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Summary

Landslides are a major hazard in mountainous regions, represent a threat to human

life, and cause substantial economic costs. While some landslide hazard assessments,

including hazards maps, are available for Germany, their spatial coverage is not uni-

form. In the Black Forest, several landslides have recently attracted public attention,

but the landslide hazard in this region has received limited consideration in literature

to date. This study focuses on the spatial pattern and size distribution of soil-borne

landslides in the submountainous valley of Menzenschwand. A combination of remote

sensing, geophysical surveying, and geotechnical testing was used to map and charac-

terize the landslide inventory of two selected hillslopes. In the statistical analyses, we

observe a larger proportion of small-scale landslides with size below 100 m2 than usu-

ally reported in similar studies. This effect may be related to the low cohesion of the

soil (glacial deposits). As a major result, a cutoff in the distribution at large landslide

sizes compared with the expected power-law tail of the distribution was found. While

the maximum landslide size found in this study was about 1100 m2, the largest land-

slide should theoretically be at least 2500 m2 at 95% probability. The cutoff at large

sizes is probably due to the limited soil thickness, where about 50% of the considered

area has a depth to bedrock of 1 m or less. For the considered location, this result

suggests that an increase in frequency and intensity of rainstorms should predomi-

nantly result in an increase of landslide frequency, but without increasing the size of

the largest landslides. As a more general implication, the contribution of large land-

slides to the total hazard may be overestimated if soil thickness is not considered, in

particular if the present-day hazard is projected to future scenarios.
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1 | INTRODUCTION

The frequency and size of landslides in mountainous areas and the

related risk to human life and infrastructure are potentially affected

by climate change (e.g., Crozier, 2010; Gariano & Guzzetti, 2016),

except for those triggered by earthquakes (e.g., Keefer, 1994;

Meunier et al., 2007). This applies to landslides involving bedrock in

high mountains due to the retreat of permafrost as well as to land-

slides in unconsolidated sediments (i.e., soils in a geotechnical sense).

The latter occur in almost all mountain ranges and are often triggered

by rainstorms or rapid snow melt, so that a change of landslide hazard

can be expected if precipitation and temperature patterns change in

the future. Shallow landslides, being bound to these mechanisms

(Crosta, 1997), are used synonymous with soil-borne landslides in

this text.

Since landslides represent a threat to humans life and their eco-

nomic costs are substantial (Klose et al., 2014), increasing efforts have

been made to assess landslide hazards on both global and regional
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scales (e.g., Chac�on et al., 2006). The ultimate goal is to produce maps

showing the spatial incidence of landslides, reveal their spatiotemporal

incidence and forecast their occurrence, as well their potential conse-

quences. Although landslides cause damage totaling about US $300

million in Germany annually (Klose et al., 2015), knowledge about

their impact is still based on limited data. In particular, the spatial cov-

erage of such information is not uniform, with a main focus on areas

such as the uplands of central Germany (e.g., Damm et al.,

2009, 2010), the Swabian Alb (e.g., Bell et al., 2006; Neuhäuser &

Terhorst, 2007), and the Alps including their foreland (e.g., Nie et al.,

2017). Damm and Klose (2015) introduced a national landslide data-

base for Germany, although still with limited and nonuniform spatial

coverage. In total, at least 23 national landslide databases exist in

Europe (Damm & Klose, 2015).

The statistical distribution of event sizes has become a central

part of hazard assessment. Pareto distributions, also called power-law

distributions, are now frequently used in the assessment of major

geohazards (e.g., Stark & Hovius, 2001). Whenever a certain type of

hazard is characterized by a universal size distribution, i.e., by a distri-

bution that is independent of the triggering mechanism and site-

dependent conditions, an extrapolation of the hazard to event sizes

lying outside the range of the inventory available at a given location

becomes possible. This is particularly helpful if the available invento-

ries are either restricted to a small domain or cover only a short time

span. Thus, although the statistics of large events are often insuffi-

cient, their expected frequency can be estimated from the larger

number of smaller events contained in an inventory. For Pareto-

distributed hazards, however, attention must be paid to the tail of the

distribution. Practically, Pareto distributions break down at very large

event sizes, and this breakdown or the transition to another type of

distribution is particularly relevant in the context of risk

(Hergarten, 2004).

Earthquakes were the first (Gutenberg & Richter, 1954) and are

still the most widely studied example in this context. Interest in

power-law distributions rapidly increased after the theoretical con-

cept of self-organized criticality was introduced (Bak et al., 1987;

Bak, 1996; Hergarten, 2002; Jensen, 1998). The power-law distribu-

tion of wildfires was even predicted by a simple model (Drossel &

Schwabl, 1992) several years before it was recognized in real data

(Malamud et al., 1998). Nowadays, this has become an essential part

of the discussion about the impact of climate change on wildfire haz-

ard, and simple models have turned out to be able to explain some

effects, for example, the statistical difference between natural and

human-induced fires (Krenn & Hergarten, 2009).

The first study where a power-law distribution of landslide sizes

was found is more than 50 years old (Fuyii, 1969). However, it took

almost 20 years for this topic to become popular through comprehen-

sive studies mapping several thousand landslides (Hovius et al., 1997)

and modeling approaches (Densmore et al., 1998; Hergarten &

Neugebauer, 1998) attempting to bring landslides into the context of

self-organized criticality. The power-law size distribution of landslides

turned out to be more complicated than those of earthquakes and

wildfires. First, there seem to be two distinct groups of landslides.

Both landslides in non-consolidated layers and those involving bed-

rock follow power-law distributions over some range, but with

strongly different exponents. In turn, the differences within each class

seem to be small, and the distribution was found to be independent of

the triggering mechanism (e.g., earthquakes, rainstorms, or rapid snow

melt). These results were obtained by Malamud et al. (2004) from a

few inventories and confirmed by Brunetti et al. (2009) when compar-

ing a larger number of datasets.

Second, the size distribution of landslides in soil shows a strong

deficit at small sizes compared with the theoretical Pareto distribu-

tion. This deficit has been attributed to incompleteness of the inven-

tories by Stark and Hovius (2001), while Malamud et al. (2004)

considered it to be a real property. As cohesion stabilizes slopes at

small scales but becomes less important for large slope failures, a defi-

cit of small landslides can in principle be explained by soil mechanics.

However, recent work (Li et al., 2014; Tanyas et al., 2018) showed

that there is still no full consensus about the origin of the deficit of

small events in landslide inventories. The same holds for the origin of

the power-law tail at large landslide sizes. Although some new model-

ing approaches have been presented in recent years (Alvioli et al.,

2014; Frattini & Crosta, 2013; Jeandet et al., 2019; Liucci et al.,

2017), there still seems to be no unique and widely accepted explana-

tion. For further insights into the scaling properties of landslides, the

overview by Tebbens (2020) is recommended.

This study addresses landslide occurrence and the related hazard

in the Valley of Menzenschwand in the Black Forest, a mountain

range in the southwestern part of Germany (Figure 1). While a series

of smaller and moderate events in recent years have attracted atten-

tion from the public and local authorities, to the best of the authors’

knowledge, no related studies have been published in international lit-

erature to date. The study area (47�840 N, 8�060 E) is situated close to

the community of Menzenschwand (which initialized this study), at

about 900 m a.s.l. and southeast of the summit of Feldberg (1493 m

a.s.l.), the highest peak in the Black Forest. The bedrock is mainly of

intrusive origin (Bärhalde-granite, GB), followed to the east by

metamorphic units of paragneissic composition (pgA and pg)

(Wimmenauer & Schreiner, 1981). The crystalline rocks were formed

during the Variscan orogeny of the Paleozoic and were uplifted again

in the context of the formation of the Upper Rhine Graben during the

Cenozoic (Pflug, 1982). During Pleistocene glaciations, the valley of

Menzenschwand was excavated by the Alb glacier system (Geyer &

Gwinner, 2011). Evidence of these glaciations are U-shaped valleys as

well as cirques (Zienert & Fezer, 1967). The last glaciation also formed

terminal moraines (Rahm, 1970) such as the Kluse moraines (We in

Figure 1) north of the Menzenschwand waterfalls (Hantke &

Rahm, 1976). Associated with the melting of the ice is the deposition

of a glacial debris sheet (Wm), which widely covers the resident

hillslopes and is mainly interpreted as till. Wimmenauer and

Schreiner (1981) estimated the till to be only a few meters thick upon

the polished bedrock. According to the same source, the filling of the

valley is composed of fluvial and glaciofluvial sediments with a maxi-

mum thickness of about 45 m. Hence, our findings are restricted to

regions with impermeable rock covered by unconsolidated deposits.

While the mean monthly precipitation at Menzenschwand is

about 150 mm, maximum values of more than 300 mm occur during

winter (Figure 2). Outstanding peaks of more than 500 mm occurred

in December 2011 and in January 2018. In contrast to typical winter

maxima, the January 2018 event was accompanied by moderate for-

mation of fresh snow. A considerable amount of precipitation was

contributed by a rainstorm that initiated some of the landslides inves-

tigated in this study.
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The particular situation with steep slopes where the bedrock is

covered by a presumably thin layer of unconsolidated deposits raises

several questions. The first is (i) whether or not the landslide sizes fol-

low the typical distribution for soil-covered slopes discussed above.

So far, only moderately sized landslides have been observed at

Menzenschwand, but with high overall landslide frequency. However,

for practical hazard assessment, the size of the largest landslides to be

expected is particularly relevant. This leads to the next question of

F I GU R E 1 Overview of the study area. (A) Geological map of Menzenschwand with the boundaries of hillslopes H1 and H3 as well as profile
lines of the ground-penetrating radar survey. Geological units digitized after Wimmenauer and Schreiner (1981). (B) Location in Europe.
(C) Oblique view with texture of the geological units from (A). Topography not exaggerated [Color figure can be viewed at wileyonlinelibrary.com]

F I GU R E 2 Monthly precipitation data in the
Menzenschwand area (DWD, 2019) [Color figure
can be viewed at wileyonlinelibrary.com]
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(ii) whether landslides that cause serious damage to infrastructure or

even threaten human life could also take place. This question is partic-

ularly relevant in the context of changing climatic conditions, e.g., in

case the contribution of rainfall to winter precipitation increases. This

study combines digital elevation models (DEMs) derived from photo-

grammetry in addition to light detection and ranging (LiDAR) data as

well as near-surface geophysics and laboratory soil tests to provide a

comprehensive overview of the spatial pattern of landslides and their

statistical distribution in the Menzenschwand area. With regard to the

specific geological setting, i.e., impermeable bedrock covered by thin

layers of unconsolidated deposits, such as glacial sediments or rego-

sols, this study could have implications for similar regions, beyond the

scope of regional hazard assessment.

2 | FIELDWORK AND DATA ACQUISITION

2.1 | Landslide mapping

Recent and historical landslides were mapped on two slopes of the

valley in September and October 2018. The southeastern slope has

an extension of about 0.17 km2 and is labeled H1 in Figure 1, while

the northwestern slope is 0.24 km2 in size and is labeled H3. Surface

morphologies and current land use are similar within H1 and H3

Two separate flight plans (one for each hillslope) for a DJI Mavic

Pro drone were generated using the Android app DroneDeploy

v2.81.0. By default, sampling rates and paths were computed using

the software’s internal methods. The frontal and side overlap were

kept constantly at 75% and 65% at a cruising altitude of about 110 m

above the launch location, which was arranged at medium slope ele-

vations of about 950 m a.s.l. This resulted in the construction of

216 camera views on H1 and 320 camera views on H3. By the use of

a high-performance desktop computer, a local build of Agisoft

Metashape Professional v1.5.2 was chosen for mesh and surface

model generation. The depth reconstruction for each aligned camera

led to the formation of point clouds representing H1 with about

230,000 data points and H3 with about 2.4 million data points. The

following triangulation step produced a three-dimensional mesh with

approximately 700,000 faces on H1, whereas H3 could be digitized

with roughly 1.4 million faces. From this model, GIS-compatible

Geotiffs were derived with pixel resolution of ≲10 cm for both

slopes. The orthophotos with spatial resolution of ≲5 cm were deliv-

ered by texturing the cloud from a weighted-average mosaic

(see Agisoft LLC, 2018, for further technical details).

As usually applied in drone photogrammetry, ground control

points (GCPs) are key control features to ensure the accuracy of the

resulting point clouds and elevation models with respect to real-world

objects and their absolute coordinates. Since this study was carried

out due to the interest from a small community (Village of

Menzenschwand, population 500 people), the lack of financial

resources meant that we had to discard the option of investing in bor-

rowing high-precision continuous global positioning system (CGPS)

units. The drone itself provided absolute georeferencing in terms of

three-dimensional (3D) coordinates, whose precision is far more

uncertain than those obtained using more dedicated devices. The

root-mean-square (RMS) reprojection error of the point cloud has a

reasonably low target value of 1.4 pixels. Of course, this parameter

cannot be transferred to the uncertainty of the digital surface model.

Nevertheless, combined with the fact that the raw data were obtained

from a multi-perspective scan via DroneDeploy, it can be assumed

that the relative axis distortion of the projected model is close to real-

ity. This surely will not affect the absolute georeferencing of the data,

but since only the relative sizes of mapped objects from the model

(volume, scar surface area) are of interest, this will not affect the

quantitative values of the derived size distributions, even if the true

precision of the DTM remains undefined.

Using the Zevenberg–Thorne approach for slope- and hillshade

calculations in Q-GIS, the resulting raster maps enabled the identifica-

tion of 246 recent and historical landslide scars and for the mapping

of the respective detachment areas. Allochthonous landslide deposits

were not considered. Since this optical method yields the surface

including vegetation, the survey was restricted to nonforested areas.

The 246 detected landslide scars were verified in the field and clas-

sified into rotational and translational type according to the scheme of

Varnes (1978). Rotational slides were recognized by their short trans-

port distance of a few decimeters and by the property that the sliding

masses remained in the failure cavity. Failure escarpments are often

characterized by a slightly converging shear plane with a crescent-like

shape in plan view and terrace-like curve in cross-sectional view. The

sliding masses often tend to become swampy, thus exhibiting notice-

ably green vegetation cover in comparison with surrounding grasslands.

In turn, translational slides were identified by their tendency for higher

transport distances and a hollow form with relatively uniform failure

depth. In plan view, their detachment areas mostly show irregularly,

elongated shapes. Some of the structures form multiarmed shapes.

Figure 3 shows an example of a fresh translational slide and an older

slide where the scar is already covered by vegetation.

In total, 136 out of 246 slides could be assigned to one of these

two types (Table 1). The location and the spatial extent of the land-

slide scars are shown in Figure 4. Note that the landslides were not

classified by age. Only B61 and B105 were evidently created during

the heavy rainfall of January 2018. Escarpments of rotational land-

slides that are not covered by vegetation were found at only a few

locations, suggesting the rather recent activity of landslides B2, B27,

B42, B73, and B94. Hence, the predominant portion of the landslide

inventory is considered to be historical.

F I G U R E 3 Characteristic shapes of translational landslides B69
and B61 at hillslope H1. Landslide B61 occurred during the rainstorm
in January 2018. EPSG code for map projection: 32632 [Color figure

can be viewed at wileyonlinelibrary.com]
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2.2 | Characterization of the subsurface

For the assessment and calculation of the local stability of slopes,

insights into the architecture of the subsurface are essential. Based on

the facies of the glacial debris cover (Wimmenauer &

Schreiner, 1981), it is expected that the maximum grain size exceeds

63 mm. Investigation of the soil strata by percussion drilling was

therefore not feasible. Instead, ground-penetrating radar (GPR) was

used to mark the boundary to the bedrock. A detailed review of this

method is provided by Neal (2004).

