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Zusammenfassung

Beobachtungen der solaren Korona zeigen ein Plasma bei Temperaturen von meh-
reren Millionen Grad, angeordnet in bogenartigen Strukturen. Aktuelle Forschungs-
ergebnisse weisen darauf hin, dass diese hohen Temperaturen, die weit iiber der Ober-
flichentemperatur der Sonne liegen, durch die Dissipation von Magnetfeldern erreicht
werden. Der Prozess der Umwandlung von magnetischer zu thermischer Energie ist
jedoch noch nicht im Detail verstanden. Dazu untersuchen wir in einem dreidimensio-
nalen magneto-hydrodynamischen Modell den Prozess der koronalen Heizung. Dieses
numerische Modell ist zeitabhingig und beschreibt die Entwicklung von Magnet-
feldern iiber einer Aktiven Region. Es umfasst die Atmosphére der Sonne von der
Photosphére bis zur Korona. Die Magnetfelder in der Korona werden an ihren Fuf-
punkten in der Photosphére verdrillt. Dadurch entstehen Strome, die anschliefend
dissipiert werden und damit die Korona autheizen. Dies entspricht dem sogenann-
ten DC-Prozess (Direct Current), wie er 1972 von Parker vorgeschlagen wurde. Das
Modell ist in einem quasi-stationdren Gleichgewicht, in dem die zugefiithrte Energie
aus den Bewegungen in der Photosphére durch die Strahlungsverluste in der optisch
diinnen Korona kompensiert wird.

Das Modell zeigt, dass der Heizungsprozess durch die Dissipation von Stromen ei-
ne Moglichkeit ist, um eine Korona mit einer Temperatur von mehreren Millionen
Grad zu erzeugen. Untersuchungen der Heizraten in unserem Modell zeigen weite-
re interessante Details. Die Heizung findet auf kleinen Skalen mit zeitlich zufillig
verteilten Ereignissen statt. Diese Ereignisse entsprechen Nanoflares auf der Sonne.
Eine Betrachtung der Groflenverteilung dieser Nanoflares zeigt, dass deren Verteilung
mit Beobachtungen und Theorie vereinbar ist. Unser Modell erzeugte damit erstmals
selbstkonsistent eine solche Nanoflare-Verteilung.

Bei der Untersuchung der Plasmaeigenschaften entlang von Magnetfeldbogen zeig-
ten sich Ahnlichkeiten zu bereits bekannten Skalengesetzen. Dabei ist jedoch eine
grofle Streuung zu erkennen, was die Anwendbarkeit der Skalengesetze fiir beliebige
Magnetfeldkonfigurationen in Frage stellt. Insbesondere bei der Anwendung auf stel-
lare Koronen sollte eine verinderte magnetische Aktivitat beriicksichtigt werden.

Die synthetisierten Emissionslinien unserer Modellkorona zeigen eine gute Uberein-
stimmung mit Beobachtungen. Eine Analyse des Differentiellen Emissionsmafes er-
gab eine Temperaturabhingigkeit, wie sie auch aus Beobachtungen abgeleitet wurde.



2 Zusammenfassung

Daher kann davon ausgegangen werden, dass die physikalischen Parameter der Mo-
dellkorona, wie z.B. Temperatur und Dichte, die Werte der realen solaren Korona
realistisch abbilden.

Bogenartige Strukturen, die bei der Betrachtung des Modells in der Emissionslinie
Ne viir zu sehen sind, scheinen nicht mit den Magnetfeldlinien zu korrelieren. Diese
sogenannten iLoops (intensity Loops) weisen darauf hin, dass die Korona nicht nur
aus Strukturen entlang von Magnetfeldern aufgebaut ist und damit das Konzept der
Skalengesetze nur bedingt anwendbar ist.

Die vorgelegte Arbeit zeigt die Stérke der dreidimensionalen nummerischen Modelle,
die Ergebnisse liefern welche direkt mit Beobachtungen verglichen werden kénnen
(Forward model approach). Durch die Verwendung verschiedener photosphérischer
Randbedingungen konnen unterschiedliche Phénomene der solaren Korona unter-
sucht werden. Unser Modell beschreibt Ergebnisse aus Beobachtungen ohne Annah-
men zu machen die auf Beobachtungen basieren. Resultate des Modells beruhen nicht
auf den Anfangsbedingung sondern ergeben sich aus den Grundannahmen der MHD
und den physikalischen Randbedingungen.



Abstract

Observations of the solar corona show loop-like structures formed by plasma at tem-
peratures of one million degrees and higher. Since the solar surface is much cooler
than the corona, a heating mechanism must be responsible for the high temperatures.
The dissipation of magnetic fields in the corona could provide such a heating mech-
anism. However, the process of transforming magnetic energy into thermal energy
is still not yet understood in detail. To investigate this process and its impact on
the heating of the corona, we employ a three-dimensional magneto-hydrodynamical
model. This numerical model synthesizes the temporal evolution of the magnetic
field above an Active Region. It includes the solar atmosphere from the photosphere
up to the corona. The magnetic field in the corona is braided by foot point motions
in the photosphere. This is done similarly to the braiding through granulation in
reality. The stressed magnetic field induces currents which are then dissipated in the
corona. This idea is known as the DC model (direct current) and was proposed by
Parker in 1972. The model reaches a quasi-stationary state, i.e. the energy input
by photospheric motions is counterbalanced by radiative losses in the optically thin
corona. As a result, the described heating process creates and sustains a hot corona
with a temperature of one million degrees and higher.

Persistent heating is created by single heating events randomly distributed in time -
comparable to Nanoflares observed on the Sun. A statistical analysis of the heating
events in our model results in a Nanoflare distribution as claimed by theory and
observations. The is the first time that a complex numerical model self-consistently
produces a Nanoflare distribution strong enough to maintain the high coronal tem-
peratures.

We also investigated plasma properties along magnetic field lines. The results are
comparable to known scaling laws, but they show a large spread. This is an indica-
tion that the scaling laws are sensitive to the magnetic field configuration at the solar
surface. This means that in order to explain a corona or atmospheres above active
stars, the scaling laws have to be treated with care.

We pursue the forward model approach and synthesize line emissions at different
wavelengths. The differential emission measure can be used as a tool to compare
our model with observations. An analysis shows that the temperature dependency
of the differential emission measure in the model fits well to the values obtained by
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the interpretation of observational data. Therefore, one can justifiably assume that
the average plasma properties in our model corona, such as temperature and density,
are comparable to the plasma properties on the Sun.

When we look at the loop-like structures in the emission line of Ne VIII in our model,
they are seemingly not correlated with magnetic field lines. These iLoops (intensity
Loops) reveal that the corona is not entirely built of structures following magnetic
field lines. Thus it might be possible that the emission from more active coronae is
not mainly produced by loops following magnetic fieldlines.

The model presented in this thesis shows a great advantage of the forward model ap-
proach using complex three-dimensional numerical models: The results are directly
comparable to observable quantities. The model corona in this ’ab initio’ approach
depends only on the MHD assumptions and the physical boundary conditions but
not on the initial condition. The application of different boundary conditions allows
us to investigate various phenomena in the solar corona. Hence, the model provides
a crucial tool to critically evaluate the interpretation of observational data.



1 Introduction

Already thousands of years ago, people were amazed by the shiny phenomenon around
the Sun during a solar eclipse. This faint object was called corona, which is Latin
for ’crown’. It puzzled the people and is up to the present day an interesting field
of research. Figure |l.1]illustrates an impressive image of the solar corona. Since the
corona was only seen during solar eclipses it was assumed to belong to the moon.
Either it was the moon’s atmosphere, light scattering on the moon’s surface or solar
light refracted in the moon’s atmosphere. The first proof, that the corona is part
of the solar atmosphere was obtained by two independent observations. During the
eclipse on 18th July 1860, A. Secchi and W. De La Rue made photographs, 500 km
apart, that did not show any parallax of the prominences seen in the pictures. This
would have been the case for features on the nearby moon.

= 2/ | It *{‘

Figure 1.1: Solar eclipse 2009 observed at Enewetak Atoll, Marshal Islands. Composition of
38 eclipse images. Image processing by Miloslav Druckmiiller. Courtesy: Miloslav
Druckmiiller, Peter Aniol, Vojtech Rusin, Lubomir Klocok, Karel Martisek, Martin
Dietzel. www.zam.fme.vutbr.cz/~druck/Eclipse/index.htm
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With the invention of the coronograph by B. Lyot (1930), it was possible to observe
the corona not only during eclipses. The coronograph is a pinhole camera behind an
occulting disk rejecting direct solar light. Employing such instruments, the corona,
with a brightness less than a million of the brightness of the Sun, becomes observable.

The spectrum of the Sun is in first order a Planck spectrum of a black body with
six thousand Kelvin. The intensity coming from the solar disc decreases rapidly
towards the high energy range in the extreme ultraviolet (EUV). In this wavelength
range the emission of the corona is therefore brighter than light coming from solar
surface. Since the earth’s atmosphere is opaque in this wavelength range high energy
observations of the corona in the EUV are only possible in space. Nowadays an
armada of ground based telescopes as well as space missions observe the Sun and
its atmosphere in different wavelengths and with various methods, like imaging or
spectroscopic measurements.

In the last decades many discoveries were made and problems solved. For instance,
the element coronium was postulated to explain the green emission line which later
was identified as the emission of highly ionized iron. But one of the major riddles
in solar physics withstands to be solved up to the present day: The temperature
of the corona exceeds the temperature of the solar surface by a factor of 200 and
above. This is known since almost eighty years now and the mechanism to heat the
corona is still not understood in detail. Actually, Grotrian| (1931) did not mention
the high temperature, but he was the first one who derived the electron velocity in
the corona based on the Doppler broadening of a certain line. Using measurements
from the solar eclipse on May 9th 1929, the resulting electron velocity is ten times
higher than the thermal speed at temperatures found on the solar surface. Since the
surface temperature was the highest conceivable temperature at that time, he argued
that other scenarios or phenomena have to be utilized to explain the high velocity.
Later, Edlén| (1943)) identified coronal emission lines as transitions of highly ionized
atoms. Since then it was clear that the solar corona has to be hotter than a million
degrees.

1.1 The Sun

Even though the heating mechanism is not yet understood completely, it seems nat-
ural that the energy for the heating process originates from the solar interior. The
Sun generates energy in the core by fusion of hydrogen into helium at around 15
billion Kelvin. The energy is then transported outwards by radiation in the inner
two thirds of the solar radius and by convection in the outer layer. The convection
zone is superadiabatic and therefore forms an unstable layer. The temperature drops
from one million degrees at the bottom of the convection zone to roughly 6000 Kelvin
in the photosphere, the layer above the convection zone. A schematic view of the
solar interior is illustrated in figure (1.2l The photosphere is defined as the layer when
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Figure 1.2: A cut-away schematic of the Sun from the Center for Science Education of the Berkeley
University of California.

the surface becomes transparent to the radiation from below. It is visible as yellow
disk from the earth, where almost all radiation originates from. A closer look reveals
a regular pattern for the convection, the so-called granules. Over a small fraction of
the Sun the granulation is replaced by dark structures. These structures, for example
Sun spots or Active Regions, are visible manifestations of magnetic fields. Figure|1.3
illustrates an Active Region surrounded by granulation. It is believed that the solar
dynamo process generates magnetic fields at the bottom of the convection zone. Sun
spots are therefore perpendicular cuts through magnetic flux tubes which are based
deep in the convection zone and extend high into the solar atmosphere.

In the photosphere the plasma becomes optically thin. Whereas information from
the solar interior can only be obtained from helioseismology, the atmosphere above
can be observed directly. The solar atmosphere is divided into three layers. The
chromosphere above the photosphere is a relatively cool layer, well observed but
not yet totally understood. The plasma is not fully ionized and mostly not in local
thermal equilibrium. As well as the corona the chromosphere are cooled by radiative
losses. The Heating mechanism proposed are magnetic by nature or dissipation of
acoustic shock waves. The interface between the cool and dense chromosphere to the
hot corona is called transition region. In this relatively thin layer - less than 1% of
the solar radius - the temperature rises up to one million degrees. From the transition
region the corona reaches up to three solar radii into the space.
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Figure 1.3: Active Region AR11024 and granulation. Recorded on July 4th 2009 in the G band
at 403nm (Vakuum Turm Teleskop (VTT), Kiepenheuer-Institut fiir Sonnenphysik).

1.2 Solar Corona

The corona is mostly observed with space missions in the extreme ultraviolet wave-
length range. Successful missions, such as the Solar & Heliospheric Observatory
(SOHO, Domingo et al| (1995))) and the Transition Region And Coronal Explorer
(TRACE, Handy et al. (1999)), provide data over long time periods. Observations
reveal that the structure of the corona strongly depends on the solar cycle of 22 years.
During that time, the polarity of the magnetic field in the east-west oriented Active
Regions changes twice (Hale’s polarity law). Therefore, the Sun has an activity cycle
of 11 years. During the solar maximum the corona is highly structured and visible
almost all over the entire Sun. During solar minimum, the corona appears only above
the solar equator and looks more diffuse. Hence, this gives a first indication, that
coronal structures and the coronal heating mechanism are related to the magnetic
fields.

1.2.1 Coronal magnetic fields

The solar magnetic field determines the dynamics and topology of the corona. Hot
plasma with a high degree of ionization can only flow along magnetic fieldlines. There-
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Figure 1.4: TRACE image of coronal loops, taken in the 17.1 nm passband. This is characteristic
for plasma at one million degrees Kelvin.

fore, the heat conduction is efficient along the fieldlines and strongly suppressed per-
pendicular to the loop. Thus, coronal loops outline magnetic flux tubes as illustrated
in figure [1.4] The knowledge of magnetic fields in the solar corona is mostly based
on extrapolations of measurements on the solar surface. In order to obtain this, the
Zeemann splitting of spectral lines is used to derive the magnetic field configuration
in the photosphere. However, extrapolations into the corona are uncertain due to
unknown currents and non-potential field conditions. The fact that coronal loops
expand less with height as extrapolated magnetic fields emphasizes the inadequacy
of such models. Direct magnetic field measurements in the corona would be adjuvent
but are only available in low temporal and spatial resolution. These measurements
employ effects of Faraday rotation, the polarization of free-free emission, Hanle effect
in Lyman-a, or Stokes polarimetry in infrared lines. But only integrated magnetic
field properties along the line of sight of the optically thin corona can be derived.
When looking at the disk center, information over a wide range in height is mixed
up. Therefore, one has to measure above the limb at least over a period of half a
solar rotation to use the so called tomographic reconstruction method.

1.2.2 Coronal heating

The second law of thermodynamics tells us that the temperature should drop when
we go from the photosphere towards the outer layers of the solar atmosphere. But
the temperature increases, which calls for a heating mechanism to resolve this con-
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tradiction. This heating mechanism must be able to produce and maintain the high
temperatures from the outer chromosphere up to the corona. Different models were
proposed in the last decades, and some have already been disproved. One model is
the purely hydrodynamical model in which upward traveling waves turn into shocks
and dissipate their energy. This scenario cannot provide the required amount energy
to heat the corona. The acoustic waves do not reach the upper atmosphere but are
mostly dissipated in the chromosphere and contribute to the heating of the latter.
Another model is based upon the energy transport by the electromagnetic field. This
scenario is classified into DC models (Direct Current) and AC models (Alternating
Current). These two types differ in the relation between the timescale of the mechan-
ical driver in the photosphere and the Alfvén transit time along a loop. A magnetic
disturbance propagates with the Alfvén speed v, along a magnetic fieldline. For DC
models the mechanical driving is slow and the loop behaves quasi-static. When the
photospheric driver changes faster than the Alfvén transit time, the loop ’sees’ an
alternating current (AC model).

AC models

In AC models the energy of waves traveling along a loop is dissipated within a
short distance in the corona. Typically, there are three different types of waves:
the purely magnetic and the fast and slow magneto-acoustic waves. The magnetic
waves (Alfvén waves) travel along the field whereas the magneto-acoustic modes
propagate transverse. The magnetic-acoustic waves are mostly reflected due to the
strong gradients in density and pressure and thus do not reach the corona. Therefore
only the Alfvén waves can significantly contribute to the coronal heating. These waves
can travel unimpeded into the corona. In order to utilize these waves for the heating
mechanism, an enhanced dissipation of these waves has to take place in the corona.
There are two types of AC heating: the phase mixing and the resonant absorption.
Phase mixing occurs when the Alfvén speeds of two nearby fieldlines differ so that
the waves are out of phase in the corona. As a consequence gradients in the gas
speed increase, leading to instabilities and the dissipation of the wave. Resonant
absorption happens when the driver frequency is equal to the eigen-frequency of the
loops. Again, large gradients in the plasma speed cause absorption of the waves and
viscous dissipation of the energy.

DC models

Here we distinguish between stress-induced reconnection, currents and turbulence.
In the reconnection model flux tubes are braided and non-potential energy is stored
up to a certain threshold. The energy is then released by sporadic dissipation events,
the so called Nanoflares. The other scenario suggests that foot point motions in
the photosphere stir up a potential to a non-potential coronal magnetic field. Thus,
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currents occur in the non-potential field which can than be dissipated and heat the
corona. This process is called Ohmic dissipation or Joule heating. The stress-induced
turbulence model describes a cascade of energy towards smaller length scales where
the dissipation process is more efficient. The dissipation itself is again Ohmic.

1.3 Forward model approach

Forward modeling builds the connection between theory and observations. Starting
from a physical model it allows to examine observable consequences. Input param-
eters can be adjusted to reproduce observations. Hence theoretical models can be
tested or even eliminated. Its predictive character, by telling what may be observable,
helps to design future experiments and instrumental designs.

Yet, the forward model approach is used by several authors for testing different
models of Nanoflare heating in the solar corona. A review about the forward model
approach and its application is given in |de Moortel et al. (2008). Results of theses
models could already reproduce parts of observations. Most of the models do not
self-consistently compute the heating mechanism but make for example assumptions
about the background plasma. However, most of these models were restricted to 0D
or 1D hydrodynamics of coronal loops. A step further are the large scale 3D magneto-
hydrodynamic simulations such as those by Gudiksen and Nordlund| (2005)). They
simulated a model of the solar corona ab initio. The basic idea was that braiding
of magnetic fieldlines by photospheric motions could heat the corona. Using these
results, [Peter et al.| (2004}, |2006) calculated both line intensities and Doppler shifts
and found a remarkable accordance to observed emission measures and Doppler shifts.
Nevertheless, it was not possible to conduct parameter studies or to simulate different
solar phenomena. The high demands on computing resources for these 3D MHD
models is still an ongoing issue.

1.4 Motivation and scope of this work

We want to investigate the importance of Ohmic heating as a heating mechanism for
the solar corona. Therefore, we conduct a three dimensional magneto-hydrodynamic
numerical model. Thereby we emphasize the details in the energy balance equation.
In this dynamic model the foot points of magnetic fieldlines are shuffied around by
the almost random motions in the photosphere. Thereby the fieldlines are braided
in the atmosphere. This conforms to the heating process suggest by |Parker| (1972).
His illustration of the fieldline braiding is shown in figure [I.5] The resulting complex
pattern of the magnetic field induces currents that dissipate as Joule heating. It took
thirty years before this process could be investigated in three dimensional numerical
models with complex magnetic configurations.
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Figure 1.5: Schematic drawing of the topology of magnetic flux tubes of force following a displace-

ment of the ends of the tubes (Parker| 1983).

We carry on the idea of the ab initio coronal model by |Gudiksen and Nordlund|
. They used a reduced Spitzer heat conduction to increase the time step. They
argue that it is sufficient as long as the Spitzer heat conduction is the fastest process
in the simulation. We use the Spitzer heat conduction term as derived by
and obtain smaller time steps. Therefore, structures in the temperature
distribution should be better resolved. Another limitation of the model
and Nordlund, 2005)) is the short time period of solar data. We want to produce
longer time series to be able to investigate statistical properties of the solar corona.
The data obtained from the model is used after an initial phase which is more than
twice as long as the initial phase in |Gudiksen and Nordlund| (2005)). This improves
the assumption that the initial condition is forgotten and the model only depends on
the boundary conditions.

We use different magnetic boundary conditions to work out the dependency of
the observable coronal structures on the underlying magnetic activity. How do line
emissions in different wavelength change when the underlying magnetic field increases
in complexity.




2 Basic equations of MHD

Even tough there are several good textbooks around, in which one can find the basic
equations of magneto-hydrodynamics, we would like to summarize the important
equations used in this thesis. Thus, this chapter can be used as formulary since the
notations are the same throughout the entire work. A summary of the equations
used in the way they are implemented in the numerical code can be found in chapter
4.2

2.1 Maxwell’s equations

We start with Maxwell’s equations (Maxwell, [1865]) in differential form:

*

p

V-E = — (2.1)
€

V-B =0 (2.2)
0B

VxE = ——= (2.3)

VxB = uj+eu88—]f (2.4)

where p* is the charge density. The permittivity € and the magnetic permeability u
may be replaced with their respective vacuum values in the solar atmosphere. They
are related to the speed of light ¢y by

2
eopocy = 1

Introducing a typical length scale L and a typical time scale T" for the plasma motions,
resulting in a typical velocity of V' = L/T', one can approximate Maxwell equations.

Replacing V x E with % and approximating %—]tg R % in equation leads to
E B
- & = 2.5
7 T (2.5)
Now we can express the displacement current on the right hand side of equation
(%~ B as
E V?B
€= = —5—
OMOT 2T

13
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by using the typical scales and equation[2.5] Since the characteristic plasma velocities
are much smaller than the speed of light, V' < ¢, the displacement current can be
neglected when compared to the left hand side of equation [2.4}

B V?B

s = 2.6

L 2 L (26)
Furthermore, we arrogate charge neutrality, that is n. —n; < n, with n, and n; being
the number densities for electrons and ions respectively, while n represents the total
number density. The charge imbalance is given by equation 2.1 and can be expressed

as
._ FE VB
(ny —m_)e=p Nep = e
where we used again equation [2.5]
In chapter we will show that the resulting assumption

-— 2.
ST <«Ln (2.7)

is meaningful.

Including all assumptions Maxwell’s equations reduce to:

V.B = 0 (2.8)
0B
VxB = uj (2.10)

Equation [2.10] is also known as Ampere’s law.

2.2 Ohm'’s law

Ohm’s law states that the current j is proportional to the voltage. In other words, the
current density is proportional to the total electric field. Deviations from this law are
well known and desired for example in semiconductors. To derive Ohm’s law properly
we may start with Boltzmann’s equation for each particle species. The difference of
the first moments of these equations would lead us to a generalized Ohm’s law. But
in this work we are not accounting for the micro physical processes thus we use the
simplified form

j=0c(E+uxB) (2.11)

It describes the proportionality for a frame of reference moving with the plasma at
a velocity u. Additionally, the electric conductivity o is proportional to the electron
number density and the collision times between the particle species.
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2.3 Induction equation

It is common to combine the simplified Maxwell’s equations [2.9] and as well as
Ohm’s law to replace the electric field. This leads us to the induction equation. First
we take the curl of Ohm’s law and replace the electric field using the third Maxwell
equation. Then we replace the current using Ampere‘s law.

Vxlj = VXE+Vx(uxB)
g
= —8(9—]?+V><(u><B)
B
Vxn(VxB) = —aa—tJer(uxB)
0B
5 = Vx(uxB)—-Vxn(VxB) (2.12)

The factor n = 1/opu, as well as o, is not spatially constant on micro physical scales.
We will discuss the resistivity 7 in more detail in chapter [6]

The induction equation describes the temporal and spatial evolution of the mag-
netic field including the dissipation of magnetic energy. Is n = 0, meaning the plasma
is a perfect conductor, the magnetic fieldlines are forced to move alongside with the
plasma. The condition is known as the ”frozen in” theorem by H. Alfvén.

2.3.1 Vector potential

Since we are interested in the temporal and spatial evolution of the magnetic field,
we have to solve the induction equation (cf. equation [2.12). The main goal for a
non conservative code, as used in this thesis, is to assure that the divergence of the
magnetic field is always zero as stated by the second Maxwell equation [2.2] Therefore
we use a vector potential A that obeys

B=VxA
resulting in a divergence of B like
V.-B=V-(VxA)=0
for all times. Now the induction equation can be written as
0A
ot
Because of gauge invariance, we can add the gradient of an arbitrary scalar field ¢ to

the induction equation without changing the magnetic field. We choose ¢ = nV - A.
In case of constant 7 it simplifies to

%—‘i‘ =ux (VxA)+nViA (2.13)

=ux (VxA)—nVxVxA.
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2.3.2 Magnetic energy balance

As the heating in our model is assumed to be magnetic, we have to examine how the
energy is transported into the corona. The energy flux in the electro-magnetic field
is given by the Poynting vector. The internal energy originating from the magnetic
field is given by the Ohmic heating term (cf. equation[2.37). The correlation between
the two processes and the rate of change of the electro-magnetic energy is derived
here.

Poynting flux

The Poynting vector describes the energy flux through a unit area per unit time and
is defined as

1
S=—ExB (2.14)
Ho

where [S] = 2. Using Ohm’s law
j=oc(E+uxB)

the Poynting vector can be written as

1 1
S = —(jxB)——(uxB)xB
O o Ho
1
= (npoj —uxB) x B (2.15)

0
where the electric field is eliminated from the Poynting flux definition. Another way
to express the Poynting flux is

1
S=—((xB)+u(B-B)—-B(u-B) (2.16)
0o
Therefore, the energy flows either perpendicular to the plane stretched by j and B
or along the rectangular component of u to B.

Ohmic heating and work done by the Lorentz force

In this section the change in magnetic energy due to plasma motions and dissipation
are described. The magnetic energy density is given by

B2

= 2.17
o (2.17)

€mag =
where e has a unit of J/m?. In order to find the rate of change we use the time
derivative

O0€mag 1 B 0B

ot Lo ' E
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Furthermore, we can use the induction equation m to replace %—]f
OCmag 1
=—B: [Vx(uxB)—-Vxn(VxB)] (2.18)
ot Ho

At this point we have to exploit some vector identities and Ampere’s law to reform
the right hand side. The result is

Oemag 1 .
—E =t %V-((uxB)xB) u-(j xB)

— V- (njxB) —nuoj (2.19)

Together with the definition of the Poynting flux (cf. equation [2.15) the equation
transforms to

O€mag

ot

with S being the Poynting vector. On the left hand side we see the conservation law
of energy with the energy flux S and on the right hand side we have the work done
by the Lorentz force and the sink of energy due to Ohmic dissipation. The latter one
appears in the energy equation in the form of Ohmic heating.

The energy loss by Lorentz force can be found if one transforms the momentum
balance equation into an energy equation by multiplying from the left with the
plasma velocity u.

+V-S = —nuj*—u-(j xB) (2.20)

2.4 Equation of continuity

The general equation of continuity has the form

¢

4 V-f,=0 2.21
where f is the flux of the quantity ¢. If one is interested in regions where nuclear fusion
does not take place and the plasma is considered as a single fluid, mass conservation
applies. Otherwise, one has to solve Boltzmann’s equations to account for the particle
species and their ionization state. The equation of mass conservation can be written

as

dp
. _ 92.29
5 +V-(pu)=0 ( )
or D
P _
Dt-l—pV u=0. (2.23)

We introduced the material derivative following the motion also known as convective
time derivative
D 0

2 _% 4V, 9.94
DTV (2:24)
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It expresses the Eulerian time derivative (written 0/0t) in Lagrangian coordinates.
Equation describes a compressible fluid whereas incompressible fluids would
have V - u = 0 and therefore %Z =0.
In our numerical scheme (chapter the continuity equation is written in

terms of In p,
dlnp

ot
Using a logarithmic density, rather than density itself, ensures purely positive den-
sities. Additionally, the numerical solution will be more stable when density values
vary over several orders of magnitude.

+(u-V)lnp+V-u=0. (2.25)

2.5 Equation of motion

The conservation of momentum pu may be written as

0
%Jrv-((pu)ou) ~0 (2.26)
Expanding leads to
ou dp
pa—l—ua+p(u-V)u+pu(V~u)—|—u(qu) =0

This equation can be simplified using the conservation of mass and replacing the time
derivative of the density with equation [2.23] This leads to

ou

P ot

the well known Navier-Stokes equation. The momentum of a fluid is changed when

different forces act upon it. If the forces are of external nature the momentum

conservation equation becomes a balance equation. We add the corresponding terms
on the right hand side of equation [2.26|

ou
por +e(u Vu= Z f, (2.27)

+p(u-V)u=0

The forces f; , or more precisely the forces per unit volume, that act on the plasma are:

Gas pressure gradient: —Vp

Lorentz force: jxB
Gravitational force: —pV o
Coriolis force: —2p(Q X u)
Centrifugal force: —p2 x (2 xr)
Viscous force: 2vV o (pS)

Inertial force: —p(u-V)u
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The centrifugal and Coriolis forces are just simple examples for a frame of reference
that is rotating with €2 in respect to a reference frame at rest. Other scenarios will
lead to more complex coordinate transformations. The viscous force is given by the
divergence of the stress tensor, which is defined as:

T, = 2vpS (2.28)
where S is the rate-of-strain tensor
1 /0u; Ou; 2
g === A AVE 2.29
=2 <8xj * Or; 3 iV u) (229)

and v is the kinematic viscosity. The latter correlates to the dynamic viscosity p by
p=pv.

If we add diffusion in equation [2.23] another term appears. Meaning, if we smear
mass, the momentum has to change to. Subsequently the conservation of momentum

reads as 9
pa—ltl +p(u-V)u+ue,Vp = Z f; (2.30)

in which ¢, represents a positive and constant mass diffusion coefficient.

2.6 Equation of state

The equation of state for an ideal polytropic gas is given by

p=(c, —cv)pT (2.31)

where ¢, and ¢y are the specific heat capacities at constant pressure and constant
volume respectively. They are correlated to the universal gas constant R and the
mean atomic weight i or the Boltzmann constant by

R kg

(CP_CV):EZ ~

We can use the adiabatic index v = CC—"; to write

2.7 Energy equation

The last equation of interest is the energy or heat equation. This equation can be
written in different forms. The energy equation is first written in terms of entropy
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and then transformed into a temperature equation. Entropy S, in a closed system,
is a conserved quantity, thus can neither in- nor decrease, so that

08
— + V- (Su) =
T (Su)
where S is the entropy per unit volume. We can use S = sp, with s being the entropy
per unit mass, and obtain
dps 8/) 0s

E+V ( ) = at+p8t+sv (pu)+p(u V)

= (G T w) g D)

0s
- patﬂ)(u V)s
DS l
= g, =0 (2.32)

We can multiply equation [2.32| with the temperature and obtain the conservation of

energy

Ds
T—=—1. 2.33
iy (2.33)

We added on the right hand side the energy loss function L in units of [5], which
describes all sinks and sources of energy.

One can use the thermodynamic potential de = T'ds — %dp for the internal energy
to express equation [2.33] in the following form

) (& _ £&> _ 7 (2.34)

For an ideal polytropic gas the internal energy e is given by
e=cyT. (2.35)

Together with the equation of state (2.31]) and mass conservation (2.23)) we can rewrite

equation ([2.34) to

DInT
Dt
Heat sources and sinks used are discussed in the following sections.

cypT +pV-u=-L (2.36)

2.7.1 Ohmic heating

Because of the sign of the energy loss function the Ohmic heating is

L = —npoj® . (2.37)



Energy equation 21

It is derived in equation and plays a major role in the model presented in
this work. Ohmic heating, or sometimes called Joule dissipation, is discussed in
chapter [6] There the resistivity, or sometimes called magnetic diffusivity, n will also
be discussed.

2.7.2 Viscous heating

The loss of kinetic energy by friction and the resulting heating of the plasma is given

by the viscous term
L = —2pvS? (2.38)

The kinematic viscosity v is assumed to be constant.

2.7.3 Radiative loss

For the optically thin part of the atmosphere the radiative loss is no longer coupled
to the radiation field by the radiation transfer equations. The loss can be described
as

L = nenyQ (T) (2.39)

in which Q(7") describes the radiative loss function, n. and ng the electron and hy-
drogen particle densities. In order to calculate the correct shape of that function one
needs to know the abundances as a function of geometrical height in the atmosphere.
Observations result in estimations, whereas in situ measurements count particles but
only in a very small volume and at large distances from the Sun. In our model we
use for Q(T') the results from Cook et al. (1989), who rely, among others, on the
abundances reported in (Meyer| 1985).

The function Q(7) is shown in figure and may be fitted using a piecewise
constant slope of the form of

Q(T) = XT* [Wm’] (2.40)

The first peak is the contribution of hydrogen (Lyman-«/), followed by the peaks of
carbon, oxygen and iron. The increase of the radiative loss above log T'/[K] = 6.5
is due to Bremsstrahlung. This result emphasizes the importance of the correct
abundances used in the calculation because the trace gases have a major contribution.

The right hand side of figure indicates the time scale for the radiative loss as a
function of height. There are two ways to determine the time scale, first by evaluating
the energy loss in a given time interval, or second, by integrating the radiative loss
function. The latter is the simplified energy equation:

dTr

pey i —nen;Q(T)
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We rewrite the equation by using the equation of state (cf. equation [2.31]) and
substitute the particle densities n.; (cf. [A.4]).

dr fily — 1)

— = —0.6b—— T

3 p—— pQ(T)

where kg is the Boltzmann constant, ft ~ 0.6 the mean atomic weight and m, the
proton mass. If we now assume that the mass is independent of time and temperature,
it is possible to separate the variables

k:Bm 1
.54 Bp dT = dt
iy —1) pQ(T)

Therewith, the time it takes until the temperature drops by a factor of % can be
computed by integration:

kgm, 1 [T 1

Teoot (T0) 1'54/1(7 “0p )y O dr (2.41)
where Ty = Tp/e. As indicated, the cooling time depends on the initial temperature.
The fact that the density will change when the temperature decreases is neglected, as
it can only be accounted for, when doing a full time depending simulation of a solar
atmosphere, where the heating is switched off suddenly. In our model we integrate
equation [2.41| numerically. The resulting cooling times are shown on the right hand
side of figure (solid line). Also shown is the cooling time, under the assumption
that the energy loss rate for a single time step does not depend on time, meaning
that a small change in temperature does not influence the energy loss.

The cooling time in the upper corona is of the order of 2 to 10 hours and decreases
towards the transition region due to increasing density. At z ~ 6 Mm the temperature
is still so high, that the radiative loss function is not to reliable. Below this altitude
the temperatures are smaller than log7/[K] = 4.5 and the radiative loss becomes
inefficient. Below a temperature of logT/[ K] = 4.0 it takes almost infinite time to
cool the plasma by radiation only.

Since the cooling time is directly proportional to the density, which varies by two
orders of magnitude in the corona, the time scale cover a vast range. This process is
slow compared to heat conduction in the corona. Therefore, radiative loss can not
cause thermal instabilities mentioned by Parker few decades before.

2.7.4 Heat conduction

Above the photosphere the heat transport by radiative transfer plays a minor role.
The Heat flux vector, according to Fourier’s law, is

q=-KVT (2.42)



Energy equation 23

. —34f F

S 3 L

= ‘ = WOO0.0%

5 °F £ g

z ~ 1000F

o r o

0 —-36F E F

3 o W0.0?

R = i

2 —37F )

R g 0%

s z

S =38t 0.1 . .

3 4 S 6 7 0 10 20 30

log T [K] height z [Mm]

Figure 2.1: Left: Piecewise constant slope approximation for radiative loss in the optical thin
corona. The intervals are marked by the crosses. Right: Radiative cooling time
for different heights in the atmosphere based on the temperatures and densities of
the model described in this work. Integration of the loss function (solid line) and
extrapolation from the loss per time step (dashed line).

in the chromosphere, while it is given by particle conduction in the atmospheric layers
above. In an ionized plasma with magnetic fields the thermal conduction tensor K
is not diagonal. Thus the heat flux vector can be written as

q=(Ki6;+ (Kj— Ky)bib) VT (2.43)

Spitzer and Harm| (1953) already conducted numerical models to find a description
of K| and K| depending on Temperature. In their analysis they used a fully ionized
hydrogen plasma and Spitzer (1962) gives

Ky~2-107" ([%) ’ % (2.44)

The strong temperature dependency is a result of the large mean free path and the
small collision frequency for the almost free traveling electrons.

The perpendicular coefficient is neglected for simplicity. It is smaller by several
orders of magnitude in comparison to the parallel coefficient and smaller then the
additional isotropic heat conduction described below.

oot

2.7.5 lIsotropic heat conduction
In order to stabilize the code we use a isotropic heat conduction of the form

qg = —p|VT|VT (2.45)
= —T?p|VInT|VInT (2.46)

The divergence of the heat flux vector is then

L = V- (T?|VInT|VInT) (2.47)
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2.7.6 Newton cooling

Since we cannot account for a proper energy transport from the photosphere to the
upper chromosphere we need to keep the temperature at a constant level. We use
Newton’s cooling law to obtain a standard temperature profile Tg(2)

dT 1

5 = —;(T—To) (2.48)

Since we use a logarithmic temperature in the energy equation we write

dlnT 1 T()
= - (21 2.4
dt T(T ) (249)

where 7 = 7 (2) and increases with geometrical height. Thus only the lower part of
the chromosphere is influenced by Newton cooling. Since earlier works, like Spiegel
1957, have shown that fluctuations in the temperature field will be smoothed by
radiation, the time evolution of temperature perturbations can be described as:

oTy 1 To0pr _ _Tl

E—(V— )% 5 ST (2.50)

At constant pressure equation [2.50| simplifies to the Newton’s Law of Cooling.



3 The model

Our aim is to understand the dynamic processes in the upper atmosphere due to
Ohmic heating caused by braiding of magnetic fieldlines. Therefore our model needs
to include the solar atmosphere all the way from the photosphere (z = 0) to the corona
(z = 30Mm). The size of the box in comparison to the Sun is shown in figure 3.1 At
the bottom of the domain an observed magnetogram is used in the beginning which
will evolve with time due to the photospheric motions. The velocity distribution
is similar to the granular pattern of the Sun. These motions shuffle around the
foot points of the magnetic fieldlines which will result in a non-potential field in the
upper atmosphere. This non-potential field induces currents, that are dissipated in
the corona and that heat the latter. The sketch in figure[3.2]illustrates the energy flow
through the box. We inject energy by photospheric motions, magnetic fields interact
with the plasma and radiative loss removes energy from the system. When the losses
balance the energy input, or vice versa, the model is in a quasi-stationary state.
Meaning energy can still be recycled and redistributed by convection and advection
in a highly dynamic atmosphere. The goal is to reach that state to show that the

AR
¢« W N _i
d*q x."n‘.‘_

Figure 3.1: Size comparison between the Sun (R ~ 700 Mm) and the simulated domain 50 x 50 x

30 Mm? as seen at the solar limb (green square). In this picture, the Sun is observed
with ChroTel (Kentischer et al., [2008)) in the He 1083 nm emission line (Bethge C.,
talk at DPG spring meeting, Regensburg 2007).

25
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Figure 3.2: Sketch of the energy flow in the domain. The energy input is due to photospheric
motions and is balanced by radiative loss in a quasi-stationary state. The complex
processes of e.g. heat conduction or advection, are not mentioned, as they simply
result in a spatial redistribution of energy.

heating mechanism is able to sustain a corona with a temperature of a million degrees
Kelvin.

Since computing power is limited, we have to find a proper setup. Extensive tests
have shown that domain sizes of 1283 grid points can be realized using the computer
cluster at the Kiepenheuer Institute. Short time series of domains with a size of 2563
grid points are also possible. Since the simulation should have a resolution better
than the one achieved by observations, and since the resolution should be high enough
to resolve the very thin transition region, a box of the size of 50 x 50 x 30 Mm® was
chosen. This gives us a spatial resolution of dr ~ 390 km in the horizontal direction
and dz ~ 230 km in the vertical respectively.

This setup is therefore similar to the initial condition used by |Gudiksen and Nord-
lund| (2002)). A comparison to their results can then be used as a test for our code.
Our first simulations based on the same initial condition, but different numerical
schemes, showed a good agreement. The Active Region used at the bottom layer in
the model of (Gudiksen and Nordlund| (2005]) did not include chromospheric network
flux. This is a result of the scaling which leads to a loss of small structures. Obser-
vations however show a variety of connections between Active Regions and network
flux. Therefore, we added a quiet Sun magnetogram to the initial condition. No
spatial scaling is applied but the magnetic field strength is enhanced by factor of
two, in order to fit into the scaled Active Region. This gives the expectation of a
more complex atmosphere. The left hand side of figure 3.3 shows the compounded
image.

We tested the model with several different setups, varying resolution, resistivity n
and other physical parameters. In addition, simplified models which do not invoke
the energy equation are computed by J. Warnecke (Diploma thesis). These models
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help to understand the heating process of the corona and save computation time by
using the evolved magnetic field as initial condition in more complex simulations. A
detailed description of parameters used for the models is given in the appendix.

In order to compare our results to observations, the simulation has to include as
much physics as possible. Therefore, we solve the equation of mass and momentum
conservation, as well as the energy equation and the induction equation as mentioned
in chapter 2 The most important physics is included in the energy equation, in which
we account for the optical thin corona and introduce radiative loss. Furthermore, heat
conduction is dominated by the Spitzer heat conduction in both, simulation and on
the Sun. The strength of this kind of heat conduction defines the height of the tran-
sition region. Heat, carried by fast electrons, flows down to the photosphere where it
is radiated away in dense regions. An increase in heat flux results in higher densities
in the region where the equilibrium between radiation and heating is achieved. The
transition region, where the temperature is around log T'//[ K] = 5.0 is displaced to
lower heights and the chromosphere becomes thinner. Hence, the heat conduction
determines the density and pressure in the transition region and corona. In order to
compare the results with observations and to reproduce the real atmospheric strati-
fication it is crucial to implement the Spitzer heat conduction properly.

We include four different layer in our box. The lower most layer is the photosphere,
above it, followed by the chromosphere, is found the transition region and the corona
on top of it. Even though we are only interested in the heating mechanism in the
solar corona each layer plays an important role in this process. The photosphere
is the place where the foot points of the magnetic fieldlines are shuffled around.
Without these motions no braiding of magnetic fieldlines and thus no heating would
occur. In the chromosphere the physics is to complex to be treated properly in the
MHD assumption. In order to keep things simple, we treat this layer only as a
heat and momentum reservoir and exclude it in the spectral analysis. The height
of the third layer, the transition region, determines the pressure and density in the
corona. Even though this is a very thin layer, it is crucial, not only physically, but
also numerically as the gradient in temperature is very high and needs to be resolved
in the simulation to avoid numerical instabilities. The corona, which extends over
more than three quarters of the model domain, is the layer where the analysis should
be comparable to observations. The discussion in this work mainly reflects results
concerning the transition region and the corona.

3.1 Initial conditions

To save computational time we start with an existing temperature and density strat-
ification. It was taken from previous simulations (Gudiksen and Nordlund, |2005)
and is shown on the right hand side of figure [3.3] The chosen temperature profile
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Figure 3.3: Left: Initial magnetogram. Spatially scaled down Active Region with additional net-
work flux. Right: Initial temperature (solid line) and density stratification (dashed
line).

starts at the photosphere with 7" ~ 6000 K, includes the chromospheric minimum,
the transition region and reaches temperatures of 7' ~ 10°K in the corona. The
density drops from py = 3 - 10_4%, (cf. ), to ~ 10_12% in the corona.
This initial atmosphere is like the real corona not in hydrostatic equilibrium. In
the beginning of the simulation we provide a MDI-image (Michelson Doppler Imager
(Schou et al., [1994)) which will be used to create a potential field extrapolation to
fill the box with magnetic flux. The MDI image corresponds to the line of sight com-
ponent of the magnetic field vector B,(z,y,z = 0). Thus, the extrapolation returns
the full vector, of the vector potential, at each grid point in the domain. A short
derivation of the potential field extrapolation can be found in appendix and a
more detailed description of the concept in Bracewell (1965)). There is no need to
use more sophisticated extrapolations, e.g. a force free constant « field, since the
evolution of the model results in a non force free field anyway.

For our purposes we chose a scaled down Active Region (left-hand side of
constructed from a MDI image of quiet Sun. It comes from the model by
and Nordlund| (2002), after their initial start-up phase. Their initial condition is a
scaled down Active Region from August 2002 and had a original size of 225 x 225 Mm?.

First we reproduced their results using the same initial conditions but with different
numerical code. Then due to lack of small scale features in the magnetogram we
added chromospheric network flux from a second set of MDI observations.

3.2 Boundary conditions

One of the most important, and widely discussed aspects of numerical astrophysics
are the boundary conditions. Therefore, we describe all the boundary conditions used
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in great detail below. If we assume a periodic magnetogram at the lower boundary, we
can use periodic boundary conditions for all other physical values in the horizontal
direction. In the vertical direction we have to analyze which boundary condition
satisfies the real physical requirements. Hence, at first, we describe the physics
and then check how variables of the code depend on it. The numerical boundary
conditions are discussed in the appendix [A.1.2]

3.2.1 Photospheric boundary layer

We place the photosphere at the lower boundary of our simulation domain. An obvi-
ous property of the photosphere is the motion of the convection, visible as granules.
Since we do not include this convection itself in our simulation we have to provide a
velocity field matching the observations.

Photospheric driver

We use an application provided by |Gudiksen and Nordlund| (2005)) to calculate pho-
tospheric horizontal velocities with a power spectrum similar to observed velocity
spectra, cf. figure 3.4 Velocity maps deduced from observations are restricted in res-
olution. Not only the observing technique but also the data analyze (local correlation
tracking) limit the spatial scale to a few thousand kilometers. On the other hand,
numerical simulations of the solar convection reach much higher resolution. Thus for
scales below ~ 5 Mm the power spectrum matches simulations by Stein and Nord-
lund (1998)). The deviation from the k ~ 1 law implies less energy at small scales.
A three dimensional Fourier analysis (z — y — t) produces a so called k-w-diagram.
The procedure is explained in and should not be mistaken with the k-w-diagram
used in helioseismology.

On the left hand side of figure 3.5 the power distribution in the spatial and temporal
frequency domain is depicted. At small spatial frequencies two distinguished temporal
frequencies are visible. A cut along one spatial frequency, cf. right hand side of figure
[3.5] reveals a third temporal frequency. These can be assigned to the three layers
of granulation with lifetimes between 5min and 70min as described in detail in
Gudiksen and Nordlund| (2005).

Additionally, the motion of the foot points are damped anti proportional to the
magnetic field strength. Since it is observed (Berger et al., |1998) that velocities are
smaller in places of strong magnetic fields, we use a damping factor

I+ 241

= = 3.1
U1y 3 +3 8.1)
in which 3, known as plasma beta, is defined as
p
8= (3.2)

B? [ 2pg
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Figure 3.4: Left: Histogram of absolute horizontal velocities with t1,y,s ~ 3%“ and Umean = 2.61‘—;n
for given time. Right: Averaged power spectrum for the absolute horizontal velocities
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Figure 3.5: Left: k-w-diagram of the absolute horizontal velocity for a time period of 1h with

a cadence of 30s. Right: Cut through the k-w-diagram at k= O.Qﬁ‘ Vertical
lines (dotted lines) indicate the three different lifetimes of granules. The periods are
Ty ~ 5min, Ty ~ 8.3 min and T3 ~ 70 min.

This reduces the velocities by one third for strong magnetic fields. On the left hand
side of figure |3.4] the velocity distribution for a given point in time is illustrated. The
distribution has its maximum at approximately 2km/s and gives a mean value of
2.6km/s.

The vertical component of the velocity in the photosphere is zero, thus there is no
mass flux into the box. Any flux into the domain would require an assumption about
the mass and internal energy of the incoming plasma. The mass fraction needed to
feed the solar wind is negligible in comparison to the mass density at photospheric
level.
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Magnetic field

Since we use a potential field extrapolation at the beginning, the time evolution is
given by the induction equation 2.12] The velocities in equation [2.12] are derived
from the velocity field described above. Since the resistivity used in the domain
would reduce the total magnetic flux through the bottom layer, n is set to zero at
the bottom layer and the induction equation becomes

%—]?:Vx(uxB) (3.3)

For that equation the frozen-flux theorem of |Alfvén| (1943) applies:

In a perfectly conducting fluid ( Rm > oo,n =0 ), magnetic fieldlines
move with the fluid: the fieldlines are © frozen’ into the plasma.

This theorem states that plasma motions along the fieldlines do not change the field,
while motions transverse to the field carry the field with them. Alfvén showed in
his work that for the given assumption, the magnetic flux does not change in time
respecting any closed contour moving with the plasma.

Since the solar magnetic flux is based deep in the convection zone, which is not
included in our model, the almost random plasma velocities in the photosphere would
corrode the Active Region and spread the magnetic flux all over the photosphere. The
lifetime of the Active Region would be much shorter (less than an hour) than the
typical lifetimes on the Sun (up to several days). Therefore we need to stabilize the
Active Region, which is done by updating the vertical magnetic field by a fraction of
the original one. Thus the deviation from the initial magnetogram can be controlled in
a way that the simulated evolution looks like an observed evolution of a small Active
Region on the Sun. The Active region would look like the initial magnetogram after
a certain time when the convective motions stop.

3.2.2 Top layer

A mass flow through the top layer of the simulation domain is prohibited. As men-
tioned before this prevents wrong assumption on the incoming plasma. In order to
suppress a net mass flux in the horizontal direction and a global shear of the mag-
netic field, the horizontal motions in the top layer are forced to be zero. Density and
temperature may change at the top layer, but will be forced to have no gradient at
the boundary. Since the heat flux depends on the temperature gradient there is no
heat flux into the domain or out of the domain.

The magnetic field configuration at the top boundary is a major task which is not
entirely solved yet. Not only the numerical code used in this work struggles with it,
but also most of other codes encounter problems. In our code we have to extend the
field into three outer layers (grid points). Short below the top layer the magnetic
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field is in a non force free, dynamic and highly structured state. The extension on
top should fit not only the curvature of the magnetic field or the magnetic energy
density but also the current vector and its density. Since there is no solution yet,
a potential field extrapolation is used. This induces additional currents, which are
neglected during simulation, but as a result, the magnetic fieldlines may move freely
at the upper boundary.

