
1.  Introduction
Existing models of the Earth's magnetic field (EMF) for the past millennia show a variety of time-dependent 
features: The evolution of the South Atlantic Anomaly, the observed dipole decay in recent centuries and 
the movement of flux patches all take place on timescales of several hundred years (see e.g., Hartmann & 
Pacca, 2009; Jackson & Finlay, 2015). To accurately describe and study these features, time-resolved models 
are necessary. Usually, these models are inferred from two classes of data: Data from materials with ther-
moremanent magnetization, such as volcanic rocks, bricks or burnt clay fragments from archeologic sites, 
and data from marine or lacustrine sediments with embedded magnetic particles. In this paper we focus 
on the former class and loosely refer to it as archeomagnetic data. Existing models differ in the approach 
to global modeling, but are usually constructed using inversion for spherical harmonics (SH) coefficients, 
truncated at a certain degree. Most models, such as Jackson et al. (2000), Korte et al. (2009), and Senftle-
ben  (2019), implement spline interpolation in the temporal domain, while some alternative approaches 
exist (Bouligand et al., 2005; C. G. Constable & Parker, 1988; Hellio & Gillet, 2018; Hellio et al., 2014).

By regularizing the SH model in both space and time, global features can be extracted from the sparse and 
clustered database. However, this way also local variations might be wrongly explained by the dynamics 
of the large scale coefficients. Regions of good data coverage may thus imprint a fast, well supported local 
dynamic into the dynamic of global coefficients such as the di- and quadrupole. To avoid such variations 

Abstract  In a previous study, a new snapshot modeling concept for the archeomagnetic field was 
introduced (Mauerberger et al., 2020, https://doi.org/10.1093/gji/ggaa336). By assuming a Gaussian 
process for the geomagnetic potential, a correlation-based algorithm was presented, which incorporates 
a closed-form spatial correlation function. This work extends the suggested modeling strategy to the 
temporal domain. A space-time correlation kernel is constructed from the tensor product of the closed-
form spatial correlation kernel with a squared exponential kernel in time. Dating uncertainties are 
incorporated into the modeling concept using a noisy input Gaussian process. All but one modeling 
hyperparameters are marginalized, to reduce their influence on the outcome and to translate their 
variability to the posterior variance. The resulting distribution incorporates uncertainties related to dating, 
measurement and modeling process. Results from application to archeomagnetic data show less variation 
in the dipole than comparable models, but are in general agreement with previous findings.

Plain Language Summary  Global reconstructions of the past geomagnetic field are useful 
tools to study the geodynamo process that generates the Earth's magnetic field in the outer core. Data-
based field reconstructions are traditionally represented by a fixed number of coefficients in space 
and time. In a previous study, a new modeling concept for individual epochs of the magnetic field was 
introduced, which is better adapted to inhomogeneous data distributions as found in archeomagnetic 
data, and which provides more realistic uncertainty estimates. This new modeling concept effectively has 
one coefficient per data point. Here, the new method is expanded to also consider the time evolution and 
build continuous models of the past geomagnetic field. Uncertainties in archeomagnetic input data and 
in their ages are taken into account and contribute to estimating reasonable uncertainties for the resulting 
model. The application of the new method to archeomagnetic data over the past 1,200 years gives 
general agreement with previous findings with less variation in the dipole field contribution than seen in 
comparable models.
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in the low degrees, and to exploit the data to its fullest, we suggest a Bayesian modeling approach based on 
Gaussian processes (GPs), both in space and time. With this already in mind, we implemented a closed-form 
covariance function for the spatial domain in a previous study (Mauerberger et al., 2020, hereafter referred 
to as MSKH20). The present work extends this study to the temporal domain. We again employ the closed-
form correlation kernel, introduced by Holschneider et al. (2016), and extend it to a space-time kernel using 
a squared exponential (SQE) kernel. Knowing that such a kernel is unphysical, we abstain from suggesting 
a new geomagnetic field model. Instead, the aim of this work is to show the potential of the proposed mod-
eling approach and to lay out the modeling strategy and its implications in detail.

The application of a spatiotemporal GP in a Bayesian framework includes the natural availability of 
well quantified uncertainties via the posterior standard deviation. While early models (C. G. Constable 
et al., 2000; Jackson et al., 2000; Korte & Constable, 2003) do not provide uncertainty estimates, more recent 
field models use ensemble techniques to quantify (modeling related) errors (Hellio & Gillet, 2018; Korte 
et al., 2009; Licht et al., 2013; Pavón-Carrasco et al., 2014; Senftleben, 2019). Within the space-time corre-
lation framework that we suggest, uncertainties arising from the uneven data distribution, from inaccurate 
dating and from the modeling itself can be accounted for in a well defined, statistically sound manner 
(McHutchon & Rasmussen, 2011; Rasmussen & Williams, 2006). The inversion scheme is embedded in a 
functional analytic frame of non-parametric modeling. The result is a distribution over functions, in this 
case in both space and time. This distribution is characterized by a mean function, which gives the most 
likely field model, and a two-point covariance function, describing the variability of the field.

This article is structured as follows: The rest of this section covers some basic introduction into magnetic 
field theory and GP inversion. We use those paragraphs mainly to introduce our notation. In Section 2 we 
discuss our prior assumptions, construct the correlation kernel and describe the full modeling algorithm. 
Section 3 contains a brief validation section, using synthetic data, as well as a case study to showcase the ca-
pabilities of our method. We conclude with a discussion in Section 4. The appendix provides further insight 
into the mathematical footing of the introduced methods.

1.1.  Magnetic Field Theory

Assuming an insulating mantle, outside of the conducting core, the EMF B can be approximated by the 
gradient of the geomagnetic potential Φ (Backus et al., 1996):

 ΦB�

Φ is a scalar potential, satisfying Laplace's equation ∇2Φ = 0. Assuming the sources of the potential lie at 
some reference sphere with radius R, at locations x outside of this sphere |x| > R the field can be represented 
using spherical harmonics (SH)
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x̂ is the unit vector x/|x| and 
mY  refers to the real valued and Schmidt semi-normalized SH of degree ℓ and 

order m with related Gauss coefficient 
mg . Similar to MSKH20, we do not consider the Earth's ellipticity. 

