Zur Kurzanzeige

dc.contributor.authorTimar-Geng, Zoltan
dc.contributor.authorHenk, Andreas
dc.contributor.authorWetzel, Andreas
dc.contributor.editorPhilipp, Sonja
dc.contributor.editorLeiss, Bernd
dc.contributor.editorVollbrecht, Axel
dc.contributor.editorTanner, David
dc.contributor.editorGudmundsson, Agust
dc.date.accessioned2010-11-26T13:21:23Z
dc.date.accessioned2013-01-28T10:20:39Z
dc.date.available2010-11-26T13:21:23Z
dc.date.available2013-01-28T10:20:39Z
dc.date.issued2006-03
dc.identifier.citationPhilipp, S.; Leiss, B; Vollbrecht, A.; Tanner, D.; Gudmundsson, A. (eds.): 11. Symposium "Tektonik, Struktur- und Kristallingeologie"; 2006, Univ.-Verl. Göttingen, p. 228 - 229.
dc.identifier.isbn3-938616-40-7
dc.identifier.urihttp://hdl.handle.net/11858/00-1735-0000-0001-344D-D
dc.description.abstractFission-track (FT) thermochronology is a tool routinely used for studies of surface denudation because of its sensitivity to the low temperatures found in the uppermost part of the crust. FT ages and associated track length distributions are regularly interpreted assuming a steady-state temperature field and only conductive heat transfer. However, application of the method to thermochronological studies based on such interpretations may lead to invalid conclusions, if the temperatures at a certain depth had actually varied with time. For example, the convective transfer of heat by hydrothermal fluids can cause transient thermal events within the upper crust. In particular, fluid circulation along fault zones can result in substantial convective heat transport and cause temperature anomalies in the adjacent rocks (Zuther & Brockamp 1988, Fleming et al. 1998, Lampe & Person 2002, Bächler et al 2003). As a consequence, any refined interpretation of FT data requires a thorough understanding of the upper crustal temperature field and its evolution through time. The main objective of this study is to assess quantitatively how convective heat transport influences the upper crustal temperature field as well as the cooling ages and track length distributions observed in apatite FT data...
dc.format.mimetypeapplication/pdf
dc.language.isodeu
dc.publisherUniversitätsverlag Göttingen
dc.relation.ispartof11. Symposium "Tektonik, Struktur- und Kristallingeologie"
dc.subject.ddc551
dc.subject.gokVEB 143
dc.subject.gokVBN 200
dc.subject.gokVGF 400
dc.subject.gokTOO 000
dc.titleTwo-dimensional finite element models of convective heat transfer in the upper crust — implications for the interpretation of fission-track data
dc.typeanthologyArticle
dc.subject.gokverbalOberrheinische Massen {Geologie}
dc.subject.gokverbalRadiometrische Altersbestimmung
dc.subject.gokverbalDruck- und Temperaturbestimmungen {Mineralogie}
dc.subject.gokverbalGeothermik {Geophysik}
dc.bibliographicCitation.firstPage228
dc.bibliographicCitation.lastPage229
dc.identifier.doi10.23689/fidgeo-1907
dc.type.versionpublishedVersion
dc.subject.freeSchwarzwald
dc.subject.freeErdkruste
dc.subject.freeKonvektion
dc.subject.freeKernspaltspurenmethode
dc.relation.collectionGeologische Wissenschaften
dc.description.typeconference


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige