
1.  Introduction
Earth science deals with physical systems, such as the atmosphere and ocean, that are large, complex, 
and chaotic, with many parts and processes interacting over multiple time scales. To develop and express 
quantitative insights into these systems, Earth scientists build simulators (or simply “models”). These in-
tricate software packages incorporate physical laws, mathematical approximations, empirical relationships, 
and discretization and integration schemes for partial differential equations (PDEs). Repeated dynamical 
updates of a system state are used to explore the consequences of modeling assumptions and initial con-
ditions or compared to observations for evaluation, tuning, and forecasting. This approach has aided both 
fundamental understanding and practical applications such as short- and medium-range forecasting (Bauer 
et al., 2015), identification of potential commercial and human impacts, and validation of assumptions for 
long-term climate modeling (Eyring, Gleckler, et al., 2016; Maher et al., 2019).

Many techniques for working with quantitative data require derivatives of these Earth science simulators. 
The state-update function of a simulator, integrating the system state from one time point to the next, con-
stitutes an input–output function, and we are interested in the derivatives of this function with respect to 
its inputs. However, even in cases where simulator software implements mathematical formulas that are 
themselves differentiable, we often find ourselves at a loss: providing and maintaining routines simulator 
differentiation is a laborious task, and development resources are limited. Thus, none of the 108 CMIP6 
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Plain Language Summary  Many Earth science simulators are implemented as monolithic 
programs that calculate changes in the state of a system over time. In many cases, using or improving 
these simulators also requires the derivatives of their outputs with respect to inputs, which describe how 
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models (Eyring, Bony, et al., 2016) provide derivatives, and even advanced operational models use approxi-
mations and lower resolutions to do so (Trémolet, 2004).

Three main strategies presently exist for obtaining simulator derivatives. First, for simple simulators with 
low-dimensional system states, finite differences have been used (Smith et al., 1985) but are inefficient and 
numerically fraught and scale poorly. Second, gradient calculation routines have been implemented for 
specific simulators such as numerical weather prediction systems (Wedi et al., 2015; Weng & Liu, 2003), and 
some tools exist for automating this task (Bischof et al., 1992). These “by-hand” routines can be efficient and 
stable but are cumbersome to maintain, require immense effort for realistic Earth science simulators, and 
limit experimentation with new models, parametrizations, or discretizations. Third, the entire simulator 
can be reimplemented in an automatic differentiation (“autodiff”) framework (Linnainmaa, 1976), which 
uses a fixed set of numerical operations to support automatic differentiation. While a promising long-term 
strategy (Holl et al., 2020; Hu et al., 2019; Rackauckas & Nie, 2017), this has not been demonstrated for 
realistic simulators and would discard decades of software development.

Here, we pursue a different approach for calculating missing derivatives: “translating” the simulator into an 
autodiff environment as an emulator, a deep neural network (NN) that learns from simulations. Such emu-
lators have been studied in Earth science for their potential to provide faster and computationally cheaper 
numerical simulations, sensitivity analysis, and model uncertainty estimates (Dueben & Bauer, 2018; Fablet 
et al., 2018; Reichstein et al., 2019). We show that the trained emulator's autodiff derivatives closely match 
the missing derivatives of the original simulator, without requiring gradient routines or autodiff support 
for simulator code. This approach can leverage the mature autodiff environments developed and tested by 
the machine learning (ML) community (Abadi et al., 2016; Bezanson et al., 2017; Hu et al., 2019; Paszke 
et al., 2019; Rackauckas et al., 2018).