3.3 Initial phase

Since we start with a plane parallel atmosphere it is necessary to go through a
start-up phase before analyzing the data. Starting with the initial and boundary
conditions as described above, the system evolves self-consistently for one hour solar
time. Only the boundary conditions influence the model during that time. After
this phase, assuming the initial condition has been forgotten, data is collected for
another time period of one hour. The length of the start-up phase is determined by
different deliberations. Obvious criteria are the net mass flux and the heating rate
in the domain. Both are illustrated in figure [3.6] It takes at least 30 minutes before
the mean heating rate, which is directly proportional to j2, reaches a value that is
not lowered during the rest of the simulation. It still alternates, as a result of the
dynamics in our model. Due to the initial stratification and the lag of heating during
the initial phase, the corona is unstable in the beginning. After about 40 minutes the
corona stops to sink down and during the rest of the time there is no mass loss of the
corona. Starting our analysis one hour after the initial condition allows the system
to find a quasi-stationary state, where dynamic processes are still observable. Not
all quantities, e.g. the root mean square value of the velocity, show this temporal
behavior. If not explicitly mentioned we refer to the begin of the second phase when
we speak about time zero.

3.4 Plasma parameters

In our numerical model we use the equations resulting from the magneto-hydrodynamic
approximations. We investigate in this section the assumption in detail. The dis-
cussed parameters are also auxiliary in the next chapters.

A plasma is mostly defined by three parameters. The Debye length Ap describes
the distance over which significant charge separation can occur, the plasma frequency
w, occurs when quasi-neutrality is disturbed and the mean free path A is the medium
length of a path covered by a particle between subsequent impacts.
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Figure 3.6: Left: Mean vertical mass flux in the corona versus time. The first hour reflects the

initial start up phase, the second hour is used for data production. Right: Average ;>
value of the domain depending on time. Numbers are given in internal units of the
code.

Debye length

For an ideal plasma the number of particles in a sphere with radius Ap has to be
large. In a such a Debye sphere the number is given by

4 €0\3/2 (kpT,)**
ND:”(?”D) =(3)

where T, is the electron temperature which can be approximated by the plasma
temperature. In our simulations we find values from log Np = 4 to log Np = 8 with
a mean value of log Np = 7.8 for the corona. This fulfills the criteria of large particle
numbers in a Debye sphere.

Plasma frequency
The plasma frequency has to be smaller than all other time scales of interest:

e2n,

We =
Mme€o

It is proportional to the square root of the electron number density and is in the order
of w, = 10° Hz in the corona and increases downwards to a maximum value of w, =
10'3Hz at the photosphere. In comparison to the time step of dt ~ 107°sto 1073,
which is the smallest timescale of the simulation by definition, the plasma frequency
is even faster by several orders of magnitude.
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Mean free path

The mean free path for an electron is defined as
)\e = UeTe; (34)

where u, is the electron velocity and 7.; the electron-ion collision time. Following
Boyd and Sanderson| (2003), the effective range of the electric fields increase to the
Debye length and therefore the electrons undergo more interactions. Thus the colli-
sion frequency is increased. For a electron with thermal speed Boyd and Sanderson
(2003)) gives as result:

_ 1017 (T/[eV])?
Ae = 1.44-10 oA n/[ni?)]
~ 1108 /KD
Ae = 1-10 n/[n&s]

The Coulomb logarithm In A is in the order of 10 and the density and the temper-
ature can directly be used from our data. Thus for our simulation the mean free
path reaches values up to 6 Mm, cf. figure 3.7, The numbers given are only for
electrons traveling along magnetic fieldlines. Motions perpendicular are forced into
gyrations around the fieldlines. The mean free path is then given by the Larmor ra-
dius which is in the order of centimeters in the corona and decreases rapidly towards
the photosphere (cf. right panel of figure .

The motions parallel to the magnetic fieldlines are resolved since the time step
scales mostly with the heat conduction term. Meaning the inverse time step is pro-
portional to the temperature to the power of g In this dependency the thermal
velocity (~ v/T) and the collision frequency (~ T?) are combined. Considering a
thermal electron with a speed of 80001‘—;n and a time step of 1 ms. The electron trav-
els a distance of 8 km which is well below the spatial resolution of the simulation.
The grid spacing of our model is in the order of hundreds of kilometers. We conclude
that the large mean free path along magnetic fieldlines is considered by the small
time step given by the Spitzer heat conduction. It is therefor crucial to implement
and use the proper description of the heat flux as given in Spitzer| (1962). In section
[6.3 we discuss the influence of non thermal electrons on the results of our numerical
experiment. Further discussion about the heat transport and the heating mechanism
are found in chapter [6]

Charge neutrality

We have to proof that charge neutrality is valid in our simulation domain. Therefore
we evaluate equation using the density and plasma velocities at each grid point.
The smallest dimension we resolve is the grid spacing dx, so we use this as typical
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Figure 3.7: Left: Electron mean free path, horizontal mean (solid line), one sigma deviation
(dashed lines) and the minimum grid spacing (dotted line). Right: Horizontally aver-
aged electron Larmor radius (solid line) and one sigma deviation (dashed lines).

length scale. Altogether we find that the fraction of right hand side to left hand side
of equation [2.7] is everywhere smaller than 107'°. This satisfies the assumption of
charge neutrality.






4 Numerical algorithm

To conduct our model we use the Pencil Code (Brandenburg and Dobler, 2002)
as numerical algorithm. It was started at the Turbulence Summer School of the
Helmholtz Institute in Potsdam (2001). Primarily developed by Axel Brandenburg
and Wolfgang Dobler the group of people improving the code is still growing. Even
if there are plenty of 3D-MHD codes with different purposes available we choose the
Pencil Code because of several good reasons.

The most important is, that the code is build for massively parallel computing on
simple Linux cluster which could be build of common desktop computers. Therefore,
an affordable computer cluster could be realized at the Kiepenheuer Institute. For
the parallelization by decomposing the domains, MPI (Message Passing Interface) is
used. Several free implementations for MPI are available today.

The code solves the partial differential equations for a resistive and compressible
plasma, e.g. induction equation and momentum equation, on a equidistant or non-
equidistant grid. The physics is distributed in different modules, so that applications
are manifold. The code was tested with up to 8000 CPU on bigger computer clusters
and shows a good scaling.

A more detailed description of the numerical method can be found either in the
manual of the code or in |Brandenburg (2003)). The most important numerical meth-
ods are discussed briefly in this chapter.

4.1 Spatial and temporal derivatives

To solve the partial differential equations (4.3)) the spatial derivatives on the right
hand side are calculated using a 6th order scheme and a Runge-Kutta third order
scheme describes the time evolution.

Spatial derivatives

The first and the second spatial derivatives can be expressed as

1 n/2

y(() = Epi—n/pryp ,
2 n/2 ~

3/8 = Zpi—n/pryp ;

where n = 2,4,6, ... is the order and p the position in respect to the point of inter-
est. The coefficients w, and w0, can be calculated from the requirement of an exact
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solution for the monomials y = 1, y = x,..., y = a™ at the position xy. For this
computation, equidistant grid points are required. In order to resolve the steep tem-
perature gradient in the transition region, we need a high spatial resolution. Not to
increase the number of grid points to much we added a non-equidistant grid descrip-
tion into the code. The grid z is therefore a function of space itself z = z((), where ¢
are equidistant grid points. The first and second derivatives can then be calculated
by ,
2
T IS0, H=Zrmo-Sro. (4.1
z d(dz dz z

z z

The first and second derivatives of z are known and the rest can be computed using
the standard scheme for the spatial derivatives. For z = ( the grid is not changed
and stays equidistant. Typically, we use z ~ sinh((), where the reflection point of
the hyperbolic sine function is set to the point where the highest resolution is needed.

Using a 6th order scheme is a compromise between accuracy and run time as well
as memory usage. Higher order schemes would increase the accuracy slightly, but the
computation time would increase quiet fast. Calculations concerning this problem
can be found in Brandenburg| (2003).

Time evolution

The partial time derivative describes the evolution of the system. Unlike the spatial
scheme it has to be asymmetric. There is no information about the past. So, a step
in time is divided into sub steps. Here we use a third order scheme meaning three
sub steps yield one time step. The scheme is written as a 2N scheme in which only
2 copies of all variables have to be kept in memory. This makes the code very cache
efficient.

The length of a time step is defined by the Courant criterion.

O mmin ozt 1 )

Cst Cst
) U ) ,S
Umax Dmax Hmax

ot = min (c(;t (4.2)

where 0z, is the minimum grid spacing, U,., the maximum velocity, D, the
maximum diffusivity and H represents the total right hand side of a partial differential
equation. The coefficients ¢ are in the order of unity but have an upper limit so that
the scheme is stable. It goes back to|Courant et al. (1928), who find a condition (CFL
condition) for convergence while solving partial differential equations numerically.
E.g. cs1» = 0.4 in the 6th order in space and 3rd order in time scheme used in this
work. The maximum velocity can either be the plasma velocity, the sound speed
or the Alfvén velocity. Also, the maximum diffusivity is either determined by the
magnetic or thermal diffusivity.
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4.2 The equations

This is a summery of the equations as they are used in the code. The detailed
description how they are derived can be found in chapter On the right hand
side are all spatial derivatives whereas the time derivatives, which are evolved by
the Runge-Kutta time stepping, are on the left hand side. In total it is a set of
eight equations, the momentum, mass and energy balance as well as the induction
equation.

0 1
G =~ (W VUt [=Vptjx b= pVe 4+ 27 o (pS)
01
aI;p =—V-u—(u-V)lnp+e¢, ((Vlnp)2+V21np)
OlnT 1 [Ty
By ——(u-V)lnT—(v—l)V-u—i—; (T_l)
+ npoj” + 2pvS®
R 2Q(T) V. (K T%(b-VT))
cppT myp ’
+V - (epxpVT) + V- (c|VT|VT)]
A
88_75 =u x (V x A) +nV?A (4.3)

The parameters used in the equations above are:

yo=3 ‘ adiabatic coefficient for ideal gas

m, = 1.67-1072"kg | proton mass

S %ﬁ ‘ heat capacity at constant pressure
voo=2- 1010%2 ‘ kinematic viscosity

n =10 ‘22 ‘ magnetic diffusivity

c, =10% “;2 ‘ mass diffusion

x =25-108 m? ‘ heat diffusion

Ky =2-107" = ‘ Spitzer heat conduction coefficient
c = 10_5K2—JSm ‘ isotropic heat conduction coefficient
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All values and parameters are unified in the code using conversion factors which are
based on three fundamental units and the assumption that ¢, = 1,7 = g and po =1
in the code.

4.3 Dimensionless parameters

Dimensionless parameters are useful to describe the proportionality in time or space
of different physical processes. But they are useful as well as criteria in numerical
simulations. If the parameter R compares two time scales, then the restriction given
by the number of grid points n, is

1

— <R<n,,

nﬂf
If the parameter R does not satisfy this equation one process is much less important
and thus can be neglected. The number R is not only a tool to analyze the data but
also helps to find the right parameters, for example the viscosity, for the simulation.

Reynolds number

The Reynolds number is defined as ratio of the inertial to the viscous force. Or it
can be interpreted as the comparison of the advective to the viscous time scale
wl
Re = —, (4.4)

1%

where [ is a typical length scale, u a typical velocity and v the kinematic viscosity. If
the value exceeds a problem depending value Re.;; the flow changes from a laminar
to a turbulent state. The Reynolds number can also be understood as the fraction of
momentum convection to momentum diffusion. For a stable simulation the numer-
ical Reynolds number should be in the order of unity and the typical length scale
corresponds to the grid spacing and the typical velocity is replaced by Wax.

Since we start with zero velocity we have to assume the evolution of the numerical
Reynolds number. Therefore we estimate a typical velocity during the simulation.
The coronal velocities can reach values up to 150km/s. So the viscosity can be
calculated trough

max5
Re = v le
v
1
v = umaxL:r_
_ 7502 L

s Ny,

2
— 5.86-10°0""
S
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where we used L, = n,dx and n, = 128 This first guess can be adjusted to increase
or decrease the resolution of plasma flows keeping in mind numerical stability. The
kinematic viscosity used in the code is comparable to values in the solar corona.

Magnetic Reynolds number

The magnetic Reynolds number is defined as the fraction of advection to diffusion of

magnetic fields
ul

where 7 is the magnetic diffusivity. As described above we can make a first guess
using the definition of the magnetic Reynolds number. The result is larger by several
orders of magnitude in comparison to solar values.

Mach number

The Mach number is defined as the fraction of the plasma velocity to the sound speed.

Ma = — (4.6)

CS
For Mach numbers greater than 0.3 one has to account for compressible effects of the
fluid. We find Mach numbers between 0.01 and 1 in our numerical model. Thus we
cannot assume V - u = 0 what describes an incompressible fluid.
Lundquist number

The Lundquist number is defined as

U_Al _ ?}A/l _ tdiff
n Tl/l2 Ladv

Lu = (4.7)

where vy = \/% is the Alfvén speed. Although this dimensionless constant has
the appearance of a Reynolds number, either hydrodynamic or hydro magnetic, it
is neither. Physically, the Lundquist number is a measure of the effective Lorentz
force relative to the resistive force due to magnetic diffusion. When magnetic fields
dominate; i.e. the magnetic energy has been inserted over a distance L that is much
smaller than the natural distance for the system, then the Lundquist number will be
large. As the magnetic field eventually diffuses over a much larger distance scale, the
Lundquist number will become very small and a conventional hydrodynamic shock
may emerge. The Lundquist number in the model corona is in the order of 103.
Below the transition region it decreases rapidly below unity. The Lundquist numbers
found on the Sun are larger by several orders of magnitude. It demonstrates the fact
that the magnetic field dominates the dynamics and the structures of the corona in
our model and on the Sun.






5 The solar atmosphere in our model

In this chapter we present global and general results of our numerical simulations.
We have the complete set of physical parameters that describe a hydrodynamic fluid
with a magnetic field. There are therefore many possible investigations. We focus
on the temperature and density stratification and discus the physics appearing in
the partial differential equations. Additionally, we continue in the forward model
approach and present results of the line emission synthesis. The heating mechanism
and the influence of the magnetic field will be discussed in detail in chapter [6] and
chapter [7]

In order to reach a quasi-stationary state we let the model relax for one solar hour
after initialization (cf. section . For a subsequent analysis we let the system
evolve for another solar hour and then take snapshots of all physical parameters with
a cadence of 30 seconds. This way we obtained 120 snapshots which are used to
derive the results presented in this thesis.

Since the Active Region at the lower boundary of the simulation domain has an
infinite lifetime, the model is able to reach a quasi-stationary state. The total energy,
the sum of kinetic, thermal and electromagnetic energy, is constant on average inside
the box. The energy is injected by photospheric motions and will be extracted by
radiative losses. Even though an averaged coronal parameter varies slightly with time,
the corona is highly dynamic on small scales. Thus averaged quantities, for example
temperatures and densities, show only a small dependence on time, cf. figure |5.1}
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Figure 5.1: Left: Horizontally averaged temperature profile (solid line) and minimum and maxi-
mum values (dashed lines) at each height. Right: Horizontally averaged density profile
(solid line) and minimum and maximum values (dashed lines) at each height.
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Figure 5.2: Visible impression of the transition region height (using the tool VAPOR 1
2005))). Isosurface of temperature at logT/[K] = 5.0 and a cut trough the box
showing the density above the main magnetic polarities (greyscale bottom picture).
Color code of the isosurface and the plane indicates logarithmic densities. The box
size is 50 x 50 x 30 Mm®.

Our model corona has a typical temperature of one million Kelvin and an average
density of 107" kg/ m?. This density is found at the lower end of the corona above
an Active Region or at the higher end of the corona above the quiet Sun. Since the
underlying magnetogram is scaled down, and thus represents a magnetic field with
less influence on the corona, its density is smaller than inferred from observational
results. The base of our corona and the height of the strong corrugated transition
region is located at zy ~ 16 Mm above the photosphere. Figure illustrates an
isosurface at log T'/[ K] = 5.0 together with the underlying magnetogram and a cut
through the box. The color code shows the density variation. In the vertical cut
one can see dense loops connecting the main polarities and small fluctuations of
density along the temperature isosurface. The temperature profile, in the left panel
of figure also demonstrates the temperature minimum (z = 0.5Mm), and the
chromosphere. As a result of the Newton cooling term, no deviation from the mean
temperature exists at the lower boundary. This extra term in the energy equations
adjust the temperature to a given atmospheric model, resulting in a chromosphere,
that works as a heat and momentum reservoir, matching solar observations.

