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Abstract: Supernovae are known to be the dominant energy source for driv-
ing turbulence in the interstellar medium. Yet, their effect on magnetic field
amplification in spiral galaxies is still poorly understood. Analytical models
based on the uncorrelated-ensemble approach predicted that any created field
will be expelled from the disk before a significant amplification can occur. By
means of direct simulations of supernova-driven turbulence, we demonstrate
that this is not the case. Accounting for vertical stratification and galactic
differential rotation, we find an exponential amplification of the mean field on
timescales of 100 Myr. The self-consistent numerical verification of such a “fast
dynamo” is highly beneficial in explaining the observed strong magnetic fields
in young galaxies. We, furthermore, highlight the importance of rotation in the
generation of helicity by showing that a similar mechanism based on Cartesian
shear does not lead to a sustained amplification of the mean magnetic field.
This finding impressively confirms the classical picture of a dynamo based on
cyclonic turbulence.

Kurzzusammenfassung: Supernovae sind bekanntermaßen die dominante
treibende Energiequelle für Turbulenz im interstellaren Medium. Dennoch
ist ihre Auswirkung auf die Verstärkung von Magnetfeldern in Spiralgalaxien
weitestgehend unverstanden. Analytische Modelle, die auf der Annahme eines
unkorrelierten Ensembles beruhen, sagen voraus, dass das erzeugte Feld aus der
galaktischen Scheibe herausgedrängt wird bevor eine substantielle Verstärkung
erfolgen kann. Mithilfe numerischer Simulationen supernovagetriebener Tur-
bulenz zeigen wir, dass dies nicht der Fall ist. Unter Berücksichtigung einer
vertikalen Schichtung und differentieller galaktischer Rotation beobachten wir
eine exponentielle Verstärkung des mittleren Magnetfeldes auf einer Zeitskala
von 100 Mio. Jahren. Diese selbstkonsistente numerische Bestätigung eines
“schnellen Dynamos” erlaubt es, die beobachteten starken Magnetfelder in
jungen Galaxien zu erklären. Darüberhinaus stellen wir die Wichtigkeit der
Rotation bei der Erzeugung von Helizität heraus, indem wir zeigen, dass ein
ähnlicher Effekt basierend auf kartesischer Scherung nicht zu einer Verstärkung
des mittleren Magnetfeldes führt. Dies bestätigt eindrucksvoll das klassische
Bild zyklonischer Turbulenz.

Cover illustration: Volume rendering of the
mass density for model F4–BOX, showing the
dense filaments and cavities created by super-
nova explosions. Image produced by VAPOR
(www.vapor.ucar.edu).
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Chapter

1
Astrophysical Context

1.1 Introduction

The modern world cannot be imagined without electromagnetic fields. Yet, the common
notion of “magnetism” is still very much attached to the picture of small black ferromagnets
– a picture that is completely adverse to the highly dynamical nature of magnetic fields
throughout the cosmos.

In 1877, Werner von Siemens received a patent for his so-called “dynamo-electric ma-
chine”, a generator which worked without such permanent magnets. Instead, it received its
magnetic field from a dynamical amplification mechanism powered by the very current it
produces. Due to the inherent feedback loop, the machine could be seeded from the residual
magnetisation of its coils, making the expensive permanent magnets redundant. Only 42
years later, in 1919, Sir Joseph Larmor proposed that a similar mechanism, based on electro-
magnetic induction, might be responsible for the magnetic field of the sun. Today, dynamo
theory is successfully applied to a wide range of celestial bodies (Rüdiger & Hollerbach, 2004)
and can well explain the ubiquitous magnetic fields in planets, stars, accretion disks, and even
galaxies. Very much like in the electric generator, the fundamental mechanism in a dynamo
is the conversion of mechanical energy into magnetic energy. In this respect, the galactic dy-
namo poses a very special implementation of such a device: since the kinematic structure as
well as the magnetic field topology are directly observable, it embodies an exciting challenge
for dynamo theory.

1.1.1 Galactic magnetic fields – the observer’s account

It is now 60 years since the first observations of galactic magnetic fields, which were based
on the polarisation of starlight. The effect was independently detected by Hiltner (1949)
and Hall (1949) – the results were in fact published on consecutive pages in the same issue
of Science. Davis & Greenstein (1949), in the same year, explained this polarisation by the
alignment of elongated interstellar dust grains in an external magnetic field. Apart from the
polarisation of background sources, these grains also emit polarised infrared radiation. Like
Zeeman splitting, which requires stronger fields, these methods are mainly used within the
Milky Way, but are not sensitive enough to obtain good measurements for distant galaxies.

The most powerful method to map galactic fields in external galaxies is the synchrotron
emission from the relativistic electron component within the interstellar plasma. These so-
called cosmic rays (CRs) are believed to be accelerated in the shocks of supernova remnants

1



2 CHAPTER 1. ASTROPHYSICAL CONTEXT

Figure 1.1: Magnetic spi-
ral arms of the ringed galaxy
NGC 4736 (Chyży & Buta,
2008). Polarised intensity
contour map at 8.46 GHz
with observed magnetic field
vectors of the polarisation
degree overlaid on the Hα
image (from Knapen et al.,
2003). Figure courtesy of
K.T. Chyży.

and in protostellar jets. Under the influence of the Lorenz force, the electrons spiral around
the magnetic field lines and produce the characteristic polarised emission that can be observed
with radio telescopes. Because the energetic electrons are distributed over a wide spectrum,
this emission can be found over a wide range of radio frequencies. Whereas the intensity of
the total emission primarily is a measure for the column density of the cosmic rays, it can
be translated to a magnetic field strength (of the total field) via the assumption of energy
equipartition between the two components.

The degree of polarisation is interpreted as a measure of the field regularity, i.e., strong
polarisation implies large-scale coherent fields. Field structures on angular scales below the
beam size will, in turn, lead to a depolarisation of the signal – an indication of dominant
small-scale fields. From the emission process, the orientation of the observed polarisation
vectors is perpendicular to the magnetic field lines, or more precisely, to their projection
onto the plane of the sky. The observed orientation of the signal is, however, modified by
the additional effect of Faraday rotation. On its passage through the magnetised plasma,
the linear polarisation vector of the electromagnetic wave is subject to a rotation which is
proportional to the line-of-sight component of the magnetic field. The origin of this effect lies
in the different effective refraction index for the left- and right-handed circularly polarised
waves.

Although this complication, at first, might seem tedious to deconvolve, it can in fact be
used as a further source of information. This is because the amount of Faraday rotation
depends on the wavelength of the radiation as λ2. With multiband observations over a wide
range of radio frequencies, it thus becomes possible to measure the direction and amplitude of
the regular field component along the line-of-sight. Because the orientation of the polarisation
vector alone is always ambiguous by 180◦, the additional effect from Faraday rotation is
also helpful to address questions with respect to the overall parity of the observed regular
fields. Although there is the possibility to develop a “tomography” based on this effect, the
sensitivity and resolution of the current instrumentation is still insufficient to create three-
dimensional maps of galactic magnetic fields. With powerful facilities under construction
(Low Frequency Array, LOFAR) and in the design phase (Square Kilometre Array, SKA),
the near future awaits a drastic leap ahead (Beck, 2008a,b).
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Figure 1.1 shows a state-of-the-art radio observation of the magnetic field within the
nearby ringed galaxy NGC 4736 (Chyży & Buta, 2008). This particular case is in so far
remarkable, as the magnetic field shows a distinct spiral pattern emerging at the very centre
of the disk and extending far beyond the ring structure of the gas distribution. Unlike
expected under the assumption of passively advected magnetic fields, the field lines do not
follow the disk structure, but cross the inner ring at a remarkably high pitch angle of 35◦.
Together with the high field strength of 30 and 13µG in the total and regular magnetic
field, respectively, this lends strong support in favour of the presence of an efficient dynamo
mechanism (Chyży & Buta, 2008).

In this example we have already encountered some of the central observational findings
dynamo theory has to be confronted with: (i) field amplitudes of several 10 µG – created
within a lifetime of a few Gyr, (ii) considerable pitch angles of up to 35◦, (iii) a characteristic
ratio of the regular field over the turbulent field – varying as a function of star formation
activity, and (iv) an even, i.e., quadrupolar, symmetry with respect to the galactic plane.
The latter assumption is based on observation of halo fields in nearby edge-on galaxies (see
e.g. Dumke et al., 1995).

Because the interstellar medium has long been known to be in a highly turbulent state,
it is expected that also the mechanism relevant for the field amplification is closely related to
the turbulence. The very hypothesis of a large-scale coherent field emerging out of unordered
motion poses a compelling example for the self-organisation of a chaotic system. Before we
proceed with the analysis of the dynamo process itself, we thus want to briefly introduce the
setting of this galactic spectacle.

1.1.2 Interstellar turbulence

The interstellar medium (ISM) is an extremely diluted, turbulent gas which fills the otherwise
void space between the stars (see Ferrière, 2001, for a review). Due to the vast multitude
of important physical processes, the ISM has an extremely rich and heterogeneous structure
(Spitzer, 1978). As the most prominent feature, a thermal cooling instability (TI) leads to
the formation of compact, cold atomic H- and molecular H2-clouds (20–100K) which are
enclosed by a diffuse, hot plasma (106 K). Enriched with dust grains and cosmic rays, the
interstellar cocktail is permanently stirred by supernovae (SNe), stellar winds and protostellar
jets.1 With an estimated rate of two per century, for our own Galaxy, supernova explosions
are commonly perceived as extremely rare events. Albeit two per century is a high number
on cosmic timescales, we will never observe the related turbulent motions with our own eyes.
Yet, the “time-lapse” animations of our simulation runs nicely illustrate the vigorous driving
caused by the ubiquitous explosions and one can gain an intuitive feeling for the vibrant
dynamics of the flow.

Based on the observed light-curves and chemical abundances, supernovae have originally
been classified into type I and type II events. Later, this classification has been refined
and subtypes have been introduced for the first type. With respect to the kinetic feedback
from SNe, the exact mechanism leading to the explosion is unimportant, and we are mainly
interested in the spectral class of the stellar progenitor. If we, in the following, speak of
“type I” SNe, we implicitly mean type Ia, corresponding to, e.g., pair SNe in common envelope
binary systems. Accordingly, “type II” means type II including type Ib/Ic. These events have
their common origin in massive OB stars. The main characteristics of O and B stars is that
they form in stellar associations of 10–100 objects. Due to their high mass, these stars
evolve rapidly and have a short main sequence lifetime during which the OB association
will not disperse significantly. In turn, the occurring type II SNe are highly correlated both

1For estimations of the expected energy inputs from the various possible sources see Section C in Mac Low
& Klessen (2004).
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in space and time and form what is known as a super-bubble (SB). As we will see later,
this morphological difference can drastically change the way in which the SNe structure the
interstellar medium.

The estimated thermal energy input due to a single supernova is 1051 erg – this is only
about four orders of magnitude less than the turbulent energy contained in the interstellar
medium of the whole Milky Way. A high fraction of this energy is directly converted into
kinetic energy by the rapid expansion of the remnant. It is believed that a certain fraction of
the SN energy is deposited in the form of cosmic ray electrons. Based on the high diffusivity
of the electron gas, Parker (1992) suggested that the cosmic ray pressure can give rise to
a buoyancy instability. It has, however, been argued that even in equipartition the kinetic
influence of the CR component is not necessarily significant (Snodin et al., 2006).

Although the ISM makes up for only about five percent of the baryonic matter content
within the Galaxy, it plays an essential role as the carrier of the magnetic field, i.e., the mag-
netic flux within the plasma exceeds the flux from the stars by many orders of magnitude.
Interstellar magnetic fields are believed to be of some importance for star formation theory
– not in the classical picture of magneto-static support, but rather as a modifying agent for
the gravoturbulent fragmentation and the subsequent protostellar collapse (see Mac Low &
Klessen, 2004, for a recent account). Magnetic tension forces can, e.g., efficiently redistribute
angular momentum and thus initiate or enhance local collapse. Due to their assumed impor-
tance for the dynamics of turbulent flows, magnetic fields might also affect the slope of the
turbulent cascade. The self-similar nature of the turbulent inertial range, in turn, is thought
to be a key parameter for the determination of the core mass function and, ultimately, the
initial mass function (IMF) of the stellar population.

1.2 Field amplification in spiral galaxies

The discussion about the origin of the observed galactic fields is divided into two major schools
of reasoning: While dynamo theory argues that large scale fields are due to a dynamic process
(contemporary field), the opposing standpoint is based on a frozen-in field stemming from
the formation of the galaxy (primordial field). The main argument against the latter comes
from the observed high values of the turbulent diffusivity (∼ 1026 cm2s−1) which would lead
to a decay of any ordered magnetic field component within about 0.7 Gyr (Rohde, Elstner &
Rüdiger, 1998). To overcome this diffusive process astrophysicists seek for an adequate source
for the production of magnetic field (see e.g. Beck et al., 1996, for an extensive review).

1.2.1 General considerations

Undoubtedly, the generation of the azimuthal field can be explained by differential rotation
which is the dominating galactic flow pattern. Any radial field will be instantly sheared
out into the azimuthal direction, thereby converting kinetic to magnetic energy. Neglecting
diffusive processes, this mechanism would in principle work until the field itself is strong
enough to counteract the differential rotation, i.e., until a substantial amount of angular
momentum is redistributed via the Rφ-component of the Maxwell stress tensor. In reality,
the amplification through shear will only be transient, and decay will occur long before
equipartition is reached. This is because the winding-up in the azimuthal direction inherently
increases the wavenumbers of the radial structures making them susceptible to dissipative
processes. In general, we can say that differential rotation alone does not lead to a sustained
amplification of the galactic magnetic field. Apart from this, observations indicate large pitch
angles for the magnetic field, i.e., the direction of the magnetic field lines deviates strongly
(up to 35◦) from the direction of the velocity field. To explain these large angles one clearly
needs a robust mechanism to regenerate the radial field (Elstner, 2005).
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The generation of a mean magnetic field from turbulent fluctuations can be explained via
the so-called α effect (Krause & Rädler, 1980), which parameterises the correlations of the
small-scale turbulent velocity u′ and the magnetic field B′, giving rise to a mean electromotive
force E = u′×B′. In the case of homogeneous, isotropic turbulence, it can be shown that the
EMF is directly linked to the kinetic helicity u′·(∇×u′) of the turbulent flow. Generally, only
a flow that exhibits some sort of asymmetry can produce a non-vanishing helicity and thus
contribute to the induction equation. In the case of the ISM, there are three characteristics:
(i) the axis of rotation, (ii) the galactic shear gradient, and (iii) the vertical gradient in density
and turbulence intensity.

The first contribution is embodied in the Coriolis force, which will give uprising turbulent
eddies a definite skewness, i.e., the turbulence becomes cyclonic. In connection with the
vertical stratification, this leads to a non-zero mean kinetic helicity, which will, in turn,
produce the desired poloidal magnetic field component. As we will see from our simulations,
this term is essential for the SN-driven galactic dynamo to operate.2

The effect of the shear is twofold: Although it cannot lead to a dynamo itself, it couples
the radial field to the azimuthal direction, thus preparing half of the dynamo loop. Moreover,
the huge reservoir of kinetic energy stored in the differential rotation provides a potential ad-
ditional power source for the dynamo. The coupling between a (weak) turbulent α mechanism
and (strong) shear is commonly referred to as αΩ dynamo. Since this type, however, is char-
acterised by vanishingly small pitch angles, we prefer to speak of an α2Ω dynamo, where both
effects give contributions of the same magnitude.

The role of the third term, which is responsible for the so-called diamagnetic pumping
(Kitchatinov & Rüdiger, 1992), has been interpreted in two diametrical ways – yet, with rather
similar implications. As would be expected from intuition, the pumping is always directed
towards the less turbulent regions (cf. Rüdiger, Elstner & Schultz, 1993). Therefore, if one
assumes a profile of the turbulent velocity which decreases with z, the pumping will lead to
an expulsion of the generated field into large galactic heights, counteracting its production. A
profile of the turbulent velocity that increases with galactic height can, on the other hand, be
justified from considerations based on the observed density stratification (Fröhlich & Schultz,
1996). In this case, the pumping will be directed inward, which implies that the magnetic
field will be compressed in the disk midplane. Although this may seem beneficial, at first
glance, too strong pumping will confine the field to a smaller and smaller region around the
midplane. Similarly to the folding of radial structures in the case of dominant shear, this
implies sharp vertical gradients in the magnetic field, and hence a considerable source of
dissipation. The admissible strength of pumping that allows for dynamo solutions has been
explored by Schultz, Elstner & Rüdiger (1994).

We conclude that it is crucial to determine the mutual strength of the terms arising from
(i) and (iii) to answer the question whether a galactic dynamo may operate. Furthermore,
the interplay between the effects due to (i) and (ii) will determine the pitch angle that can
be obtained by the dynamo process. These two questions are also tightly related to the
saturation mechanism. Depending on which of the processes reaches its saturated state first,
the properties of the dynamo might drastically change in the quenched regime.

1.2.2 Mean-field models

Irrespective of the underlying physics, one can simply apply a closure to the mean-field in-
duction equation in the form of an α prescription3. Although this approach is inherently

2Note that rotation is also an essential ingredient for the magneto-rotational instability, which depends on
the interaction of the Alfvénic mode with epicyclic oscillations (cf. Fricke, 1969).

3Although based on the same concept, this dynamo α shall not be confused with the famous viscosity
parameter introduced by Shakura & Syunyaev (1973).
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limited in its predictive power, it can already reproduce many of the observed features of the
galactic field and its topology. Rohde & Elstner (1998), for example, study three-dimensional
dynamos with a prescribed, vertically stratified velocity dispersion. Apart from the stratifi-
cation, the turbulence intensity is assumed to increase in the spiral arms. The antisymmetric
off-diagonal part of the α tensor constitutes a diamagnetic pumping term γdia ∝ −τc∇〈u′2 〉,
as well as a buoyancy term γbuo ∝ τc 〈u′2 〉 ∇ log %. While these pumping terms, like the
turbulent diffusivity ηT ∝ τc 〈u′2 〉, scale linearly with the correlation time τc, the diagonal
components, which comprise the dynamo effect, scale with Ωτ2

c . This implies that, at a suf-
ficiently high correlation time, the dynamo mechanism becomes strong enough to overcome
the diffusive and advective loss terms. With a powerful α effect, one can thus easily explain
the observed high pitch angles. In addition, the lower level of diffusivity in the inter-arm
regions leads to stronger regular fields there.

Albeit this finding is in agreement with radio observations, the increased velocity disper-
sion in the spiral arms is not (Beck et al., 1996). Therefore, in a refined approach, Rohde, Beck
& Elstner (1999) apply a uniform velocity dispersion in connection with a correlation time τc,
which is now assumed to vary with the spiral pattern. The new model does again explain the
stronger inter-arm fields, although now based on assumptions compatible with observations.
This example, to some extent, demonstrates what is meant with “limited predictive power”:
a conclusion is only as good as the weakest assumption it is based on. Moreover, a model
relying on an unjustified premise can still lead to a correct prediction – but what is the value
of this prediction, then?

The dynamo models presented so far are largely based on the analytical description derived
within the quasilinear framework (e.g. Rüdiger, 1990). As a complement to this paradigm
(which generally does not depend on SNe as a driving mechanism) the mean-field models of
Ferrière & Schmitt (2000) are founded on a simplified treatment of single supernova explosions
as developed by Ferrière. These two very different approaches to the derivation of closure
parameters by means of analytical considerations shall be briefly introduced in the following
sections.

1.3 Analytical derivations

To strengthen the predictive power of large eddy simulations (LES) based on a turbulence
model one usually aims to derive the free parameters of the theory from empirical data.
Unlike in classical turbulence modelling, in the case of mean-field MHD it is, however, not
possible to directly obtain the closure parameters from laboratory experiments. In the absence
of empirical grounds, and before simulations became affordable to replace experiments, the
coefficients had to be derived analytically on the basis of plausible assumptions; the only aid
to this being crude observations of column densities and turbulent velocity dispersions.

1.3.1 Second order theory

Although the so-called second order correlation4 approximation (SOCA) has its origins in the
analytical treatment of the solar dynamo (Steenbeck, Krause & Rädler, 1966), it is sufficiently
general to be applied to any kind of cyclonic turbulence. The basic idea behind SOCA is
to obtain E = u′×B′ for a prescribed velocity field u′ from the time integrated induction
equation for B′ (cf. Sec. 4.2). This only becomes possible by neglecting the terms quadratic
in the fluctuations (cf. Ch. 3 in Krause & Rädler, 1980) – hence the name. Although the
formal assumptions on the underlying turbulence are very restrictive, it turns out that SOCA
expressions give reasonable predictions, even when some of the prerequisites are not fulfilled.

4sometimes also referred to as first order smoothing approximation (FOSA)
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This applies, e.g., to the required limit of small Strouhal numbers, St = τc u′/lc � 1, with a
correlation time and length τc and lc, respectively.

Since SOCA theory only depends on the underlying small-scale flow structure, its pre-
dictions can be directly checked from a comparison with simulations. In general, the scheme
is derived in the spectral decomposition of the velocity field u′; however, for the sake of
giving explicit expressions, authors usually assume turbulence with a single scale and apply
mixing-length theory. In this case, the only free parameter, when comparing the results to
simulations, is the coherence time τc of the turbulent flow field.

General SOCA results for homogeneous, isotropic turbulence demonstrate that the dy-
namo effect is strongly related to the kinetic helicity u′ · ∇×u′, and the turbulent diffusion
scales with the velocity u′2. Another basic result, which can be understood intuitively, is the
fact that the turbulent transport (the so-called diamagnetic pumping) follows −∇u′. Tak-
ing into account the effects of stratification in the density and turbulent velocity, Rüdiger
& Kitchatinov (1993) derived an α effect depending on the combined gradient of the two
quantities. While for the antisymmetric part of the tensor the gradients can be combined
into a common gradient ∇ log(% u′), for the diagonal elements it takes the form of a weighted
product ∇ log(%s u′). The weighting factor s is found to depend on the rotation rate and
approaches the value s → 3/2 in the limit of slow rotation.

1.3.2 The uncorrelated-ensemble approach

Disregarding the mutual interaction of the supernova remnants, Ferrière (1992) analytically
derived the dynamo effect for isolated, spherically symmetric explosions embedded in a ho-
mogeneous ambient medium. In a series of papers the model was incrementally refined. The
dynamo profiles α(z) computed from this method had amplitudes of a few hundred meters
per second and extended across the asymptotic diameter (∼ 200 pc) of a typical remnant.
Since no vertical stratification was included in the early models, the profiles were perfectly
antisymmetric with respect to the midplane.

The model relied crucially on the central assumption that the net effect of the SNe can
be seen as an “ensemble of uncorrelated events”. That is, the effects of the explosions at
various galactic heights z were convolved with an assumed vertical SN distribution (with
scale heights of 90 pc for the type II and 325 pc for the type I SNe) to yield the effect of an
ensemble of explosions. Because of the odd symmetry of the profiles, the positive contribution
from the upper half of the remnant would almost cancel out with the negative contribution
from the lower half.5 Due to the larger scale height of the type I SNe, their contribution was
diminished to negligible values. The net contribution of the type II SNe was found to be on
the order of a few ten meters per second.

To make matters worse, these models found a vertical transport velocity on the order
of km s−1, which was more than a factor of 50 higher than the α effect. This means that
the field was basically blown away before it could be amplified by the turbulence. Under
these conditions the operability of a galactic dynamo seemed highly improbable (cf. Schultz,
Elstner & Rüdiger, 1994).

Because single SNe turned out to be much too weak, also the effects due to several
correlated supernovae were considered, albeit still as isolated shells. The idea behind this
was that the correlation between the explosions would lead to a higher coherence time τc of
the generated turbulence. From general considerations, it could be assumed that the α effect
would grow with τ2

c , whereas the pumping would only be affected linearly. In consequence,
the ratio γ̂ between the two effects would decrease like τ−1

c . The inclusion of SBs gave

5This effect could only be avoided by assuming an unrealistic δ-distribution for the SNe, which means that
all explosions are assumed to occur in the galactic midplane.



8 CHAPTER 1. ASTROPHYSICAL CONTEXT

amplitudes of the α effect of about 400 m s−1 but the pumping effect still remained dominant
by a factor of 15.

To describe the evolution of a single remnant more closely and include non-axisymmetric
effects like the galactic shear gradient, the models were later extended to a semi-analytical
approach which involved numerical simulations for the expansion of the remnant. Yet, the
overall effect was still computed via a convolution assuming an ensemble of explosions. First
two-dimensional simulations to compute the azimuthal dynamo parameter for a single su-
pernova have been performed by Kaisig, Rüdiger & Yorke (1993). This model has been
generalised to 3D by Ziegler, Yorke & Kaisig (1996), who computed the full dynamo α ten-
sor for a single remnant. Still, the key issue of a dominating turbulent pumping remained.
The numerical treatment of the full expansion phase of the remnant also made it possible
to study the non-linear aspects of magnetic quenching (Ziegler, 1996). Like in the kinematic
case, turbulent buoyancy overwhelms any α effect, and the ratio γ̂ was even found to increase
in the saturated regime.

Because the asymptotic radius of the remnant critically depends on the pressure of the
ambient medium, one expects pear- or peanut-shaped envelopes for super bubbles breaking
out of the galactic disk (Mac Low & McCray, 1988). In this scenario, the profiles caused
by the single explosions are no longer assumed to be independent of their position. Due
to the pressure stratification of the interstellar medium, the part of the remnant pointing
away from the midplane inflates to a larger radius, thus contributing stronger to the α effect.
With the new asymmetry in the profiles, the cancellation effect, inherent in the convolution,
was drastically reduced. Accordingly, Ferrière (1998) computed values of 6.0 km s−1 and
2.6 km s−1 for the radial and azimuthal α effect. Also the ratio γ̂ could be further reduced to
a value of ' 6, which does not exclude a dynamo solution per se, but still might constitute
a burden for the field amplification mechanism.

To conclude our review on the treatment of isolated remnants (which was, in a way,
paradigmatic for the research on galactic magnetic fields for over a decade) we want to note
that all models based on the described approach found an outward transport of the mean
magnetic field. While this is indeed correct for a single remnant, the hypothesis that this
feature will carry over to the ensemble of explosions is not.