In total, 15 GPR surveys with an overall track length of 1.3 km

were carried out in September 2019 and January 2020. A bistatic,

common-offset, sled-mounted, unshielded 100-MHz antenna

equipped with a pulseEKKO Pro transmitter and a pulseEKKO Ultra

receiver unit (Sensors & Software) was used. Preceding in situ mea-

surements with a 200-MHz antenna suffered from rapid signal attenu-

ation and strong dispersive diffraction. Due to the expected lower

propagation velocities of 0.04–0.06 m ns�1 from this survey and liter-

ature data on glacial deposits (Lukas & Sass, 2011), 100-MHz anten-

nas were chosen for this study. The antennas were oriented

perpendicular broadside with separation of 0.5 m. Profiles were taken

preferentially parallel to the contour lines with a few cross profiles to

enable subsequent corroboration of depth migration of individual pro-

files. Traces along the GPR profiles were recorded at a spacing of

0.2 m, triggered by an odometer wheel attached to the rear of

the sled.

The data were recorded with a 240 ns time window, trace stac-

king of 4096 measurements, and in situ time-zero corrections before

the acquisition of each profile. Postprocessing steps were applied

using the pulseEKKO software as follows: (i) threshold-based time-

zero adjustment, (ii) dewow and band-pass filter, (iii) muting of air and

ground waves, and (iv) fitting of the velocity function to the shape

and size of visible point source reflections and diffraction. The loca-

tion of diffraction hyperbolas was carefully noted and the profiles f–k

migrated. For interpretation, Spreading & Exponential Compensation

(SEC) gain with attenuation of 0.9 db m�1 was applied, and the topog-

raphy was corrected by elevation static correction based on LiDAR

and drone photogrammetry data acquired along the profiles.

2.3 | Geotechnical characterization

Geotechnical characterization was not a focus of this study. Thus, only

a few analyses were performed, to verify the characteristics of the

sediment described by Wimmenauer and Schreiner (1981). Grain size

analyses by sieving and settling were conducted according to DIN EN

ISO 17892-9 (2016). For this investigation, 12 samples were taken in

total at depths from �0.75 to �0.1 m below the subsurface.

The resulting distribution curves (Supplementary Figure S4) were

dominated by gravel with a cumulative mass fraction of

48.4 � 10.9 wt.% and sand with 38.8 � 7.3 wt.%. Silt contributed a

minor fraction of 10.0 � 3.9 wt.%, whereas clay was almost absent

with a content of less than 5 wt.%.

Since the grain size analyses revealed no fundamental differences

among the samples, only a single triaxial testing set consisting of three

experiments was performed in order to estimate the effective shear

parameters after D.I.N.E.N.I.S.O. 17892-9 (2018). To obtain some kind

of upper limit for the cohesion, the sample was taken from location

B2 with the highest content of clay and silt (about 20% in total)

according to the grain size analyses. Fitting of the shear parameters to

the Mohr circles of the three experiments (Supplementary Figure S3)

yielded an angle of internal friction of ϕ¼38 ∘ and even a negative

cohesion of C¼�1 kPa. As a test of uncertainty, the parameters were

also determined using the combinations of two experiments. Values

of C¼�13:0 kPa, �6.6 kPa, and 8.2 kPa were obtained. So, there is an

uncertainty of several kPa even for this single triaxial testing set. As

the grain size sample from B2 had the highest content of clay and silt,

the cohesion should be even lower at the other locations. As a rough

estimate, the cohesion should not be higher than 10 kPa over the

entire considered domain.

3 | DATA ANALYSIS AND RESULTS

3.1 | Spatial distribution of landslides

The areas of H1 and H3 exposed to landsliding are located at the foot

of the respective hillslope. Even though the planar surfaces of these

mapping areas feature slope angles within a quite narrow range

between about 20� and 25�, the mapped landslides are not distributed

homogeneously. This is revealed by the nesting and staggering of sev-

eral rotational and translational landslides, such as B1 plus B2 and B49,

B61, plus B69 at H1 as well as B90 to B94 and B105 and B108 at H3

(Figure 4). The clustering of these mass movements is most likely trig-

gered by the accumulation of water both above and underneath the

surface and is most likely related to formation of gullies (Figure 5).

As an example, B61 at H1 has a concise, crescent-shaped recess

at the southern upper edge (Figure 3), suggesting that the fracture for-

mation initially spread from this location since the preexisting cavity

of B49 did not provide any resistance to the detachment. A similar

mechanism took place at B105 at H3. Over several heavy rainfall

events, this process supports the ongoing erosion of gullies at both

hillslopes. Due to the intensified water inflow into the sediment layer,

a single hollow can cause the activation of newer detachments in the

surroundings and even initiate the formation of a new coherent

channel system over long times.

3.2 | Landslide size distribution

Figure 6 shows the probability density of the landslide size distribu-

tion estimated from the 246 mapped landslides, where the area of

ablation is considered as size. The data points were obtained by

aligning the data in logarithmic bins where the bin size increases by a

factor of
ffiffiffi
2

p
from one bin to the next.

T AB L E 1 Number of slope failures on both considered slopes

Landslide type H1 H3 Total

Rotational 45 46 91

Translational 17 28 45

Unassigned 57 53 110

Total 119 127 246
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Due to the limited range of areas, a power-law behavior

(corresponding to a straight line on a double-logarithmic plot) at large

sizes is only recognizable over less than one decade in area. In turn,

the rollover at small sizes (Malamud et al., 2004; Stark &

Hovius, 2001) is clearly visible. The probability density achieves a local

maximum at A ≈ 50 m2. The behavior at very small sizes A < 10 m2 is

probably owing to the small numbers (four events in the first bin and

one event in the second bin), although one of the three large datasets

analyzed by Malamud et al. (2004) even showed a systematic increase

at very small sizes.

F I GU R E 4 Orthophotos derived from quadrocopter overflights with mapped ablation areas of historical and recent landslides [Color figure
can be viewed at wileyonlinelibrary.com]

F I GU R E 5 Characteristic shapes of gullies at hillslope H3 in the surroundings of historical landslide events [Color figure can be viewed at
wileyonlinelibrary.com]
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Early studies (e.g., Hovius et al., 1997) fit a Pareto distribution

(a straight line on a double-logarithmic plot) to the part of the inven-

tory above a given minimum landslide size. The rollover at small sizes

leads to systematic underestimation of the exponent (the negative

slope on a double-logarithmic plot) and thus an overestimation of the

frequency of large landslides. Although this problem may not be cru-

cial if the focus is on comparing different datasets (e.g., from different

lithologies Hurst et al., 2013), it has become popular to use statistical

distributions that take such rollover into account, so that the fit can

include the entire dataset. Based on the idea that the rollover arises

from incompleteness of the inventory, Stark and Hovius (2001) pro-

posed a double Pareto distribution with an increasing power-law part

at small sizes and a decreasing power-law tail. This distribution has

also been used in other studies (e.g., Guthrie & Evans, 2004a, 2004b).

Malamud et al. (2004) were the first to suggest that the deficit in the

frequency of small landslides compared with a Pareto distribution is

not a matter of data incompleteness but rather a real property of land-

slides in soil. They proposed an inverse gamma distribution as a heu-

ristic description of the entire distribution. The probability density of

the inverse gamma distribution in terms of area A reads

pðAÞ¼ 1
aΓðρÞ

a
A� s

� �ρþ1
exp

a
A� s

� �
, ð1Þ

where ρ, a, and s are parameters, and Γ is Euler’s gamma function.

Similarly to the double Pareto distribution, the inverse Gamma distri-

bution approaches a power law for A ! ∞,

pðAÞ�A�ðρþ1Þ: ð2Þ

The cumulative distribution, i.e., the probability that a given land-

slide has an area ≥A, also turns into a power law for A ! ∞,

PðAÞ¼ ð

∞

A
pðuÞdu�A�ρ, ð3Þ

but with an exponent of ρ instead of ρ + 1.

The inverse Gamma distribution has apparently been used more

frequently than the double Pareto distribution in recent studies (e.g,

Tanyas et al., 2018; Van Den Eeckhaut et al., 2007). A few studies

have compared these two distributions (Hurst et al., 2013; Li et al.,

2016; Tebbens, n.d.) and found differences in the exponent ρ of up to

about 0.4, where the values obtained from the inverse Gamma distri-

bution tend to be higher than those obtained from the double Pareto

distribution. However, the small dataset considered in this study pre-

vents a contribution to answering this question of which distribution is

more appropriate. As the range of the power-law tail is very small here,

both are better than fitting a Pareto distribution to a small part of the

dataset only. In the following, we use the inverse Gamma distribution.

