
1.  Introduction
In the Atacama Desert, which is characterized by extreme hyperaridity, rarely occurring precipitation events 
are the dominant driver for fluvial alterations of the landscape through landslides and debris flow (e.g., 
Haug et al., 2010; Jordan et al., 2019; Vargas et al., 2006; Walk et al., 2020). Precipitation can also activate 
soil microbial communities (Jones et al., 2018), trigger germination of various species (Pliscoff et al., 2017), 
and cause the spectacular “blooming desert” (Astorga-Eló et al., 2020; Chávez et al., 2019). Traces of such 
biological and geological processes are manifested and preserved in climate archives (Bartz et al., 2020; 
Diederich et al., 2020; Ritter et al., 2019). To interpret such archives and reconstruct climate history, it is nec-
essary to identify synoptic drivers for precipitation and understand the underlying mechanisms. With a very 
limited observational basis for this region, a solid comprehension has been hampered to date. While syn-
optic drivers, such as cutoff lows and troughs, have been discussed in previous studies (e.g., Jacques-Coper 
et al., 2015; Montecinos & Aceituno, 2003; Reyers et al., 2020), the role of moisture conveyor belts (MCBs; 
Knippertz & Martin, 2007) for the Atacama Desert has not been investigated so far.

Knippertz and Martin (2007) defined MCBs as elongated bands of enhanced poleward water vapor fluxes 
above the planetary boundary layer that are rooted in the Tropics. They can form when a trough or a cut-
off low located above the maritime boundary layer (MBL) at very low latitudes is tapping the vertically 
extended tropical moisture pool by inducing a poleward flow. Upon landfall, MCBs are directly associated 
or in connection with atmospheric rivers (ARs; American Meteorological Society, 2021) to precipitation 
extremes, flooding, and landslides (Bao et al., 2006; Knippertz & Martin, 2007; Stohl et al., 2008).
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Plain Language Summary  In the extremely dry Atacama Desert in northern Chile, rare 
rain events can trigger landscape alterations and have strong impacts on various life forms. Traces 
of such events are conserved within the desert soil over long time periods throughout the enduring 
dryness. Such traces constitute climate archives, which can be excavated and explored. Understanding 
particular conditions, which lead to extreme precipitation events is necessary to interpret such archives, 
reconstruct climate history, and explore thresholds of life at the dry limit. In this study, the role of a 
weather phenomenon called moisture conveyor belt (MCB) is quantified for the first time for the Atacama 
Desert. It is demonstrated that depending on region, 40–80% of the total rainfall is associated with these 
phenomena. In contrast to atmospheric river characteristics reported for midlatitudes, a unique vertical 
structure with an elevated moisture transport independent of the near-surface layer is discovered here. 
Even though the identified MCBs approach the Atacama Desert from northwesterly directions across the 
Pacific Ocean, the associated moisture mostly originates from the Amazon Basin.
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Due to the similar filamentary structure of MCBs and ARs visible, for example, in fields of integrated water 
vapor transport (IVT), state-of-the-art AR detection algorithms may not distinguish these features. Intrigu-
ingly, a few declared “AR” landfalls have been detected for northern Chile (Guan & Waliser, 2015, their Fig-
ure 8). Despite the similar structure, there are conceptual differences. ARs are typically linked to a low-level 
jet and an extratropical cyclonic frontal system (Ralph et al., 2018), whereas MCBs are dominated by latent 
rather than sensible heat transport often without strong frontal zones acting in tropical or subtropical re-
gimes (Knippertz & Martin, 2007). Therefore, MCB appears to be the more appropriate term for the objects 
identified for the Atacama region. Additionally, the described concept of MCBs is consistent with previous 
studies, which linked extreme precipitation to mid-tropospheric moisture transport (Reyers et al., 2020).

With the transport being presumably limited to the free troposphere, the moisture reaching the Atacama 
Desert is likely of remote origins. Recent studies indicate the tropical Pacific and the Amazon Basin as po-
tential sources (Jordan et al., 2019; Reyers et al., 2020). In this study, the role of MCBs for precipitation in the 
Atacama Desert and the underlying mechanisms is studied under three overarching hypothesis:

1.	 �A substantial amount of precipitation within the Atacama Desert is due to MCBs.
2.	 �The main origin of the MCB-related moisture is the Amazon Basin.
3.	 �MCB-related moisture transport and precipitation formation mostly take place in mid- and upper-tropo-

spheric layers and are decoupled from the MBL.