1.4 Object of investigation

As will become obvious, the major limitation to the uncorrelated-ensemble approach is di-
rectly related to its central assumption: It considers non-interacting, isolated events taking
place on a uniform, smooth background. This is definitely not the case for the ISM, which due
to the thermal instability (Field, 1965) is a highly clumpy medium. Within the ISM, most
of the mass is concentrated in cold molecular clouds, and most of the volume is occupied by
warm and hot neutral and ionised gas. Collisions of expanding supernova remnants lead to
strong fragmentation and subsequently to the formation of over-dense filaments and clumps
(see cover illustration). These structures, in turn, will rain back into the gravitational poten-
tial (mainly of the stellar component) comprising the so-called Galactic Fountain. Because
of the high conductivity of the ionised ISM, the magnetic flux is, to a good approximation,
frozen-in with respect to the fluid. If we further assume that the regions of strong field are
correlated with the high density clumps, this opens the possibility to efficiently hinder the
magnetic flux from escaping the galaxy. This intricate effect, that can properly be captured
only in fully dynamical MHD simulations, might drastically reduce the value of γ̂.

The central aim of the current investigation is to perform direct simulations of interstellar
turbulence to gain knowledge about the α effect which is thought to be responsible for the
creation of the strong observed magnetic fields within spiral galaxies. Taking into account the
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immense complexity of the non-linear system (given by the magnetohydrodynamic equations
of motion at high Reynolds numbers) this α effect cannot be derived analytically – at least
not from first principles: As has been argued in the preceeding sections, available theoretical
derivations are either based on doubtful assumptions (uncorrelated-ensemble approach), or
depend on properties of the turbulence (i.e., the velocity dispersion as a function of z within
the quasilinear approach) that cannot be inferred directly from the interstellar medium. With
the aid of direct simulations, it becomes possible to challenge these predictions and define a
new foundation for mean-field modelling.

Organisation of the thesis

All simulations have been performed on massively parallel computers applying the new ver-
sion 3 of the NIRVANA MHD fluid code (Ziegler, 2004). To account for the differential
background rotation of spiral galaxies, the code has been extended to the framework of the
local shearing box approximation (Gressel & Ziegler, 2007). For a realistic representation of
the multi-phase interstellar medium a radiative cooling term was included – see Appendix A
for implementation details and tests performed. In Chapter 2, we describe the geometric
setup, the initial- and boundary-conditions and introduce the various effects which enter our
box model of the interstellar medium. The results of the direct simulation runs are presented
in Chapter 3. This part has a rather wide scope and presents very general results, which
might have implications for star formation theory (as an external boundary condition) and
possibly even for cosmological simulations (as a subgrid scale model). From the obtained
kinematic quantities, we can already estimate the α effect on the basis of SOCA expressions.
Moreover, in the case of differential rotation, we observe an exponentially growing mean
field dynamo. In Chapter 4 the origin of this dynamo (and the question why no dynamo is
observed in the case of Cartesian shear) is studied in the framework of mean-field theory.

To be able to compare the simulation results with the analytical description, we infer
the α effect by means of passive tracer fields – this so-called test-field method has only
recently been suggested (Schrinner et al., 2005) and allows to simultaneously measure all
relevant tensor components. The particular advantage of the method over previous statistical
approaches lies in the fact that the inversion problem is well-posed. This, however, requires
that test-fields are separately evolved by an additional set of (passive) induction equations.
The implementation of the method is documented in Appendix B.

Restrictions

For the sake of simplicity, we restrict our simulations to the case of a vanishing vertical net
flux, i.e., B̄z = 0. This is justified by observations of edge-on galaxies, which suggest that the
vertical component of the regular magnetic field will only significantly contribute in the far
halo and the fields are generally aligned with the disk (Dumke et al., 1995). Consequently,
we do not consider a possible contribution of αzz. We want to point out that this is merely
a practical choice and there is no fundamental limitation, which would per se exclude an
investigation of αzz by means of the test-fields method.

In our approach, the dynamo coefficients are assumed to be regular functions depend-
ing on the vertical coordinate z only. Following a more general paradigm (where non-local
effects are captured via integration kernels) Brandenburg, Rädler & Schrinner (2008) have
recently observed a scale dependence for the dynamo effect. While this work marks a valu-
able extension of the test-field method, the corresponding advances are not reflected in our
current implementation. In addition, we do not consider a possible temporal evolution of
the α parameters, nor a dependence on the magnetic field strength. Particularly, all dynamo
coefficients are measured in the weak field regime, i.e, neglecting the effects of α quenching.
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Due to the additional magnetic contribution in the total pressure, simulations at equipar-
tition field strength will presumably require higher numerical resolution. Nevertheless, the
saturation mechanism will, of course, be a subject of subsequent investigations.

For the key input parameters of our model,6 detailed dependencies are known as functions
of the galactocentric radius R, and the galactic height z (see e.g. Ferrière, 1998). Although
it seems obvious, and is indeed tempting, to follow a 1+1 approach and derive dynamo pa-
rameters depending on both R and z, this endeavour is currently infeasible due to the high
demands in computational resources. It has, furthermore, been pointed out that long-term
variations in the external parameters (gravity, supernova rate, etc.) should be accounted
for on timescales of a few hundred million years. While this is certainly true, we currently
refrain from unnecessary complications of the model. Because we are interested in the very
fundamental mechanisms of field creation, such a complication would merely imply an obscu-
ration of the relevant processes. As a concluding remark, we want to note that more specific
constraints and restrictions, e.g. with respect to particular physical effects, will be discussed
where applicable.

6This particularly includes the supernova rate σ, the rotation frequency Ω, the shear parameter q, and the
midplane pressure p0, which are all more ore less constrained from observations (Ferrière, 2001).



Chapter

2
Modelling the Interstellar

Medium

2.1 General setup

In our endeavour to understand the creation of galactic magnetic fields, we aim to implement a
self-consistent dynamo based on first principles. Only the direct verification of such a process
can serve as a reliable gauge for mean-field modelling. To study the field amplification by SN
feedback, we simulate the dynamic evolution of the differentially rotating, vertically stratified,
turbulent interstellar medium. Our numerical approach utilises a three-dimensional setup in
the framework of magnetohydrodynamics. For our simulations we use the NIRVANA1 MHD
fluid code (Ziegler, 2004, 2005), which employs state-of-the-art numerical algorithms. The
particular discretisation is based on the Godunov-type central scheme for 2D conservation
laws developed by Kurganov, Noelle & Petrova (2001). This scheme has been extended to
three-dimensional MHD and combined with constrained transport (Evans & Hawley, 1988) to
solve the induction equation ensuring a divergence-free evolution of the magnetic field. Within
the NIRVANA code, a semi-discrete approach is applied, where the spatially discretised
equations in the flux conservation form are integrated in time via a third-order Runge-Kutta
scheme.

The physical effects considered cover viscous and resistive terms as well as thermal conduc-
tion and optically thin radiative heating and cooling – the latter is particularly important to
grasp the heterogeneous nature of the multi-phase ISM. The adopted computational domain
covers a box of 0.8× 0.8× 4.0 kpc3, vertically centred around the midplane and representing
a local patch of the galactic disk (see Fig. 2.1 for a general impression). Parameters like the
midplane density %0, the rotation rate Ω, the stellar gravitational potential, and the shear
parameter q can be adjusted to suit conditions at varying distance from the galactic centre.

In the scope of the current work, we do not consider effects related to radiative transport,
non-equilibrium chemistry, photo-ionisation, feedback from protostellar jets, nor anisotropic
heat conduction. Compared to the violent energy input from the SNe, these phenomena are
believed to be of secondary importance for the overall dynamics of the ISM, and thus for
the dynamo process. Moreover, we do not include the self-gravity of the interstellar plasma,
which is thought to only become important on scales that are well below the current numerical
resolution. At the present level of modelling, we also chose to neglect effects due to a cosmic
ray component and focus on the kinetic and thermal energy input from the SNe. This is

1freely available at http://nirvana-code.aip.de
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Figure 2.1: Renderings of the simulation box at an early time of the evolution. The colour coding
indicates the signed logarithm of the radial velocity vR. The three representations show horizontal
slices at different heights z. At this early stage the single remnants are still visible, highlighting the
differential twist within the expanding cavities.

not, because we think cosmic rays do not play a significant role within the ISM, but rather
because we want to understand the responsible effects in a bottom-up approach. This means
that we aim to consider models of increasing complexity and only proceed to the inclusion of
the next relevant effect after we have substantially understood the contribution of the last.

Combining radiative cooling, differential rotation, and vertical stratification already seems
to blow this philosophy out of proportions. These effects, however, mark the bare minimum
configuration necessary for a SN driven dynamo to operate. As will become clear, the latter
two constituents serve in generating the needed anisotropy of the turbulence, whereas the
role of the cooling is more subsidiary. Besides its implications for the Galactic Fountain,
the radiation coupling is indispensable to balance the thermal energy input from the SNe.
Simulations based on the injection of kinetic energy alone (Mee & Brandenburg, 2006) indeed
show that there is no halfway approach in modelling SN turbulence.