Equation (1) can be fit to the data by applying the maximum-

likelihood method. This means that the joint probability density of the

data is interpreted as the likelihood of the parameter combination

(ρ, a, s),

Lðρ,a,sÞ¼
Y
i

pðAiÞ, ð4Þ

where the product expands over all areas Ai in the dataset. The combi-

nation (ρ, a, s) that maximizes L is considered to be the most likely

parameter set. Practically, the maximization is performed by

minimizing

�lnLðρ,a,sÞ¼�
X
i

lnpðAiÞ: ð5Þ

Application to the 246 mapped landslides yields an exponent ρ¼
2:0 and the other values given in Table 2. The problem is, however,

practically underdetermined due to the limited range of landslide

sizes. As Malamud et al. (2004) suggested a universal value of ρ¼1:4,

we also tested the fit when assuming this fixed value, so that only

a and s are adjustable parameters. The resulting values are also pres-

ented in Table 2, while the resulting probability densities are plotted

in Figure 6. Both curves can hardly be distinguished over the range

covered by the data. The respective values in lnL differ by only 0.013,

so that the Bayes factor (the ratio of the two L values) is 1.013. This

means that the combination with ρ¼2:0 is formally more likely by a

factor of 1.013 than the version with ρ¼1:4, but this difference is so

small that the two must be considered equivalent. Therefore, there is

no evidence that the exponent deviates from the universal value ρ¼
1:4 suggested by Malamud et al. (2004).

The distribution as a whole, however, deviates from the predicted

distribution at large landslide sizes. The largest landslide in our dataset

has an area of Amax ¼1096m2. The probability density estimated from

the binned data (points in Figure 6) follows the inverse gamma distri-

bution reasonably well up to about this size and then suddenly drops

to zero. In contrast, the cumulative probability PðAmaxÞ (Equation (3))

is 3.7% for ρ¼1:4, so the inverse gamma distribution predicts about

nine landslides in the inventory with sizes A≥Amax. Thus, the distribu-

tion of the data is rather a truncated inverse gamma distribution with

a cutoff at a given maximum landslide size. As the maximum-likelihood

estimate assumes a full inverse gamma distribution without a cutoff,

the lack of large landslides also explains the overestimation of the

exponent.

F I GU R E 6 Landslide size distribution. The points show the
probability density estimated by aligning the mapped landslide sizes in
logarithmic bins. The curves correspond to the inverse gamma
distribution (Equation (1)) with different parameter values [Color
figure can be viewed at wileyonlinelibrary.com]
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The lack of large landslides on the considered slopes can be quan-

tified with the help of the extreme value distribution where PeðAÞ is

the probability that the largest landslide in an inventory of n landslides

has a size of at least A. This probability can be computed by consider-

ing the inverse case that all n landslides are smaller than A, i.e.,

1�PeðAÞ¼ 1�PðAÞð Þn: ð6Þ

Using the relation 1� x
n

� �n ! expðxÞ for n!∞, the extreme value

distribution can be written in the form

PeðAÞ¼1�exp �nPðAÞð Þ ð7Þ

for large n. This distribution is shown in Figure 7, while some of its

characteristic values are presented in Table 2.

The probability that the largest event will be larger than the larg-

est observed landslide is PeðAmaxÞ¼99:99% for ρ¼1:4. Even for the

estimate ρ¼2:0 that is already biased by the cutoff, it is 98.60%, so

an inverse gamma distribution without an upper cutoff can be

excluded for the size of the largest detected landslide in any case at

more than 95% confidence level. For ρ¼1:4, the largest landslide

should be even larger than A95 ¼2510m2 at 95% probability, which is

about 2.3 times as large as the largest detected landslide. The

expected size of the largest landslide in an inventory of 246 landslides

should be Amax ¼17,660m2 for an inverse gamma distribution with-

out an upper cutoff at ρ¼1:4, which is even 16 times larger than

observed.

3.3 | Landslide volume and depth

Detached volumes were estimated for 22 sufficiently preserved cavi-

ties. The cookie-cutter tool originally developed for glacial bedforms

(Smith et al., 2009) was used for this purpose. This tool first removes

the disturbed area from the DEM and then fills the void with a thin

plate spline function. As this kind of interpolation is sensitive to eleva-

tions and to local slopes close to the boundary of the void, it relies on

the preservation of the topography around the cavity. In total, 22 out

of the 246 mapped landslides appeared to be visually preserved suffi-

ciently well. A buffer around the cavity was introduced to reduce the

effect of alterations in topography. The required width of the buffer

was estimated visually for each of the 22 cavities.

Figure 8 compares the computed volumes with empirical relations

between area and volume, namely the relation

V¼0:224A1:262 ð8Þ

(in meters) obtained by Larsen et al. (2010) from an analysis of 1617

landslide scars and the relation

V¼0:074A1:45 ð9Þ

obtained by Guzzetti et al. (2009) from 677 landslides. Although the

exponents in Equations (8) and (9) differ strongly, both relations finally

differ by less than 20% in the range between A¼150m2 and

A¼1000m2. Klar et al. (2011) obtained a range from 1.32 to 1.38 for

the exponent from theoretical considerations, which lies about in the

middle of the two values mentioned above. In the following, we use

Equation (8) because it was obtained from a larger dataset.

If the mean landslide depth d is defined as the ratio of volume to

area, this relation becomes

d¼V
A
¼0:224A0:262: ð10Þ

The volumes estimated for the two fresh (January 2018) land-

slides (B61 and B105) are in very good agreement with Equation (8),

while the majority of the other volumes are up to about three times

lower than predicted. As the raw data used by Larsen et al. (2010)

show a scatter of about one decade (minimum to maximum volume at

constant area), the volumes obtained here may still be reasonable.

The volumes of old landslides, however, may also be systematically

underestimated. First, the cavity may have been partly filled with sedi-

ment over time. Moreover, thin plate splines are sensitive to the

slopes at the boundary. If the boundary of an old landslide scar has

been smoothed over time, the reconstructed original surface will be

too low, so that the volume will also be underestimated. As a system-

atical underestimation cannot be excluded and the results for the two

fresh landslides are very close to the predicted volumes, the evidence

T AB L E 2 Parameters of the inverse gamma distribution
(Equation (1)) and properties of the respective extreme value
distribution. The right-hand column refers to the result of the
maximum-likelihood estimate for all three parameters. The middle
column refers to a maximum-likelihood estimate of a and b only, with
a fixed exponent ρ¼1:4 as suggested by Malamud et al. (2004)

ρ 1.4 2.0

a (m2) 129 224

s (m2) �16.8 �29.0

�lnLðρ,a,sÞ 6.159 6.146

PðAmaxÞ (%) 3.7 1.7

PeðAmaxÞ (%) 99.99 98.60

A95 (m
2) 2510 1330

‾Amax (m
2) 17660 4298

F I G U R E 7 Extreme value distribution of landslides sizes for an
inventory of n¼246 landslides [Color figure can be viewed at
wileyonlinelibrary.com]
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that the landslides considered here are shallower than predicted by

Equations (8) and (10) is rather weak, so we assume that these rela-

tions capture the scaling properties of the landslides considered here

well. For the largest landslide in the inventory (Amax ¼1096m2), the

predicted volume is about 1500m3, corresponding to a mean depth of

about 1.4m.

3.4 | Assessment of the subsurface structure

The interpretation of the GPR profiles was approached by dis-

tinguishing different radar facies (Jol & Bristow, 2003). Based on

reflection patterns, three different facies were determined (Figures 9

and 10). The lowermost radar facies RF3 is interpreted as the bedrock,

characterized by a few subparallel linear reflectors, an absence of

point reflectors, and strong signal attenuation with respect to similar

two-way travel times in all the profiles. The upper section shows mul-

tiple point reflections and segments with strong echoing events

(Figure 9, profile 13 at 52–60 m). The partly very coarse-grained gla-

cial sediments contain a multitude of point reflectors that scatter the

emitted signal irregularly and cause echoes at neighboring objects,

which locally leads to a noisy signal. Also, some echoing is developed

at topographic troughs, which we interpret as filled gullies.

