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Zusammenfassung

Neutronensterne sind Objekte sehr hoher Dichte – ein Teeloeffel Ihrer Bestandteile

haette ein Gewicht von ca. fuenf Milliarden Tonnen. Die Gravitationskraft auf ihrer

Oberflaeche ist so stark, dass diese ein fallendes Objekt innerhalb eines Meters auf

eine Geschwindigkeit von zweitausend Kilometer pro Sekunde beschleunigen wuerde.

In Objekten solcher hoher Dichte koennen Teilchen existieren, die sich von den Nukleo-

nen in Atomkernen unterscheiden. Solche Teilchen koennen Hyperonen mit nichtver-

schwindender Strangeness sein, oder auch breitere Resonanzen. Weiterhin koennen in

Neutronensternen verschiedenen Materiezustaende vorkommen, so zum Beispiel Meso-

nenkondensate oder auch ”Quarkmatter” im Falle einer fuer das Deconfinement der

Nukleonen ausreichenden Dichte. Mit dem Auftreten neuer Freiheitsgrade des Systems

maessen verschiedene Eigenschaften der Materie beruecksichtigt werden. Der in diesem

Zusammenhang wichtigste Aspekt ist die Wiederherstellung der chiralen Symmetrie.

Diese Symmetrie ist ansonsten spontan gebrochen, eine Tatsache, die im Zusammen-

hang mit dem Vorhandensein eines Kondensates von skalaren Quark-Antiquark Paaren

steht. Solch ein Kondensat, wegen des eben genannten Zusammenhanges auch chirales

Kondensat genannt, tritt bereits im Vakuum auf. An dieser Stelle muss daran erinnert

werden, dass im modernen Verstaendnis das Vakuum alles andere als ein Zustand der

”Leere” ist, vielmehr zeichnet es sich durch die Praesenz virtueller Teilchen aus, welche

permanent gemaess des Unschaerfeprinzipes erzeugt und vernichtet werden. Bei hohen

Temperaturen/Dichten, wenn die zusammengesetzten Teilchen in ihre Konstituenten

aufgeloest werden, verschwindet das chirale Kondensat und die chirale Symmetrie ist

wiederhergestellt.

Um erklaeren zu koennen, wie und zu welchem Zeitpunkt die chirale Symmetrie

in Neutronensternen wiederhergestellt wird, benutzen wir ein als Sigma-Omega-Modell

bezeichnetes effektives relativistisches quanten mechanisches Modell. Dieses Modell

wurde zur Beschreibung von Systemen entwickelt, die aus ueber Mesonen wechselwirk-

enden Baryonen bestehen. Es wurde von Symmetrierelationen ausgehend konstruiert,

wodurch das Modell chiral invariant ist. Die erste Konsequenz dieser Invarianz ist die
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Tatsache, dass in der Lagrangedichte keine reinen Massenterme auftreten, wodurch alle,

oder zumindest die meiste, Teilchenmasse aus der Wechselwirkung mit dem Medium

resultiert.

Neutronensterne weisen noch weitere Besonderheiten auf, die sonst nirgends in der

Natur gefunden werden koennen. Eine dieser Besonderheiten ist die Isospin-Asymmetrie:

In gewoehnlichen Atomkernen ist die Anzahl der Neutronen und Protonen ungefaehr

gleich, waehrend in Neutronensternen sehr viel mehr Neutronen als Protonen vorhan-

den sind. Durch dieses asymmetrische Verhaeltnis wird die Energie des Systems um

einen als Fermi-energie bezeichneten Betrag erhoeht, was eine erhoehte Masse des

Sternes erlaubt. In fruehen Phasen der Sternentwicklung, wenn noch viele Neutrinos

im Stern gebunden sind, ist das Verhaeltnis von Protonen zu Neutronen hoeher als zu

spaeteren Phasen der Entwicklung. Folglich ist in diesen fruehen Phasen die Masse, die

der Stern gegen die Gravitation aufrechterhalten kann, vergleichsweise geringer. Nicht

nur in diesem Kontext zeigt sich, wie die Phaenomene auf mikroskopischer Ebenes im

Zusammenhang mit den makroskopischen Eigenschaften des Sternes stehen. Ein weit-

eres Charakteristikum eines Neutronensterns ist die Ladungsneutralitaet. Diese ist eine,

aber nicht die einzige, notwendige Voraussetzung fuer die Stabilitaet des Sternes. Ein

weiteres Beispiel ist das chemische Gleichgewicht. Dieses muss nicht notwendigerweise

bedeuten, dass die Anzahl jeder Art von Teilchen erhalten ist, jedoch dass die Teilchen

durch spezifische Reaktionen erzeugt und vernichtet werden, die in beide Richtungen

mit gleicher Rate erfolgen.

Obwohl zur Beschreibung der mikroskopischen Physik von Neutronensternen die

Raumzeit der speziellen Relativitaetstheorie, d.h. der Minkowski Raum, benutzt werden

kann, trifft dies nicht auf die makroskopischen Eigenschaften des Sternes zu. Fuer diese

muss eine Beschreibung im Rahmen der allgemeinen Relativitaetstheorie gewaehlt wer-

den, welche die Gravitation mitberuecksichtigt. Die Loesungen der Einsteinschen Feld-

gleichungen fuer den vereinfachten Fall statischer, sphaerischer und isotroper Sterne

entsprechen der Konfiguration eines hydrostatischen Gleichgewichtes. In diesem Gle-

ichgewicht verhindert eine Balance zwischen dem hauptsaechlich aus der Fermi-Energie

der Baryonen und Leptonen resultierenden inneren Druck und der Gravitationskraft

den Kollaps des Sternes. Im Falle einer Rotation verstaerkt sich die Stabilitaet des

Sternes, was eine erhoehte Masse desselben ermoeglicht. Die Rotationsbewegung hebt

die sphaerische Symmetrie auf, wodurch die Metrik des Sternes eine Funktion in Ab-
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Figure 0-1: Links: Masse-Radius-Diagramm fuer Sterne mit verschiedenen baryonis-
chen Freiheitsgraden (gezeigt werden die Werte der jeweiligen hoechsten Masse).

Rechts: Skalares Kondensat gegen den Radius des Sterns.

haengigkeit von der Polarkoordinate wird. Weiterhin muss der Einfluss des lokalen

Bezugssystemes mitberuecksichtigt werden. Dieses erzeugt Zentrifugalkraefte, welche

nicht der Wechselwirkung mit anderen Koerpern entstammen, sondern im Zusammen-

hang mit dem Bezugssystems des Beobachters stehen, welches im Gegensatz zum

Stern nicht rotiert. Diese Aspekte werden durch Stoerungsrechnungen im Rahmen der

Sogenannten Hartleschen Naeherung beruecksichtigt.

In der ”Mean Field” Naeherung erfolgt eine Anpassung der Kopplungen sowie der

Parameter des Sigma Modells derart, dass massive Neutronensterne reproduziert wer-

den koennen. Der linke Teil von Fig. 0-1 zeigt wie die Einfurhrung neuer Freiheitsgrade

die maximal erlaubte Masse des Neutronensternes reduziert. Bei den berechneten Ster-

nen sind die einzigen Baryonen, die neben den Nukleonen im Stern vorhanden sind,

im Falle der Integration des Baryonen Oktetts die Λ und Σ−, und im Falle der In-

tegration des Baryon Dekuplett die Λ und ∆-Resonansen. Die Leptonen wurden zur

Sicherstellung der Ladungsneutralitaet eingefuehrt. Um Unsicherheiten in den Kop-

plungen zu vermeiden, wurden in den weiteren Berechnungen das Baryon-Oktett und

nicht das Baryon-Dekuplett beruecksichtigt. Die Kopplungen der Hyperonen wurden

gemaess der Tiefe ihrer Potentiale in Hyperkernen gefittet. In diesem Fall kann die

Wiederherstellung der chiralen Symmetrie anhand des Verhaltens des Ordnungparame-

ters beobachtet werden. Der rechte Teil von Fig. 0-1 zeigt, dass die Wiederherstellung

der Symmetrie in Neutronensternen beginnt, und dass bei diesem Uebergang eine gle-

ichmaessige Aenderung auftritt.
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Figure 0-2: Links: Masse des Sterns in verschiedenen Phasen der Sternentwick-
lung, definiert durch die Entropie und die Leptonenzahl unter Beruecksichtigung des
Baryonen-Oktetts, e, µ. Rechts: Phasendiagramm der Materie in der Ebene von Tem-
peratur und baryonischen chemischen Potential, die Linien repraesentieren Phasenue-
bergaenge erster Ordnung fuer isospin-symmetrische und Sternenmaterie, die Kreise

markieren die jeweiligen kritischen Punkte.

Unter Einschluss gebundener Neutrinos, endlicher Temperaturen und der Entropie

werden verschiedene Phasen der Sternabkuehlung reproduziert. Berechnungen mit endlicher

Temperatur beinhalten das Waermebad der hadronischen Quasi-Teilchen innerhalb des

Grosskanonischen Potenziales des Systems. Verschiedene Schemata werden berueck-

sichtigt, welche konstante Temperatur, metrikabhaengige Temperatur und konstante

Entropie beinhalten. Das chemische Potenzial der Neutrinos wird mittels Festsetzung

der Leptonenzahl eingefuehrt, wodurch aufgrund der Ladungsneutralitaet auch die An-

zahl der Elektronen und Protonen kontrolliert wird. Isolierte Sterne haben eine feste An-

zahl von Baryonen, wodurch verschiedene Phasen des Abkuehlungsprozesses miteinan-

der verbunden sind. Der linke Teil von Fig. 0-2 zeigt die maximal erlaubte Masse in

den verschiedenen Phasen des Abkuehlungsprozesses, d.h. der Phase mit hoher En-

tropie und gebundenen Neutrinos, der Phase ohne Leptonen mit hoher Entropie und

der kalten Phase im Beta-Gleichgewicht.

Der Abkuehlprozess wird auch durch Nebenbedingungen beeinflusst, die aus der

Rotation des Sternes resultieren. Durch diese erreicht der Stern eine hoehere Stabili-

taet und demzufolge ebenso eine hoehere Masse. Die Rotationsbewegung deformiert

den Stern, wodurch Modifikationen der zugehoerigen Metrik erforderlich werden, in un-

seren Berechnung durch Stoerungstheorie realisiert. Die Analyse der ersten Phasen des
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Neutronensterns, in welchen dieser Proto-Neutronenstern genannt wird, fuehrt zu Ein-

schraenkungen der moeglichen Rotationsfrequenzen waehrend der kaelteren Phasen.

Es werden Instabilitaetsfenster berechnet, in denen der Stern zwar waehrend einzel-

ner Phasen stabil ist, aber im Verlauf des Abkuehlprozesses in ein Schwarzes Loch

kollabiert.

Im letzten Teil dieser Arbeit wird das hadronische SU(3) Modell in dem Sinne

erweitert, dass es zu den Quarks zugehoerige Freiheitsgrade beinhaltet. Hierbei ver-

knoepft ein neues effektives Potenzial fuer den zum Deconfinement gehoerigen Ord-

nungsparameter, die Polyakov-Schleife, die Physik bei niedrigem chemischen Potenzial

und hoher Temperatur im QCD Phasendiagramm mit dem Bereich hohen chemischen

Potenzials und niedriger Temperatur. Durch das Studium der Auswirkungen auf die bei-

den Ordnungsparameter, das chirale Kondensat und die Polyakov-Schleife, ist es uns

moeglich, ein Phasendiagramm sowohl fuer isospin-symmetrische wie auch ladungsneu-

trale Sternmaterie zu erzeugen. Der rechte Teil in Fig. 0-2 zeigt, dass das Diagramm

einen Uebergangsbereich enthaelt, sowie eine Linie eines Phasenuebergangs erster Ord-

nung. Die neuen Kopplungen und Parameter des Modells sind weitestgehend gemaess

einer Ueberstimmung mit Gitter-QCD-Ergebnissen gefittet, dies beinhaltet auch die

Position des sogenannten Kritischen Endpunkts. In Abhaengigkeit davon, welcher Teil

des Phasendiagramms betrachtet wird, sind verschiedene Freiheitsgrade relevant. Let-

ztlich werden mit Hilfe dieser Methoden Eigenschaften von Hybridsternen berechnet,die

sowohl aus Baryonen als auch Quarks bestehen.
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1 Introduction

Neutron stars are the densest objects existing in nature. Although black holes are even

denser than neutron stars, these objects are singularities [1] and, for this reason, not

much can be said about their interior. Neutron stars, on the other hand, emit radiation

in a very special way due to their extremely high magnetic field and rotation. This

combination leads the star to emit radiation along the direction of the magnetic axis,

that can be seen once every rotation for an observer lying in the direction of the beam

(Fig. 1-1). Because of this mechanism, that works essentially as a lighthouse, these

objects were named pulsars. Since the discovery of the first pulsar, made by Jocelyn

Bell in 1967 [2], many others were discovered. It is believed that there are over 30.000

pulsars inhabiting our galaxy.

Many properties of pulsars can be observed or inferred from measurements. The

most trivial one is the rotation frequency, that was found to lie between 1 time and 716

times per second [3]. At this incredible rate the particles at the outer part of the star

are moving at one fourth of the speed of light. Radii and masses, which are the most

important parameters used to calibrate and select between models that describe these

stars, can also be estimated with a reasonable precision, especially from the pulsars in

binary systems. One very interesting characteristic of binary stars, is that the analysis

of their orbits can be used to prove General Relativity up to a 0.05% level [4].

Even more impressive than neutron stars are the explosions that create them. They

are called supernovae and happen in our galaxy approximately once per thirty years. In

a few seconds these explosions release the brightness of thousands of suns, reaching in

the peak the impressive brightness of millions of suns. It is not surprising that such a

phenomenon has been observed since ancient times. The first one was documented in

1054 and created the famous Crab Nebula [5] (Fig. 1-2). It is a cloud of gas and dust

of 10 light years across illuminated by a pulsar. But supernovae are not only interesting

for their beauty. Their redshift can be used to show that the universe is expanding and

it is doing so at an accelerating rate. This is done by measuring the relativistic effect

of the increase or decrease of the radiation frequency of the approaching or receding
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Figure 1-1: Pulsar mechanism

star [6]. Besides that, the detection of the neutrinos emitted during the explosion can

reveal much about the physics happening in the star interior and about the properties

of the neutrinos themselves.

