
j )=

∑k

m=1
(Ztai (fim )−Ztai (fi))(Z

taj (fjm )−Z
taj (fj))�

∑k

m=1
(Ztai (fim )−Ztai (fi))

2
∑k

m=1
(Z

taj (fjm )−Z
taj (fj))

2

F I G U R E  5   Example of experimental spatio-temporal semivariograms of LST for different semantic scores 
(SIST

ij
⋅SSij) (RoI: Kolkata). Here, the three example scores are: 0.25 (blue line), 0.5 (yellow line), 0.75 (red line). 

Different semivariogram behavior can be observed for different scores. The semivariogram with semantic 
score 1, which is similar to “None" (violet dotted line), stands for the ST-OK method where all the LULCs are 
considered to be identical
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discussed further in Section 3.3. Here our goal is to update the traditional spatio-temporal covariance scores with 
the semantic scores. In ST-SemK, the traditional semivariance score (γ(α)) is revised using the semantic score SISST

ij
, 

and the revised semivariance score �ST−SemK
ij

 is given as follows: 

�ST−SemK
ij

= �(�)ST−SemK=
�(�)

SISSTij

The covariance scores are obtained from the semivariogram model as follows: Covij=Sill−γij (Esri, 2019; Wagner, 
2003). Another alternative approach is to update the covariance scores using semantic scores as both are the simi-
larity metrics. The semantic covariance matrix ℂSemK

ij
 and the semantic distance matrix �SemK

0i
 are given as follows:

Considering ST-OK as the base method, the weight vector of ST-SemK (�ST−SemK) is modeled as follows: 
𝕎

ST−SemK= [ℂST−SemK
ij

]−1[[𝔻ST−SemK
0i

]−�ST−SemK1], where λST-SemK is the Lagrange multiplier of ST-SemK.

2.2 | Separable ST-SemK

ST-SemKSep facilitates spatio-temporal prediction and forecasting of LST. It attempts to estimate the trend compo-
nent and the residual component over the temporal axis. These two components approximate each past LST inter-
polating point (xi,tai ) to the prediction time instance t0 as (xi,t0). This is a purely temporal prediction process. Then 
the spatial semantic kriging is carried out with all the approximated (xi,t0)s to estimate the LST value at the predic-
tion point (x0,t0), which is a purely spatial process. Thus, the properties of ST-SemKSep can be summarized as follows.

•	 The trend component captures the average behavioral change in LST over the temporal dimension.
•	 The residual component deals with the change in LST that is due to the temporal changes of the semantics or 

LULC distribution of the terrain. This change is captured by building a three-dimensional (3D) temporal seman-
tic semivariogram model of LST.

•	 With these two components, once all the interpolating points are approximated to the prediction time instance 
t0, the spatial semantic kriging is carried out by building a 3D spatio-semantic semivariogram of LST at t0 using 
all the approximated (xi,t0)s.

The general spatio-temporal estimation equation of ST-SemKSep is given by:

where Ẑ(x,t) is the predicted LST value at each distinct (x,t), m(x,t) is the trend component (i.e., the deterministic part 
of the random variable), and ε(x,t) is the corresponding residual part. These two components are described further.

2.2.1 | Trend component analysis

Many variants of the kriging method have been reported in the literature, depending on how m(x,t) is modeled. 
The default approach is to assume that the trend is an unknown constant mean over space and time. As both OK 
and spatial SemK adopt this notion in the purely spatial domain, the proposed ST-SemK can be extended further 
in the temporal domain by adopting the same notion to model m(x,t). However, the assumption of constant mean 
over the temporal axis is not a very realistic approach as it assumes that the same LST trend is followed at every 

(6)

ℂ
ST−SemK
ij

=[Cov
ST−SemK

ij
]N×N, 𝔻

ST−SemK
0i

=[Cov
ST−SemK

0i
]N×1 (7)

(8)Ẑ(x,t)=m(x,t)+𝜖(x,t)
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time instance. Furthermore, the temporal uncertainties associated with the de-trending process are not taken into 
account in some approaches, such as ST-SK (Snepvangers et al., 2003). The existing methods do not consider the 
temporal change in semantics, which indirectly affects the change in LST beyond its average trend. The proposed 
ST-SemK method models the trend component, which is a function of location and time (x,t). In addition, the  
residual ε(x,t) models the additional change in LST due to the semantic change in the terrain.