Since some of the profiles (e.g., Figure 10) show an additional

subhorizontal reflector, indicating stratification within the glacial sedi-

ments (Figure 10, profile 3 from 20 m on), the upper section is further

subdivided into two radar facies RF1 and RF2, with RF2 always being

separated from the lower section RF3 by a distinct, continuous reflec-

tor. We assume that the textural change from the glacial deposits to

the underlying bedrock causes this strong contrast in relative dielec-

tric permittivity that is responsible for the reflection (Sucre et al.,

2011; van Dam & Schlager, 2000). The onset of the lower reflector at

F I GU R E 8 Estimated landslide volumes. Data points were
obtained using the cookie-cutter tool (Smith et al., 2009). The orange
line shows the relation suggested by Larsen et al. (2010). The dashed
lines correspond to given mean depths [Color figure can be viewed at
wileyonlinelibrary.com]

F I GU R E 9 GPR profiles 7 and 13 at site H3 with their respective orientation. RF2 and RF3 are the radar facies interpreted in profile 3 and
6. Note the apparent formation and refilling of gullies, as well as abundant point reflectors in the upper section [Color figure can be viewed at

wileyonlinelibrary.com]
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the top of RF3 is interpreted below as depth to bedrock, i.e., the tran-

sition from glacial deposits (soil) to bedrock.

Adjustment to the reflection parabolas yields two-way travel time

velocities between v¼0:06mns�1 and v¼0:08mns�1 in all profiles.

Velocities of v¼0:06mns�1 were consistently determined in RF1

and RF2, but predominantly higher apparent velocities were present

in RF3. In comparison, Tillard and Dubois (1995) determined two-way

velocities of about 0.12mns�1 at an emission frequency of 200MHz

in granitic rock, indicating higher characteristic EM wave velocities for

granitic rocks and effectively low penetration ability in the present

study. Based on these results, we assumed a velocity of

v¼0:06mns�1 to transform two-way travel times into depths.

For the identified contacts, the depth to bedrock was determined

in intervals of 2 m horizontally and 0.1 m vertically. Because the bed-

rock is not fully traceable through all profiles, we differentiate

between “inferred contact” and “contact,” as indicated in Figures 9

and 10, and discard inferred contacts from later analysis.

A simple approach was chosen for analyzing the depths to bed-

rock obtained from the GPR survey along the profiles. The profiles

were rasterized using 5 � 5 m pixels, and a mean depth was com-

puted for each pixel that contained data. These were 95 pixels in total.

The resolution of 5 m is a tradeoff between obtaining a sufficient

number of pixels and reducing the influence of small-scale variations

in depth that are not relevant to slope stability. The obtained statisti-

cal distribution is shown in Figure 11. The largest depth found on this

scale is 2.2 m.

The data tentatively suggest that the depths at H1 are slightly

higher than at H3, but lower at the profiles outside the regions H1

and H3 (cf. Figure 1). As the outside profiles are in the upper parts of

the slopes, the latter results could reflect an increase of thickness in

downslope direction due to long-term downward movement of mate-

rial. However, note that the profiles cover only a small part of the

total area and are not necessarily representative. Regression-based

models for estimating soil thickness (e.g., Olyphant et al., 2016; Segoni

et al., 2012) might help here. However, the slopes considered here are

topographically quite homogeneous, so the application of such a

model would require an independent validation that would go beyond

the scope of this study. Therefore, the results of the GPR study tenta-

tively suggest that about 50% of the area has a depth to bedrock of

1 m or less, about 30% a depth of 1.4 m or more, and less than 10% a

depth of at least 2 m.

4 | DISCUSSION

The landslide size statistics of the two slopes considered in this study

are overall consistent with the distribution obtained by Malamud

et al. (2004) from inventories covering larger scales. Some differences,

F I GU R E 1 0 GPR profiles 3 and 6 at the southwestern hillslope H1. Radar facies 1 and 2 (RF1 and RF2) represent glacial sediments. Radar
facies 3 (RF3), marked by strong signal attenuation and a lack of diffraction hyperbolas, is interpreted as the bedrock. Depth to bedrock values
were determined from the solid marked boundary of RF2 to RF3 [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 1 1 Statistical distribution of depths to bedrock obtained
from rasterizing GPR profiles. Area is given as a fraction, i.e., the
number of pixels per total number of pixels. Bars indicate 0.2 m bins
for the entire dataset. Lines describe the cumulative distribution,

i.e., the fraction of area with depth greater or equal to the value on
the x-axis [Color figure can be viewed at wileyonlinelibrary.com]
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however, occur at both small and large landslide sizes. We obtained

parameter values a¼129m2 and s¼�16:8m2 describing the rollover

of the distribution at small sizes. The respective values a¼1280m2

and s¼�132m2 obtained by Malamud et al. (2004) are about one

order of magnitude higher. Hurst et al. (2013) obtained a¼10,900m2

and b¼�1910m2 from an inventory of 8453 landslides in the UK,

although for the deposit areas and with a lower value of the exponent

ρ. The ratio of a and s that describes the shape of the curve is similar

in the three inventories. Therefore, the difference mainly lies in the

absolute scale at which landslides become less likely with decreasing

size. The landslide size with the highest frequency density is about

50m2 in our inventory, about 400Âž,m2 in the inventory of Malamud

et al. (2004), and about 3000m2 in the inventory analyzed by Hurst

et al. (2013). Among the inventories reviewed by Van Den Eeckhaut

et al. (2007), those analyzed by Malamud et al. (2004) had the lowest

rollover landslide size. In turn, the data of Van Den Eeckhaut

et al. (2007) obtained from an inventory in the Flemish Ardennes did

not show a rollover at sizes above 100m2, but a decreasing power-

law section with a smaller exponent for A≤10, 000m2. Thus, the roll-

over in these data must be at A< 100m2, although it cannot be seen

in the data restricted to sizes above 100m2.

So, the rollover found in our inventory occurs at sizes about one

order of magnitude lower than found by Malamud et al. (2004) and

even more than one order of magnitude lower than those found in

other studies. This difference may be related to the mechanical prop-

erties of the material involved, as the slopes considered here are cov-

ered by material with low cohesion. As discussed above, cohesion

avoids shallow failure and thus inhibits small landslides. The potential

influence of this effect on the rollover in the landslide size distribution

was discussed in detail by Li et al. (2014) and was even suggested to

be the primary reason for the rollover at small sizes. So, the low cohe-

sion found here provides an explanation for the shift of the rollover

towards small sizes compared with other inventories, at least

qualitatively.

A rough quantitative estimate can be obtained by assuming a

slope-parallel failure plane at a depth d (normal to the surface) below

a straight slope with a slope angle α. The normal stress is then

σ¼wdcosα, where w is the specific weight of the soil. The critical

shear stress is thus

τc ¼ σ tan ϕþC¼wd cos α tan ϕþC, ð11Þ

where ϕ and C are the angle of internal friction and the cohesion,

respectively. So, cohesion results in a relative increase in the critical

shear stress and thereby in the safety factor by a multiple of

ϵ¼1þ C
wd cos α tan ϕ

: ð12Þ

The rollover occurs at landslide sizes of about 50 m2, and the fre-

quency density is reduced by about one order of magnitude compared

with the extrapolated power law (Figure 6). Equation (10) predicts a

mean landslide depth of 0.62 m at this size. Assuming

w¼15 kNm�3,ϕ¼38 ∘ (Supplementary Figure S3), and α¼22 ∘ ,

Equation (12) predicts an increase in the safety factor by a multiple of

1.15 at C¼1 kPa and by a factor of 1.74 at C¼5 kPa. In turn, no

strong deviation from the power law is observed at A¼500m2.