We develop and test our approach using the Lorenz-96 model (L96) (Lorenz, 1996), a system of nonlinear 
differential equations modeling atmospheric chaos and a standard benchmark for data analysis and ML 
tasks in Earth science (Brajard et al., 2020; Dueben & Bauer, 2018). L96 is a good test case for our purposes 
because it can be precisely differentiated without ML to measure the accuracy of emulator derivatives. We 
systematically investigate how accuracy depends on integration time and training data set size and show 
how emulators can learn from small system state fragments. We also demonstrate how designing the emu-
lator's architecture to match the simulator's mathematical structure improves accuracy and data efficiency 
(Bocquet et al., 2019). Our work incorporates insights and techniques from previous studies using NNs to 
predict or emulate Earth science simulators (Chattopadhyay et  al.,  2019; Dueben & Bauer,  2018; Fablet 
et al., 2018; Scher & Messori, 2019) but is to our knowledge the first to estimate derivatives through simu-
lation-trained emulators.

We further demonstrate the utility of emulator derivatives for two important downstream applications in 
Earth science. We first test strong-constraint 4D-Var (Lorenc, 1986), a simulation-based data assimilation 
technique (Carrassi et al., 2018; Ide et al., 1997) that estimates system states from noisy and incomplete 
observations. It is used in state-of-the-art weather prediction systems (Wedi et al., 2015) but requires the 
simulator's derivatives (Courtier & Rabier, 1997; Errico, 1997). We show that emulator derivatives can pro-
duce 4D-Var forecasts as accurately as true simulator derivatives.

We also apply emulator derivatives for learning parametrizations, corrective terms approximating physical, 
chemical, or biological processes not spatially resolved in the system state (Kain & Fritsch, 1993; Stens-
rud,  2009). Designing these requires extensive work and domain expertise (Gross et  al.,  2018; Hourdin 
et al., 2016), and DL-based replacements have garnered considerable attention (Karpatne et al., 2017; Re-
ichstein et al., 2019; Schneider et al., 2017). Without available simulator derivatives, parametrizations are 
trained on their immediate inputs and desired outputs before being coupled to the simulator (Brenowitz 
et al., 2020; Gross et al., 2018; Seifert & Rasp, 2020). This “offline” training mode cannot account for sim-
ulator–parametrization interactions at runtime, potentially leading to unrealistic behavior and numerical 
instabilities (Rasp, 2020; Yuval & O'Gorman, 2020). We show that emulator derivatives allow highly accu-
rate parametrizations to be learned in an online, “solver-in-the-loop” mode that was previously restricted 
to a narrow set of simulators with available derivatives (Obiols-Sales et al., 2020; Ramadhan et al., 2020; 
Sanchez-Gonzalez et al., 2020; Um et al., 2020).
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2.  Methods
2.1.  Simulators

We consider a simulator with time-varying system state  Kx   (e.g., pressure or temperature across a spa-
tial grid). The simulator uses an explicit, fixed-time-step numerical scheme to integrate tendencies f that are 
functions of the current state xt, resulting in a deterministic state update :


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with step-size Δ > 0. The integration scheme can be forward Euler (  ( ) Δ ( )fx x x ) or a higher-order 
method (cf., Supporting Information Text S2). A simulation is a state sequence {x(t0), x(t0 + Δ), …, x(t0 + nΔ) 
…, x(t0 + NΔ)} generated by repeated application of . For fixed step-size, we will denote the state sequence 
as {x0, x1, …, xn, …, xN} with x(t0 + nΔ) = xn.

2.2.  Problem Statement

Our task is to obtain simulator derivatives. Given an initial state x0 and time delay nΔ, we must calculate 
derivatives of the future state xn with respect to x0, given by the input–output Jacobian matrix of the iterated 
state update :
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We assume at least one simulation is available, and the integration scheme and Δ are known. However, to 
facilitate flexible application to Earth science models without extensive analysis of governing equations, 
discretizations or source code, we do not assume code or formulas are available for f, or that we can freely 
evaluate f or  on new inputs (see Section 4). Thus, we must differentiate the unknown state-update func-
tion based on a fixed data set it has generated.

2.3.  Emulators

Our overall strategy is to estimate simulator Jacobians using emulator Jacobians. Essentially, a NN emulator 
learns to reproduce the simulator's dynamics through training on simulation data, and autodiff tools are 
used to provide the derivatives of emulator outputs with respect to the inputs.