In this study the m(x,t) analysis is carried out for the individual LST sample points. A predefined radius is con-
sidered against each past sample point (xi,tai). The Ntrend additional sample points are considered within that radius 
and their LST value is measured at every time instance, starting from tai to t−1 in the forward direction. A trend line 
then approximates this temporal behavior in the prediction year or beyond, which may also facilitate forecasting 
(see Figure 6). Thus, the trend component m(xi,t0) of the interpolating point (xi,tai ), approximated in the prediction 
time instance t0 is given by:

where ai∈{0,⋯ ,−∞}.
Figure 6 shows an example of average LST behavioral change at a particular location in the Kolkata region over 

the years 2005 to 2014. The Y-axis shows the average LST for the corresponding year on the X-axis. The graph in 
Figure 6a shows the LST trend over the years, including the average measured LST in 2015. Figure 6b shows the 
approximated average LST in the year 2015 by following the trend line of the past data, estimated by Equation (9).

2.2.2 | Residual component analysis

The spatio-temporal 2D semivariogram between two interpolating points (xi,tai ) and (xj,taj ) is modeled by 
�((xi,tai ),(xj,taj )). It captures the additional behavioral change as the variance between random fields between the 
pair of locations. Considering the respective stationarity assumptions in both space and time dimensions, the 
traditional semivariance γ for spatio-temporal analysis is a function of spatial lag h and the temporal lag t between 
the pair of locations (xi,tai ) and (xj,taj ). It is given by:

(9)
m(xi,t0)=

∑−1

q=ai

∑Ntrend
p=1

Z(xp ,tq)

Ntrend

�ai�

(10)�(h,t)=
1

2M

M∑
i=1

[�(xi,tai )−�(xi+h,tai + t)]2

F I G U R E  6   Average temporal change of LST at a particular location (RoI: Kolkata): (a) Temporal change of LST 
from 2005 to 2015; and (b) Predicted LST in 2015 considering the linear LST trend from 2005 to 2014

(a) (b)
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where M is the pair of sampled locations within spatial lag h and temporal lag t.
Since ST-SemK first attempts to approximate each interpolating point (xi,tai ) in the prediction time instance t0 

as (xi,t0), the residual ε(x,t) is modeled by a purely temporal semivariogram with spatial lag h=0. Considering 0 and 
t lags in the spatial and the temporal axes respectively in Equation (10), the purely temporal semivariogram model 
of ST-SemK is given by:

As identified by ST-SemK, the representative LULC of a particular location may change over time. The residual 
ε(x,t) of LST should also capture this change in semantics of the terrain through temporal semivariance modeling. 
Therefore, the temporal semantic semivariance, γ(0,t,Δsemij), is given by:

where Δsemij is the semantic change of a sample point xi, due to its representative LULC change from fi to fj over the 
temporal lag t, and M is the pair of sampled locations that experienced this LULC change.

This temporal change Δsemij is evaluated by analyzing the ontology in Figure 4 with two metrics: temporal 
semantic similarity and temporal importance. The evaluation processes of both the metrics are different in ST-
SemKSep, compared to the ST-SemKNSep approach. As the structure of the ontology remains static over time, the 
change with respect to the temporal semantic similarity metric can be evaluated from the ontology itself. For this 
metric, the temporal change in semantics (ΔSSt

ij
) of a particular sample point xi, represented by the LULC classes fi 

and fj at two different time instances tai and taj, is modeled by:

Here, |ftaii | and |ftajj | are the total number of concepts in the paths of fi and fj in the ontology, staring from the root LULC. 
The mi and mj represent the number of matching concepts in the paths of fi and fj in the ontology (mi = mj).