The dependence of 
mg  on a reference radius R is not explicitly expressed. The time dependence of the field 

is typically encoded in the Gauss coefficients  ( )mg t . We use upright letters x = (x, t) to distinguish space-
time inputs from purely spatial inputs. Often the Gauss coefficients are expressed in form of a spline model 
(Bloxham & Jackson, 1992)

  ,( ) ( ) ,m m
n n

n
g t g M t� (2)

where Mn(t) are typically cubic B-spline basis functions and the model is defined by the set of Gauss coeffi-
cients  ,

m
ng  at knot times tn.

The field vector components are given in a spherical coordinate system, consisting of north BN, east BE and 
down BZ components
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where θ, ϕ, and r are colatitude, longitude and radius of a field location x.

Paleomagnetic records of the EMF are provided as declination D, inclination I and intensity F, which relate 
to the field vector in a non-linear fashion:
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The horizontal intensity  2 2
H N EF B B  is an auxiliary quantity. H is called observation functional.

1.2.  Gaussian Process Regression

In the eighties C. G. Constable and Parker (1988) already proposed using GPs to model the EMF. A GP is a 
stochastic process, characterized by a mean function B and a covariance function KB

  , .KBB B� (5)

Given observations o(y) of B at locations and times y = (y, s) with Gaussian measurement errors, charac-
terized by a covariance matrix Σo, the posterior of B is again a GP. Its (conditional) mean and covariance 
functions read (Rasmussen & Williams, 2006)

   
      

1
( ) | ( ) ( , ) ( , ) Σ ( ) ( )oO K K ox x x y y y y y B BB B B� (6)

        1
Cov ( ) ( ) | ( , ) ( , ) ( , ) Σ ( , ) .oO K K K Kx x x x x y y y y xB B B BB B� (7)

x = (x, t) refers to location and time of interest. Note, that herein already a difference to previous GP based 
models is visible: The covariance function is defined both in space and time. While in principle the truncat-
ed spherical harmonics and the B-spline basis may also be used to construct a covariance function, the lan-
guage and formalism of GP regression have so far only been applied to either temporal correlations (Gillet 
et al., 2013; Hellio & Gillet, 2018) or spatial correlations (Mauerberger et al., 2020; S. Sanchez et al., 2016).

2.  Modeling Concept
We propose a fully Bayesian modeling concept, embedded in a functional analytic setting. Therefore, GP 
based techniques are employed. One key ingredient to GP regression is the a priori covariance function, also 
called the (correlation) kernel. In this section, we formulate the covariance function we employ, based on 
our a priori assumptions. Additionally, we formulate the paleomagnetic data model and discuss approxima-
tions that are necessary to apply the GP regression scheme.

2.1.  A Priori Process

Translating the uninformative dipole prior from MSKH20 to a time-dynamic realm presents a challenge, 
as temporal correlations vanish in the limit of zero a priori precision and thus cannot easily be recovered in 
the posterior. Instead, the a priori mean function of the EMF is assumed to be constant in time, with only 
axial dipole contribution:
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The strength  0
1  of the a priori dipole is a free parameter, that will later be marginalized.

We suggest building the space-time covariance using a sum of tensor products. The proposed closed-form 
covariance function for the spatial correlations of the non-dipole part KΦ,S,ND includes all SH degrees. 
Holschneider et al. (2016) describe how to construct this kernel, and in MSKH20 we describe in detail how 
to adapt it for paleomagnetic applications. In Appendix A we layout this procedure. The strategy is to trans-
late an idea about correlations amongst Gauss coefficients to the potential, using the SH representation. The 
field covariance function then follows from the gradient. Our main a priori assumption for the covariance 
is that at some reference sphere, close to where the core field is generated, the geomagnetic Gauss coeffi-
cients are uncorrelated. Assuming a flat spectrum at this reference sphere's radius R, it is possible to derive 
a closed-form for the potential covariance function. This closed form is called Legendre kernel and reads 
(Holschneider et al., 2016, Equation 53)


 


L 2

1( , ) ,
1 2

K
b a

x x� (9)

where b = x ⋅ x′/R2 and a = |x‖x′|/R2.

Temporal correlations are incorporated by a tensor product of this spatial kernel with a squared exponential 
(SQE) kernel:
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τ is the a priori correlation time, that gives an idea about the timescale on which the dynamics of the process 
happen. Note that the posterior curve may be smoother or more detailed than this scale, depending on the 
data. Similar to MSKH20, we split the kernel into dipole and non-dipole part, as the statistical properties of 
the dipole are known to differ from the higher field degrees (C. G. Constable & Parker, 1988). Each part is 
coupled to its own temporal correlation kernel and thus has its own correlation time:
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The index S stands for spatial and α• are the a priori variances of the dipole and non-dipole part. They can 
be interpreted as the expected standard deviation in the dipole ( 1

mg ) and non-dipole coefficients. See Ap-
pendix A for the explicit forms and further details. The kernel implements a single, constant correlation 
time τND for all degrees ℓ ≥ 2. We are aware, that previous work indicates different behavior (Bouligand 
et al., 2016). However, implementing the SQE kernel as suggested is straightforward and sufficient for the 
conceptual work we present here. The field's covariance function reads

   Φ( , ) ( , ) .K Kx x x xB x x� (12)

2.2.  Linearization

Paleomagnetic observations are reported as declination, inclination and intensity. With measurement errors 
E, the data model reads

SCHANNER ET AL.

10.1029/2020JB021548

4 of 22



Journal of Geophysical Research: Solid Earth

  ( ) ( , ) .o tx H B x E� (13)

Clearly, the relationship to the field vector is non-linear (Equation 4). Handling non-linear transformations 
in the framework of GP regression is technically demanding and often analytically impossible, as the trans-
formed random variables are no longer Gaussian. While more sophisticated methods exist (e.g., Snelson 
et al., 2003), the standard approach is to linearize the observation functional by means of a Taylor approx-
imation of first order. For declination, inclination and intensity, the approximate, linear functionals read
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Here,   , ,D I F and B indicate the point of expansion (POE). We implement this approximate transformation, 
to have a linear relation between the observations and the modeled quantity. Linear transformations pre-
serve normality and thus the standard GP formalism is applicable. The proxy data model reads

 lin.( ) ( , ) .o tx H B x E� (17)

Hlin. refers to the linearized observation functionals Equations 14–16.

Previous works implemented an axial dipole as POE (e.g., Hellio & Gillet, 2018). MSKH20 shows that the 
performance of inversion for the POE can be enhanced if we separate the data into two disjoint groups. One 
group consists of records with full vector information (complete) and the other of records with at least one 
component missing (incomplete). In a first step, only complete records are considered and the posterior 
distribution for these records is calculated. This first step posterior then serves as the prior and POE for the 
second step, where the remaining, incomplete records are treated.

2.3.  Measurement Errors

In order to apply the GP regression formalism (Equation 5), the full data model has to be Gaussian. There-
fore, linearizing the observation functional as described in the previous section is not sufficient, but a nor-
mal proxy error model has to be constructed as well. Intensity records often provide the error as standard 
deviations of a normal distribution, and thus linearizing the observation functional is sufficient for the 
intensities. Records of the archeomagnetic directions (declination and inclination) on the other hand, are 
reported together with the 95% confidence cone (α95) of a von Mises-Fisher distribution. Thus for the ar-
cheomagnetic directions, we construct a Gaussian proxy, using (Suttie & Nilsson, 2019)

   
 95

57.3 1and .
140 cosI D I

Io� (18)
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Additionally, similar to MSKH20, we implement a scaling factor ϵ to compensate possible false error esti-
mates, and a residual term P with scaling factor ρ, to address modeling related errors (e.g., observational 
bias due to crustal field contributions). This way, the data model reads

   lin. prox.( ) ( , ) ,o tx H B x P E� (19)

where Eprox. are the approximate errors, constructed from Equation 18.

2.4.  Dating Uncertainties

To a large amount, archeomagnetic specimen are dated using either radiocarbon dating or archeologic age 
estimation. Both methods suffer from uncertainties, as the former depends on carbon models of the atmos-
phere and the latter on contextual knowledge. To incorporate these uncertainties, and to represent them 
in the resulting models, previous studies mostly relied on sampling strategies (e.g., Hellio & Gillet, 2018; 
Korte et al., 2009; Senftleben, 2019). Hellio et al. (2014) used a normal error model for the dates, and applied 
Markov Chain Monte-Carlo (MCMC) methods to estimate the posterior distribution. We pursue a similar, 
hierarchical approach, but instead of MCMC methods, we perform analytic approximations. The dating un-
certainties are translated to measurement errors, as presented below, by weighing them with the temporal 
derivatives of the kernel. This is related, but not equal, to the idea of using the secular variation to estimate 
the contribution of dating uncertainties (see e.g., Korte et al., 2005). Due to the GP structure of the proposed 
model, the covariance structure for the secular variation is available a priori. This covariance mediates the 
dating uncertainties to the measurement errors.

Summarizing the errors from the previous section as ɛ for readability, the data model is

 lin.( ) ( , ) .o tx H B x ε� (20)

However, one does not know the precise time t at which the specimen received its magnetization, but a 
corrupted date

   2, where (0, )o t t tt t e e � (21)

is a normal error. Plugging this into the data model gives

  lin.( ) ( , ) .o to t ex H B x ε� (22)

This is known as the noisy input Gaussian process (NIGP) (McHutchon & Rasmussen, 2011). Due to the 
random variable et appearing at the inputs of the GP B, this data model is non-Gaussian again. To tackle it, 
McHutchon and Rasmussen (2011) suggest once more a linearization. This gives

    lin.( ) ( , ) ( , ) | .o t t too t e tx H B x B x ε� (23)

The first term is normal and the second term allows for easy construction of a moment matching proxy. 
With this modifications, Equation 23 can be used for GP regression in the usual way. Since the error et is 
centered, the a priori mean is not affected by the dating uncertainties. However, the covariance gets an 
additional term

   Σ ( , ) | .tt t t toK x xB� (24)

Here Σtt′ is the dating error covariance matrix and ◦ is the Hadamard product, that is, element wise multi-
plication along the t direction. To this end, KB(x, x′) is considered as a matrix consisting of 3 × 3 blocks. The 
effect of the NIGP model is thus the inclusion of dating errors as contributions to the data covariance, sim-
ilar to measurement errors. The translation is realized by weighing the dating uncertainties by the second 
order time derivative of the kernel.
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In Figure 1 we present a synthetic, one-dimensional example, to compare the proposed NIGP strategy to the 
standard GP inversion and inference via MCMC. Data was generated from a one-dimensional SQE kernel 
and assigned large input uncertainties and small errors, to mimic the situation of large dating uncertainties. 
The standard GP regression shows the typical constrictions at the input points, while the NIGP shows a 
larger standard deviation, especially at the input points. We believe that an MCMC approach gives a better 
estimate of the actual posterior, though in a realistic setting this is computationally unfeasible. However, as 
can be seen from the bottom panel of Figure 1, the NIGP gives a reasonable proxy to the MCMC result at 
immensely reduced computational cost.

2.5.  Hyperparameters

The model we constructed throughout this section consists of several 
parameters, which are a priori unknown. Most obvious are the a priori 
dipole strength  0

1 , the variances αDP and αND and the correlation times 
τDP and τND. Additionally, there are the two scalings, ϵ and ρ, for the 
measurement errors and the residual, respectively. The least obvious is 
the kernel's reference radius R. R basically controls the slope of the pri-
or power spectrum. As suggested in our MSKH20 (Figure  2), we take 
R  =  2,800  km, which gives a slope similar to the IGRF power spectra 
(Thébault et al., 2015). Note, that R gives the radius of a sphere of “vir-
tual” sources and has no direct physical meaning. The other parameters 
are marginalized, so that the outcome of the modeling procedure is a 
compound distribution

    ( | ) ( | , ) ( | ) d .p o p o p oB B� (25)

Here η is the set of hyperparameters { , , , , , , }     1
0

DP ND DP ND   and p(η|o) 
is the marginal posterior. See Appendix B and MSKH20 for further details.
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Figure 1.  Different inversion strategies for a synthetic one-dimensional model. The vertical uncertainty is deliberately 
chosen smaller than the horizontal one, to highlight the effect of the different strategies. The shaded area and dashed 
lines present one standard deviation. In the top panel, the standard GP inversion, which can not incorporate input 
uncertainty, is compared to the noisy input Gaussian process (NIGP) approach. The NIGP approach translates 
uncertainties in the inputs to uncertainties in the posterior, in stark contrast to the standard GP regression, which 
shows the typical constrictions at the inputs. In the bottom panel, an MCMC based approach is compared to the NIGP. 
One can see, that the NIGP gives a reasonable proxy to the MCMC posterior, which we believe to be a good estimate for 
the actual posterior. For this small data set, the runtime for the MCMC was 43 s, in distinction to 0.3 ms for the NIGP. 
This factor of roughly 104 makes using MCMC infeasible for the later steps of our proposed modeling procedure.