2.  Data
2.1.  MCB Identification

To identify the times of MCB landfalls at the coast of the Atacama Desert, we use the AR catalog by Guan 
and Waliser (2015). The AR identification algorithm considers a percentile-based IVT threshold to identify 
objects of interest, which are further tested against orientation and geometry criteria. This ensures that even 
in very dry subtropical regimes, MCBs can be identified as ARs due to their similar shape within IVT fields. 
Discriminating characteristics such as the tropical moisture tapping for MCBs or the relation to a low-level 
jet along a cold front for ARs are not considered by the algorithm allowing MCBs to be included in the 
identification. The catalog is maintained with frequent updates and improvements of the identification al-
gorithm (https://ucla.box.com/ARcatalog; Guan et al., 2018). Here, Version 2, available for different reanal-
ysis data sets, is applied (Guan, 2020). By choosing the AR data set based on ERA-Interim (Dee et al., 2011), 
consistency with an ERA-Interim-driven Weather Research and Forecasting Model (WRF) simulation (Sec-
tion 2.2) is ensured. The data set is provided at a 6-hr temporal resolution on a 1.5° by 1.5° grid.

Identified objects are filtered for those which made landfall at the coast of the Atacama Desert between 
17°S and 30°S. If two consecutive landfalls are at least 48 hr apart, they are counted as separate MCBs. A 
total of 172 landfalls are detected for the period between 1979 and 2019, which average to about 4.2 per 
year. Most MCBs make landfall around 24°S (1.3 per year) and 30°S (1.1 per year, Figure S1 in Supporting 
Information S1). Monthly counts reveal a distinct seasonal cycle with the most active season between May 
and September and only a total of 12 landfalls between November and February within the 41-year period 
(Figure S2 in Supporting Information S1).

2.2.  Regional Climate Model and Precipitation Observations

Precipitation and auxiliary data (relative humidity, wind, and cloud liquid water) are taken from a sim-
ulation with the regional climate model WRF (Reyers, 2018). The data set comprises daily accumulated 
precipitation at a 10 -km resolution for a 36-year period (1982–2017). For the simulation, a double one-way 
nesting is applied using ERA-Interim as boundary conditions. The inner domain roughly spans the region 
between 16°S–26°S and 74°W–67°W (see Reyers et al., 2020).

The climatology of the simulated precipitation reveals a hyperarid core region roughly between 18°S and 
24°S below 2,000 -m altitude with annual rainfall below 4 mm (Figure S3 in Supporting Information S1). 
Following a steep topographic gradient (Shuttle Radar Topographic Mission data; Farr et al., 2007), mean 
annual precipitation rates rapidly increase toward the Altiplano in the northeast, which is consistent 
with the results from previous studies (e.g., Houston & Hartley, 2003; Houston, 2006). A validation of the 

https://ucla.box.com/ARcatalog
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precipitation data set against gauge measurements provided by CR2 (Center for Climate and Resilience 
Research, 2018) shows suitable accuracy of the model (Reyers et al., 2020). In addition to the CR2 data set, 
more recent gauge observations are obtained (http://explorador.cr2.cl; Center for Climate and Resilience 
Research, 2019) to further assess the validity of the modeled precipitation (Section 3).

2.3.  Reanalysis and Radiosounding Data

Data from the European Centre for Medium-Ranged Weather Forecast's (ECMWF) 5th generation reanal-
ysis (ERA5; Hersbach et al., 2020) are utilized for a composite analysis. Surface pressure, mean sea-level 
pressure, integrated water vapor (IWV), and variables on pressure levels (geopotential height, temperature, 
specific humidity, and horizontal wind) are obtained as hourly fields with a spatial resolution of 0.25° of 
longitude and latitude. The total water vapor transport 𝐴𝐴 ⃖⃖⃗𝑄𝑄 between two pressure levels pbot and ptop (usually 
850 hPa and 200 hPa, respectively) is calculated using the horizontal wind vector 𝐴𝐴 ⃖⃖⃗𝑈𝑈 = (𝑢𝑢𝑢 𝑢𝑢) , the specific 
humidity q, and the gravitational acceleration g of the Earth:

⃖⃖⃗𝑄𝑄 = 1
𝑔𝑔 ∫

𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡

𝑝𝑝bot

𝑞𝑞 ⃖⃖⃗𝑈𝑈 ⋅ d𝑝𝑝� (1)

ERA5 data are further applied to derive 7-day backward trajectories of air parcels arriving at the Atacama 
Desert around MCB-landfall times. Herein, the Hybrid Single Particle Lagrangian Integrated Trajectory 
Model (HYSPLIT, https://www.arl.noaa.gov/hysplit/, National Oceanic and Atmospheric Administration 
Air Resources Laboratory; Stein et al., 2016) is run using hourly 3D fields of meteorological data. Further-
more, radiosonde data available for daily launches at 12 UTC are obtained from the Integrated Global Radi-
osonde Archive (IGRA; Durre et al., 2016) for Antofagasta (23.5°S, 70.4°W).

3.  Case Study
A heavy precipitation event occurred in June 2017 within the hyperarid core of the Atacama Desert. Ac-
cumulated precipitation for 6–7 June 2017 exceeded 30  mm in a band of roughly 50  -km width, which 
stretched from the Mejillones Peninsula southeastward toward the Andean Precordillera in both the model 
and the gauge observations (Figure  1a). Some regions received rain amounts even higher than 50  mm, 

Figure 1.  (a) Weather Research and Forecasting Model and CR2 station (magenta circles) 2-day precipitation sum for 
6–7 June 2017 (color scale) and mean annual precipitation in mm (contour lines). (b) Integrated water vapor transport 
(IVT) between 850 hPa and 200 hPa (color shading and arrows), geopotential height in 500 hPa (light red contours), 
and MCB shape according to the applied AR catalog (dark red boxes) for June 7, 2017 at 6 UTC.
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which surpasses the tenfold mean annual precipitation rate. In the course of the event, various microbial 
species vanished due to the ponding of a lagoon near Yungay (Azua-Bustos et al., 2018).

The event was associated with a mid-tropospheric trough, which anomalously occurred far north and ap-
proached the Atacama Desert from the west (Figure 1b). Ahead of the trough, a strong water vapor trans-
port along the Peruvian coast toward the Atacama Desert could be identified as an MCB.

The disturbance only affected tropospheric levels above the MBL, whereas the prevailing southeast Pa-
cific anticyclone remained intact at the surface (Figure S4 in Supporting Information S1). In fact, the IVT 
integrated between the surface and 850 hPa has a northward component. This indicates that the relevant 
moisture transport is limited to the free troposphere. Trajectories for this event show a southerly inflow for 
lower target heights (500 and 1,000 m), reflecting the near-surface anticyclone (Figure S5 in Supporting 
Information S1). For higher target heights, a northwesterly inflow along the Peruvian coast originally stem-
ming from the Amazon Basin is revealed.

Longitude-height cross sections across the main precipitation band show that the MBL and a humid layer 
at the verge of saturation above 5 km are separated by a layer of very low relative humidity (Figures S6a and 
S6c in Supporting Information S1). This indicates that there is no significant exchange between the upper 
moist layer and the MBL. Furthermore, the strongest winds are collocated with the elevated moisture peak. 
Thus, the main moisture transport toward the Atacama Desert appears to be decoupled from the MBL and 
is realized at mid-tropospheric heights, so that it can cross the coastal mountain range.

With heights between 1,500 m and 2,500 m, the coastal mountain range introduces a vertical wind compo-
nent, which is transferred to higher altitudes. The resulting lifting of the moist air leads to cloud formation 
manifested in enhanced cloud liquid water (Figures S6a and S6c in Supporting Information S1). At a later 
stage of the event, the dynamics of the accompanying trough result in a more complex circulation, which 
allows downward mixing of moisture and cooling of the lower layer. This is indicated by higher relative 
humidity at lower altitudes over land and further cloud formation (Figures S6b and S6d in Supporting 
Information S1).