However, the temporal importance between any pair of LULC classes evolves over time. Thus, the change with 
respect to this metric is the change in correlation of a particular point xi, or its representative LULC classes (ftaii  and 
f
tai
j ) over the time interval t. If the representative LULC class of the point xi changes from fi to fj over the temporal 

lag t, the temporal correlation score, SIt
ij
, is modeled as SIt

ij
=SIST

ij
, where SIST

ij
 is defined in Equation (5). The semantic 

correlation score of the location xi is maximal when it is represented by the same LULC class over time interval 
t. This score is referred to as SIt

ii
 and is modeled by Equation (5). Hence, the change in the temporal importance 

metric for a given sample point xi over the temporal lag t is modeled as:

The total semantic change (Δsem) is then evaluated over time interval t if both the scores are non-zero 
(Bhattacharjee & Ghosh, 2015a). Once the temporal change in semantics is evaluated through the temporal se-
mantic similarity and the temporal importance metrics, a 3D temporal semantic semivariogram is modeled fur-
ther. The temporal semantic semivariogram captures the residual change in LST (ΔZ) over time and the change 
in semantics. An example temporal semantic semivariogram for the Kolkata study region is shown in Figure 7, 
which is simulated using a few selected locations. The X-axis shows the inter-annual temporal lag (t) and the Y-axis 
shows the semantic change (Δsem). The Z-axis shows the corresponding temporal semantic semivariance scores 
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(γ(0,t,Δsemij)), varying with respect to both time and semantics of the terrain. The details of experimental specifi-
cations are discussed in Section 3.3.

Following the characteristic of the temporal semantic semivariogram, the residual ε(x,t) of LST can be approx-
imated over the temporal axis for future time instances to facilitate forecasting. Finally, the LST value of each inter-
polating point Z(xi,tai ) is approximated at the prediction time instance as Ẑ(xi,t0)=m(xi,t0)+𝜖(xi,t0) (see Equation 8).  
Once all the  interpolatied points are approximated to the same prediction time instance t0, the spatial SemK is 
carried out to predict Ẑ(x0,t0) with the approximated Ẑ(xi,t0)s. This models 3D spatio-semantic semivariograms 
to capture the change in LST with respect to spatial lag and semantics. The spatial semivariance, γ(h), and the  
spatio-semantic semivariance, γ(h)SemK, are given by:

where M is the pair of sampled locations, (xi,t0) and (xi+h,t0), that are h spatial lag and 0 temporal lag apart, Z is the LST 
value of the corresponding point, and SISij is the semantic score for the spatial analysis (Bhattacharjee et al., 2014). 
The covariance scores can also be modified directly by the semantic scores as both are similarity metrics. This model is 
further used to determine the experimental spatio-semantic semivariogram, the weights vector, and the LST value at 
the prediction process. The detailed mathematical modeling of spatial SemK is discussed in Bhattacharjee et al. (2014).

The experimental spatio-semantic semivariograms for two study regions, Kolkata, India and Dallas, TX, are 
simulated using a  few randomly  selected locations  and depicted together in Figure 8. Here, the X-axis shows 
the spatial lag (h) between sample points at the prediction time instance t0 and the Y-axis is the same as that of 
the temporal semivariogram model (see Figure 7), representing the semantic change (Δsem). The semantic change 
is modeled with respect to the semantic similarity and spatial importance metrics which lie in (0,1] (Bhattacharjee 
et al., 2014). The Z-axis shows the spatial semivariance score (γ(h)), varying with respect to both space and seman-
tics of the terrain. The experimental details are specified in Section 3.3.

3  | EMPIRIC AL E XPERIMENT

The details of the empirical experiment are given in this section. The study regions chosen, their terrestrial and 
climatic details, the specifications of the data sets considered, and empirical details of the interpolation processes 
are discussed.

(15)�(h)=
1

2M

M∑
i=1

[Z(xi,t0)−Z(xi+h,t0)]
2, �(h)SemK=

�(h)

SISij

F I G U R E  7   Example of 3D temporal semantic semivariogram of LST considering the temporal lag on the 
X-axis, the semantic change on the Y-axis, and the semivariance (γ) on the Z-axis (RoI: Kolkata). Two views of the 
same semivariogram show how the semivariance score is changing with both time and semantic (LULC) metrics. 
The semivariance score increases with the increment of temporal lag and the decrement of semantic score

(a) (b)
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3.1 | Data specifications

An empirical experiment was carried out with the derived satellite images of LST to check the performance of the 
proposed method and compare it with existing popular interpolation methods. Landsat 7 ETM+ satellite images 
(http://landsat.usgs.gov/) are considered for two RoIs, Kolkata and Dallas. The satellite images consist of seven 
spectral bands with spatial resolutions 30 m (for bands 1–5, 7) and 60 m (for band 6). The LST is derived from this 
band information in degrees Celsius (°C). We considered data for the years of 2005–2015, with prediction for the 
year 2015 being carried out by considering the time series input to the interpolation framework.