Figure 2.  Illustration of the CCD integration in two dimensions. 
Integration over the actual distribution (gray in the background) is 
performed by calculating the MAP (white) and constructing a proxy 
multivariate Gaussian (orange), using the inverse Hessian at the MAP. The 
dots indicate the integration points. The black dots are called star points 
and are placed along the transformed main axis (the arrows). The gray 
points are added to the CCD to better capture the covariance structure. 
In higher dimensions they are not symmetric. See also Rue et al. (2009, 
Section 6.5) and S. M. Sanchez and Sanchez (2005).
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The compound distribution is no longer Gaussian and includes modeling uncertainties, resulting from the 
a priori lack of knowledge about the hyperparameters, but does not depend on these parameters. This distri-
bution is the central result of the suggested modeling strategy. It includes a most probable field model, the 
mean of the distribution, as well as uncertainty estimates, resulting both from modeling and measurement 
process. Similar distributions can be obtained for other quantities of interest, such as the Gauss coefficients. 
To actually evaluate these expressions, numerical approximations have to be employed, as described in the 
following section. The integral is approximated by a sum, which results in a Gaussian mixture distribution. 
Moments for this mixture are easily obtained.

3.  Application
In this section we demonstrate the potential of the suggested modeling scheme, by first applying it to syn-
thetic test data and finally conducting a case study based on actual archeomagnetic records. The major task 
to this end is the implementation of the covariance matrices from the kernel, the linearization and the two-
step strategy. As this process is described in detail in MSKH20, we outsource it to Appendix B. However, two 
points are to be discussed here. One is the explicit second derivative of the temporal kernel, appearing in 
Equation 24. In this study the correlation kernels for dipole and non-dipole contributions are each consid-
ered tensor product kernels, so that the time derivative only affects the temporal part. The full derivative of 
each contribution is then given by the product of the respective spatial part and the second order derivative 
of the SQE-kernel. For the SQE-kernel, the derivative is straightforward to calculate and reads
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When using a more realistic kernel, especially one with different correlation times for different degrees ℓ, 
the kernel can no longer be constructed as a tensor product, and calculating this derivatives analytically 
may pose a challenge, so that numerical methods have to be employed. This is one reason why in this con-
ceptual study we chose the SQE kernel over a more realistic one e.g., the one proposed by Gillet et al. (2013).

The second point is the marginalization integral in Equation 25. As the proposed model contains seven 
parameters and as the data is incorporated all at once, instead of in bins as in MSKH20, the brute-force pa-
rameter space exploration and integration suggested in MSKH20 are now computationally unfeasible. This 
is due to the cost for fixed point integration growing exponentially with the number of dimensions and the 
high cost of matrix inversion ( 3

Data( )n ).

Instead, we perform numerical integration similar to the strategy suggested by Rue et al. (2009, Section 6.5). 
The idea is to center the integration around the maximum a posteriori probability estimator (MAP) of 
the marginal posterior. Collocation points are added according to central composite design (CCD) (S. M. 
Sanchez & Sanchez, 2005), in order to capture the bulk of the uncertainties in the hyperparameters (see 
Figure 2). In seven dimensions, the integration is approximated by a sum over 79 collocation points. To find 
the MAP of the marginal posterior, we use the LIPO-TR global optimization algorithm (King, 2009, 2017). 
The parameters are assigned box priors, as is required by most global optimization algorithms. We choose 
as upper and lower bonds for the hyperparameters
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within the box, all parameters except for ϵ are additionally assigned Jeffrey's priors, for scale independence 
inside of said box.
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where • stands for DP and ND. The poles induced by Jeffery's priors do not cause trouble, as the box con-
straints are far enough from zero. By numerically approximating the integral in Equation 25, the compound 
distribution is approximated by a Gaussian mixture. Details can again be found in Appendix B.

3.1.  Synthetic Tests

To validate the proposed algorithm, we test it on synthetic data. As inputs we choose dates and locations 
from the archeomagnetic and volcanic data in GEOMAGIA v3.3 (Brown et al., 2015) for the interval from 
800 to 2,000 (cf., Figure 5). At these locations we generate data from the ARCH10k.1 model (C. Constable 
et al., 2016) and corrupt it by artificial noise. For the directions we use a von Mises-Fisher distribution. 
Intensities are corrupted by gamma distributed noise and the dates by normal noise. The error levels are 
taken from GEOMAGIA as well. Additionally, to simulate effects of other magnetic field sources and from 
the measurement process, we add random contributions with a constant standard deviation of 2.5 μT to the 
generated data.

The resulting MAP for the hyperparameters is
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Note that  0
1 Dˆ , ˆ  and NDˆ  are given w.r.t. the reference radius, that is, at the Earth's surface the axial dipole 

and both variances are much smaller. To transform  0
1  and αD to the Earth's surface, they have to be multi-

plied by a factor of 3
Earth( / ) 0.08R R . Scaling the non-dipole variance αND is not possible, due to the degree 

dependent scaling and the closed-form kernel. The error level scalings are as expected. As the reported error 
levels have been used to corrupt the data, they are accurate (ϵ ≈ 100%). The residual term reflects the random 
contributions that have been added.

In Figure 3 we compare the dipole of the reference model to our findings from running the model on the 
synthetic data. One can see that only the long-term behavior of the reference model can be recovered. None-
theless, we believe that the results are meaningful and related to the data distribution. To illustrate this, we 
present a simplified example. Consider a one-dimensional time series that we want to model by a Gaussian 
process. We generate data from some reference model (here we chose the axial dipole of the ARCH10k.1 
model) and corrupt it with artificial noise. For simplicity and to emphasize the effect, we neglect dating un-
certainties. We synthesize two data sets, one with many observations and small uncertainties and one with 
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Figure 3.  Comparison of the reference model to the one recovered from synthetic test data. The shaded area represents 
one standard deviation. The long-term behavior could be recovered, while data is too sparsely distributed and 
uncertainties are too large to recover the short timescale features. See the text for additional discussion.



Journal of Geophysical Research: Solid Earth

few observations and large errors. The “data poor” situation was designed to mimic the actual situation, 
based on findings in MSKH20: Every one hundred years an observation was generated and the error level 
chosen to agree with the one found in MSKH20.