Above all, the most amazing fact about supernovae is that they are essentially

responsible for the creation of life. Typically in our universe, only light atoms like

hydrogen or helium are found. All the heavier elements (lighter than iron) are generated

inside heavy stars, that spread them throughout all the universe during these explosions.

The atoms heavier than iron are created in a later stage, just outside the newly formed

neutron star due to the intense neutrino bombardment. About 2/3 of the matter

around us is made by the first stars that appeared approximately 200.000 years after

the beginning of the universe. This relates to the fact that those stars were much

heavier than the ones that exist nowadays, which made their whole evolution happen

faster (bigger stars radiate more energy). The younger and lighter stars are still on the

main sequence of their evolution.

The whole evolution process of stars happens independently of the exterior (within

the limits of this being possible while exchanging energy with the medium) but for

the initial stage. At this point, the interstellar cloud can start to contract and become

a proto-star only if there is a perturbation of a certain wavelength, higher than the
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Figure 1-2: Crab nebula

so called Jeans length [7]. These perturbations are in general caused by shock waves

proceeding from supernovae. In this sense, these explosions not only create the elements

necessary for life, but also help to form new stars, and also planets, containing these

elements.

The process that leads to the supernova is the following. After spending most of

its time in the so called ”main sequence”, converting hydrogen into helium, the star

proceeds producing heavier and heavier elements (He, C, O, Ne, Mg, Si, S) until iron,

the element with the highest binding energy per nucleon (Fig. 1-3). After that, the

fusion process is not exothermic and consumes instead of releasing energy into the

system. Without the thermal energy, used to balance the star against gravity, it starts

to collapse forming two distinct regions, a homogeneously collapsing inner core and

a free falling outer one. After the inner core becomes dense enough for the strong

nuclear force to come into play, the extra pressure coming from it stops the collapse

in this region and generates a pressure wave that dissolves the nuclei into nucleons.

When this wave reaches the boundary of the outer region, it becomes a shock wave

that travels outside the star and, through very complicated mechanisms [8], ends up

expelling most of the mass of the star leaving behind a small object of just tens of

kilometers called neutron star.
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Figure 1-3: Main sequence star structure

In such dense objects different particles, more massive than nucleons, can exist.

These particles can be hyperons, that contain non-zero strangeness, or broader reso-

nances, that become stable as their decay is Pauli-blocked in the dense system. There

can also be different states of matter inside neutron star, such as meson condensates,

and if the density is high enough to deconfine the nucleons, quark matter. As new

degrees of freedom appear in the system, different aspects of matter have to be taken

into account, the most important of them being the restoration of the chiral symmetry.

This symmetry is spontaneously broken, which is a fact related to the presence of a

condensate of scalar quark-antiquark pairs, that for this reason is called chiral conden-

sate. This condensate is present at low densities and even in vacuum. It is important to

remember at this point that the modern concept of vacuum is far away from emptiness.

It is full of virtual particles that are constantly created and annihilated, their existence

being allowed by the uncertainty principle. At very high temperature/density, when the

composite particles are dissolved into constituents, the chiral consensate vanishes and

the chiral symmetry is restored. To explain how and when this phenomenon happens

inside neutron stars is the main scope of this work and the topic will be explored in

the next chapters.

There are still other interesting features in neutron stars that cannot be found
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anywhere else in nature. One of them is high isospin asymmetry. In normal nuclei,

the number of protons and neutrons are more or less the same. In a neutron star the

number of neutrons is much higher than the one of protons. This provides extra Fermi

energy, raising the energy of the system and allowing the star to support more mass

against gravitational collapse. Enrico Fermi showed that for spin half particles, there

can be two of each kind (one with spin up and one with down) in each state. For

this reason systems with high particle degeneracy have less occupied energy levels.

For example, in early stages of the neutron star evolution, when there are still many

trapped neutrinos, the proton fraction is higher than in later stages and consequently

the maximum mass that the star can support against gravity is smaller. This, among

many other features, shows how the microscopic phenomena in the interior of the star

are reflected in its macroscopic properties.

Another important property of neutron stars is charge neutrality. These objects

have to be charge neutral to be stable and a very simple calculation can be made to

prove it. Consider a particle with elementary charge situated very close to a star with

total charge of the same sign. In order for the particle not to be repelled by the star,

the gravitational force between them has to be higher than the electromagnetic one:

GMm

R2
>

Ztote
2

R2
, (1.1)

where G is the gravitational constant, M is the star mass, m is the particle mass, R

is the radius of the star, Ztot e is the total charge of the star and e is the elementary

charge. As the baryonic mass of the star (Am, where A is the number of baryons in

the star) is higher than the gravitational mass (M) we can replace it in the formula.

The result is, after plugging in the numbers, that for the star not to repel the charge,

the total charge per baryon inside it has to be Ztot e/A < 10−36 e, which is practically

zero.

Charge neutrality is a necessary but not sufficient assumption for stability in neu-

tron stars, there are others. One example is chemical equilibrium, that means that

the number of particles from each kind is not conserved, but they are created and

annihilated through specific reactions happening at the same rate in both directions.

A very important reaction is the one related to beta equilibrium that establishes how

the protons and neutrons transform into each other. This kind of relation also allows
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us to write the chemical equilibrium equations for all particles as a function of a small

number of chemical potentials. This number is related to the number of conserved

quantities in the system. In this way, we can find the fraction of each particle in each

part of the star as will be shown in the following.

According to the equivalence principle of general relativity, in any gravitational

space, regardless of its intensity, a free falling observer does not observe gravitational

forces. The only exception being in the case of a non-uniform gravitational field like

the one responsible for the tidal effects. Otherwise, the space-time is the one from

special relativity, the Minkowski space. In this case it is enough to care about the

microscopic physics. General relativity is only taken into account for the calculation of

global properties of the star. In this case, gravity is included through the TOV equations

[9, 10]. The solution of these equations correspond to the configurations in which the

star is in hydrostatic equilibrium. That means that the internal pressure, coming mainly

from the Fermi energy of the neutrons, balances the gravity, avoiding the collapse. But

different from the classical hydrostatic equilibrium equations, the TOV equations have

relativistic corrections. Finally, from this solution we have to apply the Le Chatelier

principle to choose the configurations that are truly stable:

dp

dǫ
≥ 0. (1.2)

It requires that the derivative of the pressure with respect to the energy density has to

be higher than zero, otherwise the neutron star is not stable with respect to vibration

modes and collapses to black holes or dissolves into space (see chapter 3 for more

details).

When rotation is included the star becomes more stable, and consequently, can be

more massive. The movement also makes it more flat, which requires the metric of the

star to also be a function of the polar coordinate θ (in the TOV equations only the

radial coordinate r is taken into account). Another important feature that has to be

included is the dragging of the local inertial frame. It generates centrifugal forces that

are not originated in interactions with other bodies, but from the rotation of the frame

of reference within which observations are made. These modifications are introduced

through the Hartle’s approximation that solves the problem by applying perturbation

theory [11]. The energy and pressure are the ones from TOV equations plus corrections
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up to second order due to rotation.

In the next chapter the non-linear sigma model [12] will be introduced. This is an

effective relativistic quantum model that was developed in order to describe systems

of hadrons interacting via meson exchange. The main difference between this and

the simplest effective model that uses meson interactions to reproduce the attractive

and repulsive parts of the strong interaction (constructed by Walecka [13]) is that

in our case the model was constructed from symmetry relations, allowing it to be

chirally invariant. The first consequence of this invariance is that there are no bare

mass terms in the lagrangian density, causing all, or most of the particles masses to

come from the interactions with the medium. After constructing the model, the mean

field approximation will be applied in order to obtain the equations of motion and the

equation of state.

In chapter three the high asymmetry between protons and neutrons together with

the charge neutrality and beta equilibrium will characterize neutron star matter. Grav-

ity will come into play through the TOV equations in order to determine the global

properties of the star. Different configurations and constituents will be analyzed and

observations will be used to select which is the best option. In chapter four, the first

moments of the neutron star life, when it is called proto-neutron star will be modeled

with the introduction of finite temperature and high lepton number (also implying high

proton fraction). These features define the stages of the star evolution and establish

constraints on important properties of the cold star. These constraints will be again

calculated in chapter five with the inclusion of rotational effects.

The sixth chapter will introduce quarks into the model. There will be a new effective

potential calibrated in order to reproduce lattice QCD and heavy ion collision results.

The improved model can be used to model matter not only at high densities but

also high temperatures. The new order parameter related to deconfinement is the

Polyakov loop, and together with the chiral condensate (related to the chiral symmetry

restoration) it can be used to construct a phase diagram. Finally, this matter containing

different degrees of freedom (depending on which phase of the diagram we are) will

be used to calculate hybrid star properties.
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2 The Nonlinear Realization of the Sigma

Model

In this chapter the basic model used for all the calculations of this dissertation will be

presented. It consists of a chiral SU(3) x SU(3) σ - ω type model. This means that

its most important feature is allowing a chirally symmetric phase. The relevant degrees

of freedom are baryons that interact through mesons. The scalar mesons (as the σ)

represent the attractive part of the strong force while the vector mesons (as the ω)

generate the repulsive part.

At least up to energies achieved nowadays in experiments, Quantum Chromo Dy-

namics is the underlying theory of the strong interaction. The degrees of freedom of

this theory are quarks that interact through gluon exchange. The problem is that due

to a very peculiar characteristic of the strong force, called confinement, the force be-

tween quarks does not diminish as they are separated [14, 15]. On the other hand, the

interactions become weaker as the mutual distance decreases or as the exchange of

momentum increases. At high temperatures or densities the interactions which confine

quarks and gluons inside hadrons become weak enough to release them. This decrease

of the coupling strength is called asymptotic freedom.

Nevertheless there are some possible ways to circumvent the problem. The first one

is to apply perturbative techniques. At high-temperatures or chemical potentials the

typical momentum exchanges become large and consequently the coupling constant

of the theory become small. In the asymptotic regimes perturbative QCD (pQCD)

techniques can be used [16, 17, 18]. However, for temperatures and chemical potentials

near the phase transition or below, the strong coupling constant becomes large. For

this reason perturbative treatments cannot be applied to neutron star matter.

The second method is to use lattice QCD [19]. In this case the space-time is

represented by a crystalline lattice in which the vertices (quarks) are connected by

lines (where gluons travel). Taking the limit in which the discretized lattice spacing

becomes smaller, the theory becomes closer to the true continuum theory of QCD.

This method can only be used to model systems with temperature higher than the
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chemical potential and low density (because of the fermion sign problem - cancellation

of positive and negative contributions to the partition sum that cause large fluctuations

in computed averages). This approach can clearly not be used for neutron star matter.

Nevertheless, we will use it to calibrate the extended chiral model (chapter 5) that

can also be applied for the high temperature/low density limit. The third method is

AdS/CFT (anti-de-Sitter space/conformal field theory correspondence). The idea in

AdS/CFT is that there is an equivalence between a string theory defined in a warped

multidimensional space and a quantum field theory without gravity defined on the

conformal boundary of this space [20, 21, 22]. In this way it describes QCD in terms

of a classical gravitational theory. Although this correspondence is now widely-studied,

there is still no experimental evidence for the success of this approach.

The fourth method is the use of effective models, that use phenomenological con-

straints to construct Lagrangian densities. They normally work in a determined range

of energies, but nevertheless give good qualitative and quantitative results. Between a

large amount of existent effective models, it is worth mentioning chiral perturbation

theory (ChPT), which is constructed by introducing every interaction of particles not

excluded by symmetry and ordering them based on the number of momentum and mass

powers [23]. Another very interesting effective model is the Nambu-Jona-Lasinio model

(NJL). It describes a system of fermions interacting through point-like interactions .

This model takes into account chiral symmetry, but if the chosen degrees of freedom

are quarks (in the original publication the degrees of freedom were nucleons [24, 25]),

there is no confinement.

The matter in neutron stars is considered to have low energies, except the very

inner core. The inner core will be treated differently in chapter 5. In this case, the

effective degrees of freedom are hadrons. In spite of that, relevant aspects of QCD as

for example symmetries can and should still be taken into account.

2.1 Symmetries

It is known from Noether’s theorem that the invariance of the Lagrangian density of a

system with respect to global continuous symmetries implies corresponding conserved

currents [26]. For instance a U(1) transformation is done by the multiplication of the
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particle field by a global phase factor

Ψ(x) → eiθΨ(x), (2.1)

where Ψ(x) = u(x), d(x), s(x). If the lagrangian is invariant under the transformation,

the associated conserved charge is the baryon number

B =
1

3

∫

d3xΨ(x)†Ψ(x). (2.2)

In the same way the chiral symmetry operations, that can be separated into left-

handed and right-handed projections SU(3)L x SU(3)R, are

Ψ(x)L → eiθa
LλaΨ(x)L ≡ LΨ(x)L, (2.3)

Ψ(x)R → eiθa
RλaΨ(x)R ≡ RΨ(x)R, (2.4)

where {λa}(a = 1, ...8) are the eight SU(3) Gell-Mann matrices. These expressions can

also be rewritten as vector and axialvector transformations SU(3)V x SU(3)A:

Ψ(x) → e−iθa
V λaΨ(x), (2.5)

Ψ(x) → e−iγ5θa
AλaΨ(x), (2.6)

where the matrix γ5 =

(

0 1

1 0

)

changes the orientation of the basis vectors of the

group. The phase factors are related through θV = (θL+θR)/2 and θA = (θL−θR)/2.

The associated conserved quantities are the vector currents

Vµ
a = Ψ̄γµλa

2
Ψ, (2.7)

and the the axial currents

Aµ
a = Ψ̄γµγ5

λa

2
Ψ, (2.8)

where Ψ̄ = Ψ†γ0 and {γµ} are the Dirac matrices. When applied to the QCD vacuum,

the vector charges QV
a leave the state invariant QV

a |0
〉

= |0
〉

while the axial-vector

charges QA
a do not QA

a |0
〉

6= |0
〉

. In another words, chiral symmetry is not an exact
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symmetry of nature. This can easily be seen from the the absence of parity doublets,

that are two states with the same mass but opposite parity (concept of mirror reflection

between “left” and “right”). Examples of these are the ρ(770) and the a1(1260)

meson, the nucleon N(938) and the N∗(1535) resonance. Since the values of the

current quark masses are small compared to hadronic states, the large mass splitting

between the chiral partners cannot result from this contribution. Therefore, it can be

concluded that the chiral symmetry is spontaneously broken, meaning that even if the

Lagrangian density of the system is chirally symmetric, the ground state is not.