3.2 | Study regions

The Kolkata study region is located in the eastern part of India (central coordinate 22°34′N 88°22′E) (see Figure 9). 
The annual mean temperature of Kolkata is 26.8°C and the monthly mean temperature varies in the range 19–30°C. 
The Dallas study region is the largest urban center and the fourth most populous metropolitan area in the U.S. 
(central coordinate 32°46′N 96°47′W). This metropolitan area is shown in Figure 10. Dallas has a humid and hot 
subtropical climate with a mean temperature of about 39°C during summer and heat-humidity indexes soaring as 
high as 47°C. Both of the RoIs have very rich and diverse types of LULC distributions. Some common LULC classes 
for both the RoIs are: residential areas, commercial areas, waterbodies, vegetation, croplands, and industrial areas.

3.3 | Experimental specifications

To model the semantic properties of the terrain, the raw satellite images underwent classification separately. As 
the properties of every LULC class may change over time, different signature sets should be considered for dif-
ferent time instances. Domain expert knowledge was considered in order to identify the optimal classification 
properties. For each of the RoIs, five different zones were identified for further analysis. These zones are shown 
in Figures 9 and 10. The empirical study has the following specifications.

•	 The total number of pixels in each zone of Kolkata is approximately 205 × 241. A minimum of 26 × 27 sampled 
LST pixels are randomly (uniformly random) chosen from each zone from 10 years of time series data, which is 
approximately one seventieth of the total number of pixels.

F I G U R E  8   Example of 3D spatio-semantic semivariogram of LST considering the spatial lag on the X-axis, the 
semantic change on the Y-axis, and the semivariance (γ) on the Z-axis for both the RoIs: Kolkata and Dallas. The 
semivariance score increases with the increment of spatial lag and the decrement of semantic score
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•	 A predefined radius is considered against each prediction point for the selection of interpolation points.
•	 For ST-SemKNSep, the space-time anisotropy ratio α is modeled for each of the zones separately. An example 

spatio-temporal semivariogram model for the spatial region Kolkata was shown in Figure 5. Here, the semantic 
scores are chosen in the same interval of 0.25 within the range (0,1]. Unique behavior is observed for every 
semantic score, which also supports the fact that different change in LULC results in diverse temporal LST 
changes. All the semantic semivariograms are normalized to the original range of corresponding traditional 

F I G U R E  9   Spatial zones of Kolkata selected for analysis

F I G U R E  1 0   Spatial zones of Dallas selected for analysis
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semivariograms. Another  example experimental semivariogram plot is also reported for the ST-OK method 
(violet dotted line) in the same figure. This method does not differentiate between the sample points in terms 
of their representative LULC classes, hence the semantic score between any pair of sample points is always 1, 
which is the same as no semantics or “None.”

•	 The trend component of ST-SemKSep chooses Ntrend LST sample points against each prediction point within a 
predefined radius. Figure 6 shows the average LST behavioral change at a particular location  in the Kolkata 
region over the years 2005–2014. It is modeled by taking Ntrend=30 within a predefined radius.

•	 An example temporal semantic semivariogram for the Kolkata study region is presented in Figure 7, taking a few 
random sample points of this region . In this model, 11 years of data (2005–2015, inter-annual) are considered, 
taking the period from mid-October to mid-November to avoid seasonal effects. Hence, the inter-annual tem-
poral lag (Δt) varies from 0 to 10 (on the X-axis). The semantic scores with respect to the change in semantic sim-
ilarity and temporal importance metrics (Δsem) vary in (0,1] (on the Y-axis). The temporal semantic semivariance 
scores are plotted on the Z-axis. The characteristic of this semivariogram in Figure 7 is that the model varies 
with respect to both time and semantic scores. With more temporal lag, the semivariance score increases up to 
a certain point and then becomes stable. A similar trend is observed for the discrete semantic scores. However, 
the changing pattern is different for different scores.