Then for both data sets, a separate correlation time is estimated by maximizing the marginal posterior. In 
the situation with many observations, the proposed modeling algorithm gives a correlation time corre-
sponding to the short term variability of the reference model and the reference model is recovered well and 
detailed (Figure 4, left panel). In the situation with few observations; however, one can only recover the 
long-term variability of the reference model (Figure 4, right panel). The actual situation is more compli-
cated, but we believe that the large correlation times and smooth curves come from a similar mechanism. 
While locally, the data distribution is much denser than in the “data poor” case, global information (e.g., 
about the axial dipole) is sparse and unreliable, as can be seen from the results of MSKH20. We performed a 
similar experiment for synthetic field data and found similar results, that is, only the long-term information 
can be recovered.

3.2.  Case Study

Here we present the results from applying the proposed modeling strategy to actual archeomagnetic data, 
taken from GEOMAGIA v3.3 (Brown et al., 2015). The data covers the interval (800, 2,000) AD and consists 
of 7,801 records, of which 3.9% are complete vector triples. Figure 5 shows the spatial and temporal distribu-
tion of the data. Similar to MSKH20, we do not consider the Earth's ellipticity. We use the originally reported 
error estimates and assign α95 = 4.5° as directional errors and σF = 8.25 μT as intensity errors to the 8.4% 
of data, where no error is reported. As described above, the dating uncertainties are considered as standard 
deviations of independent normal distributions. When different values for upper and lower temporal error 
are reported, we use the bigger value. The 0.7% of data for which no dating uncertainty is reported are as-
signed a standard deviation σt = 100 years. Note that for the recent times fewer records are available from 
the archeomagnetic data set. This results in bigger uncertainties toward recent times, as can be seen for 
example in the inclination series in Figure 8.

We compare our findings to two existing magnetic field models as well as to the results of MSKH20. The 
models are ARCH10k.1 (C. Constable et al., 2016) and COV-ARCH (Hellio & Gillet, 2018). They are con-
sidered reasonably comparable, as they are based on similar data compilations. Both models report Gauss 
coefficients up to SH degree ℓ = 10, while the actual spatial resolution is determined by regularization in 
ARCH10k.1 and by cross-covariances based on prior assumptions in COV-ARCH and lies around ℓ = 5 in 
both cases. ARCH10k.1 does not report uncertainties, while COV-ARCH provides an ensemble of 50 models 
from which uncertainties are constructed by calculating sample mean and sample standard deviation. In 
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Figure 4.  Synthetic one-dimensional example illustrating how the lack of data influences the information one can 
recover from the reference model. The shaded area represents one standard deviation. In the data rich situation on the 
left, the reference model can be recovered quite well and posterior uncertainties are so small, they are barely visible. In 
the data poor situation on the right only the long-term behavior can be recovered.
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contrast to the results presented by Hellio and Gillet (2018), the publicly available model (https://geodyn.
univ-grenoble-alpes.fr/) is not time continuous but reports coarsely binned coefficients for every hundred 
years in the interval.

We want to stress again, that the presented results stem from a conceptual design. Especially the common 
temporal correlation time for all degrees ℓ ≥ 2 should be reconsidered, when building an actual model from 
the proposed strategy. The hyperparameter-MAP for the actual data is quite similar to the one in the syn-
thetic data test (see Section 3.1):
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Again,  0
1 Dˆ , ˆ  and NDˆ  are given w.r.t. the reference radius and are lower at the Earth's surface. At the Earth's 

surface,   0
1 36.09ˆ T. All values are in a reasonable order of magnitude. Surprisingly the residual scaling 

did not decrease in comparison to MSKH20. The proximity of both correlation times may be explained by 
the dominance of the quadrupole over the larger degrees. For further insight, we provide profiled distribu-
tions together with the modeling software (Schanner & Mauerberger, 2020).

3.2.1.  Field Predictions

Predicting on the EMF's vector components is straightforward and given by wrapping Equations 6 and 7, 
into the marginalization procedure described in the appendix. However, to get a reasonable spatial resolu-
tion too many design points have to be included to store the covariance matrices for all integration points, 
which is necessary to calculate the mixture distribution. Instead, similar to MSKH20, we resort to calculat-
ing the moment matching Gaussian proxy. The top row of Figure 6 shows mean and standard deviation for 
the down component of the EMF for the epoch 1700. Similarly, predictions at the core-mantle boundary 
(CMB) can be performed, by translating the design points accordingly. The results for the down component 
are shown for the epoch 1700 in Figure 7. Inferring the observables (declination, inclination, and intensity) 
is hindered by the non-linear relation to the field. Utilizing again a linearization, mean and covariance can 
be constructed, similar to MSKH20 and Hellio et al. (2014, Appendix A). The bottom row of Figure 6 shows 
a prediction of the EMF's intensity for the epoch 1700.

Compared to MSKH20 for snapshots in time, the new results show a slightly lower strength of the down 
component and lower field intensity. Moreover, the new results have a reduced standard deviation, which 
can be attributed to additional constraints due to the temporal correlations. The overall field structure is 
similar, showing features such as the South Atlantic Anomaly. The reconstruction at the CMB (Figure 7) 
reveals a region of lower field strength at the southern tip of Africa, which is at the limit of significance, but 
was not present in the snapshot model.

Similar to the map, predictions at a specific location can be obtained for various times and time series of the 
observables can be constructed. Moment matching proxies have to be employed, as the number of parame-
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Figure 5.  Spatial and temporal distribution of the data. We separate the data only into complete and incomplete 
without indicating declination, inclination and intensity separately, to avoid overloading the plots. The turquoise dots 
indicate the locations at which we present the time series (Paris, Figure 8 and Pacific, Figure 9).

https://geodyn.univ-grenoble-alpes.fr/
https://geodyn.univ-grenoble-alpes.fr/
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ters to infer is again too big when considering a reasonable temporal resolution. Figures 8 and 9 show time 
series at two distinct locations. Figure 8 presents time series for Paris, together with comparison models and 
data, while the series in Figure 9 are for a location in the Pacific, where no data is present in the surround-
ings. The data in Figure 8 stem from a surrounding of 250 km.

Inclinations and intensities are translated to the coordinates of Paris along the corresponding axial dipoles 
(Merrill et al., 1996). Declinations are taken as reported. For Paris, the different models mostly agree, with 
larger deviations toward the recent epoch, where the database is thinning out. Our inferred series shows less 
variation than comparable models, which probably can be attributed to our somewhat unrealistic temporal 
kernel with equal correlation time for all spatial wavelengths from ℓ = 2 on. As expected, the uncertainties 
are bigger for the location in the Pacific, and the comparing model series show larger deviations.