Every time a symmetry is spontaneously broken into a subgroup, meaning that a

system that is symmetric with respect to some symmetry group goes into a vacuum

state that is not symmetric, massless particles called Goldstone bosons appear in the

model. They correspond to broken symmetry generators and can be thought of as

excitations of the field in the symmetric “directions”. Their nature depend mostly on

the nature of the symmetry. When a symmetry is not exact, i.e., if it is explicitly

broken as well as spontaneously broken (as in the model defined in this chapter), the

particles that appear are called pseudo-Goldstone bosons. Instead of being massless

they have a very small mass. Because there are eight axial charges QA
a , there are eight

pseudo-Goldstone bosons identified with the eight lightest pseudo-scalar mesons. They

are particles with spin zero but odd parity, that means that they have their sign flipped

by spatial inversion.

The vacuum is populated by a condensate of scalar quark-antiquark pairs with non-

vanishing expectation value. It is defined as
〈

0|q̄q|0
〉

≡
〈

q̄q
〉

=
〈

ūu
〉

+
〈

d̄d
〉

+
〈

s̄s
〉

.

The scalar operator Ψ̄Ψ can be projected onto left and right-handed parts as

Ψ̄Ψ = (Ψ̄L + Ψ̄R)(ΨL + ΨR) = Ψ̄LΨR + Ψ̄RΨL, (2.9)

where the terms Ψ̄LΨL and Ψ̄RΨR vanish. This can be verified with the definition of

the left and right-handed projection:

ΨL =
(1 − γ5)

2
Ψ and ΨR =

(1 + γ5)

2
Ψ, (2.10)
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and their adjoints

Ψ̄L = Ψ† (1 − γ5)

2
γ0 = Ψ̄

(1 + γ5)

2
and Ψ̄R = Ψ† (1 + γ5)

2
γ0 = Ψ̄

(1 − γ5)

2
, (2.11)

where it was used that {γ0, γ5} = 0. It is easy to see that terms containing the adjoints

of the field followed by the field are equal to zero using γ2
5 = I.

The terms of Eq. 2.9 mix left- and right-handed quarks and therefore break chiral

symmetry. For this reason the condensate plays the role of the order parameter for the

chiral symmetry restoration. If it has non zero value, the chiral symmetry is broken.

2.2 Anomalies

In classical physics an anomaly is the failure of a symmetry to be restored in the limit in

which the order parameter goes to zero. In quantum physics an anomaly is the failure

of a classical symmetry. The first one analyzed is the axial U(1) anomaly. If the system

is invariant under the transformation

Ψ(x) → eiθγ5Ψ(x), (2.12)

there is an associated ninth conserved current

A
µ
0 = Ψ̄γµγ5Ψ, (2.13)

whose divergence is equal to zero ∂µA
µ
0 = 0. However, in quantum field theory this

quantity does not vanish, being instead proportional to the gluon fields ∂µA
µ
0 =

αS

4π
NfGµνG

µν, with αS being the QCD running coupling strength and Nf the num-

ber of flavors. Because of the axial U(1) anomaly, the symmetry from QCD that was

U(3)L x U(3)R or SU(3)L x SU(3)R x U(1)V x U(1)A is spontaneously broken to

SU(3)V x U(1)V x U(1)A and them reduced to SU(3)V x U(1)V.

Another important anomaly from QCD is the trace anomaly. At the classical level

the system is invariant under the transformations

Ψ(x) → λ∆Ψ(λx), (2.14)
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where λ is arbitrary and ∆ = 2/3 for spin 1/2 fields. At the limit of vanishing quark

masses, there are no dimensionful parameters in the QCD Lagrangian and the classical

behavior is recovered. The associated conserved dilaton current is

J
µ
scale = xνTµν, (2.15)

whose divergence together with the trace of the energy momentum tensor Tµν, should

be equal to zero: ∂µJ
µ
scale = Tν

ν = 0. However, in quantum field theory it does not

vanish, but is proportional to the gluon fields. This happens because of the introduction

of a scale, meaning that to fully specify QCD, not only the Lagrangian, but the scale

parameter also has to be specified. In this case the energy momentum tensor becomes

Tµ
µ =

βQCD

2g
GµνG

µν, (2.16)

with βQCD = 11−2Nf/3 and g is a coupling constant. Therefore, the quantum theory

is not scale invariant and the dilaton currents are not conserved. In another words, the

strength of the particle interactions (coupling parameters) do depend on the energy-

scale involved. To mimic this behavior in the effective theory, we introduce a scalar

field χ. The lagrangian for this field is introduced in the following and yields a trace of

its energy-momentum tensor as

Tµ
µ = χ4. (2.17)

Thus in mean field approximation χ4 corresponds to the gluon condensate
〈

GµνG
µν

〉

with a vacuum value of χ4
0.

2.3 Construction of the Model

The hadronic degrees of freedom of the model are the lowest SU(3) multiplets, the

baryon octet and decuplet, the scalar, pseudo-scalar and vector meson nonets. It is

important to remember that although a simple way to describe hadronic matter prop-

erties is to use hadrons as degrees of freedom, the general properties of the under-

lying theory still have to be taken into account. For example the quark condensate

strongly determines the properties of hadrons. At high temperatures/densities chiral

symmetry is expected to be restored and this should be visible in the hadron masses.



Section 2.3: Construction of the Model 27

It is already known that bare mass terms like in Eq. 2.9 mix left- and right-handed

fields and therefore break chiral symmetry. It is possible though to construct effec-

tive masses for the baryons as a function of chirally invariant terms. For example the

term (Ψ̄Ψ)2 + (Ψ̄iγ5Ψ)2 that can be rewritten as Ψ̄(σ + iγ5π)Ψ with the definition

of σ =
〈

Ψ̄Ψ
〉

and π =
〈

Ψ̄iγ5Ψ
〉

is chiral invariant at the limit of vanishing σ and

π. Terms like powers of σ2 + π2 are also invariants. These are the basis of the widely

used linear sigma model [27, 28]. Although this kind of model can reproduce hadronic

masses and nuclear matter reasonably well, it has been shown that the hyperon po-

tentials come out too large [27]. In this case the strange scalar meson ζ (σ∗) couples

to the non-strange scalar field σ(f0) and changes considerably in the nuclear medium

even for zero strangeness.

The nonlinear realization of chiral symmetry was introduced to generate a pseu-

dovector π − N coupling to allow heavy degrees of freedom to transform in a different

representation, such that they transform equally under left and right chiral transfor-

mations. The resulting advantages are many:

• the pseudoscalar mesons exhibit a pseudovector coupling to the baryons in agree-

ment with the experimental finding of a vanishing π − N-scattering length

• chiral invariance for heavy particles is ensured if their coupling is invariant under

local SU(3)v transformations (allowing couplings between baryons and meson

octets)

• baryon masses can be fitted to experimental data without explicit symmetry

breaking terms

• a connection to the phenomenological Walecka model exists [12]

• the masses of the pseudoscalar mesons do not become imaginary at high densi-

ties.

The idea of the model was introduced by Weinberg [29] for the SU(2)L x SU(2)R

and extended to higher dimensions [30, 31]. In the following the group SU(3)L x SU(3)R

with the subgroup SU(3)V is considered. An element g of SU(3)L x SU(3)R can be

decomposed into

g = ei
∑

ζaQ5
aei

∑
θbQb ≡ u[ζ]h[θ], (2.18)
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where ζ and θ are parameters of the transformations and are generally space-time

dependent, Q and Q5, that are respective the vector and axial charges, are the gener-

ators of the group SU(3)L x SU(3)R and h is an element of SU(3)V. Assuming global

invariance under SU(3)L x SU(3)R transformation, g becomes

g = ei
∑

αa
LλLaei

∑
αb

RλRb ≡ L(αL)R(αR), (2.19)

where αL and αR are space-time independent parameters and λL = λ(1 − γ5)/2 and

λR = λ(1 + γ5)/2 are Gell-Mann matrices acting in the left and right handed space,

respectively. The product gu is still an element of SU(3)L x SU(3)R and can be written

as

gu = ei
∑

ζ′

aQ5
aei

∑
θ′

bQb , (2.20)

where ζ ′ and θ ′ depend on g and ζa. If a linear representation of the subgroup SU(3)V

is q → D(h)q, a nonlinear representation of the group SU(3)L x SU(3)R would be

q → ei
∑

θ′

bQbq, with ζ → ζ ′. Associating the parameters of the axial charges ζ with

the pseudoscalar mesons [32] one has

u = eiπaQ5
a . (2.21)

Because the pseudoscalar mesons are the parameters of the symmetry transformation,

they will only appear if the symmetry is explicitly broken or in terms with derivatives

of the fields.

Therefore to build a model with hadronic degrees of freedom, their composition

in terms of quarks has to be determined [27]. The transformation properties of the

hadrons in the nonlinear representation can be derived from the relation between the

quarks in the linear (q) and nonlinear (q̃) representation. The quarks of the nonlinear

representation transform with the vector subgroup SU(3)V in accord with Eq. 2.18

setting h → 1. Splitting them into left- and right-handed parts, they can be written as

qL = uq̃L and qR = u†q̃R, (2.22)

where these equations are connected by parity. The transformation properties of the
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new quarks are found by considering how the old quarks transform

q ′ = LqL + RqR = Luq̃L + Ru†q̃R. (2.23)

According to Eq. 2.20,

Lu = u ′h and Ru† = u ′†h, (2.24)

with g = L. By inserting these expressions in Eq. 2.23 and using Eq. 2.22, one sees

that q̃ transforms as

q̃ ′
L = hq̃L and q̃ ′

R = hq̃R. (2.25)

According to Eq. 2.20, in general the vector transformation is a local nonlinear

function depending on pseudoscalar mesons h = h[g, πa]. Following Eq. 2.24, the

pseudoscalar mesons transform nonlinearly as

u ′ = Luh† = huR† and u ′† = hu†L† = Ru†h†. (2.26)

In contrast with the linear realization of chiral symmetry, there is no distinction between

the left and the right space. The various octets transform accordingly

X ′ = hXh†, V ′
µ = hVµh†, A ′

µ = hAh†, B ′ = hBh†, (2.27)

where X is the scalar matrix, Vµ = lµ+rµ the vector, Aµ = lµ−rµ the axial vector and

B the baryon. lµ and rµ are the left and right handed parts of the spin-1 mesons in the

linear representation. The hadronic fields that transform nonlinearly can be obtained

from the ones that transform linearly (described in [27]) by multiplying them by u[π]

and its conjugate

X =
1

2
(u†Mu† + uM†u), Y =

1

2
(u†Mu† − uM†u), (2.28)

lµ = u†l̃µu, rµ = ur̃µu†, (2.29)

BL = u†ΨLu, BR = uΨRu†, (2.30)

where Y is the pseudoscalar matrix and M = Σ + iΠ and its conjugate contain the
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nonets of the linearly transforming scalar Σ and pseudoscalar Π. ΨL and ΨR are the

left and right handed parts of the baryons in the linear representation.

2.4 The Nonlinear Realization of the Sigma Model

The Lagrangian density of the nonlinear sigma model reads

L = LKin + Lint + Lscal + Lvec + LSB, (2.31)

where LKin is the kinetic energy term, Lint is the interaction term between baryons

and mesons, Lscal is the self-interaction term for the spin-0 mesons, Lvec is the self-

interaction term for the spin-1 mesons and LSB is the explicit symmetry breaking term.

In the following each of these parts will be explained.

2.4.1 Kinetic energy term

The kinetic term is given as in [12]

LKin = iTr(B̄γµDµB) + 1
2
Tr(DµXDµX) + Tr(uµXuµX + XuµuµX)

+1
2
Tr(DµYDµY) + 1

2
Tr(DµχDµχ) − 1

4
Tr(ṼµνṼ

µν) − 1
4
Tr(ÃµνÃ

µν), (2.32)

where the first term is the Dirac kinetic term for baryon octet, the second is the

Klein-Gordon kinetic term for the scalar meson multiplet, the third comes from an

interaction between the scalar and the pseudoscalar mesons and also contains the

kinetic term for the pseudoscalar meson octet, the fourth term is the Klein-Gordon

kinetic term for the pseudoscalar meson singlet, the fifth is the Klein-Gordon kinetic

term for the scalar-isoscalar glueball field, the sixth is the Proca kinetic term for the

vector meson multiplet, the seventh term is the Proca kinetic term for the axial vector

meson multiplet. The axial vector uµ is defined as uµ = − i
2
[u†∂µu − u∂µu†], the

vector field tensor is Ṽµν = ∂µṼν − ∂νṼµ and the axial-vector field tensor is Ãµν =

∂µÃν − ∂νÃµ. The covariant derivative is Dµ = ∂µ + i[Γµ, B] (for the baryons), with

Γµ = − i
2
[u†∂µu − u∂µu†] assuring chiral invariance.
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2.4.2 Interaction term between baryons and mesons

The structure of the baryon-meson interaction terms is the same for all mesons except

for the difference in Lorentz space. It reads

Lint = −
√

2gW
8

{

αW[B̄OBW]AS + (1 − αW)[B̄OBW]S

}

− gW
1

1√
3
Tr(B̄OB)Tr(W),

(2.33)

where the antisymmetric coupling is [B̄OBW]AS = Tr(B̄OWB − B̄OBW) and the

symmetric one is [B̄OBW]S = Tr(B̄OWB+B̄OBW)−2
3
Tr(B̄OB)Tr(W). The matrices

O and W depend on the interaction considered. O = 1 and W = X stand for the

interaction between the baryons and the scalar mesons, O = γµγ5 and W = uµ for the

interaction between the baryons and the pseudoscalar mesons, O = γµ and W = Ṽµ

for the vector part of the interaction between the baryons and the vector mesons,

O = σµν and W = Ṽµν for the tensor part of the interaction between the baryons

and the vector mesons and O = γµγ5 and W = Ãµ for the interaction between the

baryons and the axial-vector mesons.

When heavier degrees of freedom are included in the model, e.g. spin 3/2 resonances

(Dµ), a similar coupling can be defined and added to the Lagrangian

Lint = Lint −
√

2gW
D8[D̄

µODµW] − gW
D1[D̄

µODµ]Tr(W), (2.34)

where [D̄µODµW] and [D̄µODµ] are obtained from the coupling of Dµ with the

mesonic matrices [33].