•	 Example experimental spatio-semantic semivariograms of spatial SemK for both the study regions in 2015 are 
presented in Figure 8 together. This considers the satellite LST data from 2015. In this figure, both the RoIs 
can also be compared through their semivariograms. For example, at 8 km spatial lag and 0.5 semantic score, 
the semivariance scores for Kolkata and Dallas are 3.66 and 2.42, respectively. Similarly, for identical LULC 
classes (semantic score = 1) at 16 km lag, the semivariance scores are 3.36 and 2.30 for Kolkata and Dallas, 
respectively. These semivariograms are exponential and linear in nature for Kolkata and Dallas, respectively. 
It is observed for both the models that the semivariance score increases with the increase in spatial lag. These 
scores also vary with respect to the semantic scores. A similar trend is observed for every semantic score, but 
the change is different for different scores. The curve becomes stable beyond the range of spatial autocorrela-
tion (Bhattacharjee et al., 2014).

4  | RESULTS AND DISCUSSION

This section compares the ST-SemK method with some existing interpolation methods. The error measurement 
metrics, their significance, and a discussion on the comparison study are presented.

4.1 | Comparison study

For the comparison study, the ST-SemK (both ST-SemKNSep and ST-SemKSep) method is compared with some popu-
lar spatio-temporal interpolation methods (as reported by Li & Heap, 2011), such as splines with spatio-temporal 
data (ST-SP), nearest neighbors with spatio-temporal data (ST-NN), IDW with spatio-temporal data (ST-IDW) and 
OK with with spatio-temporal data (ST-OK) (Li, 2008). These four methods do not include the contextual LULC 
information in the spatio-temporal interpolation process. Four  metrics are calculated by comparing the predicted 
and measured  LST: MAE, RMSE (Bhattacharjee et al., 2014; Li, 2008), mean bias (MB) which represents the mean 
of the difference between the predicted and measured LST, and standard deviation of error (SDE)  where "error" 
represents the difference between the predicted and measured LST. For these metrics, the measured pixel values 
(Z(xi)) are compared with the corresponding predicted pixels (Ẑ(xi)) of the validation samples, and the average error 
is calculated (for MAE and MB). However, the RMSE and SDE both represent the deviation of the LST predictor 
and error. The evaluation criteria and the significance of each metric are discussed in Li (2008). The basic idea of 
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the error metrics is to check whether the predicted values are similar to the measured values, hence the difference 
is less. Therefore, the lower the MAE and RMSE values, the better the model (Li, 2008). For a better prediction 
model, the MB should be closer to zero and the SDE should be low. For pictorial comparison of the predicted LST 
images with respect to the measured LST images, the peak signal-to-noise ratio (PSNR; Bhattacharjee & Ghosh, 
2017) is reported for each prediction method. The PSNR (in decibels) is a standard metric for predicted image 
analysis, which is a ratio between the maximum possible power of a signal and the power of corrupting noise. A 
higher PSNR indicates a better prediction model. The mathematical formulations of MAE, RMSE, MB, SDE and 
PSNR are defined as follows: in the Equations (16)–(20) respectively, where Z(xi) is the measured pixel value, Ẑ(xi) 
is the predicted pixel value by the respective model, N is the number of sampled locations, μu is the mean of the 
error surface and MAXI is the maximum pixel value of the measured image:

Here Z(xi) is the measured pixel value, Ẑ(xi) is the pixel value predicted by the respective model, N is the number of 
sampled locations, μu is the mean of the error surface, and MAXI is the maximum pixel value of the measured image.

Tables 1 and 2 present the comparison of different spatio-temporal interpolation approaches with the ST-
SemK for Kolkata and Dallas respectively, in terms of MAE, RMSE, MB, and SDE. The mapping images (measured 
and predicted) of LST for five zones of each of the RoIs are depicted in Tables 3 and 4. Each predicted image is 
compared with the measured image of the respective zone.

4.2 | Discussion

From Tables 1 and 2, it is evident that the proposed ST-SemK performs better than other methods for both 
the RoIs. Though ST-SP, ST-NN, ST-IDW, and ST-OK are popular interpolation methods in the existing literature 
(Li, 2008; Li & Heap, 2011), they do not consider the LULC information of the terrain explicitly for LST change 
modeling. It is also evident from the results that in most cases, these existing interpolation methods give similar 
and comparable results for LST prediction in terms of MAE and RMSE. The differences exist in these methods 
based on how they model the spatial autocorrelation/dependency among the sample points for LST analysis. 
Their performance also depends on the spatial region of interest and the diversity of the terrestrial distribution 
(Bhattacharjee & Ghosh, 2015a).