The velocities in the corona reach values up to 100 km/s. These are mean values,
representing a volume of dz x dy x dz = 400 x 400 x 240 km?®. Therefore, very high
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velocities, which are observed on the Sun, are not resolved in our model. The average
absolute velocity is in the order of 10km/s at all heights.

In order to demonstrate the plasma flow, test particles were traced for a period
of one solar hour. Initially, 64% particles were distributed uniformly among the grid
points at the time t=0s. The positions at the next time step were computed using
the plasma velocities. Thereby we assumed that the flow is steady in between the
snapshots and we neglected viscous effects. This procedure is repeated for the 120
time steps. After one solar hour the test particles are clustered in loops or in a
granulation pattern, as shown in figure Each dot represents a test particle, while
the color represents its actual vertical velocity. Red dots move downwards and blue
dots upwards. Above 5 Mm coronal loops are visible. Below that height convection
circulates the plasma. The convection is a result of the small heat conduction coeffi-
cient. The focus of this work was to investigate the coronal heating mechanism, for
what reason a proper description of coronal physics is necessary. Therefore, we use
the Spitzer heat conduction. Due its strong temperature dependency (7°/2) it has no
effect to chromospheric temperatures. It is not only smaller by factor 100 as in the
corona but also anisotropic. The additional isotropic heat conduction, used to stabi-
lize the code, is also to small. Fluctuations in the heat distribution can therefore only
be convected away. The dominant red color in the chromosphere indicates a strong
down flow of matter. This can also be seen when looking at the net mass flux. The
model chromosphere works as a mass reservoir and is therefore not included in the
line emission synthesis. The granular pattern in the lower chromosphere is therefore
a superposition of the convective motion and a down flow along magnetic fieldlines.

In the top left panel of figure the main polarities of the magnetogram (cf.
figure are visible. Also loops with foot points at the main polarities are outlined.
Around the position x = 40Mm and y = 10 Mm, next to the positive polarity,
particles seem to cluster at the outer shell of a flux tube. The two panels in the
bottom row of figure depict large loops structures. Loop halves seem to contain
either down or up flow, but none of them dominates in the coronal part. This result
of the quasi-stationary state, in which the corona has no net mass flux in the vertical
direction. However, for a detailed and quantitative analysis one needs to synthesize
line emissions and Doppler shifts. This will be discussed later in this chapter.

5.1 Momentum balance

The change of the plasma momentum is described by the forces per unit volume on
the right hand side of:

pﬁl;:—Vp—ijb—pV(b—FQVVo(pﬁ)
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Figure 5.3: Tracer particle positions (dots) after one solar hour. Initially, particles where dis-
tributed homogeneously among the grid points and then traced using the plasma
velocity. Each panel shows a ”line of sight integration”. That is, all particles are pro-
jected to the image plane. No viscous effects were considered in the tracing routine.
From top left to bottom right: Views along the z-direction, a tilted cube, y-direction,

z-direction. Blue color indicates particles with upwards velocity and red color those
with downward velocities.
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Figure 5.4: Horizontal average of the net acceleration: Lorentz force (triple dotted line), viscous
force (dotted line), gravity (dash-dotted line), pressure (dashed line) and advection
term (solid line), cf. equation [2.27]

The strength of the forces and therefore their importance for the coronal dynamics is
illustrated in figure 5.4} The forces are first divided by the density and then averaged
horizontally. Thus, shown are the forces per unit mass or simply the acceleration.

The Coriolis force and the centrifugal force are neglected in our model. We can
estimate the order of the centrifugal force using the rotation period of the Sun of
approximately 25 days and the solar radius R = 700 Mm. Our numerical box is
located at the disk center. Therefore the centrifugal force reads:

4 _am
[mpzR=p59-10 33_2 (5.1)

Thus, in comparison to the net accelerations in figure the centrifugal force is
neglectable. We can make the same estimations for the Coriolis force and use a
typical velocity of 100km/ s:

dm m
f=~ ppu= p0.87? (5.2)

As well as the centrifugal force the Coriolis force is smaller than the forces in figure
by several orders of magnitude.

In our model gravity is constant with height. This assumption is reasonable, since
the height of the simulation domain is small when compared to the solar radius.
The dominating forces in the corona are the Lorentz force and the pressure gradient.
The average Lorentz force is dominant except in the photosphere and the lower
chromosphere. In the transition region, high velocities are present. Thus, in this
regime, the viscous force and the advection increases to a tenth of the Lorentz force
but are much smaller elsewhere. This is illustrated in figure [5.5) which shows that
the plasma is dominated by the magnetic field and the gas pressure. Plasma beta
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Figure 5.5: Left: Plasma beta represents the ratio of gas pressure to magnetic pressure. Right:
Kinetic plasma beta, which is a measure of the fraction of kinetic energy to magnetic
energy. Both panels show a two dimensional histogram in greyscale. Over plotted by
the mean value of kinetic plasma beta and plasma beta (solid line).

(left panel) shows a behavior comparable to observations (cf. (2001))). In the
photosphere the plasma density is high and therefore the gas pressure is dominant.
With height the density drops by several orders of magnitude, and thus decreases
faster than the magnetic energy density. Therefore, the plasma beta is small in the
transition region and lower corona. Higher up in the corona, the density stays almost
constant and the magnetic energy density decreases further. As a result plasma beta
increases again. reports a plasma beta equal to unity at a height of
~ 100 Mm. This is far outside of our domain but simple linear extrapolation would
lead to a height of ~ 40 Mm in our model. This may be an artifact of the upper
boundary condition and needs to be investigated in future simulations.

The kinetic plasma beta is the ratio of kinetic energy to magnetic energy and is
illustrated in the right panel of figure It is smaller than the plasma beta when
comparing the horizontally averaged values (solid line). Due to the large variation
of both quantities, an overlap exists, and therefore the kinetic plasma beta may be
bigger than plasma beta at a minority of grid points.
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5.2 Energy balance

To understand the reason for the coronal temperature we investigate the term on the
right hand side of the energy equation:

DInT
Dt

1

T

0.8p

mp

cypT ) QU+ - (To—-T)

+ V- (KOT%b(b - VT)) + V- (eyxpVT) + V - (c|VT|VT)
+ npoi® +20v8% + (p (V- 1)

= - CVpT(v—l)V-u—(

Again we divide by the density and compute the horizontal averages. The temper-
ature change per unit time, which is proportional to the heat change per unit time
per unit mass, is shown in figure [5.6f Depicted are the heat conduction terms on
the left hand side and the energy losses and gains on the right hand side. The most
important process in the corona is the Spitzer heat conduction. Due to its strong
temperature dependence it is highly inefficient in the chromosphere. Therefore we
included isotropic heat conduction (dotted line), which does neither depend on tem-
perature nor density but only on their gradients. This isotropic heat conduction
dominates in the chromosphere but is small when compared to the other heat con-
duction processes outside the chromosphere. The third heat conduction term, in
which the heat flux vector is proportional to the temperature gradient, works only
in the transition region. Its purpose is to stabilize the simulation by reducing strong
temperature gradients.

The right panel of figure illustrates the volumetric heating and cooling func-
tions. In the corona, the Ohmic heating rate is larger than the rate of radiative loss.
This implies that, in order to keep the coronal temperature constant, the remain-
ing energy has to be conducted away. Viscous heating is a major contribution and
even exceeds the radiative loss at heights above z ~ 20 Mm. |Spitzer| (1962) gives a
kinematic viscosity for a fully ionized gas

VA2 10*17w32. (5.3)
p/luE] s

The derivation of the viscosity assumes also small temperature gradients and average
coronal density. Under these assumptions, we can compute a kinematic viscosity
in the solar corona to v ~ 1011%2. The kinematic viscosity used in the numerical
simulation is in the same order as the value derived by |Spitzer| (1962). Thus, the
viscous heating is not overestimated in the numerical model. The Newton cooling
term has only influences on the photosphere, as it decreases rapidly towards the
chromosphere. In our model it has no effect above z = 3 Mm.

The average coronal temperature profile is a result of the Ohmic heating and cooling
by Spitzer heat conduction. The temperature gradient in the transition region is
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Figure 5.6: Horizontally averaged absolute temperature change per second. Left: Spitzer heat flux
(solid line), isotropic K ~ VT (dashed line) and isotropic constant x (dotted line).
Right: Radiative loss (solid line), Newton cooling (dotted line), viscous heat (dashed
line) and Ohmic heat (dash-dotted line).

determined by the Spitzer heat conduction, the additional isotropic heat conduction
and the radiative losses. Finally, the Newton cooling defines and only affects the
lower chromosphere and the photosphere.

5.3 Spectral synthesis and differential emission
measure

To proceed with the forward model approach, we have to calculate the emissivity at
each grid point in order to compute the emission line profiles along a line of sight.
These profiles can be directly compared to observed spectra. Additionally, they may
be analyzed using the conventional techniques like Differential Emission Measure
(DEM) or Doppler shift analysis. The results, which are presented in this section,
show that our model yields comparable observable quantities as observations.

The line emissivities at each grid point are calculated under the assumption of
ionization equilibrium. The lines are dominantly excited by electron collision and
de-excited by spontaneous emission. The emissivity is therefore given by:

€ = hunyAgy := G(T, n,)n? (5.4)

with the electron density n. and a function G(T,n,.) defined as

Ny Mion Mel N
G(T,n.) = hvAy - ——. o 4.1 (5.5)

NeNion Mel MH N
The terms on the right hand side of equation (5.5) describe the excitation of the
atom, the ionization of the respective ion, the elemental abundances and the degree
of ionization of the plasma. The first term is a constant given by atomic physics. The
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population of the upper level ny is proportional to the density because we assume
excitation by electron collision. For the element abundances we use constant values
throughout the box according to photospheric values tabulated in CHIANTTI (Landi
et al., [2006). Also the ionization degree ”“’1“ and depending thereof the value for 7*
are determlned using CHIANTI. From this discussion we see that the contribution
function G(T', n.) as defined in equation [5.4] depends only weakly on density when se-
lecting an appropriate line. Mainly because of the ionization equilibrium the function
G(T,n.) strongly peaks in temperature. For density insensitive lines, i.e. G=G(T),
the emissivity reflects that the optically thin radiative losses are proportional to the
density squared. To evaluate the emissivity at each grid point of the MHD calcula-
tion we finally compute the electron density n. from the mass density p of the MHD
calculation using the degree of ionization, again as obtained from CHIANTI. If we
use an integration along the line of sight we are able to calculate the energy flux
density out of our computational box, e.g. in units of W/m? for a given line. These
quantities can be converted easily into line irradiances as they would be observed e.g.
at a certain distance from the Sun.
The intensity at a distance d from the emitting volume V' is

1
I = — T)n?
— VG( ynzdV
1 ,dV
= — TYn?—dT
7Td2 TG< ) edT

A o dh
= — [ G(T)n*>—dT
d? /T (T)m eqr
A
= — | G(T)DEM(T)dT
wd? Jp
where DEM is the differential emission measure and A is the observed area. The
differential emission measure
dh
DEM (T) = n2—
(T) = ne7m
characterizes the amount of matter in a certain temperature interval d7'. It is a
inverse problem and can be solved with a variety of methods. The diagnostics are
already in use for several years. The spectral analysis, shown in this section, mean-
ing the emission measures, Doppler shifts and emissivities, is done by Zacharias
(PhD thesis, to be finished December 2009). In figure we compare the results
from our model to the model of Gudiksen and Nordlund (2005) and additionally
to observations. The left panel depicts the direct computation of the differential
emission measure using n; (‘31"5) This profile shows the same behavior as the ob-
served profiles. It contains a mlnimum around log(7/[K]) = 5.4, and a maximum at
log(T/[K]) = 6.0. Furthermore, Zacharias investigates the DEM based on the line
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Figure 5.7: Left: Differential emission measure (DEM) vs. temperature as computed from sim-
ulation data (Zacharias, PhD thesis). The horizontal average is marked by the stars
and the dotted lines show the one sigma deviation. Right: Observed quiet Sun DEM
(dashed line) and synthetic spectra derived from model by |Gudiksen and Nordlund
(2002) (panel taken from [Peter et al. (2004)).

emissivities and the inversion of the problem. Additionally, she computed the emis-
sivities at all grid points for a set of emission lines. We can now observe our model
from all sides by integrating the emission along a line of sight. Since the plasma is
optically thin, the integration can be replaced by the sum over the grid points along
the path. Figure 5.8 and show two examples of the synthesized line emissions,
where we look from three sides towards the model. The first panels show the view
along the y-direction, the middle panel along the x-direction and the last panel shows
the domain as seen from above. The first two panels correspond to observations at
the solar limb, whereas the right panel corresponds to disk center. The emission
of O v originates (cf. figure (630 nm) mainly from the transition region, where
the line formation temperature of Ov (T =~ 240000K) is reached. The left and
the middle panel show loop like structures of different lengths. In the right panel,
the main polarities of the underlying magnetogram are recognizable. Additionally,
a Moiré effect interferes with the emission structure. This effects occurs as a result
of the barely resolved temperature range in the line formation region. The tempera-
tures in the model rises within a few grid points from some thousand to one million
degrees Kelvin. The figure [5.10| shows the emission of Ne viil, which forms in the
lower corona. Besides the loop structures in the left and middle panel, a more diffuse
corona stretches towards the upper boundary. Diffuse coronae are observed during
the solar minimum and are therefore an indication for a lower magnetic activity. The
corona in our model is a result of a scaled down Active Region. Hence, the magnetic
structures do not dominate the upper corona and the emission is more diffuse. In
the right panel, the main magnetic polarities are distinguishable. Here the Moiré
effect is not present, as the temperature stratification of line formation temperature
of NeVIII is better resolved.
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Figure 5.8: Integrated emission of OV (630 nm) along line of sight (Zacharias, PhD thesis). The
line formation temperature is log(T/[K]) = 5.38. Left: Side view from y-direction.
Middle: Side view from x-direction. Right: The model as seen from above (z-
direction).
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Figure 5.9: Integrated emission of O vi (1032 nm) along line of sight (Zacharias, PhD thesis). The
line formation temperature is log(T/[K]) = 5.45. Left: Side view from y-direction.
Middle: Side view from x-direction. Right: The model as seen from above (z
direction).
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Figure 5.10: Integrated emission of Ne vIil along line of sight (Zacharias, PhD thesis). The line
formation temperature is log(7/[K]) = 5.8. Left: Side view from y-direction. Middle:
Side view from x-direction. Right: The model as seen from above (z-direction).






6 Heating of the corona

The heating mechanism of the solar corona is still under debate. Although there
are different scenarios suggested, we focus in this model on the heating by Joule
dissipation. The heating rate is given by nuej?, in which the resistivity 7 is constant
in time and space. Under this assumption, the plasma is heated where the currents
occur. In the following we discuss the efficiency and occurrence of Ohmic heating
and discuss possible consequences of the MHD approximation.

6.1 Heating in the numerical model

The horizontally averaged heating shows an exponential decay with height in the
coronal part of our model and increases strongly towards the photosphere, cf. figure
[6.1] This mean profile varies in time only by a few percent. Likewise, the time
dependence of the minimum and maximum values at each height (dashed lines) do
not vary significantly with time. The temporal evolution will be discussed in detail
later. Then we will also investigate the change of the heat input at a fixed point in
space.

To find the scale height of the heating function, a linear function is fitted to the
logarithmic horizontally averaged heating function for all 120 time steps covering
one solar hour. During that time, the scale height changes smoothly between h,;, =
7.4Mm and hy.e = 10.3 Mm, but does not show a particular pattern. Only the range
from z; = 4.7Mm to 2, = 28.3Mm is used. We get h = (8.73 £ 0.85) Mm as the
temporal mean scale height for our model. The errors are the standard deviations.
This result corresponds nicely to the scale height of 5 Mm found in the simulation
of |Gudiksen and Nordlund| (2005). It is also comparable to the scale heights used
for models of 1D-loops including radiative transfer or other simulations which do not
solve the complete set of equations and thus have to assume properties of the heating
process. For example, Miiller et al.| (2004) examined in his thesis the behavior of 1D
loops when they are heated with different processes and strengths. He found that
loops are stable when the heating scale height is higher than 6 Mm. In this sense the
loops in our model are stable.

In the right panel of figure [6.1] an energy flux is derived from the heat input.
Starting at the photosphere and going upwards, the flux at a given height is equal
to the total energy input in the volume above divided by the horizontal plane. It is

95
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Figure 6.1: Left: Horizontally averaged heat input at each height (solid line). Minimum and
maximum heat input at each height (dashed line). Right: Heat flux (solid line) to
sustain average heat input and horizontally averaged vertical Poynting flux (dashed
line).

the same as to integrate the average heating rate h(z). The conservation law in one
dimension is

dh(z)  dfs
=0 (6.1)

where f, is the heat flux in the vertical direction. We can compute the heat flux at
a coordinate zo by integrating the equation [6.1}

> dh
/ d—dz + (fa(o0) = fu(20)) =0 (6.2)
5 A

We now assume that the heat flux vanishes towards infinity. Then the flux at a height
zp is given by

fu(z0) = /OO %dz (6.3)

0

This can be evaluated by numerical integration. The error we make by integrating
only up to the upper boundary is small because the heating rate decreases expo-
nentially with height. Tests with extrapolated heating rates show no significant
difference.