Interaction with the scalar mesons

Effective masses for the baryons can be calculated from the interaction part of the

Lagrangian density. Replacing the scalar matrix X (ignoring the meson δ for now) and

the baryonic matrix B (and its adjunct) from the appendix in Eq. 2.33 and equating

the whole expression to minus the effective masses of the baryons, we get

M∗
N = gX

1

1√
3
(
√

2σ + ζ) − gX
8

1

3
(4αX − 1)(

√
2ζ − σ), (2.35)
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M∗
Λ = gX

1

1√
3
(
√

2σ + ζ) − gX
8

1

3
(αX − 1)(

√
2ζ − σ), (2.36)

M∗
Σ = gX

1

1√
3
(
√

2σ + ζ) + gX
8

1

3
(αX − 1)(

√
2ζ − σ), (2.37)

M∗
Ξ = gX

1

1√
3
(
√

2σ + ζ) + gX
8

1

3
(2αX − 1)(

√
2ζ − σ), (2.38)

where, σ ∼
〈

ūu + d̄d
〉

and ζ ∼
〈

s̄s
〉

. Using, instead of the matrix X its vacuum

expectation value
〈

X
〉

, the effective masses M∗ become the vacuum masses M for

the baryons. In this way, we can use their measured vacuum masses to calculate the

coupling constants gX
1 , gX

8 and αX. It is important to note that the nucleon effective

mass M∗
N depends on the strange condensate ζ. A case in which this does not happen

can be constructed, though in this case explicit symmetry breaking terms have to be

included to fit the vacuum masses [12]. It is important to note that if ζ = σ/
√

2 the

masses of the baryons are degenerate and the vacuum is SU(3)V invariant.

For the baryon decuplet the procedure is the same. The members are treated as spin

1/2 particles with spin 3/2 degeneracy. Using the scalar matrix X and the baryonic

decuplet matrix Dµ, that can be constructed using the quark representation in the

same way as B, and equating the whole expression to negative of the effective masses

of the baryons, we get

M∗
∆ = gX

D[(3 − αDX)σ + αDX

√
2ζ], (2.39)

M∗
Σ∗ = gX

D[2σ +
√

2ζ], (2.40)

M∗
Ξ∗ = gX

D[(1 + αDX)σ + (2 − αDX)
√

2ζ], (2.41)

M∗
Ω = gX

D[2αDXσ + (3 − 2αDX)
√

2ζ], (2.42)
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where the new parameter gX
D relates to the old ones through gX

D1 =
√

90gX
D and

gX
D8 = −

√
120(1 − αDX)gX

D. They can now be calculated in order to reproduce the

measured vacuum masses of the decuplet. As in the case of the nucleon, the mass of

the ∆ also depends on the strange condensate ζ.

Interaction with the vector mesons

The interaction terms with vector mesons are similar to the one with scalar mesons.

The only difference is that the symmetric coupling should be small and in this case

only the antisymmetric part will be used (αV = 1). This statement is in agreement

with the universality principle [34] and the vector meson dominance model. We set

gV
1 =

√
6gV

8 so the strange meson φ does not couple to the nucleons. Replacing the

vector matrix Ṽµ from the appendix in Eq. 2.33 we obtain the following relations

gNω = 3gV
8 , gNφ = 0, gNρ = gV

8 =
1

3
gNω, (2.43)

gΛω = 2gV
8 =

2

3
gNω, gΛφ = −

√
2gV

8 = −

√
2

3
gNω, gΛρ = 0, (2.44)

gΣω = 2gV
8 =

2

3
gNω, gΣφ = −

√
2gV

8 = −

√
2

3
gNω, gΣρ = 2gV

8 =
2

3
gNω,

(2.45)

gΞω = gV
8 =

1

3
gNω, gΞφ = −2

√
2gV

8 =
−2

√
2

3
gNω, gΞρ = gV

8 =
1

3
gNω.

(2.46)

To couple the baryon decuplet, the procedure is the same as for the octet but the

matrix replaced in Eq. 2.33 is Dµ and αDV = 0 in order for the strange meson φ not

to couple to ∆.

g∆ω = 3gV
8 , g∆φ = 0, g∆ρ = 3gV

8 = g∆ω, (2.47)
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gΣ∗ω = 2gV
8 =

2

3
g∆ω, gΣ∗φ = −

√
2gV

8 = −

√
2

3
g∆ω, gΣ∗ρ = 2gV

8 =
2

3
g∆ω,

(2.48)

gΞ∗ω = gV
8 =

1

3
g∆ω, gΞ∗φ = −2

√
2gV

8 = −
2
√

2

3
g∆ω, gΞ∗ρ = gV

8 =
1

3
g∆ω,

(2.49)

gΩω = 0, gΩφ = −3
√

2gV
8 = −

√
2g∆ω, gΩρ = 0. (2.50)

According to these expressions, as soon as gV
8 or gNω is specified, all the vector coupling

constants are fixed.

2.4.3 Self interaction term for the spin-0 mesons

The couplings of the scalar mesons are governed by the SU(3)V symmetry. The only

possible invariants are

I1 = Tr(X), I2 = Tr(X)2, I3 = det(X). (2.51)

All other powers of Tr(X) can be expressed as a function of these 3 invariants. For

example,

I4 = Tr(X)4 = I1I3m +
1

2
[I2 − (I1)

2]I2 + I3I1, (2.52)

with

I3m = Tr(X)3 = I1I2 +
1

2
[I2 − (I1)

2I1 + I3. (2.53)

Different possible invariants can be constructed from these terms. We follow the one

suggested by [12] used in the linear σ model

Lscal = −1
2
k0χ

2I2 + k1(I2)
2 + k2I4 + 2k3χI3, (2.54)
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where χ represents the scalar gluon field. It allows one to have a scale invariant La-

grangian density when we multiply all terms by powers of the glueball field in such a

way that the terms end up having dimension [mass]4 [35]. Introducing a scale breaking

term, the Lagrangian becomes

Lscal = Lscal −
1

4
χ4 ln

χ4

χ4
0

+
ǫ

3
χ4 ln

I3

det
〈

X
〉

0

− k4χ
4, (2.55)

where the value ǫ = 6/33 originates from the quark contribution to the QCD beta

function βQCD . The first term in the Lagrangian above describes the contribution from

the gluons, the second the contribution from the quarks and the third term ensures

that the finite vacuum expectation value χ0 = 401.93 MeV, which corresponds to the

gluon condensate in the QCD vacuum, is reproduced. The parameters k0, k1,k2,k3

and k4 are calculated in order to ensure correct vacuum expectation values for σ, ζ,

and χ field equations and to reproduce σ, η, and η ′ vacuum masses.

In this work the value of the field χ is kept fixed to its vacuum value . This is

done based on the fact that the glueball field does not couple strongly to the baryonic

degrees of freedom, remaining ”frozen” below the chiral transition. A full study of its

behavior and the consequences for scale symmetry restoration can be found in [36].

2.4.4 Self interaction term for the spin-1 mesons

This part of the Lagrangian density contains the mass terms of the vector mesons

together with higher order of vector meson self-interactions. It reads

Lvec =
1

2
m2

V

χ2

χ2
0

Tr(ṼµṼµ) +
1

4
c1Tr(ṼµṼµX0) +

1

12
c2[Tr(Ṽµν)]

2, (2.56)

where the last two terms were added in order to split the meson masses [37, 38, 39, 40].

The problem is that these two terms generate undesired extra contributions to the

kinetic energy. To solve this problem the meson fields are renormalized (see [27] for

more details) giving

Lvec =
1

2

χ2

χ2
0

(m2
ωω2 + m2

φφ2 + m2
ρρ

2). (2.57)
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The vector meson self-interaction can be written in terms of different possible

invariants. Including them in the Lagrangian, it becomes:

Lvec 1 = Lvec −
g4

4
[Tr(Ṽµ)]4, (2.58)

Lvec 2 = Lvec − g4[Tr(ṼµṼµ)]2, (2.59)

Lvec 3 = Lvec − 2g4Tr[(ṼµṼµ)2]. (2.60)

These three different options will be discussed in the next chapter due to their impor-

tance for neutron star properties.

2.4.5 Explicit symmetry breaking term

In the presence of spontaneously broken continuous symmetry, new types of massless

excitations appear. They are called “Goldstone modes“ and give rise to large fluctuation

effects. In order to eliminate them, explicitly symmetry breaking terms have to be

introduced. Additionally, it gives rise to mass terms for the pseudoscalar mesons. Using

the same expression as from the linear σ model [12]

LSB = TrAp

(

u(X + iY)u + U†(X − iY)u†
)

, (2.61)

where Ap = diag(m2
πfπ, m2

πfπ, 2m2
kfk − m2

πfπ)/
√

2, mπ = 139 MeV and mk = 498

MeV. Using fπ = 93.3 MeV and fk = 122 MeV we obtain σ0 = 93.3 MeV and

ζ0 = 106.56 MeV.

Because of the explicit symmetry breaking mechanism, an additional term for the

hyperon-scalar meson interaction can be introduced

Lhyp = m3Tr(Ψ̄Ψ + Ψ̄[Ψ, S])Tr(X − X0), (2.62)

where X0 is the scalar meson matrix from the appendix with the mesons having their

vacuum values and Sa
b = −[

√
3(λ8)

a
b − δa

b]/3 with λ’s being the usual Gell-Mann
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matrices. This extra term allows one to fit the hyperon potentials to the experimental

values.

2.5 Mean Field Theory Approximation

In this approach, first introduced for this type of system in [41], the mesons are treated

as classical fields, i.e., they are replaced by their expectation values, which are classical

fields. Furthermore, if rotational invariance holds, the expectation value of the three-

vector part of the vector mesons vanishes. The Lagrangian density Eq. 2.31 becomes

LMFT = LKin + Lint + Lscal + Lvec + LSB, (2.63)

where besides the kinetic energy term for baryons and leptons, the other terms are:

Lint =
∑

i ψ̄i[giωγ0ω + giφγ0φ + giργ0τ3ρ + m∗
i ]ψi, (2.64)

Lvec = −1
2
(m2

ωω2 + m2
ρρ

2 + m2
φφ2)χ2

χ2
o

+ Lvec,4 , (2.65)

Lscal = 1
2
k0χ

2(σ2 + ζ2 + δ2) − k1(σ
2 + ζ2 + δ2)2

−k2

(

σ4

2
+ δ4

2
+ 3σ2δ2 + ζ4

)

− k3χ(σ2 − δ2)ζ

+k4χ
4 + 1

4
χ4 ln χ4

χ4
0

− ǫ χ4 ln
(σ2−δ2)ζ

σ2
0
ζ0

, (2.66)

LSB =
(

χ

χ0

)2

[

m2
πfπσ +

(√
2m2

kfk − 1√
2
m2

πfπ

)

ζ

]

. (2.67)

The scalar-isovector meson δ(a0) is introduced as it relates (as the ρ meson) to the

high isospin asymmetry present in neutron stars and τ3 is the isospin projection of the

baryonic charge state. The baryon masses are generated by the scalar fields except for a

small explicit mass term equal to δm = 150 MeV for the nucleons, δm = 376, 58 MeV

for the hyperons and δm = 0 MeV for the baryon decuplet. These modifications allow

one to fit better star observations. The effective masses decrease at high densities with
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decreasing scalar fields as the chiral symmetry is partially restored. At low densities

they reproduce the experimentally known baryon masses:

m∗
i = giσσ + giδτ3δ + giζζ + δm. (2.68)

The hyperon-scalar meson interaction also generates a contribution to the effective

mass of the hypeons

m∗
3 = m3[

√
2(σ − σ0) + (ζ − ζ0)], (2.69)

which is added to Eq. 2.68. The terms that depend on the scalar mesons change the

coupling constants of the hyperons. The terms that depend on the vacuum values of

the scalar mesons are included in the bare mass term for the hyperons.

The coupling constants used to calculate neutron star properties are: gNω = 11.9,

gNφ = 0, gNρ = 4.03, gNσ = −9.83, gNδ = −2.34, gNζ = 1.22, k0 = 2.37,

k1 = 1.40, k2 = −5.55, k3 = −2.65, k4 = −0.23, ǫ = 0.06, g4 = 38.9. They

allow the model to reproduce nuclear saturation properties (density ρB = 0.15 fm−3,

binding energy per nucleon B/A = −16.00 MeV, nucleon effective mass M∗
N = 0, 67

MN, compressibility K = 297.32 MeV), asymmetry energy (Esym = 32.50 MeV), and

reasonable values for the hyperon potentials (UΛ = −29.41 MeV, UΣ = 20.39 MeV,

UΞ = −10.09 MeV).

The equations of motion for the particle fields are obtained applying the Euler-

Lagrange equations to the Lagrangian density. They are

σ : giσρSi + k0χ
2σ − 4k1(σ

2 + ζ2 + δ2)σ − 2k2(σ
2 + 3δ2)σ

−2k3χσζ − 2ǫ χ4σ

σ2−δ2 +
(

χ

χ0

)2

m2
πfπ = 0, (2.70)

δ : giδτ3ρSi + k0χ
2δ − 4k1(σ

2 + ζ2 + δ2)δ − 2k2(3σ2 + δ2)δ

+2k3χζδ + 2ǫ χ4δ

σ2−δ2 = 0, (2.71)
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ζ : giζρSi + k0χ
2ζ − 4k1(σ

2 + ζ2 + δ2)ζ − 4k2ζ
3

−k3χ(σ2 − δ2) − ǫχ4

ζ
+

(

χ

χ0

)2 (√
2m2

kfk − 1√
2
m2

πfπ

)

= 0, (2.72)

ω :
∑

i giωρBi − m2
ω

(

χ

χo

)2

ω + ∂Lvec,4

∂ω
= 0, (2.73)

φ :
∑

i giφρBi − m2
φ

(

χ

χo

)2

φ + ∂Lvec,4

∂φ
= 0, (2.74)

ρ :
∑

i giρτ3ρBi − m2
ρ

(

χ

χo

)2

ρ + ∂Lvec,4

∂ρ
= 0, (2.75)

where the scalar density is ρSi =
∑

i ψ̄iψi and the baryonic density is ρBi =
∑

i ψ̄iγoψi.