It is also observed that for every zone, the most accurate interpolation method (excluding ST-SemK) is dif-
ferent. This is the reason for modeling the ST-SemK method as a generic framework to extend any interpolation 
method with semantic analysis. Again, both ST-SemKNSep and ST-SemKSep yield comparable results in most cases 
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N
(◦C)

(19)Standard deviation of error (SDE)LST=

�∑N

i=1
[(Z(xi)− Ẑ(xi))−𝜇u]
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in terms of MAE and RMSE. The corresponding PSNR values are also reported in Tables 3 and 4 for each of the 
predicted images by comparing them with the corresponding measured surface. To understand better, the PSNR 
values are compared graphically in Figure 11. The proposed ST-SemK reports the highest PSNR, ≈3–7 dB higher 
than other methods for both Kolkata and Dallas. The separable and non-separable approaches of ST-SemK yield 
comparable results. with ≈1 dB PSNR difference for both the RoIs.

For any spatial analysis with auxiliary information, it must be noted that the improvement of the estimation 
depends on the covariates and their correlation with the primary variable. If the auxiliary variable is strongly 
correlated with the primary variable, then only it can improve the analysis and would be useful to consider. Many 
works in the literature have already identified the correlation between LST and LULC and used one variable for 
the analysis of the other (Liu & Weng, 2009); Jiang & Tian, 2010); Tran et al., 2017); Fan, Rey, & Myint, 2017). The 
distinctive LST patterns are associated with the thermal characteristics of the LULC types (Xiong et al., 2012). 
Also, for the Landsat TM/ETM+ imagery, the land surface emissivity is often derived by the normalized difference 
vegetation index (NDVI) thresholds method, where the NDVI is an indirect representation of the LULC distribution 

TA B L E  1   Comparison of predicted LST with four error measurement metrics—MAE, RMSE, MB, and SDE 
(in °C)—for the Kolkata region. Lower MAE, RMSE, and MB closer to zero represent a better model and vice 
versa

RoI Error measures

Kolkata Zone ST-SP ST-NN ST-IDW ST-OK ST-SemKNSep ST-SemKSep

  Mean absolute error (MAE, °C)

  Zone 1 0.480 0.475 0.504 0.476 0.290 0.315

  Zone 2 0.499 0.488 0.512 0.485 0.303 0.295

  Zone 3 0.530 0.517 0.557 0.606 0.483 0.470

  Zone 4 0.545 0.542 0.768 0.700 0.410 0.420

  Zone 5 0.367 0.350 0.351 0.408 0.330 0.322

  Root mean square error (RMSE, °C)

  Zone 1 0.439 0.431 0.491 0.432 0.211 0.248

  Zone 2 0.504 0.504 0.580 0.493 0.279 0.249

  Zone 3 0.589 0.575 0.633 0.648 0.405 0.372

  Zone 4 0.539 0.541 0.638 0.571 0.275 0.308

  Zone 5 0.233 0.212 0.215 0.282 0.164 0.147

  Mean bias (MB, °C)

  Zone 1 0.027 0.022 0.021 0.021 −0.002 −0.003

  Zone 2 −0.006 −0.004 −0.002 −0.004 0.001 0.001

  Zone 3 0.026 0.025 0.022 0.020 −0.007 0.003

  Zone 4 0.002 0.005 0.008 0.002 0.001 0.001

  Zone 5 0.009 0.008 0.007 0.007 0.001 0.001

  Standard deviation of error (SDE, °C)

  Zone 1 0.457 0.453 0.487 0.453 0.425 0.421

  Zone 2 0.513 0.516 0.564 0.508 0.490 0.512

  Zone 3 0.555 0.556 0.589 0.729 0.507 0.555

  Zone 4 0.493 0.497 0.538 0.725 0.484 0.484

  Zone 5 0.314 0.299 0.303 0.340 0.284 0.274
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(Oguz et al., 2013). Therefore, the LULC distribution of the terrain is generally correlated with the LST distribu-
tion if the considered LULC classes are more generic, for example, assuming all plantations, cropland, fallow land 
together as their generic class agriculture (refer to the ontology in Figure 4). Here, we show an empirical study in 
Table 5 to support it.