Hanasz et al. (2004) treat the cosmic ray gas in the diffusion approximation and have
demonstrated that the associated buoyant instability, in conjunction with shear, can expo-
nentially amplify the mean magnetic field. Besides the direct input of kinetic energy via SN
explosions, this Parker-type instability is the most promising dynamo mechanism that has
been proposed for galaxies so far. In regions of lower stellar activity, the magneto-rotational
instability (MRI) has to be considered as a field amplification mechanism (Dziourkevitch
et al., 2004; Piontek & Ostriker, 2007), too. Due to the limited resolution of the current
models the unstable MRI modes remain only marginally resolved in the early evolution of
the simulations. Whenever applicable we will try to compare the outcome of our runs with
results from MRI- and CR-simulations.

2.1.1 Geometric considerations

Unlike in MRI simulations, where the box dimension can be chosen freely by making the
equations non-dimensional, the inclusion of radiative cooling defines a meaningful physical
length scale to our problem. Because we simultaneously have to resolve the diameter of the
supernova remnants along with the thickness of their thin shell, this already sets considerable
measures on the dynamic range to be covered. While, on one hand, the domain has to
be sufficiently small, such that the assumptions for the local expansion of the equations
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of motion are justified, the box, on the other hand, has to cover the integral scale of the
turbulence and the large-scale flow. In the thick disk, the driving scale of the turbulence
is around 100 pc. Away from the midplane, where the ambient pressure is comparatively
low, supernova remnants can, however, easily grow to diameters of several hundred parsecs.
Due to the assumed periodicity in the horizontal plane, this can lead to self-interactions of
remnants if the box size is chosen too small.

Per se, such an interaction is not impossible, but because the supernova rate declines
exponentially with height, it is reasonably improbable that a corresponding ghost remnant
appears in the neighbouring domain within the lifetime of the remnant. In the early models
with a horizontal dimension of 0.5 kpc, this effect was clearly visible; at the current box size
of 0.8 kpc it is much less pronounced. The larger diameter of the box particularly becomes
important when we include differential rotation. This is because, within the shearing box
formalism, the opposite radial boundaries have an offset velocity qΩLx with respect to each
other. This offset would lead to an additional correlation in the mean electromotive force of
an self-interacting remnant. To exclude this artificial effect as good as possible we decided to
accept the disadvantages of a coarser grid resolution.

Concerning the vertical extent of the domain de Avillez & Breitschwerdt (2007a) stress the
importance to cover the so-called disk-halo interaction. In what the authors term the “duty-
cycle” of the Galaxy, hot gas can escape the gravitational potential similarly to an exhaust
valve. Colliding shells in the halo will then lead to density enhancements and, due to the
radiative cooling, to the formation of dense cores; these will rain back towards the midplane,
forming the so-called Galactic Fountain (Bregman, 1980). Since vertical transport processes
put strong constraints on the proposed SN-driven dynamo, it is vital to include this disk-
halo circulation. The chosen vertical extent of our model can only be seen as a minimum
requirement for this. Due to the limitations in computing power, a further extension of
the vertical dimension will require adaptive mesh techniques. Albeit we have successfully
tested this in the case without differential rotation, the mesh refinement leads to prohibitive
complications when considering shearing periodicity as necessary for the case of true galactic
rotation.

2.1.2 Boundary conditions

As already mentioned, our model assumes sheared periodic boundary conditions in the hor-
izontal directions. Although this is the natural choice when one is interested in the local
behaviour of a given flow, one has to keep in mind the intrinsic limitations. To illustrate this,
let us consider an arbitrary horizontal slice through the computational domain. If we want
to compute the line integral of the electromotive force along two opposite edges, inherently,
the values at two corresponding points are identical. The orientation of the line elements,
however, is opposite. This means, the contributions will exactly cancel out and, consequently,
the line integral over the closed loop vanishes. Applying Stokes’ theorem, this implies that
the vertical component of the magnetic flux is ideally conserved (Hawley, Gammie & Balbus,
1995). Because observations indicate that the vertical component of the regular field will
only significantly contribute in the far halo (Beck et al., 1996), we here focus on the case
with zero vertical flux and only consider the radial and azimuthal components of the regular
magnetic field.

The boundary conditions in the vertical direction allow the gas to flow out but will inhibit
inflow. Hydrodynamic variables are extrapolated with vanishing gradients. With the vertical
boundaries at 2 kpc, the issue of losing matter due to strong outflows is drastically reduced
compared to the original model by Korpi, Brandenburg, Shukurov, Tuominen & Nordlund
(1999, hereafter KBSTN99), where this posed a major limitation to an extended temporal
evolution. Depending on the supernova rate, and whether we apply clustering for type II
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SNe (cf. Sec. 2.2.2), we only lose about five percent of the matter per Gyr, indicating that
we in fact grasp the essential part of the Galactic Fountain.

For the magnetic field, we apply vertical boundary conditions where the transversal com-
ponents are extrapolated with zero gradient, and the normal component is reconstructed
from the solenoidal constraint. In contrast to the commonly applied pseudo-vacuum condi-
tions (where the transverse components are set to zero), this allows magnetic stresses to be
exerted on the surface, i.e., we locally tolerate non-vanishing Poynting fluxes, but avoid arti-
ficial changes in the field topology. Unlike in MRI-simulations, where the vertical boundaries
are a source of complication, we do not observe numerical difficulties in our present setup.

2.1.3 Model equations

The equations of resistive MHD are solved in the local shearing box approach. We apply
a co-rotating Cartesian coordinate system with x̂, ŷ, and ẑ being the unit vectors along
the radial, azimuthal, and vertical direction. The conserved quantities %, %v, e, and B, i.e.,
density, momentum, total energy, and magnetic field are evolved according to the following
set of non-linear equations:

∂t% +∇·(%v) = 0 ,

∂t(%v) +∇·[%vv + p? −BB] = −2%Ωẑ×v + 2%Ω2qx x̂

+%g(z)ẑ +∇·τ ,

∂te +∇·[(e+p?)v−(v ·B)B] = +2%Ω2qxx̂·v + %g(z)ẑ ·v
+∇·[τv + ηB×(∇×B) + κ∇T ]
+ΓSN − %2Λ(T ) + %Γ(z) ,

∂tB −∇×(v×B − η∇×B) = 0 , (2.1)

with the supplemental solenoidal constraint ∇·B = 0. We adopt units where the magnetic
vacuum permeability µ0 is set to unity and define the total pressure p? = p+1/2B2, assuming
an adiabatic equation of state, p = (γ − 1)ε, with γ = 5/3. The thermal energy density ε is
computed from the total energy as

ε = e− 1/2%v2 − 1/2B2 , (2.2)

with the exception of regions with ε < 0.07e, where we apply a “dual energy” formalism
to avoid numerical inaccuracies in the above equation. The non-ideal fluxes comprise the
gradient in the temperature T and the viscous stress tensor

τ = ν̃
(
∇v + (∇v)> − 2/3(∇·v)

)
, (2.3)

with ν̃ the dynamic viscosity parameter. Furthermore, η denotes the magnetic diffusivity and
κ the coefficient of (isotropic) thermal heat conduction.

The background shear of the flow is characterised by the parameter q = d lnΩ/d lnR,
where R is the radius in a cylindrical coordinate system rooted at the galactic centre. The
case q = −1 corresponds to a flat rotation profile as approximately applicable at the solar
circle. The terms 2%Ω2qxx̂ · v and %g(z)ẑ · v represent work done against the tidal and
gravitational potential, respectively. Former stems from the tidal force 2%Ω2qx x̂ arising in the
local expansion of the equations of motion (Hawley, Gammie & Balbus, 1995). Independent
of the shear rate, we include the effect of the Coriolis force −2%Ωẑ× v. To isolate the effects
of the shear, we also perform fiducial runs with a value of q = 0, representing solid body
rotation, and runs with q = −1 and Coriolis forces disabled to study the case of plain shear.
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Following KBSTN99, we use the gravitational potential of Kuijken & Gilmore (1989),
which includes contributions from a stellar disk and a central halo. The corresponding vertical
gravitational acceleration is

g(z) = − a1z√
z2 + z2

0

− a2z, (2.4)

with constants a1=1.42×10−3 kpc Myr−2, a2=5.49×10−4 Myr−2, and z0=180 pc.
The additional source terms ΓSN− %2Λ(T )+ %Γ(z) in the total-energy equation represent

the thermal energy input due to supernovae and optically thin radiative cooling/heating and
will be described in section 2.2.

2.1.4 Dissipative terms

As mentioned above, we include a full treatment of the non-ideal terms. The motivation for
this is two-fold: While the main goal is to provide distinct conditions at the dissipation scale,
yielding well defined Reynolds numbers Re and magnetic Reynolds numbers Rm, we do not
want to conceal that including viscous terms also helps to stabilise the numerical treatment
in regions with high density contrast. To restrict the impact of the viscous mixing to regions
where it is needed and to prevent additional over-cooling at the cloud interfaces, we scale the
dynamic viscosity coefficient ν̃ with the density and apply a constant kinematic viscosity of
ν = 0.5×1025 cm2s−1. This approach, which has also been used by Brandenburg, Korpi &
Mee (2007), allows the definition of a Prandtl number Pr = ν/κ % cp (with cp the specific heat
capacity at constant pressure) and magnetic Prandtl number Pm = ν/η that are independent
of density, and thus constant throughout the domain.