The energy flux at the base of the corona (z ~ 5Mm) is in the order of 100 W/ m?.
This is sufficient to maintain a one million degrees hot corona. Observations and
theory arrogate a heat flux in this dimension, otherwise the energy loss by radiation
and conduction could not be balanced. The required heat flux changes slightly for
Active Regions, the quiet Sun or Sun spots. Additionally, the energy amount to

sustain chromospheric temperatures also matches the theoretical requirements
of ~ 10 W/ m?.
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Figure 6.2: Horizontally averaged heating per unit mass (solid line), minimum and maximum
values (dashed line) at each height.

The dashed line in the right panel of figure [6.1] shows the absolute vertical Poynting
flux. As expected, it is in the same order. It illustrates the flow of energy in a quasi-
stationary state corona as shown in figure |3.2]

It is useful to calculate the heat input per unit mass, to see where the heating of the
atmosphere is enhanced. It is directly proportional to the temperature increase per
unit time. The strongest heating occurs at z = 6 Mm, cf. figure[6.2] In the corona,
the heating rate per unit volume has a scale height of 8.73 Mm and the density is
almost constant. Therefore the scale height for the heating rate per unit mass is
h ~ 6.5Mm. In the chromosphere, the heating is less effective due to the strong
increase in density towards the photosphere, therefore the curve decreases towards
lower heights.

Poynting flux

Due to the highly structured magnetic field and the fact that the velocities change
directions frequently, the averaged Poynting flux is also highly structured. Hence, for
a single timestep, the Poynting flux is not directed upwards everywhere. Left panel
in figure [6.3] illustrates the horizontally and temporally averaged composition of the
Poynting flux (cf. equation in the vertical direction. The first term j x B is
on average positive up to z = 11 Mm and negative above. The term B x (u x B)
is only positive up to z = 4 Mm and downwards directed above. Since plasma beta
increases towards the upper boundary, the plasma drives the magnetic field and thus
injects electromagnetic energy. This energy is transported downwards to the place
where the magnetic field dominates. Additionally, the Poynting flux channels energy
in the direction of the velocity and perpendicular to the magnetic fieldlines. Since
the magnetic fieldlines close in the upper domain, the direction of "open field” in
which the energy flows is downwards.

However, the energy input is proportional to the divergence of the Poynting vector.
The right panel in figure depicts the horizontally averaged energy input for one
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Figure 6.3: Left: Composition of the vertical Poynting flux. Upwards (solid line) and downwards
(dotted line) directed flux due to j x B term. Upwards (dashed line) and downwards
(dashed-dotted line) directed flux due to u x B x B term. Profiles are averaged over
1h time. Right: Divergence of the Poynting flux horizontally averaged (solid line) and
the minimum and maximum values at each height (dashed lines).

snapshot. Also shown are the horizontal minimum and maximum values. The energy
input derived from the divergence of the Poynting flux matches the Ohmic heating
in figure [6.1] This illustrates that on average the magnetic energy change per unit
time is approximately zero: Oe.,,/0t = 0. It shows also that the model is in a
quasi-stationary state.

6.1.1 Resistivity and Reynolds number

The Ohmic heating is, besides the heat conduction, the major process in the solar
corona. As the heating depends on the magnetic diffusivity, cf. equation ([2.37]),
it needs to be discussed in more detail. (Galsgaard and Nordlund| (1996) investigate
the magnetic energy dissipation for different numerical resolutions in a simplified 3D
MHD model. The energy dissipation in their model scales with the Poynting flux
for different numerical resolutions. Higher numerical resolutions also implies smaller
length scales. So the amount of dissipated energy does not depend on the spatial
resolution.

Assuming the Poynting flux at lower boundary is constant with time, the dissi-
pated magnetic energy in the box should not depend on the magnetic diffusivity
(resistivity), as long as the dissipative time scale is shorter than the time scale of the
dynamical driver. The time scale of the foot point motions is in the order of minutes.
As shown later in this section, the diffusive time scale is in the order of seconds.

Another effect is the size of current sheets. For smaller n the current sheets become
thinner. But current sheets below the spatial resolution of the numerical model are
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not resolved. Thus it is only meaningful to increase the resistivity up to a certain
threshold.

We can compare 1 with solar values: [Spitzer (1962)) derives the magnetic diffusivity
for a fully ionized gas as

3
2

n=a5-10°(T/[K])~ (6.4)

Together with a typical velocity of u = 100km/s and a typical length scale of [ =
100 km, the corona exhibits a magnetic Reynolds number of Rm = 10'°. This number
can also be read as a timescale comparison.

T .
Rm = ~%/1

Tadvec

For large Reynolds numbers the advective time scale is much shorter than the dif-
fusive time scale. This implies that the magnetic field is forced to move with the
plasma. With the same numbers as used for the Reynolds number we can compute
the timescale to
_ L 1 6.5

Tadvec*ufs ()
The diffusive timescale then is 74,5 = 10'%s or several thousand years. But we know
from observations that processes related to the magnetic field have shorter periods.
For example, a typical Active Regions decays within a day. And if Ohmic dissipation
heats the corona, it has to be at least as fast as the radiative loss timescale. The idea
is that the typical length scale decreases when magnetic fieldlines are braided. The
decline stops when the magnetic Reynolds number is in the order of unity. In this
case diffusion inhibits a further twist of fieldlines.

Galsgaard and Nordlund| (1996) already showed that the length scales of the mag-
netic field decrease when plasma motions shears the field. The length scales in their
model show strong spatial variation and the Poynting flux into the domain is also
proportional to the energy loss.

If we would apply such a high solar magnetic Reynolds number in our model, there
would be no dissipation of magnetic energy at all. The length scale in our simulation,
that enters the magnetic Reynolds number, is limited to the spatial resolution. The
grid spacing is the smallest length scale per definition. Therefore, the magnetic
diffusivity has to be increased to reach a magnetic Reynolds number in the order of
unity.

We set the resistivity 1 to be constant in time and space for numerical purposes.
Hence, additional derivatives are avoided which may lead to instability. In future
works we will investigate the influence of a temperature dependent magnetic diffu-
sivity.
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Figure 6.4: Temporal evolution of Ohmic heating at two specific grid points. Left panel at z ~
1.6 Mm and right panel z &~ 20.5 Mm. Crosses mark the time steps. Several heating
events with different amplitudes and durations can be seen. The numbers (1)-(4)
indicates events that are discussed in the text.

6.2 Nanoflare heating

Even if the average heat profile is nearly constant in time, the evolution of the heating
at a fixed point in space is highly dynamic. Two examples out of 128% are shown
in figure 6.4, We selected one coordinate in the chromosphere and the other one in
the upper corona. The order of magnitude differs by a factor of 10* but both profiles
show sequences of events. Each individual event is resolved in time, but they differ
in duration and amplitude. The cadence shown in the figure is much longer than
the typical time step of 1073, i.e. the heating events are even better resolved in the
simulation run. We can compute the released energy during an event and categorize
the events into flares or nanoflares. For the events we assume a size of one up to a
few grid points. Before we compute single events in the next section, average and
statistical information is derived first.

The temporal progress in figure suggests a periodicity in the event statistics.
Therefore, we compute the power spectrum for each grid point to find distinguished
frequencies. For each spectrum 120 time steps with a cadence of 30 seconds are used.
In the left panel of figure the power spectrum for an arbitrary grid point is shown.
No dominant frequency is visible but an increase in power towards small frequencies.
To reduce the noise we averaged all 1283 power spectra. To account for the different
amplitudes, the profiles are normalized before averaging. The result is shown in the
right panel of figure The average power spectrum is fitted with a fl—2 function.
Figure illustrates that the heating events are randomly distributed. It is called
red noise because the power increases for low frequencies.
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Figure 6.5: Left: Power spectrum for the same grid point as in the right panel of ﬁgure Right:
Power spectrum (solid line) averaged over all grid points and fitted with a 7z function
(dashed line).

6.2.1 Individual events and storms

Warren et al. (2003) reproduced the light curve of a loop, observed with TRACE,
with a numerical loop model. Instead of one single flare event, different threads of
the loop are heated sequentially, in this work. That means that the heat input is
spread spatially and temporally. Klimchuk (talk at Hinode2 Meeting) called that
scenario nanoflare storms, where the periods and the intensities of such storms may
vary. Nanoflare storms are difficult to observe since single events in a storm have
overlapping light curves. Therefore the scenario of Nanoflares is postulated to re-
produce light curves which looks like a flare event. Thus, no observational evidence
for Nanoflare storms exists yet. While we investigated averaged profiles in the first
part of this chapter, single events are examined in the following. We use the events
in figure [6.4] labeled (1) to (4) and listed in table[6.1] A typical observed Nanoflare
on the Sun has an energy of 101" J — 10 J, cf. |Aschwanden| (2006). Hence, event
(1) and (2) can be categorized as Nanoflares. Event (3) is very small in duration
and amplitude and is not observable. The combination of events however, the storm
(4), has an energy which is more than ten times higher. In comparison to the events
(1) and (2) the storm occurs higher in the atmosphere. Hence, less plasma has to
be heated. Additionally, the storm in figure (r = 41 — 46 Mm, t = 20 — 40min)
spans over a bigger area than assumed in the calculations. If the spatial extent of the
Storm (4) is in the same size as the storm in[6.7, the total energy of such a Nanoflare
storm would be 10'7 J, equal to the amount of one regular Nanoflare. Thus, we group
events with small energies to build a Nanoflare. This is the first time that those
Nanoflare storms are found in a self consistent numerical simulation. The events are
properties of the numerical model.
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N° duration energy

(1) 300s 7.5-10'8]
(2) 540 3.8-10'8]
(3) 180s 5.4-1018]
(4) 1749s  8.7-10"]

Table 6.1: Properties of heating events shown in figure For each event a volume of 3x3x3 grid
points &~ 1 Mm? is used.

The magnetic configuration in our model is not meant for producing a flare. It rep-
resents a stable Active Region shuffled around by the photospheric motions. There-
fore, we are not able to find a storm of large events. But showing the existence
of small Nanoflare storms suggests, that models with higher magnetic activity, for
example using an unscaled magnetogram, may find stronger Nanoflare storms.

6.2.2 Distribution of events

Parker| (1988) already proposed that the heating mechanism of the corona is an
effect of many small flares. These small flares have energies much less than a typical
solar flare with 10?*J. Hence these events have to occur quiet frequently to produce
enough energy to heat the corona. Energy is produced by Nanoflares and lost through
radiation and conduction. Assuming an equilibrium one can estimate the total energy
needed to heat the corona with this mechanism. The total energy is then equal to
the integral over the nanoflare frequency distribution N(E). As a start, the shape of
this distribution is unrestricted.

Observations yield two dimensional maps with the locations and energies of flare
events for different times. These maps can be used to derive a frequency distribution
of events per unit area (1/Jm?s). On the Sun, small events are more frequent than
large events. Thus, the frequency distribution is similar to the one of figure [6.6] The
integral over this distribution determines if there is enough energy produced to heat
the corona. The distribution decreases exponentially. Therefore a linear fit at the
logarithmic values can be performed.

Observations yield values for the slope of a = 1.54 4+ 0.03 for the quiet Sun and
a = 1.55 + 0.05 for Active Regions. Not only the slope, but rather the covered
energy range is of importance for the total energy production. For the observations
the energy range is limited, so up to now it remains unclear if the energy produced
by flares is enough.

Theoretical models can also be used to define a required slope. Using the RTV
model (Rosner et al. 1978), where the heating is assumed to be uniform, the fre-
quency distribution has a slope of @ = 1.21 4+ 0.08 (Aschwanden, 2006)).
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Figure 6.6: Flare frequency for one solar hour and 50 x 50 Mm? area. Each event has a duration

of 5min. Left: 8 grid points (= 0.28 Mm?®) are combined and a linear fit is performed
with N(E) = (—1.27 +£0.003)E + (9.52 +0.07). Right: 64 grid points (= 2.3 Mm?®) are
combined. Fit gives N(E) = (—1.30 £ 0.006)E 4 (9.6 £ 0.12).

Up to date analysis of observations do not fulfill the requirements and give either
too little energy per event or the events are to little frequent. Since we are able
to directly compute the energy instead of inverting observations, a flare frequency
distribution can be derived directly from our model. Computations of the frequency
distribution of the heating events are shown in figure . We use the 50 x 50 Mm?
area of our simulation domain as seen from above. All events are used, even those
that are not yet observable. The typical flare duration is assumed to be 5min for
the analysis. A Fourier analysis shows no characteristic spatial scale of the heating
events. Two examples are shown: In the left panel we combine 2% grid points to one
flare, in the right panel 4% grid points respectively. Therefore, there are 643 or 323
events in total. The change in event size alters the energy range but seemingly not
the slope of the frequency distribution (left « = —1.27, right a = —1.3). To combine
more grid points to an even bigger volume is not justified when looking at figure [6.7]

6.3 Non MHD effects

When we discuss the heating mechanism in our model, we should remind ourselves of
the assumptions we used. The following sections will briefly discuss possible changes
to the heating mechanism when we consider effects that go beyond the scope of a
pure magneto-hydrodynamical model.
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Figure 6.7: Time dependent heating rate along a horizontal line at z ~ 10 Mm. The line cuts
through the loop connecting the main polarities. Color code indicates the strength of
the heating. Heating events down to the spatial scale of a grid point are visible.

6.3.1 (Nano)-Flares and electron beams

Do electrons carry energy away? In particular, are electrons heated by a flare still
thermal or are they faster and release their energy somewhere else? In our model,
where the field is mostly closed, the fast electrons would travel downwards along
the fieldlines and release their energy in the chromosphere. They reach the lower
atmosphere without losing much of their energy due to their long mean free path
(cf. figure . Electrons traveling upwards would then heat the opposite foot point
of a loop. This would result in cooler loops whereas the energy contribution to the
chromosphere would be negligible in comparison to the total amount of energy. The
thermal energy in the chromosphere is 100 to 10° times higher than in the corona.
The average coronal thermal energy is 1072 J/ m3.

In our model the electrons are assumed to be thermal since the question how much
energy is carried away by these electrons is still under debate. Assuming that all
flare energy goes into the acceleration of the electrons, they would reach velocities
up to eight times the thermal speed (cf. figure [6.8)). This was computed classically,
although the thermal speed is already more than one percent of the speed of light.
A relativistic calculation would result in smaller numbers. It is unclear however how
many electrons are accelerated and thus, how the flare energy is distributed.

This estimate shows that the error introduced by neglecting this effect is in the
order of, or less than, the uncertainty of the Spitzer heat flux description. The
assumptions made to derive the Spitzer heat flux are gentle temperature gradients,
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Figure 6.8: Electron velocities due to energy input (solid line) and electron thermal speed (dashed
line). Both are mean horizontal values for a single snapshot.

fully ionized gas and constant atomic abundances. The small temperature gradients
imply small deviations from the Maxwell velocity distribution. But these deviations
are responsible for the heat flux. Furthermore, the complex processes in flares, where
fast electrons are produced, are not considered in the Spitzer and Harm| (1953) model.

6.3.2 Non-local heating

In order to find a description of the heat flux including the fast electrons, [West et al.
(2004) suggested the non-local heating mechanism. The fast electrons have a mean
free path of several thousands of kilometers and can therefore release their energy
far from the point where they are accelerated. The mechanism of non-local heat
conduction comprises the long-distant effect and the sensitivity to strong temperature
gradients. The latter were neglected in the [Spitzer and Harm| (1953) derivation. For
the non-local heat flux the heat flux vector is modified:

q(x):/0 qo(x w(z, 2")da’ (6.6)

go(x) is the Spitzer heat flux. The kernel w(z,x’) depends on the temperature gra-
dients and densities along the integral. Typically the integration is done along the
loop, i.e. the heat flux at a given point depends on the global loop properties. For
gentle temperature and density gradients the kernel acts like a delta function and
the resulting heat flux is the classical Spitzer and Harm| (1953) function. |West et al.
(2004)) showed in their paper that the heat flux is on average reduced by a factor of
up to two. Again, this effect is small in comparison to the uncertainty of the Spitzer
heat flux.

Although equation can easily be added to the MHD equations, it is difficult
to implement in our numerical scheme, in which parallelization is used by dividing
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into sub domains. Additional communication together with complex loop geometries
has to be introduced. This will slow down the performance significantly, whereas the
time to conduct a model is already several weeks.