Radiosondes launched within 2–6 June 2017 reveal that the temperature inversion monotonically weak-
ened (Figure S7a Supporting Information S1), which can be attributed to the approach of the mid-tropo-
spheric trough. Specific humidity slightly increased in the MBL and considerably between 450 and 750 hPa, 
whereas a layer right above the temperature inversion at around 850 hPa remained dry (Figure S7b in Sup-
porting Information S1). This is consistent with the dry layer revealed by the WRF simulation and confirms 
that the MBL is decoupled from the moisture accumulation within higher layers. The latter is explained by 
the increasing inland water vapor flux, leading to the precipitation event (Figures S7c and S7d in Supporting 
Information S1).

A recently established weather station (Cerros de Calate; 21.4°S, 69, 8°W) reveals the onset of the rainfall 
period at 1 UTC and the end at 6:30 UTC on June 7, 2017 with 0.7 mm in total (Hoffmeister, 2017). There-
fore, the radiosounding profile for June 7, 2017 at 12 UTC (8 a.m. local time) unveils the situation a few 
hours after the precipitation event. Only then, the temperature inversion has dissipated. This is likely due 
to evaporative cooling upon descending water droplets, which is consistent with the observed moistening 
of the dry layer around 850 hPa (Figure S7 in Supporting Information S1). An onshore vertical homoge-
nization of the relative humidity is also indicated by the simulation (Figures S6b and S6d in Supporting 
Information S1).

4.  Composite Analysis
For the 36-year period (1982–2017) covered by the WRF simulation, 521 days that are related to landfalling 
MCBs are determined, including the day before and after. MCB-related precipitation is derived from the 
WRF precipitation data set. Composite mean fields (sea-level pressure and geopotential height), mean ver-
tical profiles (temperature, specific humidity, and water vapor flux), and anomalies (IWV) are derived from 
ERA5 data.
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The MCB-related fraction of total precipitation exceeds 40% for most of the Atacama Desert south of 20°S 
(Figure 2a). An overall gradient between higher fractions in the southwest and lower fractions in the north-
east is consistent with the decrease of MCB-landfall frequency from south to north (Figure S1 in Supporting 
Information S1) and the increase of summertime convection toward the Altiplano in the northeast (Gar-
reaud, 1999). Maximum fractional precipitation appears in an area between 23°S and 24°S bounded by the 
city of Antofagasta in the west, stretching into the central valley to the east and just slightly north of the 
European Southern Observatory's construction site for the world's largest optical telescope (Cantalloube 
et al., 2020; Ramsay et al., 2020). For this region, more than 70% of the total precipitation is associated 
with MCBs making landfall. These findings demonstrate the importance of MCBs for precipitation in the 
Atacama.

Precipitation events are rare in the Atacama Desert, which means that some locations do not receive any 
rain within several years (Cereceda et al., 2008). Therefore, the fraction of days with precipitation is another 
quantity, which characterizes the impact of MCBs for this region. More than a third out of all days with de-
tectable precipitation (greater than 0.1 mm) is associated with an MCB landfall for most of the Atacama De-
sert south of 20°S (Figure 2b). If the threshold is increased to 1 mm, the MCB-related fraction increases with 
values exceeding 50% for most parts (Figure 2c). In other words, days with higher precipitation amounts 
are more likely to be MCB related. Since it requires stronger events to trigger mudslides or debris flow both 
causing landscape evolution detectable in paleoclimate archives (Vargas et al., 2006), such archives may 
strongly reflect MCB activity.

The composite analysis reveals that similar to the case study, MCBs are typically associated with an up-
per-level trough ahead of the coast (Figure S8 in Supporting Information  S1). Additionally, IWV is en-
hanced across the southeast Pacific with the highest positive anomaly a few hundred kilometers west of 
the coast of northern Chile. A northwesterly airflow at the foreside of this trough potentially transports 
this moisture excess toward the Atacama Desert. The southeast Pacific anticyclone is still visible according 
to mean sea-level pressure, which means that the prevailing southerlies within the MBL along the Chilean 
coast remain present in most MCB cases.