The main reason to introduce thermal conduction is related to the development of a
thermal instability (TI Field, 1965) below temperatures of ' 6000 K (cf. Sec. 2.2.1 for the
definition of the cooling function used). Since the Field instability, in the inviscid case, has
a finite growth rate in the limit of high wavenumbers, numerical modelling of this instability
is inherently prone to artificial growth of unstable modes at grid scale. On the other hand,
when considering a finite value for the thermal conduction coefficient κ, unstable modes are
substantially damped below the so-called Field length

λF = 2π

[
%2Λ
κT

(1− β)
]−1/2

, (2.5)

in the case of the cooling function Λ only depending on the temperature T , and with β =
d lnΛ/d lnT . To prevent unphysical growth of the instability and to guarantee a converged
solution, Koyama & Inutsuka (2004) have introduced the so-called Field condition, which
states that λF has to be resolved with at least three grid cells; accordingly, we chose a value
of κ0 = 4.08×108 erg cm−1 K−1 s−1. To avoid a further suppression of the numerical timestep
in regions of high temperature gradient, we scale this coefficient with the mass density2 and
prescribe κ = κ0 %/%0, yielding a constant Prandtl number of Pr ' 4.

To date, the condition introduced by Koyama & Inutsuka (2004) is widely disregarded by
many authors. Notable exceptions are the MRI simulations by Piontek & Ostriker (2004) and
a TI study by Brandenburg, Korpi & Mee (2007). The opposite standpoint, represented by a
number of authors (see e.g. Gazol et al., 2005; Joung & Mac Low, 2006), is to neglect thermal
conduction. The general argumentation is that numerical diffusion defines a “numerical Field-
length” that is thought to sufficiently damp small-scale modes of the instability. de Avillez
& Breitschwerdt (2004b) argue that molecular heat conduction is suppressed perpendicular
to the magnetic field lines (and thus also isotropically for sufficiently tangled fields) and that
turbulent transport takes an important role.

2This is, of course, contrary to the Spitzer scaling ∼ T 5/2.
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Figure 2.2: Optically thin cooling functions (left panel) and corresponding equilibrium curves, for
Γ=Γ0, in phase space (right panel). Our model is indicated by a dashed line and combines branches of
the curves used by Sánchez-Salcedo et al. (2002) for T ≤ 6102 K and Slyz et al. (2005) for T ≥ 105 K.

Unlike in laboratory plasmas or within the sun, the magnetic Prandtl number Pm of the
ISM is thought to be very high – Brandenburg & Subramanian (2005) estimate a value of
Pm ' 4×1011. In numerical simulations with limited dynamic range, one is, however, usually
restricted to values close to unity. This is because both the viscous and resistive length
scales have to be resolved on the numerical grid. Since many magnetic phenomena depend
critically on this number, it is important to prescribe a distinct value for Pm. Neglecting
viscous terms, Pm is determined by the intrinsic properties of the numerical scheme, which are
hardly traceable. The implications of this issue on turbulence caused by MRI have recently
been studied by Fromang & Papaloizou (2007); Fromang et al. (2007).

For practical purposes, we choose Pm = 2.5 equivalent η = 0.2×1025 cm2s−1, which is still
two orders of magnitude smaller than the expected turbulent diffusivities ηt. Otmianowska-
Mazur, Kowal & Hanasz (2007) apply a similar value of η = 0.3×1025 cm2s−1 in their reference
model of the CR driven buoyant instability. In fact, their dynamo crucially relies on the
presence of a molecular diffusivity, and the authors find the efficiency of the field amplification
to depend on this parameter. With a reference rotation frequency of 25 km s−1 kpc−1 and
a box dimension of Lx = 0.8 kpc, we yield Reynolds numbers Re = L2

xΩ/ν ' 1000 and
Rm ' 2500, for our standard run.

The role of the microscopic diffusivity in defining Rm in numerical simulations poses a
very subtle question. The diffusive time scale associated with the low values of the magnetic
diffusivity within the ISM by far exceeds the Hubble time. This means that any efficient
mean-field dynamo will have to operate on a time scale different than the diffusive one –
this is usually termed “fast dynamo”, as opposed to a slow dynamo, which depends on the
reconnection on microscale. In view of the limited magnetic Reynolds number of numerical
simulations, this implies that a necessary criterion for the robustness of the field amplification
mechanism at realistic Rm is the persistence of the effect for low values of η.

2.2 Energy source terms

Since one of the main goals of this work is to predict the vertical structure of the velocity dis-
persion and mean flow, artificial forcing naturally has to be excluded as a driving mechanism.
In an attempt to model interstellar turbulence without the need for a complex thermody-



2.2. ENERGY SOURCE TERMS 17

Ti [ K] Λi [ erg s−1 g−2 cm3 K−βi ] βi

10 3.420×1016 2.12
141 9.100×1018 1.00
313 1.110×1020 0.56
6102 1.064×1010 3.21
105 1.147×1027 -0.20

2.88×105 2.290×1042 -3.00
4.73×105 3.800×1026 -0.22
2.11×106 1.445×1044 -3.00
3.98×106 1.513×1022 0.33
2.00×107 8.706×1020 0.50

Table 2.1: Parameters for the
prescribed cooling function as de-
fined by Eq. (2.6) and illustrated
in Fig. 2.2.

namical treatment Mee & Brandenburg (2006) apply a forcing that is based on localised
expansion waves. This approach, however, is limited to subsonic flows and is found to not
produce any vorticity and hence helicity. This shows that there is no intermediate level of
modelling and one has to consider driving via the injection of thermal energy – which, in
turn, makes it mandatory to include radiative cooling.

2.2.1 Radiative cooling and ambient heating

We treat the interstellar medium as an optically thin plasma and prescribe the coupling to
the radiation field via a piecewise power law of the form:

Λ(T ) = Λi T
βi , for Ti ≤ T < Ti+1 . (2.6)

The used parameters are documented in Table 2.1 and are essentially a combination of the
cooling curves used by Sánchez-Salcedo, Vázquez-Semadeni & Gazol (2002) for T ≤ 6102 K
and Slyz et al. (2005) for T ≥ 105 K. In the latter work, the branch for the high temperature
range is adopted from Sarazin & White (1987), while in the former the neutral phase is
based on equilibrium models by Wolfire et al. (1995). We want to mention that, improving
over previous work of KBSTN99, we include the thermally unstable range between 141 K
and 6102K, which, via a thermal instability, leads to the formation of a cold ISM phase
(Field, 1965). This comprises an important step towards the proper inclusion of the Galactic
Fountain, which might also have implications on the vertical magnetic field transport.

The equilibrium curve in the right panel of Figure 2.2 divides the plane of the phase space
into two regions: Above the curve, the plasma is cooled, while below the curve, it is subject
to net heating. If we now consider a parcel of fluid sitting on the equilibrium curve and
displace it by slightly increasing (decreasing) its density while keeping the pressure constant,
we will accordingly reduce (increase) its temperature. In regions with positive slope β − 1
of the equilibrium curve, this implies that we arrive at a region of net heating (cooling) and
the disturbed parcel will return to its stable equilibrium state. In the temperature interval
between 141 K and 6102 K, however, the slope of the curve is negative, which means that
the fluid that is displaced towards the cold (warm) side of the curve will experience net
cooling (heating) and will be further driven away from its equilibrium state until it reaches
an adjacent stable branch. This argumentation can be similarly repeated for isochoric and
adiabatic disturbances (Sánchez-Salcedo, Vázquez-Semadeni & Gazol, 2002), yielding the
following conditions for TI:

β = d lnΛ/d lnT <


1 isobaric
0 isochoric

(1− γ)−1 adiabatic.

(2.7)
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There are various effects that contribute to the diffuse heating of the interstellar gas.
The most important of these are thought to be photoelectric heating and ionising radiation
from OB stars. As the stellar component is exponentially distributed in the galactic disk,
and the photons can escape the disk through a diffusive process, one has to assume some
form of vertical dependence for the background heating rate. Since we want to focus on the
dynamical rather than the thermal evolution of the ISM, we refer the reader to section 2.2 of
Joung & Mac Low (2006), where the issue is discussed in some detail. For practical purposes
we use a prescription of the form:

Γ(z) = Γ0 ×

e
− z2

2z0 HΓ if |z| ≤ z0

e
z0

2HΓ (e−
z

HΓ + 10−5) otherwise,
(2.8)

where we adopt HΓ = 300 pc and choose z0 = HΓ/5. The midplane heating rate is set
to Γ0 = 0.015 erg s−1. Spatial variations of the heating rate (due to the inhomogeneous
character of the ISM) have to be neglected since the required radiative transfer methods are
beyond the scope of this work. Because of the dominance of the SN driving, this does not
pose a serious limitation to our model.