{ Magnetic structures and heating

High resolution measurements of solar magnetic fields are up to now restricted to
the solar surface. The structures of coronal magnetic fields are mostly derived from
extrapolations of the magnetic fields on the solar surface. These extrapolations were
based only on the vertical component of the magnetic field in the beginning. Nowa-
days, observations provide the full magnetic vector which can be used for more re-
alistic extrapolations. Nevertheless, these models cannot reproduce the dynamics of
structures but are snapshots for given photospheric magnetic field configurations. For
a few observations loops were successfully aligned with magnetic fieldlines based on
extrapolations. Even though there was a good visual agreement, no reliable informa-
tion about the free magnetic energy could be retrieved. Thus, these models cannot
explain the temporal evolution of loops nor why loops can be seen at all. With the
advantage to have the full magnetic field vector at each grid point at all times, we are
able to discuss the extrapolation of magnetic fields. Furthermore, loop properties,
e.g. temperatures or heating rates, can be compared to standard loop models.

7.1 Non force-free state

Extrapolations of magnetic fields on the Sun are still a field of research. The sim-
plest case is the potential field extrapolation where the magnetic field is in the lowest
energy state and no currents exist. This case is easy to implement and gives a
rough estimate of the magnetic field structure in the corona. More complex mod-
els use force-free extrapolations where currents are parallel to magnetic fieldlines.
One distinguishes between linear and non-linear force-free extrapolations where the
proportionality between the magnetic field and the current is global or only along a
fieldline respectively.
When the current is parallel to the magnetic field

o) = oB
we can replace the current density in Ampere’s law:
VxB=aB. (7.1)

We introduced the proportionality factor ae. Thus, force-free extrapolations have to
solve equation along with the Maxwell equation ([2.2)):

V-B=0. (7.2)
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Figure 7.1: Left: Histogram of the angular distribution between current j and the magnetic field
b. Zero degrees means parallel and 180 degrees anti parallel. Right: Histogram of
angular distribution with no differentiation of the parallel and anti-parallel configu-
ration. Cosine values in the second quadrant are copied into the first quadrant. The
horizontally averaged mean (solid line) varies between 10 and 60 degrees.

The factor « is equal to zero in equation for the potential field, « is constant
for the linear force-free case and « depends on the space for non linear force-free
extrapolations. For the latter method « is at least constant along a fieldline.

Non force-free extrapolations can be solved with the magneto-hydrostatic equa-
tions. These include the momentum equation for a steady state. That means, the
Lorentz force, the pressure and the gravitational force counterbalance each other.
Therefore, inversions of observations have to be performed to find a pressure dis-
tribution in the atmosphere. This among other numerical problems will reduce the
accuracy of the extrapolation model.

As a consequence of the dynamic driving, the magnetic field in the corona is in a non
force-free state where the currents are inclined with respect to the magnetic fieldlines.
This inclination, or rather the angle between the magnetic and the current vector
can be computed at each grid point. The angle distribution as a function of height
(fig. shows a broad spread. The left panel discriminates between parallel and
anti parallel currents whereas in the right panel these states are combined. The mean
angle (solid line) between the current and the magnetic field vector varies from 10 deg
to some 60 deg. It starts with almost perpendicular currents in the photosphere and
lower chromosphere and changes into almost parallel currents in the corona. Around
45% of all grid points show an angle below 10 deg, 30% below 5 deg and 0.07% below
1 deg. The potential field extrapolation is often used arguing that the stored energy
amount is approximately the same. This may be correct but the spatial distribution
of the magnetic energy differs significantly. In figure (left panel), the magnetic
energy distribution for the simulation and a potential field extrapolation is shown.
The extrapolation is done from the photosphere up to the upper layer of the domain.
At lower levels the energy density is higher for the time dependent coronal magnetic
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Figure 7.2: Left: Horizontally averaged magnetic energy density for a simulation run (solid line)
and a potential field extrapolation (dashed line). The extrapolation was started at
z =0Mm. Right: Comparison between simulation and potential field. For each height
a potential field is calculated using the vertical component of the original field. The
histogram shows the ratio of the energies of the fields calculated at each grid point.
The horizontal average (dashed line) is approximately log 1.5 to log 2.

field. Above =~ 7Mm more energy is stored in the extrapolated field. The total
amount of energy differs by less than 10%. Since the potential field is a state with
no free energy, the question arises why less energy is stored in the corona in the
simulated field. The answer is that it is a result of the assumption that the magnetic
field vanishes at infinity for the potential field, whereas in reality the field may close
nearby or at the top of the domain.

The right panel in illustrates the deviation from a potential field regarding
each horizontal plane separately. For the extrapolation only the vertical component
of the simulated field is used. The extrapolation is done successively at each height.
The resulting full magnetic vector in the respective height can then be used for
comparison. The ratio of the potential and the simulated magnetic field energy is
shown in the right panel of figure Although the horizontally averaged ratio
(dashed line) is much less than a factor of ten, it is positive at each height. It has
maximum at ~ 8 Mm of more than log 2 and in the upper corona a value of ~ log1.3.
This implies that the original field has a higher energy density as a potential field at
the respective height. This result is consistent with the angle distribution between
currents and magnetic fieldlines. The existence of currents already implies a higher
energy state. Investigating sub volumes of our domain, we find areas where the
potential field energy is a factor of hundred below the model magnetic field or even
less.
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Figure 7.3: Example of fieldlines used for the analysis. Only about 5% of the total number are
drawn. The lines connect to the periodically continued magnetogram in the horizontal
plane. Most fieldlines arise from the main polarities and a few are low lying loops
connecting network or internetwork flux.

7.2 Individual magnetic loops

Observations with TRACE in the EUV show loops with an almost constant bright-
ness. As their length scale is bigger than the pressure scale height these loops have
to be dominated by the magnetic field. The plasma is therefore confined to magnetic
fieldlines. It is unclear if all solar structures, even the smaller ones, represent field-
lines since no direct measurements of the magnetic field above the photosphere are
available yet. Therefore, we compute the magnetic lines of force in our domain.

7.2.1 Tracing of magnetic fieldlines

Fieldlines are traced trough the domain following the magnetic field vector. We start
at an arbitrary grid point and make a step with the length of half a grid spacing
in the direction of the magnetic field vector. There, the magnetic field has to be
interpolated by its surrounding eight neighbors before another step of half a grid
spacing can be performed. This procedure is repeated until an end criterion is valid,
e.g. penetrating the upper boundary. A smaller interpolation step was tested, but
did not change the result. Only for fieldlines with stronger curvature as in our model
the step size should be reduced.

Since the box is periodic in x- and y-direction, fieldlines may leave the domain
and enter at the opposite side. Or enter the neighboring domain, if we add several
boxes together. We selected every second grid point in the horizontal and vertical
directions as a starting position for the tracing routine (64° start positions). Then the
fieldlines are traced in both directions of the magnetic field vector. Only if both foot
points enter the photosphere, a fieldline is stored and used for further investigations.
Starting at different heights ensures that low lying loops as well as large coronal
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structures are found. Figure illustrates the result for one single time step. The
density of lines corresponds to the magnetic energy density. Fieldlines which are
connected to the periodically continued magnetogram are also shown.

7.2.2 Plasma properties along loops

After tracing magnetic fieldlines throughout the domain we are able to investigate
the plasma parameters along them. The fieldlines are mostly present in between grid
points, thus the parameters have to be interpolated. A simple 3D linear interpolation
is used for this. In the figures[7.4] [7.5 and [7.6] we demonstrate three different subsets
of field lines. In a later chapter, when we discuss the scaling laws, almost all fieldlines
are included in the analysis.

The figures are ordered by the loop temperature profiles and illustrate the loop
density, the heating rate along the loop and the emissivities for different emission
lines. Additionally, the fieldlines are shown in two projections. One view from the
side showing the height and the other from above to illustrate the magnetic structures
connected by the fieldlines.

Coronal loops

For figure only loops with an average temperature above log T/[K] = 5.3 were
selected. They connect the main magnetic polarities and have an apex between
10 and 30 Mm. The temperatures and densities are almost constant in the coronal
part of the loop. They would therefore be considered as isothermal and isobaric
loops. Indeed, the emission in MgX is on average (red line in panel (f)) constant as
well and an instrument with a dynamic range of at least a factor of 100 would see
the entire coronal part of the loops. Even a single fieldline (blue line in panel (d))
shows a variation in emission only by a factor of hundred. These loops are therefore
comparable to the loops seen with TRACE.

In the panel (e) we investigate the heating rate along the field lines. Unexpectedly,
the heating is not uniform as the rest of the plasma parameters. Each single fieldline
(one example marked as blue line) shows a huge scatter but the mean value (red line)
is smooth. The peaks in these curves are resolved and are not due to numerical noise.
The heating is concentrated at the foot points. The locations where the heating rate
changes to almost coronal values are at 10% and 90% of the loop length. These
coincide with the start of the transition region (panel (a)) and the points where
the density reaches coronal values. But the emission in MgX begins higher in the
atmosphere.
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Figure 7.4: Plasma parameters along selected fieldlines. Only fieldlines with an average tem-

perature higher than log f/ [K] = 5.3 are chosen. The panels show (a) logarithmic
temperature, (c¢) logarithmic density, (e) logarithmic heating rate and (f) logarithmic
emissivity in cgs units [<5%;]. The latter illustrates the variation of the intensity for
the Mg X spectral line with a formation temperature of log T/[ K] = 6.05. Red lines in
panels (a), (c), (e) and (f) are the mean value for the subset. One selected fieldline
is illustrated in both panel (e) and (f) (thick blue). Panels (b) and (d) show the
fieldlines as seen along the y-direction and from above.
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Low lying loops

For figure only loops with an average temperature between log 7'/[ K] = 3.9 and
log T /[ K] = 4.8 were selected. As seen in panels (b) and (d), these fieldlines connect
the main polarities with smaller and weaker magnetic patches. The apex are between
4 and 10 Mm. The shapes are far from being half circles and a few lines even have
two maxima. The temperature profiles also show more than one maximum. These
loops are not isothermal and cover a wide range of temperatures. One fieldline is
highlighted in all panels (dark blue line in panel (b) and (d) and blue line in the
other panels). The densities show the same behavior as the temperatures. As for the
large loops the heating rate shows a huge scatter.

The panels (f), (g) and (h) illustrate the emission for different emission lines with
formation temperatures of log7/[K] = 6.5 for MgX, log7/[ K] = 4.91 for C11 and
log T /[ K] = 4.44 for Si11. The hotter loops are still observable in the MgX line but
do not show a constant brightness in the upper part. When observing in the cooler
lines, C 111 or SiII, no loop structures would be seen. Along each fieldline small parts

are bright in these spectral lines whereas other parts do not show any emissivity at
all.

Chromospheric loops

For figure only loops with an average temperature below log T/[K] = 3.8 were
selected. As shown in panel (b) these loops do not reach the transition region. Their
temperature profile is influenced by the Newton cooling term (see section which
was introduced to stabilize the chromosphere. Thus, the chromosphere was excluded
from our analysis and no emission line for that temperature range was computed.
The figure emphasizes how structured the lower atmosphere is when we look at the
densities along the fieldlines (see panel (c)).

7.2.3 Hydrostatic loops

In this chapter we want to describe coronal loops as a result of the hydrostatic
solutions. This approach was already used by Rosner et al. (1978). Using the
hydrostatic assumption means that the hydrostatic equation and the energy equation
have to be solved:

Vp = —8gsp (7.3)
En(s) — Er(s) — Ec(s) = 0 (7.4)

where s denotes the coordinate along the loop. These equations state that the amount
of heat Ey has to be counter balanced either by radiative loss Eg, conduction E¢g
or both. And the pressure balances the gravitational force, i.e. the loops are in
steady state. First attempts to solve the equations, made by [Rosner et al. (1978),
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Figure 7.5: The panels show the same plasma parameters as in ﬁgure Only fieldlines with an

average temperature between log T/[ K] = 3.9 and log T/[ K] = 4.8 are chosen. The
panels (g) and (h) illustrate the line intensity of the spectral lines C11I and SiIl.
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Figure 7.6: The panels show the same plasma parameters as in ﬁgure Only fieldlines with an

average temperature below log7/[ K] = 3.8 are chosen.

used a constant heating rate Eg(s) = constant and a constant pressure along the
loop. Along with a strongly simplified radiative loss function and some other approx-
imations they were able to solve the energy equation analytically and found the well
known RTV (Rosner, Tucker and Vaiana) scaling laws, expressed in SI units:

T = 1.4 - 10% (pL)3 (7.5)

More sophisticated models later included non-uniform heating (exponential) and non
constant pressure (Serio et al. |1981; |Aschwanden) 2006). They found scaling laws
similar to RTV with additional dependencies on the heating scale height and pressure
scale height. Comparisons with observations show that RTV scaling laws fit only to
small hot loops. Other types of loops can be explained by newer models.

Before investigating the properties of the fieldlines, we compute the hydrostatic equi-
librium of the entire atmosphere. It is given by

9p _ _
82_ pg
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Figure 7.7: Horizontally averaged density (solid line) and density profile of a hydrostatic atmo-
sphere (dashed line) with the same mean temperature profile. Left: Simulation de-
scribed in this work, Right: Results from (Gudiksen and Nordlund, [2005])

Along with the equation of state for an ideal gas (eq. (2.31))) it can be written as

T(z) 1 g
Inp(z) =Inpy — In PR /ZO sz (7.6)
To evaluate this integral numerically we used horizontally averaged temperature pro-
files and a constant gravity (go = 274%). Figure illustrates the comparison of the
hydrostatic density profile (dashed line) to the simulated density profile (solid line)
for both the model described in this thesis and the model by |Gudiksen and Nordlund
(2005). Our atmosphere seems to be close to a hydrostatic atmosphere, but in equa-
tion the dominant force in the corona, the Lorentz force, was neglected. However,
the figure shows a clear difference between the two models. In the model of Gudiksen
and Nordlund, (2005)) the density is lower in comparison to the hydrostatic solution.

Loop scaling laws

Loops with an apex higher than 10 Mm were selected for figure [7.8] It shows the
relation between the maximum temperature versus its corresponding pressure at this
point times the length of the fieldline. Fieldlines are not shaped like half circles and
may have more then one apex. The maximum temperature is not necessarily at the
top of the fieldline.

Clusters of fieldlines in this histogram may represent one specific loop as a fieldline
does not represent a volume.

The dashed line is a linear fit and has a slope on the order of % The slope and
intercept of the linear fit depend on the selection criteria for fieldlines, e.g. the
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Figure 7.8: Left: Histogram of fieldlines, with apex higher than 10 Mm, according to maximum
temperature and pressure times fieldline length. The dashed line is a linear fit T' =
1.31 - 10*(pL)¥=1. The mean absolute deviation of logT/[K] is ¢ = 0.054. Right:
The same set of field as in the left panel. Histogram of loop densities versus loop
temperatures and lengths. Dashed line represents the equation[7.8 and the dotted line
is fitted with a fixed slope of one. The fit results in an intercept of —16.38 + 0.0036.

maximum loop temperature or different minimum apex heights. It varies for the
slope between % and % and between 3 to 4 for the intercept.

This result corresponds nicely to the scaling laws found for uniform (Rosner et al.|
1978)) and non-uniform heating (Aschwanden and Schrijver, 2002) along the loops.

The RTV scaling law

Thaw = 1.4+ 10* (pL)* (7.7)
can be rewritten using the equation of state for an ideal gas (eq. [2.31]) to

_ 3.64-10713 77
P= cp—cy L
T2
log p = log T~ 16.58 (7.8)

This correlation is shown on the right side of figure for one snapshot. The dashed
line shows the function derived from RTV scaling, the dotted line is a fit with a slope
of 1 to the data. The intersect is —16.38 £ 0.0036. Again, this result fits nicely to
observations and shows that on average the loops are over-dense. |Aschwanden| (2006))
gives the height of the loop base at 1.3 Mm. In contrast, the exponential decay of
the heating rate in our model starts at 4.7Mm. This may be a result of the not
perfectly described chromosphere or the missing chromospheric physics. However,
other properties match the results by |Aschwanden| (2006) quite well. E.g. the loop
base temperature at z = 4.7Mm is Ty = 10* K. These results are mean values of
quantities which have a large scatter. Individual loops show strong deviations from
the scaling laws.
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Figure 7.9: Quiet Sun network in the emission line of O V1 at 103.2nm formed around 300.000 K
(SOHO/SUMER, http://www.mps.mpg.de/projects/soho/sumer/).

