Multi-telescope studies of neutron stars


Neutron stars are unique stellar remnants with extreme properties, as their density and magnetic field. Their study can be the key to a number of unanswered problems in fundamental physics and astronomy, ranging from stellar evolution to strong field gravity. One of the best ways of studying these objects is with observations at radio wavelengths, the efficiency of which can be vastly improved with the combination of data from multiple radiotelescopes. In this thesis, we use the largest European radiotelescopes for performing high quality studies of the properties of objects belonging into two separate categories of neutron stars, millisecond pulsars and magnetars. In the first part of this thesis, a complete description of the observing systems and calibration procedures for the multiple telescopes used is presented. Specifically, all observations were made with the European Pulsar Timing Array (EPTA) telescopes, which are the Effelsberg 100m radiotelescope in Germany, the Lovell 76m radiotelescope in UK, the Westerbork 94m equivalent synthesis radiotelescope in the Netherlands and the Nanc cay 94m equivalent decimetric radiotelescope in France...
Zsfassung in dt. und engl. Sprache
Share on:

Das Dokument erscheint in:

e-docs Suche

Erweiterte Suche

Dokumente auflisten

Mein GEO-LEO e-docs