2.2.2 Supernova driving

In our simulations, the driving of the turbulence is accomplished via localised injections
of thermal energy, modelling supernova explosions. The events are discrete in time and
spatially confined – the details of the injection process are described in Appendix A.3. In
the basic model, the remnants are exponentially distributed in the vertical direction with a
scale height of 325 pc for type I and 90 pc for type II SNe. The reference galactic frequencies
are σI = 4 Myr−1 kpc−2 and σII = 30 Myr−1 kpc−2, respectively. The associated explosion
energies are 1051 and 1.14×1051 erg (Ferrière, 2001). The higher energy for type II SNe
accounts for the contribution of a stellar wind of the massive progenitor.

In early simulation runs, we found that a static vertical distribution of SNe gave rise to
a swing amplification of the basic vertical oscillation mode within the external gravitational
potential. This was due to the fact that whenever the density peak, and with it the centre
of mass (CM), was deflected from z = 0, the peak of the SN driving would remain in the
midplane and thus further drive away the peak. The amplified base mode had an oscillation
period of roughly 100 Myr. In a first approach, we inhibited this undesired effect by distribut-
ing the SNe around the vertical centre of mass, rather than statically around z = 0. This
cured the amplification of the CM mode, but, at a later time, introduced an artificial split-up
of the disk. In this situation, two distinct portions of the disk would oscillate at opposite
phase leaving the centre of mass, and thus the centre of the driving, unaffected.

In an alternative approach, we introduced an artifical damping force fc = 2 vCM
z (a1/z0 +

a2)1/2, with constants taken from Equation (2.4), to critically damp the harmonic part of the
oscillation. This also removed the swing amplification, but did not inhibit the fragmentation
of the thick disk, either. Finally, we decided to drop the concept of a static SN distribution
and adopted a prescription where the vertical distribution of the type II SNe was determined
by the gas density profile. This is justified by the assumption that the star formation rate
is proportional to the local gas density and by the short lifetimes of massive stars compared
to the evolution time of our model. To account for a finite lifetime, we applied a 10Myr
running average for the density profile. With the newly defined SN distribution, both the
artificial oscillation and the disruption of the thick disk can be successfully avoided. Due to
the additional kinetic pressure from the SNe, and depending on the supernova rate, the disk
now smoothly disperses (cf. Sec. 3.2.1).
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Within our model, we make an important distinction between type I and type II SNe:
The latter are spatially clustered by the (artificial) constraint that the density at the explo-
sion site be above average (with respect to a horizontal slab) while the former are spatially
uncorrelated (KBSTN99). Although this may seem very crude, it gives a fraction of clus-
tered events comparable with observations (Ferrière, 2001). The reference simulation with
clustering switched off reveals that the general morphology is affected quite strongly by the
clustering, which indicates the importance of this effect. This in mind, a possible extension
for the current model will be a more realistic prescription for the representation of clustered
events. de Avillez & Breitschwerdt (2005a), for example, use a rather sophisticated approach,
where a number of stellar particles is formed whenever a certain local star-forming criterion
is fulfilled. The created stellar particles are distributed according to an assumed initial mass
function and then dispersed with random velocities of the order of 5 km s−1, modelling an OB
association. The position of the particles is evolved over a typical stellar lifetime to determine
the position of the new SNRs.

2.3 The initial model

Previous stratified ISM models including SNe (KBSTN99; AB05; JML06) and MRI (Piontek
& Ostriker, 2007) all start from an isothermal initial state at a prescribed temperature. The
main drawback of this approach is that the isothermal stratification is not in balance with
respect to the cooling. If the gas is allowed to cool to its equilibrium state, the hydrostatic
condition is violated, and the disk will instantaneously collapse. In the subsequent evolution,
the dynamic pressure from SNe or MRI can, of course, balance this process, but the unphysical
initial disturbance remains.

The gravitational energy released in the early phase of the collapse is on the order of the
energy deposited by a single supernova. The disturbance, however, has a low wavenumber
and will thus be damped very inefficiently. This means that the model has to be evolved long
enough to erase all the traces from the collapse. In order to keep the initial fingerprint as
gentle as possible, we propose a more sophisticated initial model, where the vertical profiles
of the density and pressure are numerically integrated to be in combined hydrostatic and
radiative equilibrium. To obtain such a dual solution, we deploy the slope of the radiative
equilibrium curve (shown in the right panel of Fig. 2.2) as an effective equation of state.

Balancing the pressure gradient across a length dz with the weight of the corresponding
fluid parcel, we arrive at the following differential equation, defining the vertical density
stratification:

d%

dz
=

(
% g(z)− ∂p

∂z

)(
∂p

∂%

)−1

. (2.9)

In addition to the explicit dependence on the gravitational potential g(z), we have to consider
the implicit dependencies, hidden in the assumed equation of state, given by peq(%, z). This
pressure is derived from the equilibrium temperature Teq(%, z), which we obtain from the
balance of heating and cooling:

% Λi T
β(T ) = Γ(z) . (2.10)

This equation is solved by means of an iterative root finder and, via Γ(z), explicitly depends
on the vertical coordinate z. The actual partial derivatives, which further depend on the
logarithmic slope β of the cooling function, are then given by

∂p

∂%
= (1− β−1)

p

%
and

∂p

∂z
=

p

β Γ(z)
dΓ(z)

dz
. (2.11)
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Figure 2.3: Vertical profiles of
initial density (a), pressure (b),
and temperature (c) compared to
the isothermal solution (dashed
line). For z > 1.2 kpc we also plot
the curves for the truncated outer
density profile.

Substituting (2.11) into Equation (2.9) results in an ordinary differential equation, which we
numerically integrate with a second-order Runge-Kutta method.3

The computed profiles are shown in Figure 2.3, and one can see that, beyond z ' 0.5 kpc,
the radiatively stable profiles are considerably flatter than the isothermal solution, whereas
for the inner disk, the density profile is somewhat steeper. Due to these differences, the
temperature varies by a factor of about five. To avoid unphysically high density contrasts
we limit the density to a typical intergalactic value. The exact number is taken from the
lower left tip of the equilibrium curve in the right panel of Figure 2.2. We chose this value
since there cannot be a stable stratification beyond this point. We want to remark that this
ambient density is only set during the initial setup, i.e., we do not restrict any of the fluid
variables during the evolution of our model. The variation of the pressure in the flat part of
the density profile is due to the implicit dependence on the heating rate.

Without setting a lower limit on the density, the profiles can be evolved absolutely stable,
i.e., the kinetic energy remains five orders of magnitude smaller than the thermal energy in
the box over many dynamical time scales. This is due to the fact that the cooling times are
extremely long in the low density regions, where we would actually leave the stable branch
of the cooling function. Since we apply an ambient density, we essentially violate hydrostatic
equilibrium for the outer part of our disk, which results in material falling inwards. This
effect is, however, by far not as dramatic as the complete collapse of the disk in the isothermal
case. Therefore we are confident to reach a steady state with the initial signatures erased
considerably earlier than in comparable models.

3 To avoid the discontinuities in the piecewise constant slope β(T ), we smear out the corresponding steps
via transfer functions and sample the resulting curve to a cubic lookup table.
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3
Simulation Results

3.1 General evolution

In the following, we will discuss the outcome of the simulations conducted during the last three
years. All the presented computations have been performed on the sanssouci (256 CPUs)
and babel (560 CPUs) Beowulf-clusters at the Astrophysical Institute Potsdam (AIP). The
total amount of computing power that went into the simulations is on the order of 106 CPU
hours.

An overview of the various models can be found in Table 3.1, where we also introduce
the basic naming scheme according to the most fundamental parameters of our model: the
rotation rate Ω and the supernova frequency σ. While we measure the former in units of
Ω0 = 25 km s−1 kpc−1, the latter is a multiple of the reciprocal sum σ0 = 1/ (1/σI + 1/σII) of
the corresponding frequencies σI = 4Myr−1 kpc−2 and σII = 30Myr−1 kpc−2.

The listed models can be subdivided into distinct groups, which serve the investigation
of certain aspects of our setup. The subset Q4, H4, F4, for example, allows to study the
dependence on the supernova frequency, whereas we will use the sequence F1–F8 to explore
the dependence on the rotation rate. The T4-series of models marks a very early stage of the
project and is affected by some deficiencies, which have been resolved in later runs. The main
focus of these simulations lies in the examination of morphological features with respect to
the clustering (T4–NCL), the exclusion of type I SNe (T4–SNII), and the effect of small-scale
magnetic fields (T4–KIN, which implements the kinematic case βP = ∞).

For the “standard” model F4, we conducted a series of comparison runs to study funda-
mentally different geometrical situations. Model F4–SHR is identical to model F4, but has
the Coriolis forces disabled.1 This marks the transition from differential rotation to Carte-
sian shear. Because the curvature terms vanish in the shearing box approximation, the linear
profile of the background shear is identical for both geometries, i.e., the only difference lies
in the dynamics of the flow. In a complementary setup, labelled F4–ROT, we study the case
of solid body rotation.