3.2.2.  Gauss Coefficients

Although the proposed model is inherently non-parametric in both space and time, predictions on Gauss 
coefficients can be performed. As they are linearly related to the field, the procedure is straightforward (see 
Equation 21 in Holschneider et al., 2016). When predicting coefficients for a specific epoch, the full mixture 
distribution is accessible. When predicting on coefficient time series; however, the number of parameters 
one has to include in the prediction to get a reasonable temporal resolution is too memory intense to store 
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Figure 6.  Maps of the EMFs down component (top) and intensity (bottom), together with standard deviations for the 
epoch 1700.

Figure 7.  Map of the down component of the EMF at the CMB, together with standard deviation for the epoch 1700.
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the covariance matrices of every individual collocation point. This is similar to predictions of the field in 
MSKH20. Therefore, the time series shown in Figure  10 present the moment matching Gaussian proxy 
to the actual mixture. The dipole coefficients from the new modeling strategy show a similar dynamic as 
those of the other models, with the “outliers” from MSKH20 disappearing. The series of the quadrupole 
coefficients show different behavior, with an interval of lower axial quadrupole strength around 1200 AD. 
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Figure 8.  Data (gray dots) and model time series of the observables at Paris. Horizontal and vertical gray bars indicate 
the one sigma temporal and field component data uncertainties, respectively. The shaded area and vertical bars on the 
models also represent one sigma. For the MSKH20 snapshot model and COV-ARCH, which is reported in 100 years 
intervals, dots for the epochs are linearly connected by colored lines.

Figure 9.  Model time series of the observables for a location in the Pacific (−48.18°, −128.03°, see also Figure 5) as in 
Figure 8. The shaded area and vertical bars on the models represent one sigma. Uncertainties are higher than for Paris 
(Figure 8) due to the lack of data in the surrounding.
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Differences to ARCH10k.1 and COV-ARCH might partly be due to some differences in the underlying data 
compilation.

3.2.3.  Spectra

Power spectra are considered to condense the information contained in the Gauss coefficients (e.g., Backus 
et al., 1996). Using sampling techniques, mean and percentiles of the geomagnetic power spectrum distri-
bution are available (for further details consider MSKH20, Section 5.6). Figure 11 shows the geomagnetic 
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Figure 10.  Gauss coefficient time series for degrees ℓ = 1 and ℓ = 2, together with comparable models. One sigma 
uncertainties are given by the shaded area for our model and by vertical bars where available. MSKH20 and COV-
ARCH, which are available in 100 years steps are shown by colored dots linked linearly by solid lines.

Figure 11.  Comparison of the spatial power spectra at the Earth's surface for the epoch 1700 AD. The errorbars 
represent 16- and 84-percentiles. Thus the error covers an area of 68%, which corresponds to one standard deviation in 
the Gaussian case.
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power spectrum for the epoch 1700, together with 16- and 84-percentiles. Within the reported uncertainties, 
the power in dipole and quadrupole agrees to the comparison models. For ℓ = 3 the reconstruction reports 
less power than COV-ARCH and MSKH20. Noteworthy is the faster power decay for degrees ℓ = 4 … 7 when 
compared to MSKH20, which also indicates larger deviations from the prior. This may be due to temporal 
correlations increasing the information or the long correlation time damping small scale structures. Imple-
menting a separate correlation time for each coefficient may provide further insight.

Similar to the geomagnetic power spectrum, the spectrum of the secular variation can be calculated (All-
dredge, 1984). Therefore, one has to predict on the derivatives of Gauss coefficients, also called the secular 
variations. As the derivative is a linear operator, this is straightforward. To explain the basic concept, con-
sider the simplified example of direct observations of the EMF:
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Since the a priori mean in our model is constant, the first term vanishes. Thus, to predict on the secular 
variations one only has to calculate the derivative of the correlation between coefficients and observations, 
which in the suggested model reduces to the first derivative of the SQE kernel:


    SQE SQE2

2( , ) ( ) ( , )tK t t t t K t t� (29)

All other quantities are known from inferring the Gauss coefficients themselves. The covariance of the 
secular variation translates analogously. Mean and percentiles of the secular variation spectrum are then 
again available via sampling.

As MSKH20 consists of snapshot models, the respective secular variation spectrum is not accessible. Simi-
larly, as the publicly available version of COV-ARCH only reports values every 100 years, no secular varia-
tion can be calculated and the spectrum is missing in Figure 12. Note, that we choose an earlier epoch for 
the secular variation spectrum, as ARCH10k.1 is constrained to gufm1 (Jackson et al., 2000) for the recent 
times and therefore shows higher than average secular variation for these centuries. The secular variation 
spectra for the two models are fairly similar, with a very good agreement for the dipole and slightly higher 
values for the higher degrees in our new model.

3.2.4.  Dipole

Finally we present the dynamics of the EMFs dipole. Figure 13 shows time series of the dipole moment 
magnitude. The magnitude is higher than the ones reported by comparison models, while the “outliers” 
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Figure 12.  Secular variation spectra at the Earth's surface for 1400 AD. The errorbars represent 16- and 84-percentiles. 
Thus the error covers an area of 68%, which corresponds to one standard deviation in the Gaussian case.
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from MSKH20 are not present in the new results. From 1840 on ARCH10k.1 is constrained by the gufm1 
model, which in turn is constrained by a large amount of direct observations and can be considered to rep-
resent the dipole moment quite reliably from that time on. The deviation of our model from ARCH10k.1 
during the last century is likely caused by a lack of archeomagnetic data for these epochs.

Figure 14 shows the movement of the geomagnetic north pole. The mean curve of our model (black line) 
is calculated via sampling. For a given epoch the full density is available analytically (cf., Mauerberger 
et al., 2020, Equation 96). To not overload the plot, we only show mean and one-sigma ellipses every centu-
ry. The stereographic projection is responsible for the crescent-shaped distortion of the ellipses. The rapid 
movement of the dipole for earlier epochs suggested by other models is not found by our new reconstruc-

tion and for more recent times, the path lies further to the west. Deviance 
for the most recent epochs is again caused by a lack of data.