7.3 iLoops

Images of the Sun in X-rays show a corona which is dominated by loop structures
formed by plasma at high temperatures of about 10° K and number densities of about
105-10' m=3 (cf. [1.4). New measurements with the two STEREO spacecraft allow
a stereoscopic view of the corona and thus a reconstruction of the coronal structures
in three dimensions. As expected, large isolated coronal loops, with lengths of more
than 10% of the solar radius, roughly follow magnetic fieldlines determined from
extrapolations of the measured surface magnetic field (Feng et al., 2007)). Based on
this paradigm, namely that bright loops seen in solar X-ray and extreme ultraviolet
(EUV) emission follow magnetic fieldlines, numerous corona models have been built
in the framework of loop models. This solar paradigm is also applied to other stars,
not only to those which are solar-like, but also to stars being much more active than
our Sun. Even though this concept is very attractive and certainly valid for the large
loop systems seen in Active Regions on the Sun, one should carefully evaluate to
what extent it can be generalized. On the solar surface the super-granular flow forms
a complex magnetic network with a typical cell size of about 20 Mm. These spatially
complex concentrations of magnetic fields harbor small loop-like structures seen in
EUV emission lines formed at temperatures at and above 10° K. Mostly these cool
loops are very short, barely resolvable with lengths of below 5 Mm, which is less than
1% of the solar radius (labeled a in. Some of these structures seem to be low-lying
long loops crossing the network cells (labeled b). It is unclear whether these small
structures are of the same nature as the larger structures seen at hotter temperatures
on the Sun, i.e. if the network loop-like structures follow magnetic fieldlines, too.
This seems unlikely, though, as the surface magnetic field below these structures is
often unipolar, and so no magnetic loops should emerge to heights of several Mm.
This poses the question as to the nature of these loops. It will be answered later
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Figure 7.10: Left: 3D Visualization of the emission in Ne VIII (inverse gray scale) in the model. At
the bottom of the box the (vertical) magnetic field is shown with the opposite main
polarities and the surrounding network magnetic patches. The loop-like structures
seen in intensity, the iLoops, show no direct connection to the underlying magnetic
field. Right: Vertical cut through the box showing the NeVvIil emission (green on
yellow plane). At the bottom the (vertical) magnetic field is shown (gray is zero field).
Selected field lines are drawn, which intersect the region of high Ne VIII emission in
the vertical cut. The temperature along the fieldline is color coded from blue (10 K)
to pink (2-10° K). Both panels are compiled with VAPOR.

in terms of "iLoops”, i.e. loops that appear only as intensity enhancements, not
necessarily following the magnetic field. Current observations simply do not have
the spatial and temporal resolution to decide on this. Another question is even more
tempting: What is the nature of structures to be expected in the coronae of stars
being more active (and presumably magnetically more complex) than our Sun? Are
they closer in nature to the large hot loops in the solar corona or to the small loop-
like structures in the magnetically complex solar network? In order to investigate
the formation of structures in the hot corona we compare the result from the model
presented in this thesis and former simulations with different boundary conditions.
In previous models we used the same boundary condition for the magnetic field as
in |(Gudiksen and Nordlund| (2005)). Both models used the scaled down Active Region
but without the additional network flux as described in chapter [3] As in the the
study in (Gudiksen and Nordlund} 2002, 2005; [Peter et al., 2004) the model without
network flux shows a large coronal loop tracing the magnetic field lines. The model
presented in this work also show loop like structures (cf. figure . To understand
the connection between structures seen in intensity and the underlying magnetic field
we looked at the 3D box from different angles. The loops change their form or even
disappear with other loops appearing at other places (cf. for a 3D visualization
of the coronal emission). In the 3D box the emission of Ne VIII is originating from a
relatively thin surface which is highly corrugated. Depending on the viewing angle
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the contribution along the line-of-sight can change significantly across the complex
surface of the coronal emission.

To further illustrate this we plotted in the right panel of figure [7.10] a vertical cut
through the box showing the emission in NeVviil. Over-plotted are fieldlines which
cross this vertical cut where the Ne VIIT emission is high. The color along the field-
lines indicates the temperature at the respective location. A closer inspection shows
that the temperature is non-constant along the fieldline. Consequently, the emission
seen in a specific emission line, e.g. the NeViil, is formed over a small fraction of
the fieldline — for some fieldlines the formation temperature of Ne VIII is reached
at the top (right of [7.10)), for some at intermediate heights (left). As the formation
temperature of a given emission line is reached at a different height along each field-
line, this results in the complex corrugated source region as mentioned above. The
consequence of the complex magnetic field structure is that the distribution of the
energy dissipated in the coronal volume also becomes more complex. That naturally
produces a more complex temperature structure both along and across the magnetic
field, thus the structures that can be identified are in general structures which, in
projection are overlapping.



8 Discussion

We presented in this work a self-consistent model of the solar corona above an Active
Region. Photospheric motions braid the magnetic fields lines, which leads to cur-
rents in the upper atmosphere. Dissipation of these currents heats the corona and
sustains coronal temperatures of roughly one million degrees. The processes of heat
conduction, heating and radiative cooling are in equilibrium and the model is in a
quasi-stationary state. We synthesized emission lines and derived thereof quantities
comparable with solar observations. The comparison with observations shows already
a good agreement but is discussed in more detail in the PhD thesis of P. Zacharias.

In this work we focus on the heating process and investigate its temporal and spa-
tial evolution. The Ohmic heating is strong enough to heat the corona. The energy
flux at the base of the corona, derived from the volumetric heating rate, is in the order
of the value required by theoretical models as well as in the order of the heat flux de-
rived from observations. The heating rate decays exponentially with height starting
at the transition region and increases strongly towards the photosphere. Magnetic
loops in the model are heated at their foot points. The heating rate shows spatially
and temporally resolved events. These events can be categorized into Nanoflares or
in groups of Nanoflares, the so-called Nanoflare storms. In the chromosphere and
the transition region events have a typical energy of 10'¢ — 107 J, but the average
energy density for an event decreases with height. The decrease is also explained
with the exponential decrease of the average Ohmic heat.

We derived a Nanoflare distribution similar to observations. To obtain this we as-
sumed that every event is visible and is ’observed’ in our model from above. The
resulting energy distribution per unit time and unit area has a slope as predicted
from theoretical models. This is the first time that the Nanoflare distribution was
found self-consistently in a numerical model. This result can be used as an input
for models which focus on other physical effects. For example models based on the
Boltzmann equation or models describing the radiative transfer in detail.

A result of line emission studies is that one can see loop-like structures, also above
mono-polar magnetic patches: these iLoops do not follow the magnetic field but are
a projection effect. This provides a novel explanation for the loop-like structures seen
above network patches in the quiet Sun. The iLoops are seemingly not connected
to the surface magnetic structures, if considering only the EUV emission patterns.
Nonetheless each location where one sees this emission, e.g. in O VI, is magnetically
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connected to the solar surface. However, the ends of the iLoops do not point to a
location on the surface that is connected to the loop, because the iLoop is a projec-
tion effect. Thus the failure of previous studies trying to connect the foot points’ of
the iLoops to photospheric and chromospheric patches is understandable (Feldman
et al., 2001)).

Stars more active than our Sun can be expected to have quite a different struc-
ture of the surface magnetic fields. Observations using Doppler-(Zeeman)-imaging
techniques show large polar spots, active longitudes, or a generally higher level of
surface filling of magnetic fields. As an example, based on surface magnetic fields
derived by Doppler-Zeeman-imaging a reconstruction of the appearance of the corona
of ABDor was done (Jardine et al., [2002)). Also in general, many models for stellar
coronae assume (sometimes implicitly) that the emission from a corona is originating
from numerous loops (Schrijver and Title, 2005)) following the magnetic field lines,
i.e. bLoops.

However, on other (perhaps more active) stars a higher complexity of the surface
magnetic field might well lead to effects as found in this study with the iLoops for
complex solar network patches, but then on a larger scale. Thus it might be possible
that the emission from more active coronae is not dominated by loops following mag-
netic fieldlines, but by structures more closely related to the iLoops. This would be
of pivotal importance for our understanding of stellar coronae in general and deserves
further investigations in the future.

Nevertheless, we should remember the limitations of our numerical model. The mag-
netic diffusivity used in our box is larger by several orders of magnitude in comparison
to solar values and is in addition spatially constant. We argue that a larger number
is meaningful due to the time scale comparison. Using solar values would result in an
almost non-resistive simulation. But, future numerical experiments should consider
the spatial variation due to the temperature dependency. Also, the dynamic viscosity
has to be used with its dependency on temperature.



A Appendix

A.1 Conduction of the numerical experiment

The numerical simulations discussed in this thesis were done at the Kiepenheuer
Institut fiir Sonnenphysik in Freiburg. The institute provides a computer cluster
with 92 cores with unlimited access. The cluster is composed of 23 nodes, DELL
Poweredge 1950 Server, with two 3 GHz Intel CoreDuo (TM) Xeon processors each.
A node has 4 GB main memory and communicates via InfiniBand with other nodes.
This fast inter-node communication channel is vital for parallelized schemes such as
the Pencil Code.

A.1.1 Timings and volume of data

The model described in chapter |3| has 1282 grid points and used 16 nodes of the
computer cluster. It takes about one week to simulate one solar hour. Increased
resolution, for example using 256° grid points, needs roughly 40 times more. This
results from 8 times more grid points and a time step for heat conduction decreased
by factor of 4.

A snapshot of all physical parameters has a size of 127 MB. We recorded two so-
lar hours with a cadence of 30 seconds. Therefore, we have in total 240 snapshots,
which corresponds to 29.7 GB.

A.1.2 Boundary conditions
The labels given in the table are directly usable in control files of the code.

Their meaning is
e ’a’ antisymmetric: f = 0 at the boundary
e s’ symmetric: f' =0 at the boundary
e ’a2’ antisymmetric: f” =0 and f # 0 at the boundary
e g’ : first set u, and u, at boundary then apply 'a2’

e tho’ : extend the data below the photosphere (ghost cells) with solar values

83



84 Chapter A: Appendix

‘ux‘uy‘uz‘lnp‘lnT‘Az‘Ay‘AZ
g |a2| a | rtho | set | fBs | fBs | a2

lower boundary

upper boundary | s | s | a | s s | pwd | nil | a2

Table A.1: Boundary conditions used for the simulation presented in this work.

e 'set’ : set f to given value then apply a2’

e 'fBs’ : set diffusion 7 to zero at the boundary and apply s’
e 'pwd’ : calculate potential field extrapolation

e 'nil’ : do nothing

where f stands for the variables u;, In p, InT and A;.

A.1.3 Units in the code

All physical parameters are unified using a conversion system. A variable II, used in
the code can be expressed in SI units or vice versa using the unit value [II] like:

[p - [ =g,
The following units are given as initial parameters

o] [1] [v] -
This defines the units of the energy F and the time ¢:

=14

[v]
[E]=[p

[]*[1]?

[t}

Furthermore, the unit of the magnetic field B is defined by setting puo,.,,., = 1 using

the magnetic energy density epg

BQ
e = —
240
J
[B] = [ 2% 2
MOPencil m

[B] = v/ polpl[v?] = [v]/ o[p]

where jio = 47 - 1077, The unit of the temperature is defined via the internal energy

e=cyTl

(A1)
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with (¢, — cv) = R/p and ¢,/cy = v we can write

~p(y = D[]
7] =—=—F— (A2)

where v = g and ¢, = 1 in the code.

A.2 The k-w-diagram

For a time dependent quantity F' = F(z,y,t) given at a plane one can compute a
k-w-diagram. It represents the power spectrum in the temporal and spatial domain.
We compute the three dimensional Fourier spectrum:

A

F(ka, ky,w) = fft(F(z,y,1)) (A-3)
The power spectrum is then given by the absolute value:

~

P(ky, ky,w) =\ F(ky, ky, w)?

Introducing polar coordinates k = |/kZ + k2 in the spatial domain and integrating
azimuthal gives the two dimensional k-w-diagram

A

Pk w) = / Pk, 6, w)kdé (A4)

k

A.3 Diffusion along fieldlines

The Spitzer heat conduction used in model conforms a diffusion along field lines with
spatial dependent coefficient. In order to implement the heat conduction term in the
energy equation into the code, we have to derive a useful form. All product rules
have to be evaluated and only first and second order derivatives of code variables,
such as temperature or density, are allowed. The diffusion along a fieldline for an
arbitrary coefficient K reads:

De = ('31 (Ki]@je) (A5)
D@ = (ale) 8j6 + Kij (818]6)
(A.6)

The coefficient K is composed of a parallel and a perpendicular part

K;j = K10;; + (KH — KJ_) bib; (A.7)
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The derivative hereof is:
O Kij = 0K + (0K — 0K, ) bb; + (K — K1) 9; (biby)
We define H to make the result more readable as:

- - 2B,0,3 A.
BB~ BiBe B DOB (A.8)
1
_ [(;9;31-) B; + Bio:B; — 2bl-bjBlaiBl] BF
=0

1
B
@-Bl
= (biby — 2bib;by) S
J J |B‘
0; By

= (0, — 2b;by) b;——
J J |B’
All together the diffusion along fieldlines reads then

De = VKL~V6+(b-VKH—b-VKL) (b - Ve)
+ (KH_KJ_) H-Ve+ K, Ae+ (K”_KJ_) [(eij . b) . b]

where e;; is the Hesse-Matrix of e.
For constant K| K the equation reduces to

De =+ (Kj—K.)H-Ve+ K Ae + (K—K 1) [(e;; - b) - b]

In the case of Spitzer heat conduction, we have

KJ_ - 0
K, = KoI*°
VK| = 2K0T2'5V1nT
Therefore
OlnT
copT = (b-VK)) (b-VT) + KjH- VT + K| (T;; 0b) - b

= K T3 (g (b-VInT)’+H -VInT + (InT;j o b) - b)

2.5
alantT & (g(b'VlnT)2+H~V1nT+(thz‘jOb)‘b> (A.9)
Cop)

where the last line represents the form implemented in the code.
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A.4 Calculation of number densities

The radiative losses, cf. equation (2.41)), depend on the electron and proton number
densities. Therefore we need to find the correlation between the number densities n
and the density p used in the code. For a fully ionized gas of hydrogen and helium
with an abundance of log’ZL—P; + 12 = 10.93, from Stix (1989) the electron number
density is
Ne =Ny + 204 =n, (1 +0.17) = 1.17n,
The mean atomic mass is
NeMe + NpMy + NeMg,

= = 0.595
K Ne + Ny + N My

The total and electron number densities are given by

n = 2=1682
H myp
n. = 0519-n=0.872-

mp

L0872 ( p 2
P17 \my,

We used the given abundance for the entire domain and assumed a fully ionized gas.

A.5 Potential field extrapolation

The simplified Maxwell equation reduces for a force free field to V x B = aB,
and for a potential field to V x B = 0. Thus one has to solve

VxB=0
V-B=0 (A.10)

This implies that the magnetic field can be derived from a potential
B=Vo (A.11)
Following Bracewell (1965)), we take the Fourier transform of

kB, + kyB, + 0.8, =0
ik,B. — 0.8, =0
0.8, —ik,B. =0
ikeB, — ik, B, = 0 (A.12)
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and assume an exponentially decaying Fourier transform of the vertical magnetic
field: R )
B.(ky, ky, 2) = € " B, (ky, ky, 2 = 0) (A.13)

where £, and £, are the coordinates in Fourier space and z is the height. The observed
vertical component of the magnetic field in the photosphere is used as boundary
condition B, (k,, k,, z = 0). Combining everything we get

B, = —i-%B,

B, = —iB,

Y

| | &

with k* = k2 4 k7. Since we are interested in the vector potential we have to solve:

B, = ik,A, — 0.4,
B, = 0.A, —ikA,
B, = ik,A, —ik,A, (A.14)
This leads to:
. Ky A
Ax = —ZEBZ
“ _k;x ~
Ay = ZpBZ
A, = 0. (A.15)

A.6 Power law of a 2D velocity map

In chapter [3| we used a power spectrum to compare the velocity boundary condition
with the photospheric motions on the Sun. We start with a velocity map v(z,y)
in units of [v] = w,. This unit may be “*. The Fourier transformed field F, =
fft(v) then has the units of [F,] = u,u?, since we apply the transformation in two
dimensions. Here we used u; as the unit length. The new field is in the coordinates
of the wave number vector, F,, = F,(k;, k,). We can derive the 2D power spectrum

by taking the absolute value of the Fourier transformed field,

plka ky) = VIE?

Pl = w u12
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Velocity Field

TR

AR
=

Figure A.1: Left: Velocity field. Vector lengths indicate the absolute value. Right: 2D power
spectrum. Solid lines illustrate contours and lines of constant k.

Assuming that the velocity field has no preferred direction, the 2D power spectrum
is symmetric. We can apply cylindrical coordinates with

ko= 4 /k2+ k2

k., = kcoso
ky, = ksing
p = pk,®)

We now conduct an azimuthal integration

b= [ ohds

Integrating over rings, indicated by the circles om the right hand side of figure [A.6]
gives the representative power spectrum depending on k. Therefore p(k) has the units
of [p] = uyuy. Tt is common to plot p - k, cf. panel on the left hand side of figure ,
which has the units of u;, over the spherical harmonic wave number /(I + 1) = k%2
Here r is the solar radius and should be in the same units as the wave vector k. Then
the spherical harmonic wave number is dimensionless.
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