For a simulator with a K-dimensional system state, our emulator is a NN with K inputs and outputs, train-
able parameters ϕ, and input–output function ̂f  that estimates the simulator tendencies f. While we have 
not assumed knowledge of f(x) for any simulation state, we can plug our emulator into the simulator's  
integration scheme and compare the resulting state update  to simulations. For example, forward Euler 
integration yields   ( ) ( )x x x   f .

We train the emulator (details in Supporting Information Text S3) by minimizing the objective function:
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where  1,
s
n kx  is element k of the system state s

nx  at time step n in simulation s. After training ̂f , we plug 
it into an integration scheme to obtain . We then use autodiff to minimize DYN , applying the chain rule 
in Equation 3 efficiently through autodiff backpropagation.
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2.4.  Model Architectures for Emulation

When we have no knowledge about the simulator beyond the above assumptions, fully connected deep 
NNs provide a generic, flexible option for ̂f . However, partial knowledge about the tendency functions f or 
the space of system states x can often be easily obtained from the simulator's description or documentation 
without extensive analysis of its equations or code.

In the present work, our emulator architectures incorporate knowledge about three common properties 
in simulators of physical systems. First, when the elements of the system state are spatially structured by 
assigning each element a location on a regular spatial grid, we use convolutions to increase efficiency, ac-
curacy, and scalability. Second, when the simulator tendencies exhibit local dependence, such that f(x)k 
depends only on the system state in a local neighborhood Uk around xk, we impose the same structure on 
the emulator. To do this, we limit the number of convolutions with kernel width >1, so that the remaining 
convolutions operate independently at each grid point. Third, we explore the use of specialized activation 
functions that mimic mathematical operations used by the simulator (Figure S1). Full details of all networks 
are provided in Supporting Information Text S4, and code is available at github.com/m-dml/emulator_L96/.

3.  Experiments
We trained emulators on simulation data, evaluated their accuracy, and tested them in downstream appli-
cations using the L96 simulator, a common benchmark model in Earth science.

3.1.  Test Case: L96 Simulator

We generated simulations from the one-level Lorenz-96 simulator (Lorenz, 1996). This simulator exhibits 
wave-like patterns that interact nonlinearly while moving persistently clockwise through the spatially struc-
tured, 1-D, periodic system state (Figure 1a, top).
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Figure 1.  Emulators for differentiable dynamics. (a) System state sequences generated by numerical integration of time derivatives from a 40-dimensional L96 
simulator (upper) and emulator (center) with the same initial conditions, and resulting differences (lower). The emulator was trained on 1,200 time steps at 
Δ = 0.05. (b) Emulator outputs are differentiable functions of their inputs. Derivatives     40 40( Δ) / ( )t tx x   for both simulator and trained emulator and 
the initial state from (a). (c) Sensitivity analysis demonstrating emulator differentiability over multiple time steps. Partial derivatives ∂x(1)20/∂x(t)k of the system 
state at location 20 and time t = 1 au (red cross in (a)), with respect to all locations k and at previous times t. Differences (right) between simulator and emulator 
derivatives increase with the number of differentiated time steps.

https://www.github.com/m-dml/emulator_L96/
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Each element of the state's tendency is a function of the current state xk = [x(t)]k at that location k, together 
with up to two neighboring state values in either direction:

       1 2 1
k

k k k k
dx x x x x F
dt

� (5)

where F is a static parameter of the simulator and we use the periodic boundary conditions xK+1  =  x1, 
x0 = xK, and x−1 = xK−1. We used a step-size of Δ = 0.05 in a fourth-order Runge-Kutta integration scheme, so 
that calculating the full state xn+1 from xn requires four recursive applications of f. Except where otherwise 
noted, we used K = 40 and F = 8, which is known to result in chaotic dynamics with a leading Lyapunov 
exponent of λ1 ≈ 1.67 (Brajard et al., 2020).