4.  Conclusions
The presented work extends the Bayesian strategy for correlation-based 
modeling of the archeomagnetic field introduced in MSKH20 to the tem-
poral domain. In Section  2, all necessary modifications are discussed, 
together with a novel approach to include dating uncertainties. In con-
trast to previous works (Hellio & Gillet, 2018; Hellio et al., 2014; Korte 
et al., 2009; Licht et al., 2013; Senftleben, 2019), using a NIGP (McHutch-
on & Rasmussen,  2011) to incorporate dating uncertainties does not 
rely on sampling techniques. The a priori model is again constructed 
with the aim of being as objective as possible. The uninformative dipole 
prior from MSKH20 cannot easily be translated to the time-dynamic 
realm, as temporal correlations vanish in the limit of zero a priori pre-
cision and thus cannot easily be recovered in the posterior. Instead, we 
assume a priori a constant axial dipole with the dipole strength being a 
free parameter. Together with all but one other model parameters, the 
dipole strength is marginalized so that the model does not depend on 
the specific value. This marginalization presents another challenge, as 
numerical integration in a seven dimensional space has to be performed. 
The Riemann sum approach from MSKH20 is not applicable, due to the 
curse of dimensionality (i.e., unfeasible computation time). As a prac-
ticable alternative to the brute force integration we implement a CCD  
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Figure 13.  Time series of the dipole moment magnitude, together with comparison models. One sigma uncertainties 
are given by the shaded area for our model and by vertical bars where available. The MSKH20 snapshot model and 
COV-ARCH, which are available in 100 years steps, are shown by colored dots linked linearly by solid lines.

Figure 14.  Movement of the geomagnetic north pole. Every one hundred 
years mean and one-sigma ellipses of the snapshot-distributions are 
shown. Color varies according to time, with markers every one hundred 
years. The black curve gives the mean pole track from our model. The 
gray curves give the same for the other models: Solid gray is ARCH10k.1, 
dashed gray is COV-ARCH and dash-dotted gray is MSKH20.
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(S. M. Sanchez & Sanchez, 2005) based integration, as proposed by Rue et al. (2009). The major chal-
lenge in implementing this strategy consists of finding the MAP of the marginal posterior. Running 
the LIPO-TR algorithm (King, 2009, 2017) for the validation and case study data sets took around 25 h 
each on a regular workstation. Once the MAP is found, the set of integration points consists of 79 hy-
perparameter combinations and the marginalization takes between half an hour and 5 h, depending 
on the quantity one predicts on, as some quantities require sampling, which is more computationally 
demanding. With the marginalization performed, the model depends only on the a priori choice of the 
Gauss coefficients covariance structure at the reference radius, the value of the reference radius and 
the temporal covariance structure. For the conceptual work presented, we chose an unphysical SQE 
kernel. This has the advantage of being easy to implement, but the main point why we use this kernel 
instead of a more reasonable one is the necessity to calculate temporal derivatives to implement the 
NIGP. For the SQE kernel this is straightforward. We have shown by means of a synthetic test and a case 
study on real data from 800 AD to 2000 AD that even with the simplified kernel the results compare 
well with previous models. Notably the “outliers” for the years 1100 and 1300, present in MSKH20, do 
not appear in the present work. This may be explained by the new model considering temporal errors, 
and thus covering a false binning, or by the smoothness imposed by the SQE-kernel, which suppresses 
the influence of single records. The results of the case study show smoother curves than the models 
we compare to, in particular for the axial dipole contribution. While partly this can be attributed to the 
SQE-kernel, the proposed method is able to resolve faster variations locally, if the data supports these 
variations. Due to the closed form, such variations can be reflected by higher order coefficients and do 
not introduce global variations.

Implementing a more realistic kernel, such as the one proposed by Gillet et  al.  (2013), will be the 
direction of future work. Together with a Bayesian framework for data selection this will allow the 
construction and proposition of a new correlation based field model. In MSKH20, the expansion of 
the database by records from ship logs was discussed. Incorporating uncertainties arising from im-
precise locations may be performed by the use of the proposed NIGP. Instead of temporal derivatives, 
the spatial gradients of the kernel are used to translate the input uncertainties to contributions to the 
measurement errors. The challenges to scale relative intensities and preserve stratification (Nilsson 
et al., 2014) persist, so that sediment records require a different approach than the application of the 
NIGP proposed here.

We again developed a python framework to save the effort of implementing the proposed algorithm (Schan-
ner & Mauerberger, 2020). Together with extensive documentation, the software source code provides fur-
ther insight into the modeling algorithm. It is available at https://sec23.git-pages.gfz-potsdam.de/korte/
corbam/.

Appendix A:  Constructing the Spatial Covariance Kernel
The Lagrange kernel (Equation 9) is constructed from the Gauss coefficient correlations as follows:

Consider the covariance of the magnetic potential in SH decomposition. Then, for a potential of internal 
origin
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Assuming that at some reference sphere the Gauss coefficients are uncorrelated with a flat spectrum, that is,
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where δij refers to the Kronecker delta. This gives

SCHANNER ET AL.

10.1029/2020JB021548

17 of 22

https://sec23.git-pages.gfz-potsdam.de/korte/corbam/
https://sec23.git-pages.gfz-potsdam.de/korte/corbam/


Journal of Geophysical Research: Solid Earth








 
    

   
 

 


 


1
2

2

0
Cov Φ( ),Φ( ) ( ) ( ) .ˆ ˆm m

m

RR Y Yx x x x
x x

� (A3)

Following Holschneider et al. (2016), evaluating the sums gives the kernel Equation 9 where b = x ⋅ x′/R2 
and a = |x‖x′|/R2. The dipole kernel can be extracted by setting ℓ = 1. This yields
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Thus the non-dipole kernel reads
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where the last term excludes the monopole (ℓ = 0).

Appendix B:  Detailed Modeling Algorithm
The modeling algorithm consists of two stages. The first one deals with finding the MAP of the hyperpa-
rameters. The MAP then serves as a center point for marginalizing the hyperparameters in the second step. 
We begin this section by laying out the inversion process. From quantities that are calculated along the way, 
the marginal posterior can be constructed. Using both procedures, the full algorithm can presented in a 
compact way.

B1.  Inversion

The inversion closely follows the modeling concept described in MSKH20. To provide insight into the 
mathematical background of the inversion, we lay out the full inversion process for the field B at loca-
tions of interest y. Inverting for other quantities, such as the Gauss coefficients or the field's intensity, is 
straightforward.

