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1. MOTIVATION 2. GENERATION OF REPRESENTATIVE SURVEY DATA 4. NETWORKARCHITECTURE 5. TRAINING
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P gn: Location | Freiberg =49400nT | .+ simulation routine by Godickmeier (2020) = Output: Segmentation map (Pixel-wise prediction for the input image) Bi A i Loss: R‘:‘tha""e's (Calomap) S| ({l O]
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2 N e o Compressed: Fig. 3 left ‘ Training and validation dataset Test dataset = Progression of cross validation loss during training process (Fig.5 upper panel) 300
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. 7. DATA-RELATED OPTIMIZATION APPROACHES
( Data / Model Predi f 3-Channel-Colormap: Areasine hyperbolicus:
- optimization new data Test dataset = Accelerates training dynamics = Scales signals for an improved recognition
* Faster adjustment of weights in the first epochs — steeper gradient = Lower losses than unscaled scenario after 30 epochs

CONCLUSION DEPLOYMENT = More information processed at the same time = Intensifies overfitting (uncertainties due to noisy samples)

= Manipulates signal-to-noise ratio (inflated noise)

11. OUTLOOK
Opportunities for further improvement: -
* Increase the complexitiy of the data basis
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an individual regional field (e.g. Fig.)
— Additional non-target structures (e.g.
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