While the purpose of our emulation framework is to provide unavailable simulator derivatives, for testing 
and measuring accuracy we can obtain the Jacobians 0( , )J nx  of the L96 simulator through hand-written 
routines (details in Supporting Information Text S2).

3.2.  Emulation of L96 Dynamics

We trained emulators to estimate the L96 tendency function (Equation 5) for arbitrary system states x. In 
designing our emulator architectures, we sought to exploit high level conceptual properties of the simula-
tor (Section 2.4), analogous to those that can be easily identified in more complex and realistic simulators, 
without tailoring our network's components excessively to the simulator. First, we used periodic 1-D convo-
lutions to capture the system states' spatial structure. Second, to the capture local dependence, we used 3 × 
1 convolutions in the first two layers, with all subsequent layers consisting of 1 × 1 convolutions that operate 
independently across activation channels at each spatial location. We used eight-layer networks with ReLU 
activations (details in Supporting Information Text S4).

We also experimented with additional specializations of the emulator's connectivity structure and acti-
vation functions to more closely match the mathematical operations of Equation 5. These specializations 
strongly improved performance, reduced network depth and trainable parameter count, and decreased the 
amount of training data required (see Supporting Information Text S5, and also Bocquet et al., 2019), but 
we chose not to use them for our main results since such problem-tailored architectures might not be easy 
to identify for more complex and realistic simulators.

3.3.  Accuracy of Emulations

After using L96 simulations to train the emulator, we plugged the emulator's estimate ̂f  of the tendencies i 
into the RK4 integration scheme to define a state update  (Bocquet et al., 2019; Wang & Lin, 1998). Start-
ing with an initial state for a simulation not included as emulator training data (Figure 1a, top), we applied 
 iteratively to generate an emulation (or “rollout”), a new system state sequence resembling a simulation 
(Figure 1a, middle). Visual inspection of emulations showed a close match to the original simulation for 
about one Lyapunov time, beyond which the emulation systems states generated by the emulator continued 
to strongly resemble simulations in their amplitude, smoothness, continuity, and wave-like appearance, but 
with different wave positions and amplitudes. The eventual appearance of this mismatch is inevitable even 
when the emulator's errors approach machine precision, since L96 is a chaotic system (Brajard et al., 2020). 
Nonetheless, emulations were stable for over 105 time steps and resulted in the same distribution of system 
state values as the original L96 simulation (see Figure S3).

We further quantified these errors over multiple emulations as a function of integration time (Figure 2a) 
for networks trained on different data set sizes (N = 1,200, 4,000, or 12,000 time steps). Initial errors were 
much smaller than typical state values but grew over about 3 Lyapunov times until the emulation no longer 
matched the simulation better than a randomly chosen system state. Emulator errors on both rollouts and 
single state updates decreased as a function of training data set size (Figure 2b).
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3.4.  Accuracy of Emulator Derivatives

We next considered the task originally motivating emulator development: the estimation of simulator deriv-
atives. We used the autodiff capabilities of NNs to differentiate emulator outputs with respect to their inputs 
and used the results as estimates of simulator derivatives. Because we have chosen a simple test case where 
simulator derivatives can be easily implemented by hand, we were able to compare emulator derivatives 
directly to their target values.

Figure 1b shows input–output Jacobians for a single time step of the simulator (right) and emulator (center). 
Each column corresponds to one of 40 inputs to  or  and each row to one output. Only values near the 
matrix diagonal are nonzero due to the local dependency structure: each element of f or ̂f  depends on other 
elements up to two positions away, and with RK4 integration each output of  or  depends inputs up to  
eight positions away. The simulator and emulator Jacobians show close agreement (Figure 1b, right), and 
average error decreasing as a function of training data set size (Figure 2c).