Equation (12) predicts an increase by a factor of 1.08 and 1.4 at these

two values of C. So, potential landslides with A¼50Âž,m2 are more

stable by only a factor of 1.06 compared with those with A¼500m2

at C¼1 kPa, but by a factor of 1.25 at C¼5 kPa. Considering that the

range of 1–1.3 is often considered to be the conditionally unstable

regime, a change by a factor of 1.25 could indeed cause a strong dif-

ference in landslide frequency. Thus, a cohesion on the order of mag-

nitude of 5 kPa could be responsible for the rollover in the

distribution with a maximum probability density at sizes of about

50m2 found in this study. However, it was not conceivable at the time

when the field and laboratory work was performed that a more pre-

cise estimate of the cohesion would become relevant. Anyway, it

would have been a challenge to determine whether the cohesion was

greater than 5 kPa for a considerable part of the domain, even with a

larger number of samples.

While our results support the hypothesis that the cohesion is

responsible for the rollover, the alternative hypothesis of

undersampling cannot be discarded. As discussed above, the landslide

volumes estimated from the topography were consistent with the pre-

diction from Equation (8) only for the two recent landslides. The vol-

umes of older landslides were presumably underestimated due to

changes in small-scale topography, which could also affect the detect-

ability in the field and in DEMs. Compared with other studies where a

rollover at larger sizes was found, our study refers to smaller scales

with a better detectability of small landslides and to soils with a low

cohesion. As both differences probably have similar effects on the

location of the rollover, an influence of undersampling still cannot be

refuted. Nevertheless, our results support the theoretical consider-

ation of Li et al. (2016) about the influence of cohesion and the origi-

nal conjecture of Malamud et al. (2004) that the rollover is real.

At this point, one may ask whether the cohesion in combination

with variations in soil thickness may also be responsible for the con-

centration of the landslides in the lower parts of the slopes, although

the entire slopes are rather homogeneous in terms of slope angle. The

results of Sect. 1 suggest that flow and accumulation of water in the

subsurface may be responsible for the higher susceptibility of the

lower parts. This hypothesis is supported by the analysis of the topog-

raphy, in particular by the occurrence of gullies. However, the analysis

of the subsurface structure (Sect. 1) indeed revealed a greater depth

to bedrock at the two areas H1 and H3 compared with the areas

above these domains (Figure 11). The mean depths of the profiles at

both H1 and H3 are about 1.2 m, while the mean depth of those out-

side H1 and H3 is only 0.9 m. However, the difference in the factor of

safety between these two depth would be only about 3% for

C¼1 kPa and about 9% for C¼5 kPa according to Equation (12). So,

the concentration of landslides in the lower slope segments is proba-

bly not an immediate effect of an increase in soil depth in downslope

direction. Although vegetation may also have an influence on the dis-

tribution, the accumulation of water in the subsurface remains the

most likely reason for the strong increase of landslide susceptibility in

downslope direction.

The most important difference in the landslide statistics, however,

concerns the tail of the distribution, i.e., the number of large land-

slides. We found a maximum size of about 1100 m2, while the

assumed inverse gamma distribution predicts a maximum size of at

least 2500 m2 even at 95% probability (Figure 7). So, there is a clear

lack of large landslides despite the good agreement with the predicted
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distribution at smaller landslides. As discussed above, the mean depth

of landslides of the maximum size found here should be about 1.4 m.

The results of the GPR measurements (Figure 11) suggest that the

rather low depths to the bedrock may be the reason for the limited

landslide sizes. Even on the considered 25 m2 pixel scale, less than

one-third of the area has a depth of at least 1.4 m, and depths of 2 m

or more are very rare. The largest expected landslide with an area of

‾Amax ¼17,660m2 should have a mean depth of about 2.9m

according to Equation (10), which is even 30% larger than the maxi-

mum depth to bedrock of 2.2m found among the considered 25m2

pixels. So, it is likely that the lack of landslides much larger than

1000m2 is due to an insufficient depth of potentially mobile material.

A cutoff in the distribution at large landslide sizes was presumably

discussed first by Hergarten (2012) in the context of landslides in

rock. Topography was suggested as the limiting factor there. Hurst

et al. (2013) observed a deficit in the number of large landslides in

soils at areas on the order of magnitude of 1 km2 and also attributed

this to topography. In our study, however, the maximum landslide size

is several orders of magnitude smaller than the size of the slopes. So,

the limited soil thickness introduces a cutoff at much lower scales

than considered by Hurst et al. (2013).

From a practical point of view, the implications of this result for

hazard assessment are very interesting. Although we were not able to

assign an age to the majority of the mapped landslides, it is obvious

from the pattern of the landslides alone (Figure 4) that the landslide

susceptibility at the considered location is rather high. The slopes are

quite steep, but covered by a potentially mobile layer that is only

weakly supported by cohesion. The observed landslides are, however,

rather small. While landslides of the observed sizes will typically not

have much effect, the question is whether larger landslides causing

serious damage to infrastructure or even loss of life could occur here.

This question becomes particularly relevant it either the frequency or

intensity of heavy rainstorms increases, or if a larger part of the winter

precipitation changes from snow to rainfall.

In general, the resulting increase in landslide frequency is accom-

panied by an increasing size of the largest landslide to be expected in

a given time span. As an example, the extreme value distribution of

the inverse gamma distribution predicts an expected maximum size of

‾Amax ¼17,660m2 (Table 2) for a sample size of n¼246 landslides as

found in our study. If we increase the sample size to 2n¼492 land-

slides, the expected maximum landslide size increases to

‾Amax ¼29,000m2. This is, however, only true for the original distri-

bution without any cutoff. Given that the observed cutoff at

A≈1100m2 is indeed imposed by the geological constraint of limited

soil thickness, it cannot be expected that this cutoff will be strongly

affected by climate change. In this case, an increasing frequency or

intensity of rainstorms may have an effect on landslide frequency, but

the maximum landslide size to be expected should not increase much.

This result should also hold for locations with a similar setting,

i.e., with steep slopes covered by a thin soil cover.

Determining a maximum possible landslide size or at least the size

above which landslides become rapidly less likely would be a major

step in hazard assessment. As mentioned above, the largest landslide

observed at the considered location has an expected mean depth of

1.4 m, and about 30% of the area has a soil thickness of at least

1.4 m. It might be tempting to derive a relationship between the maxi-

mum landslide size and any quantile of the soil thickness or even the

mean soil thickness. However, these data are based on a single land-

slide on slopes where the soil depth has been investigated for only a

small fraction of the area. An analysis of the respective largest land-

slide in several inventories with known soil depths would be neces-

sary to obtain a robust relationship. Such a relationship could finally

improve hazard assessment in combination with future developments

such as drone-based GPR systems, satellite-based sensors, or

improved mathematical models for predicting soil thickness.

CONCLUSIONS

This study focused on the spatial pattern and size distribution of soil-

borne landslides in the submountainous area of the Black Forest,

Germany. Geophysical surveying (GPR) revealed that the two steep

slopes investigated bear only a thin soil layer of about 1 m, consisting

of unconsolidated glacial sediments with low cohesion. While the ana-

lyses of size statistics derived from DEM and orthophotos are overall

consistent with the distribution recognized in larger inventories, our

study reveals differences from previous studies at both small and large

landslide sizes.

First, we observed a rather high proportion of small landslides.

The rollover in the distribution occurs at an area of about 50 m2,

which is about one order of magnitude lower than the rollover found

in other inventories. This difference is likely explained by the low

cohesion, since cohesion inhibits small landslides in general. For the

considered inventory, a low cohesion of about 5 kPa would be able to

explain the rollover. This result supports the hypothesis that cohesion

plays a major part in the deficit of small landslides (Li et al., 2014;

Malamud et al., 2004) observed in several studies, although an effect

of undersampling still cannot be excluded.