The LULC and LST distributions for Kolkata are analyzed to check whether the urban area is associated with 
high-LST zones and vice versa. The November 2015 data are chosen as this time instance belongs to the early 
winter season of the study region and does not exhibit any stress conditions. The same five zones as chosen in 
Figure 9 are investigated in terms of the mean LST within and across different LULC types. The five LULC classes 
that we have considered for this analysis are: (1) waterbodies, (2) agriculture, (3) grassland, (4) wetlands, and 
(5) built-up. The mean LSTs for each of these LULC types are evaluated and compared in Table 5. The second 
and third columns of Table 5 show the distribution of LULC and LST for the five zones in Kolkata. Pictorially, it 
is evident that, for every zone, the urban (built-up) area is associated with the high-LST pixels compared to the 
non-urban areas (such as waterbodies, agricultural land, vegetation or grassland). In the fourth column of the 

TA B L E  2   Comparison of predicted LST with four error measurement metrics—MAE, RMSE, MB, and SDE 
(in °C)—for the Dallas region. Lower MAE, RMSE, and MB closer to zero represent a better model and vice 
versa

RoI Error measures

Dallas Zone ST-SP ST-NN ST-IDW ST-OK ST-SemKNSep ST-SemKSep

  Mean absolute error (MAE, °C)

  Zone 1 0.543 0.541 0.575 0.481 0.360 0.385

  Zone 2 0.619 0.623 0.662 0.618 0.362 0.426

  Zone 3 0.694 0.693 0.738 0.673 0.519 0.494

  Zone 4 0.586 0.628 0.735 0.711 0.518 0.434

  Zone 5 0.706 0.700 0.765 0.757 0.528 0.437

  Root mean square error (RMSE, °C)

  Zone 1 0.530 0.519 0.596 0.524 0.331 0.356

  Zone 2 0.716 0.716 0.829 0.703 0.362 0.367

  Zone 3 0.910 0.907 1.037 0.858 0.493 0.446

  Zone 4 0.688 0.756 0.794 0.640 0.400 0.370

  Zone 5 0.880 0.859 1.012 0.935 0.470 0.429

  Mean bias (MB, °C)

  Zone 1 −0.015 −0.011 −0.012 −0.014 −0.008 −0.005

  Zone 2 0.002 −0.002 −0.004 −0.001 0.001 0.001

  Zone 3 −0.018 −0.011 −0.012 −0.012 0.001 0.001

  Zone 4 0.012 0.009 0.010 0.008 0.005 0.002

  Zone 5 −0.002 −0.003 −0.005 −0.005 −0.001 −0.001

  Standard deviation of error (SDE, °C)

  Zone 1 0.485 0.475 0.515 0.660 0.458 0.423

  Zone 2 0.554 0.550 0.601 0.543 0.441 0.466

  Zone 3 0.654 0.653 0.702 0.695 0.573 0.550

  Zone 4 0.587 0.601 0.678 0.693 0.485 0.427

  Zone 5 0.629 0.607 0.653 0.665 0.537 0.587
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TA B L E  3   Comparison study for ST-SemK (RoI: Kolkata) with LST mapping images. The error is reported in 
gray scale, where black pixels represent the highest error and white pixels represent the lowest error. Each 
predicted LST image is compared with the corresponding measured LST surface, and the PSNR is reported
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TA B L E  4   Comparison study for ST-SemK (RoI: Dallas) with LST mapping images. The error is reported in gray 
scale, where black pixels represent the highest error and white pixels represent the lowest error. Each predicted 
LST image is compared with the corresponding measured LST surface, and the PSNR is reported
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table, the correlation study has been carried out for every zone separately and the difference in mean LST across 
different LULC types is studied. It is observed that the relationship among the LULC classes in terms of LST is in-
creasing from waterbodies to built-up areas. An exception is evident between the wetlands and built-up classes, 
mainly for zone 2, because most of the wetlands pixels are surrounded by the built-up pixels in this zone, such 
that it is difficult to distinguish these two classes. However, the increasing nature of the yellow linear trend line 
shows the general relationships among the LULC classes for every zone. Though the range of LST varies across 
the zones, the waterbodies are generally cooler than the plantation (agriculture and grassland) areas, followed 
by built-up areas.