To evaluate the accuracy of emulator-derived derivatives across longer simulations, we calculated simulator 
and emulator derivatives of the system state at one location and time with respect to all locations up to 20 
time steps in the past. The spatial and temporal structure of this dependence of future on past states was 
visually similar when comparing emulator and simulator derivatives (Figure  1c). As expected from the 
chaotic nature of L96, the size of errors relative to the derivatives grew with increasing time in the past. Due 
to the limited-range local dependencies built into our emulators , the size of the region with nonzero 
derivatives grew linearly over time into the past.

3.5.  Training on Partial System States

A considerable challenge in training NNs on Earth science simulations is posed by the sheer size of their 
system states. For example, a global latitude/longitude grid at 0.25° spacing with 100 vertical levels contains 
over 108 locations, each of which can store a dozen or more physical quantities. In such cases, training 
on complete system states poses major difficulties for machine learning frameworks and the computing 
hardware that supports them (Kurth et al., 2018). However, this limitation can be overcome by training 
the emulator on partial system states. We take advantage of the fact that L96 dynamics exhibit local de-
pendence, a property shared by many other simulators. For example, many Earth system models combine 
location-specific physical effects coupled to fluid dynamics (Gross et al., 2018). When these dynamics are 
integrated explicitly with discretization stencils for spatial derivatives, updates exhibit local dependence 
(Zängl et al., 2015).

In the specific case of L96, the time derivative f(x)k of the kth location in the L96 system state depends 
only on xk−2:k+1, a neighborhood of four values, while for a fourth-order Runga-Kutta solver the state up-
date ( )kx  depends on 13 values (i.e., xk−8:k+4). By imposing the same local dependence on the emulator 
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Figure 2.  Accuracy of emulator-derived state updates and derivatives (averages over 1,000 initial conditions not 
used for training). (a) Root-mean-square error (RMSE) of numerically time-integrated emulator outputs compared 
to simulations, as a function of integration time and training data set size N. (b) RMSEs for the state update over 
a single time step, as a function of training data set size. (c) Sum of square errors for input–output Jacobians 

   ( Δ) / ( )J t tx x , as a function of training data set size.
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computing ̂ ( )f x  through convolutional network layers, the problem of learning a function with K inputs 
and K outputs reduces to the much easier problem of learning a function with 13 inputs and 1 output. We 
investigate how to exploit this for emulator training on partial system states in Supporting Information 
Text S6.

3.6.  4D-Var Data Assimilation

To further test the accuracy and usefulness of emulator-derived derivatives, we applied them to data as-
similation (Apte et al., 2008), aiming to identify the L96 system state sequence most consistent with noisy 
and incomplete observations. Observations yn consist of 10 randomly locations from each xn with Gaussian 
noise (Figure 3a, upper), reproducing the setup of Fertig et al. (2007) (K = 40, Δ = 0.0125, σnoise = 1, see 
supporting information Text S8).

We carried out data assimilation using the strong-constraint 4D-Var algorithm. Making use of the fact 
that all future states depend deterministically on x0, gradient-based numerical optimization is used to re-
duce prediction error for each yn while regularizing with a prior distribution (see Supporting Information 
Text S8). Concretely, we seek to minimize

        1 1
0 0 0( )DA n n n f f

n
R Bx f f x x x x

� (6)

   ( )
0( )n

n n nf y x � (7)

where observation error covariance matrices Rn, background error covariance matrix B, and the background 
state xf are known, and n  is known with available derivatives.

Several approaches to minimizing the loss Equation 6 exist, and not all require simulator derivatives (Des-
roziers et  al.,  2014). The gradient-based optimization of DA  underlying the common 4D-Var algorithm 

however does requires derivatives of the state-update function , and 
( )d

d
x

x


 is unavailable for many 

important simulators. We therefore investigated the utility of emulation-based 4D-Var, replacing  by a 
trained emulator  and calculating DA  in an autodiff environment. For L96, for which true simulator 
derivatives are available, we were able to directly compare emulator versus simulator derivatives using the 
same data assimilation task, algorithm, and data. Our emulators target f instead of , and hence they are 
not tied to a specific step length Δ, so we reused an emulator previously described in Section 3.2 and trained 
on 1,200 time steps with Δ = 0.05.