The energy momentum tensor is calculated as

Tµν = −Lgµν +
∑

η

∂L
∂(∂µQη)

∂νQη, (2.76)

where Qη is a generic field and gµν is the Minkowski metric tensor

gµν = diag(1,−1,−1,−1). (2.77)

For a perfect fluid, the absence of interactions leaves the energy-momentum tensor

diagonal. In the reference frame of the fluid it becomes

Tµν = (ǫ + P)uµuν − Pgµν, (2.78)

where the velocity vector field is uµ = (1,0) and u2
µ = 1. The energy density and
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pressure can be calculated from

T00 = ǫ and Tij = δijp. (2.79)



3 Neutron Stars

3.1 Star Matter

Symmetric matter is defined as having the same number of protons and neutrons.

Besides that, normally it is also considered infinite, meaning that surface corrections like

the ones considered when treating nuclei are not taken into account, without Coulomb

repulsion and self-bound. Star matter on the other hand is not isospin symmetric, it

has many more neutrons than protons. Cooling calculations show that if the amount

of protons is higher than ∼ 10% of the total baryonic number this allows the star to

cool faster due to the direct Urca process [42]. This asymmetry is controlled by the

isovector mesons ρ and δ that for this reason are extremely relevant for neutron star

calculations.

Star matter is also charge neutral

∑

i

ρBiQi = 0, (3.1)

where ρB is the number density and Q is the electric charge for the different baryonic

and leptonic species i. The number density is calculated from

ρBi =

∫

dρBi =

∫
g

(2π~)3
fid

3k, (3.2)

where we used the fact that the correlation between the number density and the

distribution function f is dρBi

d3k
= g

(2π~)3
fi with g being the number of states of a

particle with momentum k and (2π~)3 the unit volume of a cell in the phase space.

The distribution function is defined as

fi =
1

e(E∗

i
−µ∗

i
)/kBT + 1

, (3.3)

where E∗ and µ∗ are the energy E∗
i(k) =

√

k2 + m∗
i
2 and the chemical potential
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µ∗
i = µi −giωω−giφφ−giρτ3ρ of the different species modified by the medium and

kB is the Boltzmann constant. At zero temperature all the energy levels are filled up

to the Fermi energy so the expression above simplifies to f = 1 for E ≤ EF and f = 0

for E ≥ EF. With this, the number density becomes

ρBi =

∫kFi

0

g

(2π~)3
d3k =

gk3
F

6π2~3
. (3.4)

The total baryonic density is defined as

ρB =
∑

i

ρBi. (3.5)

Considering the long time scale for neutron stars, the strangeness quantum number

is not constrained and is determined by chemical equilibrium conditions. The chemical

equilibrium equations determine the particle composition at each layer of the star.

Since there are two conserved quantities, the baryonic number
∑

i QBi
= 0 and the

electric charge
∑

i Qi = 0, the chemical potential of all particles can be written as a

function of two independent chemical potentials

µi = QBiµB − Qiµe, (3.6)

where µB stands for the neutron chemical potential (also known as baryonic chemical

potential) and µe for the electron chemical potential (also known as charged chemical

potential). For example, the chemical potential for the protons is

µp = µB − µe. (3.7)

The reaction associated with it is called β-decay and it reads

n → p + e + ν̄e. (3.8)

It determines how and at which rate neutrons can decay into protons and vice-versa.

There are two relevant comments to be made at this point. The first one concerns the

freedom with which this process can occur. Because the energy levels are occupied up

to the Fermi surface, the reaction can only occur if it produces particles with energy
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above the threshold. This is called Pauli blocking. It prevents, for example, the neutrons

formed during the supernova explosion to decay back into protons. The second point is

that there are some correlations between the nucleons that cause some of them to go

above the Fermi surface. They are called short range correlations and the holes below

the surface created by them can be filled by particles coming from the beta decay.

Such change can accelerate the neutron star cooling process [43].

The chemical potentials for the muon and hyperons are

µµ = µe, (3.9)

µΛ = µB, (3.10)

µΣ+ = µB − µe, µΣ0 = µB, µΣ− = µB + µe, (3.11)

µΞ0 = µB, µΞ− = µB + µe. (3.12)

3.2 Inclusion of Gravity

To study the influence of gravity on neutron stars, we analyze how it is balanced

by the pressure coming from the equation of state. To do that we first consider the

gravitational force acting on a spherical shell with mass dM at a distance r from the

center of a star with mass M

dFG =
MdM

r2
. (3.13)

If all mass is assumed to be located at the center of the star that has a density ρ,

M =

∫ r

0

dVρ =

∫ r

0

4πr ′2drρ, (3.14)

the mass of the infinitesimal part of the shell dM becomes

dM = dVρ = r2 sin φdrdφdθρ, (3.15)

where θ is the polar and φ the azimuthal angle. Replacing these equations in 3.13, it

becomes

dFG =
Mr2 sin φdrdφdθρ

r2
. (3.16)
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On the other hand, the force originating from the pressure P of the matter inside the

shell on the infinitesimal surface area dA is

dFP = dPdA = dP r2 sin φdφdθ. (3.17)

Stars that do not rotate and are not under the influence of any external force are

in hydrostatic equilibrium, meaning that the two forces, gravitational and from the

pressure, should balance each other

dFP = −dFG, (3.18)

so that
dP

dr
= −

Mρ

r2
. (3.19)

Including relativistic effects in the classical expression for hydrostatic equilibrium, it

together with 3.14 become the Tolman-Oppenheimer-Volkov equations (TOV) [9, 10]

dP

dr
= −

Mρ

r2

(

1 +
P

ǫ

)(

1 +
4πr3P

M

)(

1 −
2M

r

)−1

, (3.20)

M =

∫ r

0

4πr ′2ρdr. (3.21)

It can be easily seen that these equations have a singularity for r = 2M. In this way a

maximum mass is defined for neutron stars above which they become black holes.

The mass-radius relation of the respective neutron star can be calculated by solving

the TOV equations. Because the equations have to be integrated until the radius at

which the pressure is zero, or very small compared to the central pressure, the equation

of state for the core has to be complemented by one for the crust. We use the one

calculated by Baym, Pethick and Sutherland [44] that is constituted by an outer crust

of 56Fe nuclei arranged in a lattice, so as to minimize their Coulomb interaction, with an

electron gas and an inner crust of nuclei lattice with electron and neutron gas. Plugging

in the EOS for the core, we obtain a different star for each possible central density.

The result is shown in Fig. 3-1. But not all the points (stars) are stable configurations.
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According to the Le Chatelier principle, that can be written as:

dp

dǫ
≥ 0, or

dM

dR
≤ 0, (3.22)

the derivative of the star mass with respect to the radius has to be negative. This

can be understood as follows: looking at the stable branch we see that if the pressure

increases (going left in the Fig. 3-1), the mass would have to increase. Since this

cannot happen, the star expands going back to the initial state. If, on the other hand,

the pressure decreases (going right in the Fig. 3-1), the mass would have to decrease,

but since this cannot happen, the star shrinks back to the original position. On the

unstable brunch the behavior is different. If the pressure increases (going left), the mass

would have to decrease. Since this cannot happen, the star shrinks until it collapses to

a black hole. If the pressure decreases (going right), the mass would have to increase,

but since this cannot happen, the star expands and dissolves into space.

3.3 Different Couplings

Because of its strong influence on neutron star properties, the structure of the self-

interaction term of the vector mesons is investigated. In dense systems baryonic vector

densities and therewith the mean fields of the vector mesons become especially impor-

tant for the equation of state of hadronic matter. The fourth-order self-interaction term

Lvec,4 of the vector mesons can be written in different forms in a SU(3)-invariant way.

To study the difference in the result, three separate coupling schemes are considered,

Lvec,4 = −g4[Tr(V)]4/4 (a), − g4[Tr(V
2)]2 (b), − g42Tr(V4) (c) , (3.23)

where V stands for the matrix of the vector meson multiplet shown in the appendix.

The results for the couplings (a) to (c) are shown in Fig. 3-1 for the SU(2) limit of

proton, neutron and electron matter. A strong coupling of the ω and ρ meson present

in the cases (b) and (c) leads to smaller star masses. In the following calculations

the non-linear coupling (a), which does not generate a ρ − ω coupling, is used. This

allows for more massive neutron stars and is also in general agreement with the ob-

served small mixing of the two mesons. The modification of the original couplings and
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Figure 3-1: Star masses versus radii for different vector meson self-interactions. The
values of the respective maximum masses are shown.

parameter set of the model used in [12] is done in order to investigate the maximum

neutron star masses that can be achieved (similar studies in a different approach have

been performed in [45]) while still reproducing hadronic masses in vacuum as well as

reproducing phenomenological values of basic nuclear matter ground state properties,

as listed in the previous chapter.

3.4 Different Compositions

Within the model different situations can be analyzed by including the whole baryon

octet or, in addition, the baryon decuplet. As the density increases, the effective bary-

onic masses decrease and more massive particles can exist. They do not have to appear

according to the mass hierarchy because they are also charge, strangeness and isospin

dependent. Besides that, the scalar and vector meson interactions entering in the ef-

fective masses and effective chemical potentials, respectively, play an important role.

Because of these interactions the hyperons appear in chiral models later compared to
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Figure 3-2: The composition of neutron star matter with hyperons.

Walecka-type models [46, 47]. In practice, the only baryons present in the star besides

the nucleons are the Λ, Σ− in the first case (Fig. 3-2) and Λ, ∆−,0,+,++ in the second

case (Fig. 3-3). In the presence of resonances the ∆− particle replaces the Σ−, as its

effective mass drops faster with density compared to the Σ−.

As can be seen from Fig. 3-4 the inclusion of new particles, i.e. new degrees of

freedom, softens the equation of state (EOS). The same effect would be observed in

the symmetric case, when there is no net isospin instead of no net electric charge, in

the presence of more massive degrees of freedom. Although the symmetric case has no

relevance for neutron stars due to the high intrinsic asymmetry, this case is important

for example in heavy ion collisions. The softening of the equation of state causes a

decrease of the respective neutron star maximum mass (Fig. 3-5).

Even though all of the different compositions generate massive stars, from now

on in this work we will restrict ourselves to the model including the lowest multiplets,

i.e. including only the baryon octet, thus avoiding the uncertainties related to the

largely unknown coupling strengths of the baryonic decuplet. In this case, it is possible

to describe stars with masses higher than M = 2M⊙ and still take into account
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Figure 3-3: The composition of neutron star matter with hyperons and resonances.

heavy baryonic degrees of freedom. The most massive pulsar observed so far is the

PSRJ1903+0327 with 1.74M⊙ [48]. It was found by the Arecibo telescope in a binary

system with a possible main-sequence companion. It has a rotational period of 2.15

ms in a highly eccentric e = 0.44 95-day orbit around the solar mass companion.

3.5 Chiral Symmetry Restoration

The transition to the chirally restored phase for any of the considered self-interactions

and sets of baryonic degrees of freedom turns out to be a cross over. This effect

is intrinsic to this kind of model and is accentuated by the requirement of charge

neutrality that makes the different isospin states of baryons with the same vacuum

mass appear at different densities in the star, thus smoothing out the effect of their

appearance. The chiral restoration can be seen in the behavior of the chiral condensate

σ used here as the order parameter for the transition. As it decreases its value, the

effective masses of the baryons decrease and they become degenerate. In Fig. 3-6 the

normalized condensate is plotted against the star radius showing that in this model the
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Figure 3-4: Binding energy per nucleon versus baryon density for different composi-
tions.

chiral symmetry is partially restored in neutron stars. The reason for the symmetry being

only partially restored does not come from the small bare mass term in the effective

mass of the baryons (Eq. 2.68) or from the explicit symmetry breaking term included

in the Lagrangian density (Eq. 2.67), as one might think, but from the logarithmic

terms of the self-interaction for the scalar mesons (Eq. 2.66) [36]. These terms are

responsible for reproducing the scale symmetry breaking of QCD but at the same time

slow down the chiral symmetry restoration.

A different result was achieved in [49] through the inclusion of heavier resonances

as single states with adjustable coupling and degeneracy. Depending on the couplings,

a first order phase transition was found to signal the chiral symmetry restoration. This

calculation was only done for symmetric matter in order to reproduce the QCD phase

diagram. In chapter 6 we reproduce the same structure but also taking into account

deconfined states.
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4 Proto-Neutron Stars

Right after the supernova explosion, due to the neutronization of the matter, the star

contains an abundant number of neutrinos that are trapped in the system. At this

point, we cannot take the temperature to be zero, like in later stages of the cooling,

because it can reach values of up to 50 MeV in the center of the star. The inclusion

of both these features in the model is done in separate steps.

4.1 Finite Temperature

In order to determine the matter properties, the thermodynamical potential of the

grand canonical ensemble has to be solved. It is defined as

Ω

V
= −Lscal−Lvec−LSB−Lvac−kBT

∑

i

g

(2π)3

∫∞

0

d3k ln(1+e−(E∗

i ∓µ∗

i )/kBT), (4.1)

where Lscal is the self-interaction term for the scalar mesons, Lvec is the self-interaction

term for the vector mesons, LSB is the explicit symmetry breaking term, Lvac is the

vacuum energy (potential at ρB = 0 subtracted to give a vanishing energy for the

vacuum), kB is the Boltzmann constant, i denotes the fermion type and g the fermionic

degeneracy . At finite temperature, the antiparticles of the fermions are also present in

the system and they are taken into account in the thermodynamical potential with a

different (positive) sign for the chemical potential. At high temperature the low density

regime is mainly controlled by electron-positron pairs.

The baryon density is defined as

ρB = −
1

V

∂Ω

∂µB

∣

∣

∣

∣

V, T

= ± g

(2π)3

∑

i

∫∞

0

d3k
1

1 + e(E∗

i
∓µ∗

i
)/kBT

, (4.2)

where different signs stand for particles (top) and antiparticles (bottom). The baryonic

density, that was a step function in the zero temperature case, becomes here the result
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of the sum of these integrals. The entropy per baryon is defined as

s =
S

B
=

S

VρB

= −
∂Ω/∂T |V, µ

VρB

, (4.3)

and can also be calculated from the thermodynamic relation

s =
ǫ + P

TρB

−
µN

T
−

µνeYl

T
, (4.4)

where µν and Yl are the neutrino chemical potential and the lepton number defined

in the following. The third term in the equation above is only used for the case of

conserved leptonic number.

To study the effect of temperature in neutron stars three different approaches are

considered as they have appeared in the literature.

4.1.1 Constant temperature

In the simplest case the whole star is considered to have the same temperature. Solving

the TOV equations it can be seen that the maximum mass of the neutron star is slightly

higher for higher temperatures. This is a balance of two features, the thermal effect

on the binding part of the mass (that also contributes to the gravitational mass) and

the early onset for the appearance of hyperons. It was already shown in [50] that this

effect only continues until a certain temperature.