The performance of the spatial interpolation method is highly dependent on the autocorrelation of the 
sampled location with respect to the prediction variable. Additionally, the performance of ST-SemK varies with 
the amount of entropy in the LULC distribution of the terrain. For example, if there is a single LULC class which 
covers the entire region (such as snow cover, desert), the performance of ST-SemK will be exactly equal to that 
of ST-OK. In contrast, if the LULC distribution is highly diverse, ST-SemK generally yields more accurate results 
than ST-OK and others (Bhattacharjee & Ghosh, 2015a). Therefore, an analysis of the terrain entropy can be 
carried out before the actual interpolation, by following the lemmas in Bhattacharjee and Ghosh (2015a), to 
check whether ST-SemK is suitable for the given study regions and the application. Further, it is also evident 
from the spatio-temporal analysis literature that experimental spatio-temporal semivariograms are difficult 
to construct. However, for remote sensing satellite data, most of the Earth's surface is measured, producing 
plenty of observations. Therefore, for the application of LST interpolation using Landsat ETM+ satellite im-
ages, the use of ST-SemKNSep is appropriate. The non-separable approach may not always be a suitable choice 
where the number of sampled locations is limited and may lead to over- or under-estimation of the prediction 
variable.

Finally, the basic SemK framework has been developed as a generic framework, which can be adopted for 
other variables and semantic knowledge. We have recently applied the semantic modeling of the SemK-based 
interpolation method for the mapping of XCO2 (column-averaged dry-air mole fractions of atmospheric CO2) mea-
surements (Crisp et al., 2016) from NASA's Orbiting Carbon Observatory 2 (OCO-2) satellite (Bhattacharjee & Chen, 
2019a). The basic spatial SemK framework has been extended in a multivariate scenario to model these data sets 
together for predicting XCO2. Incorporation of LULC and other CO2 emission information into the interpolation 
process of XCO2 enhanced the prediction accuracy. We are now improving the method by modeling atmospheric 
dynamics and its effect on CO2 emission. This supports the wide application of the SemK framework and its 
variants.

F I G U R E  11   Comparison of LST prediction for two spatial regions, (a) Kolkata and (b) Dallas, with respect to 
the PSNR error measurement metric. The PSNR (in decibels) is reported on the Y-axis for the zones of the RoIs 
on the X-axis. A higher PSNR represents a better model, and vice versa

(a) (b)
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5  | CONCLUSIONS

The  ST-SemK method is motivated by the fact that the spatio-temporal LULC dynamics have significant impacts 
in deciding the patterns of land surface temperature. Both separable and non-separable variants of ST-SemK se-
mantically analyze the space-time trade-off for assigning priority/weight to the LST sampled locations. From the 
empirical study, it is observed that ST-SemK yields more accurate LST prediction results than most of the popular 

TA B L E  5   LULC–LST correlation study for five zones in Kolkata
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spatio-temporal interpolation techniques in terms of four error metrics: MAE, RMSE, MB and SDE. ST-SemK also 
reports ≈3–7 dB higher PSNR for both the RoIs when compared with the mapping images of LST.

The prediction accuracy reported by the ST-SemKSep method is a little higher than ST-SemKNSep in some cases. 
However, the latter approach is less complex than the former. Therefore, depending on the required accuracy and 
the complexity specifications, either of the approaches can be chosen for the given spatio-temporal application. 
The  ST-SemK is a generic approach that can be applied to any meteorological variables influenced by seman-
tic knowledge of the terrain. Moreover, the same semantic modeling framework can be applied to extend any 
traditional interpolation method to its semantic extension. Though the method introduces additional overhead 
for incorporating auxiliary information into the interpolation process, the accuracy–complexity trade-off analysis 
proves the efficacy and the applicability of the ST-SemK method.

For future development of the ST-SemK framework, we want to combine OCO-2 data and ground-based 
remote sensing CO2 data (Chen et al., 2016; Heinle & Chen, 2017)  with the LULC to  predict the missing pixels/
footprints of OCO-2 data (Bhattacharjee & Chen, 2019) . ST-SemK can be utilized to predict other variables’ miss-
ing footprints—for example, NDVI or solar-induced fluorescence (Bhattacharjee, Chen, & Rammig, 2019)—using 
relevant semantic knowledge, such as urban/population density.
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