As a second result, we observed a distinct cutoff in the distribu-

tion at large landslide sizes. In this study, it was found at a size of

about 1100 m2, which is considerably lower than the cutoff found by

Hurst et al. (2013) in larger inventories. This cutoff is probably due to

the limited soil thickness. In contrast to the increased frequency of

small landslides, the cutoff at large landslide sizes has a direct impact

on hazard assessment. In particular, this result suggests that an

increase in the frequency and intensity of rainstorms or a shift of win-

ter precipitation towards rainfall should predominantly result in an

increase of landslide frequency, but without increasing the size of the

largest landslides to be expected at the considered location. This

result may by transferable to locations with steep slopes and low soil

thickness. In this context, the contribution of large landslides to total

landslide hazard may be overestimated if soil thickness is not taken

into account, in particular if the present-day hazard is projected to

future scenarios. However, more research on landslide inventories

and on estimating soil thickness is required on the way towards esti-

mating the maximum landslide size to be expected in a given geologi-

cal setting.

ACKNOWLEDGEMENT

The data that support the findings of this study are available from the

corresponding author upon reasonable request.

None of the authors declares any real or perceived financial con-

flicts of interest.

The authors thank Michael Vandrey, Bertram Schrade, and

Wolfgang Gleim from HPC AG Freiburg (Germany) for the idea for

this project, their kind support, and their valuable know-how in

190 BÜSCHELBERGER ET AL.



geotechnical skills. We also thank Johann Meier, Hans-Jörg Meier,

Adrian Probst, and Benno Kaiser from the Locality of St. Blasien as

well as Menzenschwand for their interest in and support of this study.

The realization of the triaxial experiments was supported by expert

knowledge and professional consultation of Matthias Pamler from

Geomation GmbH (Germany).

DATA AVAILABILITY STATEMENT

The data supporting the findings of this study are available from the

corresponding author upon reasonable request.

ORCID

Jakob Wilk https://orcid.org/0000-0002-2605-9444

Stefan Hergarten https://orcid.org/0000-0002-4780-284X

REFERENCES

Agisoft LLC. (2018) Agisoft Metashape User Manual: Professional Edition,

Version 1.5. Available from: https://www.agisoft.com/pdf/

metashape-pro_1_5_en.pdf

Alvioli, M., Guzzetti, F. & Rossi, M. (2014) Scaling properties of rainfall

induced landslides predicted by a physically based model. Geomor-

phology, 213, 38–47.
Bak, P. (1996) How nature works – the science of self-organized criticality.

Berlin, Heidelberg, NY: Copernicus, Springer.

Bak, P., Tang, C. & Wiesenfeld, K. (1987) Self-organized criticality. An

explanation of 1/f noise. Physical Review Letters, 59, 381–384.
Bell, R., Kruse, J.-E., Garcia, A., Glade, T. & Hördt, A. (2006) Subsurface

investigations of landslides using geophysical methods: geoelectrical

applications in the Swabian Alb (Germany). Geographica Helvetica,

61(3), 201–208.
Brunetti, M.T., Guzzetti, F. & Rossi, M. (2009) Probability distribution of

landslide volumes. Nonlinear Processes in Geophysics, 16, 179–188.
Chac�on, J., Irigaray, C., Fernández, T. & El Hamdouni, R. (2006) Engineering

geology maps: landslides and geographical information systems.

Bulletin of Engineering Geology and the Environment, 65, 341–411.
Crosta, G. (1997) Regionalization of rainfall thresholds: an aid to landslide

hazard evaluation. Environmental Geology, 35, 131–145.
Crozier, M.J. (2010) Deciphering the effect of climate change on landslide

activity: A review. Geomorphology, 124, 260–267.
D.I.N.E.N.I.S.O. 17892-9. (2018) Geotechnische Erkundung und

Untersuchung – Laborversuche an Bodenproben – Teil 9:

Konsolidierte triaxiale Kompressionsversuche an wassergesättigten

Böden.

DIN EN ISO 17892-9. (2016) Geotechnische Erkundung und

Untersuchung – Laborversuche an Bodenproben – Teil 4:

Bestimmung der Korngröenverteilung. Beuth Verlag, Berlin.

DWD (2019) Historische stündliche Stationsmessungen der

Niederschlagshöhe für Deutschland Version v006. Deutscher Wetter

Dienst – Climate Data Center (CDC). Retrieved from: ftp://ftp-cdc.

dwd.de.

Damm, B., Becht, M., Varga, K. & Heckmann, T. (2010) Relevance of tec-

tonic and structural parameters in Triassic bedrock formations to

landslide susceptibility in quaternary hillslope sediments. Quaternary

International, 222, 143–152.
Damm, B. & Klose, M. (2015) The landslide database for Germany: Closing

the gap at national level. Geomorphology, 249, 82–93.
Damm, B., Varga, K., Heckmann, T. & Becht, M. (2009) The impact of

bedrock stratification on landslide susceptibility – an example of GIS-

based landslide modelling in the Bunter Sandstone areas of northern

Hesse and southern Lower Saxony (Germany). Die Erde, 140(1),

175–193.
Densmore, A.L., Ellis, M.A. & Anderson, R.S. (1998) Landsliding and the

evolution of normal-fault-bounded mountains. Journal of Geophysical

Research, 103, 15203–15219.
Drossel, B. & Schwabl, F. (1992) Self-organized critical forest-fire model.

Physical Review Letters, 69, 1629–1632.

Frattini, P. & Crosta, G.B. (2013) The role of material properties and land-

scape morphology on landslide size distributions. Earth and Planetary

Science Letters, 361, 310–319.
Fuyii, Y. (1969) Frequency distribution of the magnitude of

landslides caused by heavy rainfall. Seismological Society of Japan, 22,

244–247.
Gariano, S.L. & Guzzetti, F. (2016) Landslides in a changing climate. Earth-

Science Reviews, 162, 227–252.
Geyer, O.F. & Gwinner, M.P. (2011) Geologie von Baden-Württemberg.

Schweizerbart’sche Verlagsbuchhandlung: Stuttgart.

Gutenberg, B. & Richter, C.F. (1954) Seismicity of the earth and associated

phenomenon, 2. Princeton University Press: Princeton.

Guthrie, R.H. & Evans, S.G. (2004a) Analysis of landslide frequencies and

characteristics in a natural system, coastal British Columbia. Earth

Surface Processes and Landforms, 29, 1321–1339.
Guthrie, R.H. & Evans, S.G. (2004b) Magnitude and frequency of landslides

triggered by a storm event, Loughborough Inlet, British Columbia.

Natural Hazards and Earth System Sciences, 4, 475–483.
Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M. & Valigi, D. (2009)

Landslide volumes and landslide mobilization rates in Umbria, central

Italy. Earth and Planetary Science Letters, 279, 222–229.
Hantke, R. & Rahm, G. (1976) Das frühe Spätglazial in den Quellästen der

Alb (Südlicher Schwarzwald). Vierteljahrsschrift der Naturforschenden

Gesellschaft in Zürich, 121, 293–299.
Hergarten, S. (2002) Self-organized criticality in Earth systems. Springer:

Berlin, Heidelberg, New York.

Hergarten, S. (2004) Aspects of risk assessment in power-law distributed

natural hazards. Natural Hazards and Earth System Sciences, 4,

309–313.
Hergarten, S. (2012) Topography-based modeling of large rockfalls and

application to hazard assessment. Geophysical Research Letters, 39,

L13402.

Hergarten, S. & Neugebauer, H.J. (1998) Self-organized criticality in a land-

slide model. Geophysical Research Letters, 25, 801–804.
Hovius, N., Stark, C.P. & Allen, P.A. (1997) Sediment flux from a mountain

belt derived by landslide mapping. Geology, 25, 231–234.
Hurst, M.D., Mudd, S.M., Attal, M. & Hilley, G. (2013) Hillslopes record the

growth and decay of landscapes. Science, 341, 868–871.
Jeandet, L., Steer, P., Lague, D. & Davy, P. (2019) Coulomb mechanics and

relief constraints explain landslide size distribution. Geophysical

Research Letters, 46, 4258–4266.
Jensen, H.J. (1998) Self-organized criticality – emergent complex behaviour

in physical and biological systems. Cambridge University Press:

Cambridge, New York, Melbourne.

Jol, H.M. & Bristow, C.S. (2003) Gpr in sediments: advice on data

collection, basic processing and interpretation, a good practice guide.