To keep the equations concise, we use the following notation for matrices:

� ( )xB  is the a priori (mean) field at locations x
�  ( )| xH B  refers to the gradient of the observation functionals (cf., Equations 14–16), evaluated at the 
POE B at locations x
� ( )xH  refers to the linearized, transformed prior field at locations x

       
( )( ) ( ) | ( ) ( )xx H x H x xBH B B B� (B1)

The transformed prior field serves as a mean proxy to observations at locations x.

Σyy refers to the a priori covariance of the field at locations y. This is

Σ ( , )Kyy y yB� (B2)

This is a matrix, composed of 3 × 3 blocks, containing correlations at each point.

| ( )o yB  is short hand for the posterior mean of the field at locations y, given observations o, that is,

   | ( ) ( ) |o oy yB B� (B3)

| ( )o xH  is similar to ( )xH  and refers to the linearized transformed mean at locations x, posterior to observa-
tions o.

SCHANNER ET AL.

10.1029/2020JB021548

18 of 22



Journal of Geophysical Research: Solid Earth

Σyy|o is short hand for the posterior covariance of the field, that is,

   |Σ Cov ( ), ( ) |o oyy y yB B� (B4)

Σyo refers to cross-covariance between the field at points of interest y and observations of the field o. As 
these are linearized, the matrices involve a gradient

   ( )Σ ( , ) | .o o o
Ky xy x HB B� (B5)

xo are the locations of the observations o. The dot product is taken pointwise, that is, for every observation 
xo.

Σoo refers to the covariance amongst observations:

       ( ) ( )Σ | ( , ) Σ Σ | Σoo o o T p eo o
Kx xH x x HBB B

 � (B6)

The residual Σp is an identity matrix of the dimension of number of observations and Σe is the (typically 
diagonal) matrix of approximate measurement errors, see Section 2.3. ΣT is the correction term for dating 
uncertainties, see Section 2.4:

    Σ Σ ( , ) |T tt t t toK t tB�

As the linearization is tackled by means of a two-step strategy, at first the data is partitioned into complete 
c and incomplete i records:

  ,o c i� (B7)

The first step in the two-step strategy only deals with complete records. However, as the posterior mean 
from the first step serves as the point of expansion (POE) in the second step, predictions at locations of in-
complete records xi have to be included as well. The posterior mean and covariance from the first step read

        
1( ) | ( ) Σ Σ ( )c cc cc cyy y x B B H� (B8)

      
1Cov ( ), ( ) | Σ Σ Σ Σc cc cc yy y yy yB B � (B9)

Posterior correlations for the incomplete records are given by

   1
|Σ Σ Σ Σ Σi c i c cc icy y y

� (B10)

   1
|Σ Σ Σ Σ Σii c ii ic cc ic

� (B11)

To calculate the relevant linearized quantities, the POE is calculated as the inverse observation functional, 
that is, in the first step

 1( ) ( )c cx HB� (B12)

with



   
   

    
   
   

1
cos( )cos( )

: cos( )sin( ) .
sin( )

D I D
I F I D
F I

H B� (B13)

In the second step, the posterior mean of the first step is used as POE:


|( ) ( )i c ix xB B� (B14)
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The remaining records are incorporated and give a posterior with

        
1

| | | |( ) | , ( ) Σ Σ ( )c i c ii c c ic i iyy y x B B H� (B15)

      
1

| | | |Cov ( ) ( ) | , Σ Σ Σ Σc i c ii c i cc i yy y yy yB B � (B16)

During the illustrated procedure, the hyperparameters are assumed to be known. As this is a priori not the 
case, we next illustrate how to marginalize them.

B2.  Marginal Posterior

The density

  ( | ) ( | ) ( | ) dp o p o pB B B� (B17)

is called marginal likelihood where the term marginal refers to the integration over the EMF. p(o|η) is a func-
tion in the hyperparameters η, given the data o. For a certain choice of hyperparameters, p(o|η) describes 
how likely the observations are. In our case, η consists of the a priori dipole strength and variances, the 
correlation times and the error and residual scalings,         0

1 DP ND DP ND, , , , , , , see also Section 2.5. 
Building the compound distribution for the EMF (Equation 25) requires calculating the marginal likeli-
hood. Fortunately, this can be done using expressions from the previous section. In the same language as 
before, the marginal likelihood is also given by a two-step formula

     ( , | ) ( | , ) ( | ) .p o c i p i c p c� (B18)

The conditional in p(i|η, c) refers again to the POE in calculating the gradients for linearization. With the 
matrix notation from before, one has (Rasmussen & Williams, 2006)

   




 
   
 

1

3

1exp ( ) Σ ( )
2

( | )
(2 ) | Σ |

T
c cc c

nc
cc

c c
p c

x xH H
� (B19)

   




 
   
 

1
| | |

|

1exp ( ) Σ ( )
2

( | , ) .
(2 ) | Σ |

T
c i ii c c i

ni
ii c

i i
p i c

x xH H
� (B20)

Here nc and ni refer to the numbers of complete and incomplete records respectively. Multiplying the mar-
ginal likelihood with a prior over the hyperparameters gives the marginal posterior, up to a normalization 
constant:

  ( | ) ( | ) ( )p o p o p� (B21)

For numerical reasons, one often uses the log marginal posterior

    ln ( | ) ln ( | ) ln ( ) const. .p o p o p� (B22)

B3.  Exploration and Integration

With the details outlined in the previous sections, we can now describe the main two stages of the modeling 
algorithm:
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�Exploration The first stage consists of finding the maximum a posteriori probability estimator (MAP) 
̂ of the marginal posterior. Therefore, the log marginal posterior is optimized using global optimiza-
tion techniques
�Integration With the MAP as center, a set of integration points   is constructed as described by Rue 
et al. (2009) and S. M. Sanchez and Sanchez (2005). With weights Δη, the integral for the compound 
distribution Equation 25 is approximated by a sum

 

     


   ( | , ) ( | ) d ( | , ) ( | ) Δ .p o p o p o p oB B


� (B23)

This way the compound distribution is approximated by a Gaussian mixture. Similar expressions exist for 
the compound distributions of all quantities of interest, such as Gauss coefficients or observables like the 
linearized intensity F.

Data Availability Statement
There is no new data involved in this publication. The data used in the case study is available via GEOMA-
GIA v3.3 (Brown et al., 2015). All results were produced using a python implementation of the discussed 
algorithm, which is publicly available (Schanner & Mauerberger, 2020).
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