4D-Var data assimilation recovered system state trajectories visually resembling true system states (Fig-
ure 3a) throughout the period of available observations, both when using state updates and derivatives from 
the true simulator (Figure 3c) or those from the trained emulator (Figure 3d). Errors within the observation 
window decreased as a function of window length (Figure 3f, and increased as expected when forecasting 
further into the future beyond the last observation (Figure  3g). Remarkably, we observed no difference 
whatsoever in forecast quality when using the emulator and its derivatives instead of the true simulator, for 
observations windows up to 72Δ and consecutive forecast windows up to 80Δ = 1au (Figures 3f and 3g). 
One arbitrary time unit corresponds to roughly 5 days of “weather” (Lorenz, 1996). These results demon-
strate that emulation can provide missing derivatives for 4D-Var data assimilation without degrading fore-
cast accuracy and that emulators learned for one value of Δ can be successfully applied with another.

3.7.  Parametrization Learning

We further tested our emulators and their derivatives in a parametrization learning task. In Earth science, 
a critical and ubiquitous question ask how we can account for physical effects at spatial scales below the 
grid spacing of our system state. For example, how can we account for convective processes involving mois-
ture and temperature variables z at spatial scales <100 m, when computational limits impose a 100 km 
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spacing on our atmospheric system state? A parametrization adds a corrective term to coarse-scale tenden-

cies  ( )d f
dt
x x  to mimic the effects of coupling to fine-scale variables:

 ( ) ( ) ( , )xf gx x x z� (8)

where g(x,z)x denotes the tendency of the coarse variables in the full coupled model and ψ free parameters 
of the corrective term.  ( )x  typically is chosen to have local structure, meaning that for every location k, 
the value of   ( )

k
x  depends only on xk.

In parametrization learning, we seek the ψ for which Equation  8 holds as closely as possibly. One 
straightforward approach is to generate a fine-scale simulation {(x0, z0), …, (xN, zN)} and minimize 
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Figure 3.  4D-Var data assimilation for L96. (a) L96 simulation (K = 40, Δ = 0.0125) providing unobserved “ground truth” system states for a forecast problem. 
In terms of predictability, 1 time unit corresponds to roughly 5 days of “weather.” (b) Twenty-five percent of each system state is randomly observed with 
additive Gaussian noise. We aim to determine the state trajectory from (a) within the integration window (analysis, orange) and beyond the last measurement 
(forecast, purple). (c) 4D-Var reconstruction of system states from the observations in (b), using 4D-Var with the original simulator and a hand-implemented 
gradient calculation routine (top), with reconstruction error over time (bottom). (d) As in (c), but using state update and derivatives from an emulator trained 
on a separate simulation data set. (e) 4D-Var reconstruction of the initial state x(t0) from the example in (a) and (b) using the emulator. (f) Mean ± 1 SD of 
RMSEs for x0 as a function of integration window lengths. (g) Mean ± 1 SD of forecast RMSEs as a function of time beyond the integration window, with 
window length 0.8. RMSE, root-mean-square error.



Journal of Advances in Modeling Earth Systems

n n n x n ng f    ( , ) ( ) ( )x z x x 2
2  over ψ. However, this “offline” training mode cannot account for 

coupled behaviors of  and f: even if Equation 8 holds closely for all 1{ }N
n nx  used to learn ψ, integrating 

( ) ( )f x x  will generate novel states for which Equation 8 may break down.

To address this, the parametrized model can be numerically integrated during learning to define a state 
update   for dynamics  ( ) ( )d f

dt
x x x . We minimize

 PAR
n r

r

n r
r

n( ) ( )
( )   




1 2

2max

x x� (9)

This “solver-in-the-loop” mode accounts for coupling effects and requires only coarse variables for training, 
halving storage requirements. However, minimizing PAR  over multiple time steps (or one Runge-Kutta 
step) requires simulator derivatives.