To investigate the vertical structure of the atmosphere under MCB conditions, the vertical column with max-
imum absolute IVT is identified for each MCB-related day. The composite mean and the standard deviation 
of vertical profiles are compared to seasonal climatologies (Figures 3a and 3b). Under MCB conditions, the 

Figure 2.  Moisture conveyor belts (MCB)-related fraction of (a) total precipitation amount, (b) days with precipitation 
greater than 0.1 mm, and (c) days with precipitation greater than 1 mm based on a WRF simulation (Reyers 
et al., 2020). Contour lines represent the annual mean for each variable. Circles denote the respective analysis based on 
gauge measurement (source: CR2).
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temperature is considerably lower within the free troposphere compared to the mean of the coldest season 
(JAS, Figure 3a). Situations for the warm season are underrepresented in the MCB composite due to the 
seasonal distribution of MCB landfalls (Figure S2 in Supporting Information  S1). Within the MBL, the 
composite mean temperature profile closely follows the seasonal average for spring and fall. This means, 
the inversion above the MBL is overall weakening during MCB events, which can be attributed to a reduced 
subsidence related to the presence of a mid-tropospheric trough.

For the composite mean-specific humidity profile, a strong enhancement in the mid- and upper tropo-
sphere compared to the seasonal climatologies is visible above 900 hPa (Figure 3b). Even though winter 
time (driest) situations are overrepresented, the MCB-related humidity profile exceeds the mean of the 
summer (wettest) season above 875 hPa. Overall, the enhancement of specific humidity is limited to the 
free troposphere.

The highest composite mean water vapor flux, connected with a southeastward transport, is observed be-
tween 4 and 5 km (600 and 550 hPa) on average (Figures 3c and 3d). While the zonal component remains 
positive across all pressure levels, the meridional component changes its direction for the lowest pressure 
levels. This can be expected, as the southeast Pacific anticyclone remains intact near the surface, supporting 
the prevailing southerlies along the Chilean coast (Figure S8 in Supporting Information S1).

To assess the origin of the air masses, 7-day back trajectories are calculated using the MCB landfall times 
as target times and the coastal pixels with maximum IVT as target locations. We only consider MCBs for an 
extended winter season between April and October to focus on the active MCB season (Figures S2 in Sup-
porting Information S1). For lower target heights (1 km, 2 km, and 3 km), mainly northwesterly alongside 
zonal and southerly approaches toward the Atacama Desert are identified (Figure 4). The southerly direc-
tion is limited to the lowest trajectories. For higher target heights (4 km, 5 km, and 6 km), only northwest-
erly and westerly inflow directions appear (Figure 4b), consistent with the composite upper-level trough 
(Figure S8 in Supporting Information S1). For the northwesterly direction, the Amazon Basin constitutes 
the dominant origin.

For trajectories characterized by comparably low-specific humidity (“driest” tercile), the Pacific is the dom-
inant origin (Figure  4c). Associated MCBs mostly make landfall in the southern Atacama. Trajectories 
characterized by comparably high specific humidity (“moistest” tercile) mainly originate from the Amazon 

Figure 3.  Moisture conveyor belts (MCB)-composite vertical profiles of (a) temperature, (b) specific humidity, (c) eastward water vapor flux, and (d) 
northward water vapor flux. For each MCB, the ERA5 pixel with maximum IVT within a bounding box between 18°S–30°S and 73°W–71.5°W is selected for 
the calculation. MCB-composite mean (black line) and standard deviation (shaded) are denoted for each pressure level. Colored lines in (a) and (b) denote 
respective seasonal climatologies for the entire bounding box. Inlet in (a) zooms in on the temperature inversion.
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Basin (Figure 4d). These trajectories hardly indicate any moisture enrichment when they cross the Pacific 
Ocean. Therefore, the associated moisture is most likely from the Amazon Basin. Such moisture would 
essentially be of Atlantic origin (e.g., Garreaud et al., 2009). These very moist trajectories from the Amazon 
Basin are mostly associated with MCB landfalls in the hyperarid core (18°S–24°S).

5.  Conclusion
In this study, the role of MCBs for the Atacama Desert is investigated. About 4 landfalls per year accumulate 
along the coast of northern Chile on average counting all landfalls between 17°S and 30°S. Even though the 
MCB landfall frequency is low, these synoptic features can have a substantial impact, considering the over-
all low precipitation rates for this hyperarid environment (<5  mm/year). For example, an MCB that made 
landfall on June 7, 2017 resulted in rainfall amounts, which exceeded average decadal rates (Figure 1a). 
Events of such scale presumably dominate the traces, which are identified in paleoclimate archives (Died-
erich et al., 2020; Jordan et al., 2019; Ritter et al., 2019).