With increasing density the entropy per baryon remains constant except for small

densities as can be seen in Fig. 4-1. This effect comes from the fact that even when the

baryon density tends to zero, the electron-positron pairs present at finite temperature

still contribute to the pressure and consequently to the entropy.

The transition to the chirally restored phase becomes smoother with the increase

of temperature since the jump in the density function becomes smaller. It can be

seen in Fig. 4-2 that the chiral symmetry begins to be restored earlier (smaller densi-

ties/chemical potentials) for higher temperatures, in agreement with the QCD phase

diagram (shown in chapter 6).
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Figure 4-1: Entropy per baryon versus baryon density for different temperatures.

4.1.2 Metric dependent temperature

A more complicated but somehow more intuitive case is the one in which the tempera-

ture increases toward the center of the star. An interesting approach suggested in [51],

defines the temperature at an infinite distance from the star and it increases as the

gravitational field created by the presence of the mass of the star becomes higher. In

this case T = T∞/
√

g00, where g00 is the 00 component of the metric tensor that in

general relativity is the metric function related to the time coordinate. As the density

increases, the temperature also increases (shown in Fig. 4-3 for T∞ = 15 MeV), but the

difference of temperature from the center to the edge of the star is not pronounced. In

this case, the maximum mass of the star is also slightly higher for higher temperatures

T∞ .

4.1.3 Constant entropy

In this case the star is considered to have a constant entropy per baryon. Because of

this constraint, the temperature is higher in the center of the star (at higher densities)
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Figure 4-2: Scalar condensate versus chemical potential for different temperatures.

and lower at the edge, as can be seen in Fig. 4-4. The maximum mass of the star

is in this case higher for higher entropies, also because of the thermal effects on the

binding part of the mass. This approach agrees with dynamical simulations of the stellar

evolution and cooling [52, 53, 54, 55].

4.2 Trapped Neutrinos

Another important characteristic of the early moments of the neutron star life is the

enormous amount of trapped neutrinos. Their chemical potential µν has to be included

in EQ. 3.6 as there is a new conserved quantity in the system, the electron leptonic

number
∑

i Qlei
= 0. It becomes

µi = QBiµB + Qi(µνe
− µe) + Qlei

µνe
. (4.5)

The leptonic number defined as Yl = (ρe + ρνe
)/ρB is fixed. In consequence there

will be a large number of neutrinos in the star but also an increased electron density.

Therefore, demanding charge neutrality, the proton density increases, and with higher
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Figure 4-3: Temperature versus baryon density for T∞ = 15 MeV.

proton density, the star becomes more isospin symmetric and the neutron Fermi energy

decreases. Thus the increase of lepton number softens the EOS and consequently the

maximum mass of the neutron star decreases. It is important to keep in mind that

this result is dependent on the chosen parameter set and consequently on the particles

present in the star. For parameter sets that allow the hyperons to appear at lower

densities, the high proton density delays their population allowing the neutron star to

be more massive.

4.3 Cooling Stages

These two features can be put together to describe the evolution of the star for two

extreme cases: constant temperature and quickly increasing temperature throughout

the star. After the supernova explosion, the star is still warm so the temperature is

fixed to T = 30 MeV or the entropy per baryon is fixed to s = 2, in which case the

temperature increases from 0 at the edge up to 50 MeV in the center (as in Fig.4-

4). The star contains a high abundance of neutrinos that were trapped during the
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Figure 4-4: Temperature versus baryon density for different entropies per volume per
baryon.

explosion so the lepton number is fixed to a typical value of Yl = 0.4. After several

seconds (10-20) the neutrinos escape and β-equilibrium is established. After about a

minute, the temperature of the star has dropped below 1 MeV via neutrino and photon

emission.

The balance between the effects of temperature/entropy and lepton number is very

delicate and depends on the parameters of the model. The first line in table 4-1 shows

the maximum star masses for different entropies (as suggested in [56]) and different

temperatures. As can also been seen in Figs. 4-5 and 4-6 the intermediate step of the

evolution with s = 2 and µν = 0 is slightly more massive than the first one.

This calculation, though, does not take an important feature into account. The

star cannot create or annihilate baryons. They can transform into each other but the

total baryon number has to remain fixed. Of course, in the case of stars accreting

matter from companions, this restriction is not applicable. If in the earliest stage of

the cooling the maximum baryon number that the isolated star could have (according

to the TOV equations) was B, one extra baryon would have made it become unstable
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stages s = 2 s = 2 s = 0 T = 30 MeV T = 30 MeV T = 0

Yl = 0.4 β equil. β equil. Yl = 0.4 β equil. β equil.
Mmax(M⊙) 2.05 2.07 2.05 2.08 2.08 2.05
fixed MB 2.05 2.01 1.96 2.08 2.03 1.99
R(km) 14.00 15.87 12.44 16.09 17.23 12.33

Mmin(M⊙) 1.07 1.07 0.02 2.02 2.02 0.02
fixed MB 1.07 1.07 0.94 2.02 2.02 1.77

Table 4-1: Maximum masses with and without fixing the baryon number, radii for the
maximum masses with fixed baryon number and minimum masses with and without

fixing the baryon number for different moments of the star evolution.

and collapse it into a black hole. For this reason, the later stages of the star have to

continue having the same baryon number B [57]. Following this procedure, and starting

with the values of baryon number for the star with s = 2 or T = 30 MeV, respectively,

and Yl = 0.4, the stable solutions of the colder cases have a smaller mass than the

warmer neutrino-rich case. This can be seen in the second line of Table. 4-1. The third

line of the table shows the respective radius for the maximum masses of the second

line.

According to calculations including finite temperature for quark stars [58, 59], the

maximum mass of the star decreases with the increase of temperature. This happens

because, in this case, instead of giving extra support against gravity, the thermal energy

makes the quarks less bound. It is important to remember that quark stars, differently

from neutron stars are self-bound objects. When baryon number is fixed, the results

for quark stars are exactly the same as for neutron stars, since in this case there are

no extra baryons making the system less bound.

When the shock wave created during the supernova explosion passes through the

star, it leaves the outer region with a much higher entropy than the rest. This outer

part, that will become the crust, remains warmer for longer time serving as an insulating

blanket which delays the star from coming to a complete thermal equilibrium with the

interstellar medium. In stars with finite temperature/entropy a crust of high entropy

has been used (LLPR compressible liquid drop model for nuclei [60]). In this case the

crust is stiff enough to generate massive stars for small central energies resulting in

large radii. For the assumption of constant temperature the crust used has an entropy



58 Chapter 4: Proto-Neutron Stars

0 10 20 30
R (Km)

0

1

2

3
M

/M
o

T=30 MeV, Y
l
=0.4

T=30 MeV, Y
l
=0.12 -> 0.28

T=0, Y
l
=0.00 -> 0.11

Figure 4-5: Star mass versus radius for different stages of the star evolution defined
by temperature and lepton number considering the baryon octet, e, µ.

per baryon s = 5 so that the inner and outer EOS could be continuously connected.

For the constant entropy case the crust used has, for the same reason, a value of s = 4.

Similar entropy values are normally used for cooling stages calculations [61, 62].

Because of the use of a warm crust it is also possible to find a minimum mass for

each case, shown in the fourth and fifth line of Table 4-1. The pulsar with the smallest

observed mass is PSR J1756-2251 with M ∼ 1.18Mo and a period of 28.5 ms [63].

It is in a binary system with a low mass companion M < 1.25M⊙ having an orbital

period of 7.67 hrs and eccentricity of 0.18. The result for the minimum mass found

in the constant temperature case is far from the measured value, while the constant

entropy one is not. For this reason we conclude that the second option in which the

temperature increases toward the interior of the star is the correct one to be used for

modeling the cooling stages.

The information obtained from Table. 4-1 also shows how important it is to study

different stages of the cooling even if the focus of interest is only the latest stage.

As it was shown, the maximum mass that an isolated cold star can have is directly

dependent on the mass of the warm star with trapped neutrinos and these masses are
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related through fixed baryonic number. The stars with mass between the values of lines

1 and 2 of Table. 4-1 can only exist if they accrete mass from a companion star, and

thus increase their baryon number.

4.4 Meson Condensation

According to the Fermi principle, at any temperature, only two fermions (spin 1/2) can

occupy each state. Bosons at low temperatures, on the other hand, can reach a state

in which all particles collapse into the lowest quantum state. It is called Bose-Einstein

condensation and was first predicted by Satyendra Nath Bose and Albert Einstein in

1924-25 [64, 65]. Seventy years later, the first gaseous condensate was produced by

Eric Cornell and Carl Wieman in 1995 at the University of Colorado, using a gas of

rubidium atoms cooled to 170 nanokelvin and they won the 2001 Nobel Prize for the

achievement. This phenomenon can also happen in neutron star cores. At a certain

density the mesons condense and stop contributing to the pressure of the system
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causing a substantial softening of the equation of state. This effect, in general, causes

the neutron stars to become unstable or to have low mass.

The process of kaon condensation was already studied within the chiral model

[66, 67]. It was also applied to proto-neutron stars using other models in [68, 69].

We intend here to analyze the onset of kaon condensation in our model with the

present coupling and parametrization at different stages of the cooling. This can be

done by analyzing when the chemical potential of the kaons becomes higher than their

in-medium energies at zero momentum. The baryons couple directly with kaons and

antikaons, which causes their effective masses to reduce with density. This happens

because of the strongly attractive K−-baryon interaction in dense matter. Consequently,

the in-medium energy ω also decreases with density

ωk =

{

− 1

4f2
k

[3(ρp + ρn) + (ρp − ρn)] +
{

1

16f4
k

[3(ρp + ρn) + (ρp − ρn)]
2

−4
[

1 − 1
fk

(σ ′ +
√

2ζ ′ + δ ′) + d1

2f2
K

(ρSp + ρSn) + d2

2f2
K

[(ρSp + ρSn) + (ρSp − ρSn)]
]

[

−m2
k +

m2
k

2fk
(σ ′ +

√
2ζ ′ + δ ′)

] }
} 1

2 /

{

2 − 2
fk

(σ ′ +
√

2ζ ′ + δ ′) + d1

f2
K

(ρSp + ρSn) + d2

2f2
K

[(ρSp + ρSn) + (ρSp − ρSn)]

}

,

(4.6)

with σ ′, ζ ′ and δ ′ being (σ − σ0), (ζ − ζ0) and (δ − δ0), respectly and d1 and d2

coupling constants. Here, for simplicity, only the nucleons were considered because of

the hyperons later appearance. See [66] for details.

The net effect of K− condensation in neutron star matter is that K− condensate

replaces electrons in maintaining charge neutrality. The onset of K̄0 condensation is

higher than for the K− and because of the repulsive optical potential for K+ and K0,

their condensation is unlikely to happen in (proto-)neutron stars. For cold hyperonic

matter, the onset of K− condensation happens at ρB = 0, 74fm−3, while the central

density in the most massive neutron star allowed is ρc = 0, 91fm−3. If there is no

further contribution for the star mass after kaon condensation occurs, the maximum

mass is reduced from Mmax = 2.06M⊙ to Mmax = 2.04M⊙. Actually, this reduction
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is even smaller because although after condensation there are no further changes in the

pressure, there are indirect changes on the fields that give contributions to the stellar

mass.

Increasing the temperature/entropy and lepton number only delays the appearance

of the condensation. Putting these features together, the condensation onset will hap-

pen at densities much higher than the ones present in neutron stars. Based on this we

conclude that kaon condensation does not affect our approach to study neutron star

cooling through the analysis of different stages.
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5 Rotational Effects

Neutron stars rotate with a period that ranges between 8.5 seconds and the incredible

value of 1.4 milliseconds. At such angular velocities, it is expected that rotation modifies

neutron star properties. In this chapter we will analyze what these modifications are

and which new constraints they bring to the cooling process.

5.1 Formalism

The rotation of a star, like every non-rigid body, causes deformations. The measurement

of the deformation is called eccentricity and it is defined as e =
√

1 − R2
pole/R2

equator.

It is zero for a sphere and e = 1 for a disc. When rotating the neutron star, considered

spherical so far, becomes flat on the poles, and the faster it rotates the higher is

its eccentricity. To be able to include such an effect in the hydrostatic equilibrium

equations, there should be a polar coordinate θ dependence on the metric of the star.

In the TOV equations only the radial coordinate r is taken into account, indicating

that they cannot be used for rotating bodies.

The rotation provides extra stability for the star against gravitational collapse. The

faster the star rotates, the more massive it can be [70]. Since the rotational frequency

modifies the space-time, it is clear that the metric of the star has also to depend on it.

Effects concerning the dragging of the local inertial frames also have to be taken into

account. This effect generates centrifugal forces that do not originate from interactions

with other bodies, but from the rotation of the frame of reference within which the

stellar matter resides.

We will adopt in this work the formalism derived in [11] that is based on the

Hartle’s approximation [71] including corrections up to second order. The results using

this approach will later on be compared with full calculations. The metric in spherical

coordinates of a rotating, axially symmetric (with respect to the azimuth angle φ) star

is

ds2 = e2τ(dt)2 − e2Φ(dφ − Ωdt)2 − e2Θ(dθ)2 − e2ρ(dr)2, (5.1)
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where τ, Φ, Θ and ρ depend on the radial coordinate r, polar angle θ and the star

angular velocity ω. The quantity Ω denotes the angular velocity of the local inertial

frame and also depends on r, θ and ω.

To simplify the treatment of rotating stars, we make use of perturbation theory. In

this case the changes due to rotation in the perfect fluid energy momentum tensor are

Tµν ≡ T0
µν + ∆Tµν, (5.2)

where

T0
µν ≡ (ǫ + P)uµuν − Pgµν, (5.3)

∆Tµν ≡ (∆ǫ + ∆P)uµuν − ∆Pgµν. (5.4)

The quantities P and ǫ are pressure and energy density measured by an observer

in the local inertial frame comoving with the fluid. The quantities ∆P and ∆ǫ are the

lowest order from a multipole expansion

∆P = (ǫ + P)(p0 + p2P2 cos θ), (5.5)

∆ǫ = ∆P
∂ǫ

∂P
, (5.6)

where p0 is a monopole contribution (l = 0), p2 is a quadrupole contribution (l = 2)

and P2 cos θ is a second order Legendre polynomial. The metric functions τ, Φ and Θ

(r, θ and ω) are expanded up to second order in the star’s rotational frequency ω.