To test emulator derivatives in a solver-in-the-loop parametrization learning task, we used a two-level L96 
model with coarse and fine variables (Lorenz, 1996):

        1 2 1
k

k k k k k
dx x x x x F h c z
dt

� (10)

       ,
1, 2, 1, ,

1 j k
j k j k j k j k k

dz hb z z z z x
c dt J

� (11)

with Δ = 0.01, K = 36, J = 10, F = b = c = 10, h = 1 and   ,
1

k k jjz z
J

. This model has been previously used 

as test for parametrization learning and is simple enough that parametrizations trained offline provide a nu-
merically stable, reasonably accurate baseline in coupled simulations (Crommelin & Vanden-Eijnden, 2008; 
Orrell, 2003; Pawar & San, 2020; Rasp, 2020). Parametrizing out z in Equation 10, we have

         1 2 1 ( )k
k k k k k

dx x x x x F x
dt

� (12)

To learn an L96 parametrization, we first trained an emulator ̂f  on 1,200 time steps of a coarse-only L96 
model (Equation  5), fixed ϕ and substituted ̂f  for f in Equations  8 and  9. We then minimized ( )PAR  
with rmax = 10 using autodiff on 500 time steps of fine-scale simulations as training data, with 20% held 
out for validation. For evaluation, we coupled the trained parametrization to the true dynamical model 
(Equation 12).

This “solver-in-the-loop”-trained L96 parametrization closely matched the coarse-scale variables of a 
two-level L96 simulation (Figure 4a). The learned parametrization also closely resembled coarse two-level 
L96 variables in terms of root-mean-square error (Figure 4b) and power spectral density (Figure 4c). For 
L96, offline- and solver-in-the-loop-trained parametrizations were strikingly similar (Figure 4d) despite dif-
ferent losses and training data. We emphasize that our goal was not to improve existing learned parametri-
zations for L96, which is sufficiently simple that offline training is adequate (Rasp, 2020). Rather, these 
results demonstrate that emulator derivatives allow solver-in-the-loop parametrization training without 
compromising accuracy.

4.  Discussion
We trained differentiable emulators on full or partial states of the simple but chaotic L96 system and ap-
plied them for data assimilation and parametrization learning. Emulation extends gradient-based reasoning 
and analysis to important simulators lacking derivatives. By training on simulator outputs alone, we avoid 
painstaking analysis of formulas or simulation code, which can be complex and idiosyncratic for simulators 
of weather, climate, and other important Earth system phenomena.
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4.1.  Related Work

Learning and correcting dynamics. Our results build on a growing literature describing networks that learn 
system dynamics (Grzeszczuk et al., 1998; Sanchez-Gonzalez et al., 2020), arising from ordinary differential 
equations (Chen et al., 2019; Fablet et al., 2018) and PDEs (Long et al., 2018; Rudy et al., 2019), some of 
which have applied numerical integration schemes during training (Wang & Lin, 1998). Several studies have 
used ML to learn parametrizations for L96 (Dueben & Bauer, 2018; Gagne et al., 2020; Watson, 2019) and 
other Earth science models but have either used offline training or employed Ensemble Kalman filtering 
and related approaches that do not require derivatives (Brajard et al., 2021; Pawar & San, 2020; Rasp, 2020).

A related line of research expands the task of parametrization learning to include the full dynamical model 
and learns updates directly from noisy and incomplete observations without a simulator, effectively combin-
ing emulator learning and data assimilation into a single task (Bocquet, 2012; Bocquet et al., 2020; Brajard 
et al., 2020). Long et al. (2018) approach this task by learning a PDE and discretized differential operators 
are learned from data. Fablet et al. (2020) learn dynamics while solving a weak-constraint 4D-Var problem, 
where minor violations of the learned dynamics are allowed, and train second network to solve the result-
ing optimization problem. Farchi et al. (2020) learn an ML-based correction to an existing simulator based 
on noisy observations but rely on available simulator derivatives. Like these studies and most Earth science 
simulators, we used time discretization, but network outputs can also be integrated in continuous time, 
resulting in a neural ordinary differential equation (Chen et al., 2019).