For most regions of the Atacama Desert, more than 40% of the total precipitation is related to MCB landfalls. 
For a region east of Antofagasta, the fraction exceeds 70%. As the case study for the June 2017 MCB indi-
cates, individual events can have a considerable impact on the spatial distribution. Given that a single MCB 
can be accounted for a decade's worth of rain, the 36-year long data record considered in this study appears 
quite short and should be extended.

Figure 4.  7-day back trajectories for moisture conveyor belts-landfall times. Coastal pixels with maximum IVT between 850 hPa and 200 hPa are used as target 
locations. (a and b) Percentage of trajectories passing through the respective pixels for target heights above ground level of (a) 1 km, 2 km, 3 km and (b) 4 km, 
5 km, 6 km. (c and d) Hourly values of specific humidity along selected trajectories with 4 -km target heights for which the mean-specific humidity of the last 
6 hr before landfall time is (c) below the first tercile (driest third) and (d) above the second tercile (moistest third) of its distribution.
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Composite vertical profiles reveal that the moisture transport typically maximizes between 500 hPa and 
600 hPa and is decoupled from the MBL. While a mid-tropospheric trough drives a northwesterly flow to-
ward the Atacama Desert, the southeast Pacific anticyclone continues to drive southerlies along the coast 
near the surface. This is consistent with a previous description of MCBs for the North Pacific (Knippertz & 
Martin, 2007). The elevated structure identified here for the Atacama Desert demarcates these MCBs from 
ARs typically found in midlatitudes and high latitudes, for which the related water vapor flux typically 
peaks below 750 hPa (e.g., at 900 hPa for southern Chile; Guan & Waliser, 2015, their Figure 8b).

A trajectory analysis reveals that the most moisture-laden MCBs, which potentially lead to the strongest 
precipitation events, are sourced in the continental interior. The path leads from the Amazon Basin to the 
west, crosses the Andes most commonly between 3°S and 7°S, and turns southeastward over the tropical 
eastern Pacific to arrive at the Atacama Desert (Figure 4d). Similar pathways were identified for extreme 
precipitation events occurring during winter season in the southern, southeastern, and northern Ataca-
ma (Reyers et al., 2020). An isotopic analysis of rainwater and stream flows associated with the Atacama 
March 2015 flood (e.g. Bozkurt et al., 2016) indicated a tropical moisture source (Jordan et al., 2019). This 
is of interest because this event is also related to an MCB similar to the case study presented above. This 
further illustrates that the tropical and continental origin might be a common source region associated with 
MCB-related moisture.

The hyperarid core constitutes a biotic barrier (Ruhm et al., 2020) and climatic divide (Houston, 2006). 
Precipitation in the northeast is usually related to continental interior origin, whereas precipitation in the 
southwest is usually of Pacific origin (Houston,  2006; Houston & Hartley,  2003). Here, a third route is 
revealed, which is further supported by Jordan et al. (2019) and Reyers et al. (2020). To date, studies on 
paleoclimate reconstructions related to the Atacama Desert mostly consider sea surface temperature, latitu-
dinal shifts of winter midlatitude westerlies, and cutoff lows in order to discuss implications from climate 
archives (Bartz et al., 2020; Diederich et al., 2020; Ritter et al., 2019). Wetter periods during the Pleistocene 
and Holocene are usually attributed to eastern or southwestern moisture sources (Jordan et al., 2019). An 
additional scenario, which should be considered to interpret implications of climate archives, is constituted 
by MCBs as discussed in this study.

Data Availability Statement
ERA5 data (Hersbach et al., 2020) were downloaded from the Copernicus Climate Data Store (CDS) via 
Web-API. The utilized simulated precipitation data set is available at https://www.crc1211db.uni-koeln.de/
search/view.php?dataID=38 (Reyers, 2018). Gauge measurements were retrieved from http://www.cr2.cl/
datos-de-precipitacion/ (Center for Climate and Resilience Research, 2018) and from http://explorador.cr2.
cl (Center for Climate and Resilience Research, 2019). The AR catalog version 2 data were produced based on 
ERA-Interim (Dee et al., 2011) according to the detection algorithm introduced by Guan and Waliser (2015) 
and Guan et al. (2018) and provided by Bin Guan via https://ucla.box.com/ARcatalog (Guan, 2020). Radio-
sonde data were obtained from the Integrated Global Radiosonde Archive (IGRA; Durre et al., 2016).
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