Geological Society, London, Special Publications, 211(1), 9–27.
Keefer, D.K. (1994) The importance of earthquake-induced landslides to

long-term slope erosion and slope failure hazards in seismically active

regions. Geomorphology, 10, 265–284.
Klar, A.E., Aharonov, E., Kalderon-Asael, B. & Katz, O. (2011) Analytical

and observational relations between landslide volume and surface

area. Journal of Geophysical Research, 116, F02001.

Klose, M., Highland, L., Damm, B. & Terhorst, B. (2014) Estimation of direct

landslide costs in industrialized countries: Challenges, concepts, and

case study. In Landslide science for a safer geoenvironment, Sassa, K.,

Canuti, P. & Yin, Y. (eds), Springer: Cham; pp. 661–667.
Klose, M., Maurischat, P. & Damm, B. (2015) Landslide impacts in

Germany: A historical and socioeconomic perspective. Landslides, 13,

183–199.
Krenn, R. & Hergarten, S. (2009) Cellular automaton modelling of

lightning-induced and man made forest fires. Natural Hazards and

Earth System Sciences, 9, 1743–48.
Larsen, I.J., Montgomery, D.R. & Korup, O. (2010) Landslide erosion con-

trolled by hillslope material. Nature Geoscience, 3(4), 247–251.
Li, L., Lan, H. & Wu, Y. (2014) The volume-to-surface-area ratio constrains

the rollover of the power law distribution for landslide size. European

Physical Journal Plus, 129(5), 89.

Li, L., Lan, H. & Wu, Y. (2016) How sample size can effect landslide size

distribution. Geoenvironmental Disasters, 3(1), 18.

BÜSCHELBERGER ET AL. 191

https://orcid.org/0000-0002-2605-9444
https://orcid.org/0000-0002-2605-9444
https://orcid.org/0000-0002-4780-284X
https://orcid.org/0000-0002-4780-284X
https://www.agisoft.com/pdf/metashape-pro_1_5_en.pdf
https://www.agisoft.com/pdf/metashape-pro_1_5_en.pdf


Liucci, L., Melelli, L., Suteanu, C. & Ponziani, F. (2017) The role of topogra-

phy in the scaling distribution of landslide areas: A cellular automata

modeling approach. Geomorphology, 290, 236–249.
Lukas, S. & Sass, O. (2011) The formation of Alpine lateral moraines

inferred from sedimentology and radar reflection patterns: a case

study from Gornergletscher, Switzerland. Geological Society, London,

Special Publications, 354(1), 77–92.
Malamud, B.D., Morein, G. & Turcotte, D.L. (1998) Forest fires: an example

of self-organized critical behavior. Science, 281, 1840–1842.
Malamud, B.D., Turcotte, D.L., Guzzetti, F. & Reichenbach, P. (2004) Land-

slide inventories and their statistical properties. Earth Surface Pro-

cesses and Landforms, 29, 687–711.
Meunier, P., Hovius, N. & Haines, A.J. (2007) Regional patterns of

earthquake-triggered to ground motion landslides and their

relationto ground motion. Geophysical Research Letters, 34, L20408.

Neal, A. (2004) Ground-penetrating radar and its use in sedimentology:

principles, problems and progress. Earth-Science Reviews, 66(3–4),
261–330.

Neuhäuser, B. & Terhorst, B. (2007) Landslide susceptibility assessment

using “weights-of-evidence” applied to a study area at the Jurassic

escarpment (SW-Germany). Geomorphology, 68(1), 12–24.
Nie, W., Krautblatter, M., Leith, K., Thuro, K. & Festl, J. (2017) A modified

tank model including snowmelt and infiltration time lags for

deep-seated landslides in alpine environments (Aggenalm, Germany).

Natural Hazards and Earth System Sciences, 17, 1595–1610.
Olyphant, J., Pelletier, J.D. & Johnson, R. (2016) Topographic correlations

with soil and regolith thickness from shallow-seismic refraction con-

straints across upland hillslopes in the Valles Caldera, New Mexico.

Earth Surface Processes and Landforms, 41, 1684–1696.
Pflug, R. (1982) Bau und Entwicklung des Oberrheingrabens.

Wissenschaftliche Buchgesellschaft: Darmstadt.

Rahm, G. (1970) Die Vergletscherungen des Schwarzwaldes im Vergleich

zu denjenigen der Vogesen. Alemannisches Jahrbuch, 1966/67,

257–272.
Segoni, S., Rossi, G. & Catani, F. (2012) Improving basin scale shallow land-

slide modelling using reliable soil thickness maps. Nat. Hazards, 61,

85–101.
Smith, M.J., Rose, J. & Gousie, M.B. (2009) The Cookie Cutter: a method

for obtaining a quantitative 3D description of glacial bedforms.

Geomorphology, 108(3–4), 209–218.
Stark, C.P. & Hovius, N. (2001) The characterization of landslide size distri-

butions. Geophysical Research Letters, 28, 1091–1094.
Sucre, E., Tuttle, J.W. & Fox, T.R. (2011) The use of ground-penetrating

radar to accurately estimate soil depth in rocky forest soils. Forest

Science, 57, 59–66.

Tanyas, H., Allstadt, K.E. & van Westen, C.J. (2018) An updated method

for estimating landslide-event magnitude. Earth Surface Processes and

Landforms, 43, 1836–1847.
Tebbens, S.F. (2020) Landslide scaling: A review. Earth And Space

Science, 7(1), e2019EA000662. https://doi.org/10.1029/2019EA

000662

Tillard, S. & Dubois, J.-C. (1995) Analysis of GPR data: Wave propagation

velocity determination. Journal of Applied Geophysics, 33(1–3),
77–91.

van Dam, R.L. & Schlager, W. (2000) Identifying causes of ground-

penetrating radar reflections using time-domain reflectometry and

sedimentological analyses. Sedimentology, 47(2), 435–449.
Van Den Eeckhaut, M., Poesen, J., Govers, G., Verstraeten, G. &

Demoulin, A. (2007) Characteristics of the size distribution of recent

and historical landslides in a populated hilly region. Earth and Plane-

tary Science Letters, 256, 588–603.
Varnes, D.J. (1978) Slope movement types and processes. In: Schuster, R.

L. & Krizek, R.J. (Eds.) Landslides, analysis and control. Washington,

D.C.: Transportation research board, National Academy of Sciences,

pp. 11–33.
Wimmenauer, W. & Schreiner, A. (1981) Geologische Karte von

Baden-Württemberg 1:25 000, Erläuterungen zu Blatt 8114

Feldberg (Schwarzwald). Analoge Ausgabe. Stuttgart: Geologisches

Landesamt Baden-Württemberg & Landesvermessungsamt Baden-

Württemberg.

Zienert, A. & Fezer, F. (1967) Vogesen-und Schwarzwald-Kare.

Eiszeitalter & Gegenwart – Quaternary Science Journal, 18(1), 51–75.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version

of the article at the publisher’s website.

How to cite this article: Büschelberger, M., Wilk, J., Hergarten,

S. & Preusser, F. (2022) Size–frequency distribution of shallow

landslides in the Black Forest, Germany. Earth Surface

Processes and Landforms, 47(1), 179–192. Available from:

https://doi.org/10.1002/esp.5237

192 BÜSCHELBERGER ET AL.

https://doi.org/10.1029/2019EA000662
https://doi.org/10.1029/2019EA000662
https://doi.org/10.1002/esp.5237

	Size-frequency distribution of shallow landslides in the Black Forest, Germany
	1  INTRODUCTION
	2  FIELDWORK AND DATA ACQUISITION
	2.1  Landslide mapping
	2.2  Characterization of the subsurface
	2.3  Geotechnical characterization

	3  DATA ANALYSIS AND RESULTS
	3.1  Spatial distribution of landslides
	3.2  Landslide size distribution
	3.3  Landslide volume and depth
	3.4  Assessment of the subsurface structure

	4  DISCUSSION
	  CONCLUSIONS
	ACKNOWLEDGEMENT
	  DATA AVAILABILITY STATEMENT

	REFERENCES