While building on these previous studies, our work is to our knowledge the first to design and evaluate em-
ulators as derivative estimators, train them on partial system states, or systematically measure the accuracy 
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Figure 4.  (a) Trajectory of coarse L96 variables from fine-scale simulations and from coarse-scale simulations with and without a parametrization aiming 
to capture the behavior of unresolved fine variables. We optimize a NN parametrization through our learned emulator (“solver-in-the-loop”) and couple this 
parametrization to the true model to simulate. (b) RMSE over time between for coarse variables of a fine-scale simulation and (parametrized) coarse models, 
averaged over 1,000 shared initializations. (c) Power spectral density over 5 time units at Δ = 0.01, averaged over all locations and 1,000 initializations. (d) 
Visualization of learned parametrization ( )kx  in comparison to a reference trained “offline” (see text). Blue dots show a subset of training data for offline 
parametrization training, which requires access to the unresolved fine-scale variables. NN, neural network; RMSE, root-mean-square error.
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and performance of derivatives in downstream tasks. However, many of these approaches can be combined 
with ours.

Unsupervised methods. At the opposite end of the data versus physics spectrum, a new class of unsupervised 
methods train networks to solve PDEs by constructing an objective function directly from symbolic equa-
tions, without requiring any simulations for training (Raissi et al., 2019; Sirignano & Spiliopoulos, 2018). 
These approaches use autodiff to calculate spatial and temporal derivatives and avoid discretization in space 
or time but cannot change initial conditions after training. Wandel et al. (2020) instead constructs an ob-
jective function from discretized PDEs but can generalize to new initial conditions. These methods address 
a fundamentally different task, require careful attention to model equations, and must be validated by nu-
merical integration.

4.2.  Future Outlook

While this and other studies successfully trained emulators on simple models such as L96, it is less clear 
whether they can be scaled up to more complex models, larger grids, additional spatial dimensions, and 
more interacting variables. Key challenges include interactions across multiple space and time scales, 
strongly nonlinear effects, and the coupling of fluid dynamics to in-place physics. While emulation learning 
remains an open challenge for more complex models, a number of strategies may prove useful in these 
scaling up efforts.

We found that domain-specific architectural features such as spatial structure and locality help reduce the 
size of the function space in which we are searching for an optimal emulator. Learning tendencies within 
a higher-order integration scheme (Bocquet et al., 2020; Fablet et al., 2018; Wang & Lin, 1998) provides 
stronger locality constraints than learning state updates and reduces numerical instability (Scher & Mes-
sori, 2019). Location-dependent effects (e.g., Coriolis force) could also be captured by providing each grid 
coordinates as an input channel.

A concern when applying trained emulators with unfamiliar initial conditions or optimizing DA  in Equa-
tion 6 is that the input to the network may not resemble the training data, possibly degrading performance. 
Proposed solutions include penalizing deviations from a desired region of the space of system states (Ren 
et al., 2020) and adding noise to inputs during training (Sanchez-Gonzalez et al., 2020). For data assimila-
tion, we found the regularization provided by the prior p(x0|xf) to mitigate this problem.

Weather and climate models typically have modular structure with multiple interacting components, but 
optimizing a specific physical parametrization would also requires derivatives for the dynamical core and 
other parametrizations. One solution to this problem could be building modular emulators that mimic sim-
ulator subroutines for local dynamics and in-place physics. In these cases, it might be possible to train some 
parts of the emulator using simulator runs with certain physical parametrizations turned off.

Data Availability Statement
Code, simulated data, and results of our study can be found at Zenodo (https://doi.org/10.5281/zeno-
do.4638267). Simulation data for Lorenz-96 were generated with code from https://github.com/m-dml/
L96sim. Code for emulator definition & training, as well as all numerical experiments, is also found at 
https://github.com/m-dml/emulator_L96.
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