The star’s moment of inertia becomes in this approach

I = 2π

∫π

0

dθ

∫R

0

dr eτ+Φ+θ+ρ ǫ + P

e2τ−2Φ− ω̄2

ω̄

ω
, (5.7)

where ω̄ = ω − Ω is the angular velocity of the fluid relative to the angular velocity

of the local inertial frame. The relativistic expression for the baryon number of a star

is

B = 4π

∫R

0

dr r2 ρ
√

1 − 2M(r)/r
, (5.8)



Section 5.2: Kepler Frequency 65

and the change in it due to rotation is

∆B = m0

mN
+ 4

mN
π

∫R

0
dr r2

{

(ǫ + P)p0

[

∂ǫ
∂P

(

1√
1−2M(r)/r

− 1

)

− ∂ǫint

∂P
1√

1−2M(r)/r

]

+
(ǫ−ǫint)√
1−2M(r)/r

(

mN

r
+ 1

3
(jrω̄)2

)

− 1
4πr2

[

1
12

(

jr2dω̄
dr

)2
− 1

3

dj

dr
r3ω̄2

]

}

, (5.9)

where m0 is the monopole contribution to the mass, M(r) is the mass at the radius

r, ǫint = ǫ − mNρB is the internal energy and j is defined as j =

√
1−2M(r)/r√
1−2M/r

with M

being the total mass of the star.

5.2 Kepler Frequency

For every non-rigid rotating body there is an angular velocity limit beyond which matter

starts to be expelled on the equatorial line. In neutron stars this limit was named after

the physicist Johannes Kepler. Classically, it is calculated equating the gravitational

force holding a body on a spherical surface to the centrifugal force pushing it out in

the direction normal to the surface: ωK =

√

M
R3 . The relativistic expression for this

quantity including monopole and quadrupole corrections is

ω2
K =

[

1 + (1 + η1)

(

Ω

ω

)

− (2 + η2)

(

Ω

ω

)2
]−1

M

R3
, (5.10)

with η1 and η2 defined as

η1 =
5

2

(

1 +
2

5

R

Ms

)

R2Ω2, (5.11)

η2 = η1 +
1

2

(

1 +
1

4

R

Ms

)

R2Ω2

(

ω2

Ω2
− 1

)

−
3

2

(

1 +
5

6

Ms

R
−

1

4

R

Ms

)

, (5.12)

and Ms is the respective static star mass.

The relativistic value of the Kepler limit for the angular velocity is approximately

70% of the value in the classical limit.
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Figure 5-1: Star mass versus rotational frequency with and without fixing the baryonic
number.

5.3 Modification on Stars

The maximum mass that a neutron star can hold against gravity is modified by rotation.

The faster the star rotates, the higher is its mass and radius. This increase of the mass

is in part caused by a larger possible baryonic number. If we fix B when increasing

the rotational frequency of the star from ν = 0 to ν = νK = ωK/2π, the increase

in the mass due to rotation decreases from 15% to 5% (Fig. 5-1). The first case can

be identified as a star accreting mass from a companion and speeding up. The second

case can be identified with the spin down of an isolated cold star with a certain baryon

number (in this case 2.8 x 1057 baryons) that continues until it emits all its energy and

stops rotating.

The Kepler frequency calculated in this case is νK = 1162, 03. This value is above

the frequency suggested for the pulsar XTE J1739-285, believed to have a frequency

of ν = 1122 Hz when observed in 2007 [72]. However, this result is not currently

statistically significant. The next candidate for fastest pulsar is the PSR J1748-2446ad

with ν = 716 Hz observed in 1982 [3].
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s = 2 s = 2 s = 0 s = 0

stages Yl = 0.4 β equil. βequil. βequil.

ν = νK ν = νK ν = νK ν = 0

free B νK(Hz) 1452.56 1424.48 1515.86 0
Mmax(M⊙) 2.31 2.33 2.34 2.06

fixed B νK(Hz) 1228.23 1110.28 1162.03 0
Mmax(M⊙) 2.25 2.19 2.14 2.06

fixed B/L νK(Hz) 1195.30 1095.90 1162.03
Mmax(M⊙) 2.24 2.19 2.14

Table 5-1: Maximum frequencies and masses with and without fixing MB and L for
different stages of the cooling.

In order to analyze the applicability of the approximation used in this work, we

compare our results with a full calculation [73]. The difference in the mass predicted

for the neutron star at the frequency of 716 Hz is less than 1%. This shows that the

formalism used here is reasonable for the range of frequencies observed in neutron

stars.

5.4 Constraints for the Cooling

We consider the rotational effects on cooling from the very first stage of the neutron

star life to the last one, when the star stops rotating. In this case, the baryon number

is fixed by the last stage, instead of the first one like in the previous chapter, because

the rotation always increases the allowed baryon number. Table. 5-1 shows the Kepler

frequency and the respective maximum mass for each stage of the cooling in the

first two lines. In the third and fourth lines the same quantities are shown but now

constrained to the baryonic number of the cold non-rotating case. If we further consider

that the angular momentum is conserved through the first seconds of the neutron star

evolution, the resulting allowed maximum frequencies and masses are showed in the

fifth and sixth lines. In the last case, the angular momentum is constrained by the cold

case.

The angular momentum is calculated through J = Iω taking into account the

deformation caused by rotation and the dragging of local inertial frames. Considering
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that the star is axially-symmetric and the neutrino emission on the neutron star is

axially-symmetric, angular momentum is conserved. This assumption is normally made

for the first seconds of the neutron star evolution [62, 74]. As the star cools down,

its maximum allowed radii and masses change (Tab. 4-1). This is compensated by the

rotational frequency of the star [57]. If the star is not axially-symmetric there will be

angular momentum loss during the cooling phase due to the emission of gravitational

waves. If the neutrino emission is not axially-symmetric there will be angular momentum

loss during the deleptonization process.

The Table. 5-1 shows that independent of including angular momentum conserva-

tion or not, during the first seconds of the evolution, there are some frequencies allowed

before, but not after deleptonization. In this case the star has to spin down in order to

remain stable. The stars with mass and frequency between the values of lines 1,2 and

3,4 can exist at the first stage but cannot continue cooling to the last stages. They

necessarily collapse to black holes during the process unless they accrete mass from

a companion. In this case the baryonic number would increase and higher maximum

masses would be possible. Gravitational collapse to black holes could be observed by

the sudden suppression of neutrinos coming from the star.



6 Hybrid Stars

Although the chiral model predicts a phase with partially restored chiral symmetry, the

only degrees of freedom present in the system so far are hadrons. In this chapter we

perform modifications to the chiral model in order to include quark degrees of freedom.

We introduce a mechanism that controls which particles are present at which density

through, among other things, the potential for the deconfinement order parameter.

This potential, originally developed to be used for lattice QCD at zero or low chemical

potential and high temperature, is modified to also be used in the limit of high chemical

potential and low temperature, relevant for neutron stars.

We use constraints from both limits and also knowledge of the phase diagram to

calibrate the model. With the model ready we can make calculations for any density

and temperature as for example heavy ion collisions or proto-neutron stars.

6.1 Motivation

The idea of quark stars was suggested for the first time by Itho in 1970 [75]. Since

then there were many advances in the field, especially with the development of QCD.

The models used to describe neutron stars nowadays can generally be divided into

two classes. The first class includes approaches in which the constituent particles are

hadrons [76, 77, 46]. Some of them incorporate certain symmetries from QCD, like

chiral symmetry, but they do not include deconfinement. Examples of these are hadronic

sigma models [12, 38, 78, 36]. The second class includes quark star models, which

usually do not directly incorporate hadronic degrees of freedom in the formulation.

Examples of these are bag-model studies [79] as well as quark-NJL model and quark

sigma-models [80].

Using these approaches hybrid neutron stars, which consist of hadronic and quark

phases, are normally described by adopting two different models with separate equations

of state for hadronic and quark matter (see e.g. [81]). They are connected at the

chemical potential in which the pressure of the quark EOS exceeds the hadronic one,
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signalling the phase transition to quark matter.

6.2 The Modified Model

Within our approach we employ a single model for the hadronic and quark phases. The

extension of the model to quark degrees of freedom is constructed in a spirit similar to

the Polyakov NJL model [82], in the sense that it is a non-linear sigma model that uses

the Polyakov loop Φ as the order parameter for deconfinement. This is a quite natural

idea, since the Polyakov loop is related to the Z(3) symmetry, that is spontaneously

broken by the presence of quarks. It is defined as a thermal Wilson line winding around

the imaginary time direction with periodic boundary conditions and it reads

Φ =
1

3
Tr[Pei

∫1/T

0
dτA4 ] =

1

3
Treiφ/T, (6.1)

where P denotes path ordering, A4 = iA0 is the temporal component of the SU(3)

gauge field and φ is the background color gauge field in which the quarks move. In a

convenient gauge (called Polyakov gauge) the matrix φ has a diagonal representation

φ = φ3λ3 + φ8λ8, (6.2)

which leaves only two independent variables, φ3 and φ8 that are necessarily real quan-

tities in order to sustain the unitarity of the group.

The conjugate of the Polyakov loop is

Φ∗ =
1

3
Tr[Pe−i

∫1/T

0
dτA4 ] =

1

3
Tre−iφ/T. (6.3)

At zero chemical potential Φ∗ = Φ due to the charge conjugation invariance. At finite

chemical potential Φ∗ is always higher than Φ and the difference is higher around

phase transitions [83]. For simplicity we consider Φ∗ = Φ for a first investigation of

the model.

The lagrangian density of the non-linear sigma model in mean field approximation

Eq. 2.63 becomes:

LMFT = LKin + Lint + Lscal + Lvec + LSB − U, (6.4)
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where the terms represent the kinetic energy term for hadrons, quarks, and leptons, the

interactions between baryons (and quarks) and vector and scalar mesons, the self in-

teractions of scalar and vector mesons and an explicitly chiral symmetry breaking term.

The Polyakov-loop potential U will be discussed in the following. Finite-temperature

calculations include the heat bath of hadronic and quark quasiparticles within the grand

canonical potential of the system.

The effective mass for the baryons is the same as in Eq. 2.68 except for an additional

term containing the Polyakov field Φ:

m∗
b = gbσσ + gbδτ3δ + gbζζ + δmb + gbΦΦ2. (6.5)

The effective mass for the quarks is analogously defined with δmu,d = 5 MeV and

δms = 150 MeV.

m∗
q = gqσσ + gqδτ3δ + gqζζ + δmq + gqΦ(1 − Φ). (6.6)

The Polyakov loop assumes non-zero values with the increase of temperature/density.

Due to its presence in the baryons effective mass and the high related coupling constant,

it suppresses the baryons at the referred limit. On the other hand, the Polyakov loop

presence in the effective mass of the quarks, included with a negative sign, insures that

no quarks will be present at low temperatures/densities.

The developed potential for the Polyakov loop U is

U = (a0T
4 + a1µ

4 + a2T
2µ2)Φ2 + a3T

4
0 ln (1 − 6Φ2 + 8Φ3 − 3Φ4). (6.7)

It is based on [84, 85] and adapted to include terms that depend on the chemical po-

tential, in order to reproduce the main features of the phase diagram at high densities.

The new coupling constants for the quarks are gqω = 0, gqφ = 0, gqρ = 0,

gqσ = −3.0, gqδ = 0, gqζ = −3.0, T0 = 200 MeV, a0 = 1.85, a1 = 1.44x10−3,

a2 = 0.08, a3 = 0.40, gNΦ = 1500 MeV and gqΦ = 500 MeV. They are chosen to

reproduce QCD lattice data, including a first order phase transition for pure gauge at

µ = 0 at T = T0 = 270 MeV, and known information about the phase diagram. This

includes a crossover for both chiral symmetry restoration and deconfinement to quark

matter at small chemical potential. For vanishing chemical potential the transition
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Figure 6-1: Order parameters for chiral symmetry restoration and deconfinement to
quark matter for symmetric matter at zero chemical potential.

temperature is 171 MeV, determined as the peak of the change of the chiral condensate

and the Polyakov loop (Fig. 6-1).

6.3 The Phase Diagram

The QCD phase diagram constructed using the model is shown in Fig. 6-2 for symmetric

as well as for star matter. The transition from hadronic to quark matter is a crossover

for small chemical potentials. Beyond the critical end-points, situated at µc = 354 MeV

and Tc = 167 MeV for symmetric matter (in accordance with [86]) and at µc = 371

MeV and Tc = 166 MeV for star matter, a first order transition line for deconfinement

begins. The critical temperatures for chiral symmetry restoration coincide with the

ones from deconfinement. Each phase contains hadrons and quarks in higher or lower

quantity except for the zero temperature case, in which there is no mixing. For star

matter the first order transition line ends up at the zero temperature axis at µB =

1345MeV, that is equivalent to four times saturation density.
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Figure 6-2: Phase diagram. The lines represent first order transitions for symmetric
and star matter. The circles mark the respective critical end-points.

Since the model is able to reproduce nuclear matter saturation at realistic values

for the saturation density, nuclear binding energy, as well as as compressibility and

asymmetry energy, we calculate the nuclear matter liquid-gas phase transition. It has

a critical point at µc = 909 MeV and Tc = 16 MeV.

In order to reproduce heavy ion collision conditions, two new features are included.

The first one are mesons, pions and kaons, that are largely produced at high tem-

peratures and small chemical potentials due to their small masses. For simplicity they

are taken in this first approach as having constant mass. The second feature is the

inclusion of a strange chemical potential in order to conserve strangeness
∑

i QSi
= 0.

It modifies Eq. 4.5 to

µi = QBiµB + Qi(µνe
− µe) + Qlei

µνe
+ QSi

µS. (6.8)

The chemical potentials for the quarks are

µu =
1

3
µB −

2

3
µe, (6.9)
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µd =
1

3
µB +

1

3
µe, (6.10)

µs =
1

3
µB +

1

3
µe − µS, (6.11)

where µe is nonzero only for star matter.

6.4 Hybrid Stars

For hybrid star calculations the new features included to obtain the phase diagram are

not relevant. At very high chemical potential the production of baryons dominates over

the mesons and on the long time scale of neutron stars strangeness is not conserved. At

this point, only the last stages of the cooling are considered, when the star is already

cold and deleptonized, so the neutrino chemical potential is zero and the leptonic

number is not conserved. There are two different options for how to proceed with the

quantities that are conserved at the phase transition.

6.4.1 Local charge neutrality

The first option is to consider that both hadronic and quark phases are separately in

beta equilibrium and charge neutrality. This procedure is called Maxwell construction

and the charge neutrality is said to be local. As a consequence of that, the transition

is quite sharp as seen in Fig. 6-3 for zero temperature.

At the chemical potential of the phase transition, the Polyakov loop increases its

value showing the deconfinement to quark matter. The chiral symmetry restoration,

that in the absence of deconfinement was a smooth crossover, has a first order transition

in this case. The connection is established in the dynamics of the system especially due

to the shape of the potential for the Polyakov loop that contains a logarithm term [87].

The small increase in the value of the chiral condensate during the transition comes

from the smaller quark baryon number (1/3) compared to the baryonic one.

The effective masses of baryons and quarks show the strict relation between these

quantities (Eq. 6.5 and 6.6) and the order parameters responsible for the dynamics

of the model (Fig. 6-4). In spite of taking into account all hyperons, the presence of

most of them is suppressed by the appearance of quarks. In fact the only one present
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Figure 6-3: Order parameters for chiral symmetry restoration and deconfinement to
quark matter for star matter at zero temperature.

in the hybrid star is the Λ. The population in the hybrid star is shown in Fig. 6-5.

The density of electrons and muons is significant in the hadronic phase but not in

the quark phase. The reason for this behavior is that because the down and strange

quarks are also negatively charged, there is no necessity for the presence of electrons

to generate charge neutrality, and only a small amount of leptons remains to assure

beta equilibrium. The strange quarks appear after the other ones and do not make

substantial changes in the system.

Hybrid stars are calculated using the EOS obtained from the model in the TOV

equations. The solutions for hadronic (same model but without quarks) and hybrid

stars are shown in Fig. 6-6, where besides our equation of state for the core, a separate

equation of state was used for the crust [44]. The maximum mass supported against

gravity in our model is 2.1M⊙ in the first case and around 2.0M⊙ in the second.

Because the equation of state for the quark matter is much softer than for hadronic

matter, the star becomes unstable right after the central density is higher than the

phase transition threshold.



76 Chapter 6: Hybrid Stars

1000 1200 1400 1600
µ

B
 (MeV)

0

500

1000

1500
M

 *
 (

M
eV

)
p,n
Λ
u,d
s

Figure 6-4: Effective mass of baryons and quarks for star matter at zero temperature.

6.4.2 Global charge neutrality

There is another option to consider for the phases in the hybrid star, called Gibbs

construction [88]. If, instead of local, we consider global charge neutrality, meaning

that the phases together have to be neutral, there is a mixture of phases at zero

temperature. This possibility changes the particle densities in the coexistence region

making them appear and vanish in a smoother way (Fig. 6-7). The mixed phase extends

through a couple of kilometers of the star.

The maximum mass allowed for the star is slightly lower in the global charge

neutrality case compared to the local one, as can be seen in the dotted line in Fig.

6-6. This possibility allows stable hybrid stars, but with a small amount of quarks. The

mixed phase constitutes the inner core of the star up to a radius of about 2 km and

there is no pure quark phase.
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Figure 6-5: Population for star matter at zero temperature using local charge neu-
trality

6.5 Degrees of Freedom

During the phase transition, the change in degrees of freedom change the entropy,

which is proportional to the logarithm of the number of microscopic configurations

available to the system. We can make a simple estimate of the entropy change for a

non-interacting gas of massless fermions. In this case the pressure is

PF =
gF

(2π)3

1

3

∫

d3k k

[

1

e(ki−µi)/T + 1
+

1

e(ki+µi)/T + 1

]

, (6.12)

where particles as well as antiparticles are included and gF is the degeneracy factor for

fermions. Expanding the expression we obtain

PF =
7π2

360
gFT

4 +
1

24π2
gFµ

4 +
1

12
gFT

2µ2. (6.13)
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Figure 6-6: Mass-radius diagram for hadronic and hybrid stars at zero temperature.

For bosons the expression for pressure is analogous but we don’t take anti-particles

into account

PB =
gB

(2π)3

1

3

∫

d3k k
1

e(ki−µi)/T − 1
, (6.14)

where gB is the degeneracy factor for bosons. Expanding the expression and using only

the leading order terms we obtain

PB =
π2

90
gBT4 −

1

48π2
gBµ4 +

1

12
gBT2µ2. (6.15)

The total pressure is the sum of the pressures from the fermions and bosons PT =

PF + PB. The total entropy per baryon is calculated from

s =
S

VρB

=
∂P/∂T

∂P/∂µ
. (6.16)

It is important to remember that in this model there is a contribution of the gluons,

through the Polyakov loop to the entropy and baryon density. These contributions

come from the Polyakov potential. They represent color bound states and mimic extra
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Figure 6-7: Population for star matter at zero temperature using global charge neu-
trality.

possible states, as for example the contribution of higher resonances. These loops

change with the particle-antiparticle symmetry, related to the chemical potential, and

the temperature. Taken the derivative of the pressure with respect to temperature and

chemical potential results in

s =
π2

15
(7/2gF + 2gB)T3 + (1/2gF + 1/2gB)µ2T

1
π2 (1/2gF − 1/4gB)µ3 + (1/2gF + 1/2gB)T2µ

, (6.17)

which simplifies for µ >> T to

s = π2 gF + gB

gF − 1/2gB

T

µ
. (6.18)

For a system of hadrons we replace the degeneracy factor gB by zero. The resulting

entropy per baryon is s = π2T
µ
. For a system of quarks and gluons we replace the

degeneracy factor gF by 2NcNf, where 2 counts for spin ±1/2, Nc for the number

of colors and Nf for the number of quark flavors, and the degeneracy factor gB by
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Figure 6-8: Entropy profile for star matter at fixed temperatures.

2(N2
c − 1), where 2 accounts for the different polarizations. The resulting entropy per

baryon is s = 7π2T
µ

for Nc = 3 and Nf = 2. The entropy in the quark phase is, in this

simple approach, seven times the entropy in the hadronic phase.

6.6 Isotherms and Isentropes

As already discussed in chapter 4, neutron stars are not cold but have temperature

up to tens of MeVs. Considering constant temperature hybrid stars is equivalent to

looking at horizontal lines in the phase diagram 6-2. During the phase transition there

is a jump in entropy shown in Fig. 6-8. In the quark phase it increases to approximately

three times its value in the hadronic phase. This value has the same order of magnitude

as the simple estimate from the last section, but is different due to corrections coming

from finite masses and interactions.

Considering fixed entropy per baryon instead of temperature, which is a more real-

istic approach as already shown in chapter 4, is equivalent to looking at diagonal lines

in the phase diagram. In this case, during the phase transition there is a jump in tem-
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Figure 6-9: Temperature profile for star matter at fixed entropies.

perature (Fig. 6-9). The temperature reduces in the quark phase to approximately one

third of its value in the hadronic phase. The small decrease of the temperature before

the phase transition shows the appearance of quarks, that constitute new degrees of

freedom, in the “hadronic phase”. As already mentioned, the only case where there is

a pure hadronic phase and a pure quark phase is at zero temperature.

If instead of local we require global charge neutrality, the results are qualitatively

the same. The jump in entropy/temperature is smoother but the entropy still increases

in the first case and the temperature still decreases in the second case during the phase

transitions. Because this model only allows for stable hybrid stars with mixed but not

pure quark phase the results for stellar maximum masses and radii are similar to the

ones for neutron stars. Consequently the constraints coming from cooling don’t change

significantly in the modified chiral model compared to the one showed in the previous

chapters.
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7 Conclusion and Outlook

We used an extended SU(3) version of the sigma model adopting the non-linear re-

alization of chiral symmetry to study neutron stars. Firstly, we changed the original

couplings and parameters from the original model [12]. Choosing between the possi-

ble chiral invariants for the self interaction of the vector mesons, we concluded that

the one without mixing between the vector-isoscalar and the vector-isovector mesons

allows more massive neutron stars. Applying the mean-field approximation and solving

the TOV equations for charge neutral matter in beta equilibrium we obtained high

neutron star maximum masses even for stars containing higher degrees of freedom, as

hyperons or higher resonances. Although the new degrees of freedom make the EOS

softer, the star maximum masses are still above the limit of 1.74M⊙ [48]. In practice,

the only baryons present in the star besides the nucleons are the Λ and Σ− in the first

case and Λ and ∆−,0,+,++ resonances in the second case. We choose to proceed with

our calculations including the baryon octet but not the spin 3/2 baryonic decuplet, in

order to avoid uncertainties in the meson couplings to these particles. The couplings

of the hyperons were fitted to the depth of their potentials.

Through the analysis of the related order parameter, we saw that the chiral sym-

metry begins to be restored inside neutron stars. The transition is a smooth crossover

for any possible coupling, composition or temperature. Although the chiral condensate

decreases its value, thereby decreasing the masses of the baryons, it does not go to

zero, which is a consequence of the shape of the potential of the scalar mesons.

In order to model proto-neutron stars, we included finite temperature and trapped

neutrinos in the model. Finite-temperature calculations included the heat bath of

hadronic quasiparticles within the grand canonical potential of the system. Different

schemes were considered, with constant temperature, metric dependent temperature

and constant entropy, the latter one being the most realistic approach. In this case the

temperature increases substantially with density reaching 50 MeV in the core of the

star. While the rise in temperature increases the respective neutron star mass, due to

thermal effects on the binding part of it, the presence of neutrinos decreases it.
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The neutrino chemical potential was introduced by fixing the lepton number. It also

controls the amount of electrons and protons (for charge neutrality), and the higher the

amount of protons in the star compared to neutrons, the lower is the Fermi energy. The

balance between these two features is delicate and influenced mainly by the baryonic

number conservation. Fixing the baryon number to the one allowed in the first stage

of the cooling created constraints on the maximum masses allowed for neutron star in

the last stage, the deleptonized cold star. Following this procedure, we concluded that

the maximum mass of the stars decreased with time.

The inclusion of rotational effects allowed more massive neutron stars, although

this effect was not very substantial due to the baryon number constraint. While a star

accreting mass from a companion could increase its mass due to rotation by 15%,

an isolated star could only gain 5%. If a second constraint was made on the angular

momentum during the cooling, instability windows showed up. Fast rotating stars with

high baryon number can exist but cannot stably spin down. They necessarily collapse

to black holes.

The model was modified to include quark degrees of freedom. The Polyakov loop

was used as the order parameter for deconfinement. We fitted its potential and coupling

constants in order to reproduce, besides lattice QCD results, neutron star properties.

We did that by introducing a new dependence on the chemical potential in the Polyakov

potential. With this we were able to obtain the QCD phase diagram with a crossover

region and a first order transition line separated by a critical point. The critical point was

situated at µBc = 354 MeV and Tc = 167 MeV for symmetric matter (in accordance

with [86]). The critical temperatures for chiral symmetry restoration coincided with

the ones from deconfinement. Each phase contained hadrons and quarks in higher or

lower quantity but for the zero temperature case, in which there was no mixing for any

density. For star matter the first order transition line ended at the zero temperature

axis at µB = 1345MeV, that is equivalent to four times saturation density.

We calculated hybrid stars using local charge neutrality. In this approach the stars

became unstable right after deconfinement. In a second approach we used global charge

neutrality. It generated stable stars that contained a mixed phase of hadrons and quarks

but no pure quark phase. The mixed phase occupied the inner 2 km of the star. The

maximum masses and radius of the hybrid stars did not differ much from the neutron

stars.
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Considerations of finite temperature and entropy in hybrid stars were done with local

charge neutrality. They showed a jump in the temperature during the phase transition. If

we had used global charge neutrality instead, the results would be qualitative the same.

The jump in temperature would have been smoother but the temperature would still

have decreased in the quark phase compared to the hadronic one. Because this model

only allowed stable hybrid stars with mixed but not pure quark phase the constraints

coming from cooling did not change significantly compared to the model showed in

the first chapters.

With the modified chiral model working, in the future we intend to study different

couplings of the Polyakov loop to the effective mass of the baryons and quarks to verify

if there is a possibility of obtaining hybrid stars with pure quark matter. In this case

it would be interesting to see how the phase transition to deconfined matter affects

the cooling of the star. For example, the measurement of the braking index, related to

the change in the angular velocity of the star, could give experimental evidence for a

phase transition to deconfined matter inside hybrid stars [89, 90].

We also want to investigate the effect of the Polyakov loop when it is not equal to

its conjugate Φ∗ 6= Φ. This might have interesting effects at high chemical potential.

Another possibility is the investigation of the effect of the introduction of a color

chemical potential in the model in order to conserve color neutrality. As suggested by

[91, 92], the Wilson lines couple to each color with a different weight, making the

energy required to populate red and green quarks different from the one to populate

the blue ones. This might change the temperature for deconfinement and the position

of the critical point.

A major advantage of our work compared to other studies of hybrid stars is that

because we have only one equation of state for different degrees of freedom we can

study in detail the way in which chiral symmetry is restored and the way deconfinement

occurs at high temperature/density. Since the properties of the physical system, as for

example the density of particles in each phase, are directly connected to the Polyakov

loop it is not surprising that we obtain different results in a combined description of

the degrees of freedom compared to a simple connection of two separate equations of

state.

Since the model additionally shows a realistic structure of the phase transition over

the whole range of chemical potentials and temperatures as well as phenomenologically
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acceptable results for saturated nuclear matter, this approach presents an ideal tool for

the study of ultrarelativistic heavy-ion collisions. The use of the EOS of the modified

chiral model in hydrodynamic calculations showed values for observables such as the

speed of sound vc and the V1, related to the anisotropy of the system, in accordance

with heavy-ion collision measurements. Calculations along this line are in progress [93].
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Hadronic Multiplets
Scalar, vector and baryonic matrices with Lorentz index suppressed

X =







δ0+σ√
2

δ+ k+

δ− −δ0+σ√
2

k0

k− k̄0 ζ






(8.1)

V =









ρ0
0+ω√

2
ρ+

0 k∗+

ρ−
0

−ρ0
0+ω√
2

k∗0

k∗− k̄∗0 φ









(8.2)

B =









Σ0
√

2
+ Λ0

√
6

Σ+ p

Σ− − Σ0
√

2
+ Λ0

√
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n

Ξ− Ξ0 −2Λ0
√

6


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