In addition, we investigate the case without thermal instability (T4–noTI), and models
with stronger and weaker external gravitational forces, respectively. To compute spectra at a
higher resolution and to demonstrate that the stratification of the disk is in fact relevant for
the mean-field dynamo, we also performed a non-stratified box model F4–BOX (cf. Balsara
et al., 2004) at a resolution of 2563 grid cells.

1Since Ω still enters the definition of the shear rate qΩ, we keep the nomenclature “F4”, in this case.

21
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domain [ kpc ] grid ∆ [ pc ] SNe cl. gz σ/σ0 Ω/Ω0 q βP

Q4 0.82,±2.133 962×512 8.3 I+II • • 0.25 4.0 -1 2×107

H4 0.82,±2.133 962×512 8.3 I+II • • 0.50 4.0 -1 2×107

T4 0.82,±2.000 962×480 8.3 I+II • • 0.75 4.0 0 2000

T4–NCL 0.82,±2.000 962×480 8.3 I+II ◦ • 0.75 4.0 0 2000
T4–SNII 0.82,±2.000 962×480 8.3 II • • 0.75 4.0 0 2000
T4–KIN 0.82,±2.000 962×480 8.3 I+II • • 0.75 4.0 0 ∞

F1 0.82,±2.133 962×512 8.3 I+II • • 1.00 1.0 -1 2×107

F2 0.82,±2.133 962×512 8.3 I+II • • 1.00 2.0 -1 2×107

F4 0.82,±2.133 962×512 8.3 I+II • • 1.00 4.0 -1 2×107

F8 0.82,±2.133 962×512 8.3 I+II • • 1.00 8.0 -1 2×107

F4–ROT 0.82,±2.000 962×480 8.3 I+II • • 1.00 4.0 0 2×107

F4–SHR 0.82,±2.133 962×512 8.3 I+II • • 1.00 – -1 2×107

F4–BOX 0.43 2563 1.6 I+II • ◦ 1.00 4.0 0 105

Table 3.1: Overview of conducted models. The letters ’Q’, ’H’, ’T’, and ’F’ indicate quarter, half,
three-quarter, and full SN rate σ0, respectively, whereas numbers give the rotation rate in units of Ω0.
Clustering (column ’cl.’) applies to type II SNe only. To avoid artificial anisotropies, the grid spacing
∆ is kept constant in all directions.

3.1.1 Buildup of turbulence

In the models of Joung & Mac Low (2006, hereafter JML06) and de Avillez & Breitschw-
erdt (2005a, hereafter AB05), the disk is initially out of equilibrium with respect to the
cooling. The reason for this is that the authors computed the hydrostatic equilibrium for
an isothermal configuration. However, from the right panel of Figure 2.2 one can see that
the isothermal contours are considerably steeper than the equilibrium curve. This means
that the gas, especially in the dense region near the midplane, will rapidly relax towards
its thermal equilibrium state, consequently violating the hydrostatic balance. The initiated
collapse, in turn, will induce strong shock waves bouncing back from the midplane. Since
our initial model is in thermal equilibrium for heights up to 1.2 kpc (cf. Sec. 2.3), we do not
observe any initial collapse, but only slight accretion of low density material at the outer

Figure 3.1: Temporal evolution of kinetic, thermal, and total energy for models Q4, H4, and F4. A
steady state is reached after ' 50 Myr showing fluctuations on a 10% level.
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boundaries. Turbulence builds up smoothly, and a large fraction of the volume has been
reached by at least one explosion after about 20 Myr. After 50Myr, the turbulence reaches
a quasi stationary state, and the kinetic energy contained within the box reaches values of
2.9(±0.3), 5.6(±0.4), and 10.0(±0.5)×1051 erg for the models Q4, H4, and F4 (see Fig. 3.1).
The thermal energy settles at a level of 10.6(±0.8), 13.4(±1.0), and 24.2(±1.8), respectively.
For the models H4 and F4, the ratio between the kinetic and thermal energy has the same
value of ' 0.4, while the ratio is somewhat lower for model Q4. The kinetic energy deposited
by the SNe scales linearly with the SN rate.

3.1.2 Disk morphology

Figure 3.2 shows vertical and horizontal slices through the simulation box of model Q4 at
a time t = 161 Myr. Most of the material is contained in cold clumps forming a 150–200 pc
wide disk. Close to the midplane, the network of clumps and filaments is permeated by strong
shocks from the SNe, which are blowing hot cavities. There is a number of interesting ideas
in conjunction with the formation and lifetime of molecular clouds, and whether turbulence
within those can be driven by external shocks. We currently cannot aid these discussions
because we are lacking resolution to properly capture the small-scale structures. The dense
clumps in our simulations, however, seem to be rather short lived, transient entities. If these
cloudlets are formed away from the midplane, they are gravitationally accelerated and develop
a head-tail configuration. Similar structures have been observed in connection with so-called
high velocity clouds (HVCs, see e.g. Richter, 2006, for a recent review), and it indeed seems
alluring to identify the cloudlets in our simulations with HVCs.

From the horizontal slices, we observe that newly created structures are perpetually
sheared out by the differential rotation, resulting in rather elongated filaments. This is
not the case for model F4 (see Fig. 3.3), where SNe occur at a four times higher rate, and
structures are destroyed by new SN events before they become significantly sheared out. This
morphological difference easily explains why the regular component of the magnetic field is
stronger in regions of low activity (cf. Sec. 3.5.5).

Looking at the lower panels (a) and (e) of Figure 3.2, one can already see that, at least
for the region around the midplane, there exists a significant correlation between the density
and the magnetic field amplitude – this will be discussed in detail in Section 3.5.1. While
single SNRs are largely confined to the midplane, super bubbles break out of the central disk
and drive moderate vertical flows. Their dense shells, that are further compressed by shocks,
will form clouds, which can efficiently cool, and will, in turn, rain back into the gravitational
potential, thus forming what is termed the Galactic Fountain (Bregman, 1980).2 Despite
the limited domain of z = ±2 kpc, we only lose ' 5% of the total mass per Gyr through
the top and bottom boundaries of our box. If we turn off the clustering (model T4–NCL),
the morphology changes quite drastically. Instead of well confined supper bubbles we see
more disrupted features and chimney-like structures that channel strong vertical outflows
(see Fig. 3.4). The velocity dispersion in the hot phase is twice as high as in the clustered
case; also about five times more mass is lost through the top and bottom boundaries. These
differences demonstrate the importance of a proper modelling of clustered explosions.

3.2 Vertical disk structure

The vertical stratification constitutes an important ingredient of our model of the galactic
disk. We now want to analyse the disk structure resulting from the quasi stationary balance
of the various contributions. Starting from the hydrostatic equilibrium of the initial model,

2This effect is illustrated in Fig. 3.13, where the vertical velocity distribution is shown.
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Figure 3.2: Vertical slices of the top half of model Q4 (upper panels) and horizontal slices through
the midplane (lower panels), at t = 161 Myr. Quantities shown are: (a) number density [ cm−3], (b)
column density [ cm−2], (c) temperature [ K], (d) velocity [ km s−1], and (e) magnetic field [µG]. The
logarithmic colour coding extends over ranges [−4.38, 1.20], [17.6, 21.6], [2.02, 6.98], [−0.96, 2.36], and
[−5.21,−0.86], respectively.

Figure 3.3: Same as Fig. 3.2, but for model F4 at a time t = 164Myr. The logarithmic colour coding
extends over ranges [−4.45, 1.10], [17.20, 21.83], [2.07, 6.66], [−0.85, 2.39], [−5.47,−0.91].
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Figure 3.4: Same as Fig. 3.2, but for model T4–NCL at a time t = 170Myr. The colour coding
extends over ranges [−4.56, 1.25], [17.96, 21.78], [1.97, 8.09], [−0.10, 3.14], [−4.69, 0.30].

Figure 3.5: Time averaged vertical profiles of number density n, pressure p/kB, and temperature T
for the models Q4, H4, and F4. For the density we also show the initial profile (dashed).

Figure 3.6: Same as Fig. 3.5, but averaged over t = 80–100Myr for model F4 at normal gravity and
with the gravity force enhanced/reduced by a factor of two. Dashed lines show the initial profiles.
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we add the kinematic and thermal pressure form the supernova explosions. To understand
this new situation, the hydrodynamic equilibrium has to be replaced by a more intricate
dynamical equilibrium. How will this affect the structure and thickness of the disk?

In view of the expected vertical transport processes, which will play an important role
for the operability of the galactic dynamo, we also want to study the vertical distribution of
the turbulent velocity and the galactic wind launched by the SNe. How are these quantities
affected by the Galactic Fountain resulting from TI? How do they depend on the depth of the
gravitational well? With the high computational demands of our simulations, we can only
begin to address these questions. In the prospect of global models, where parameters will
strongly vary (e.g. with the galactocentric radius), it will be highly desirable to understand
the underlying relationships on basis of a semi-analytical description.

3.2.1 Thermodynamic structure

Within the range of parameters studied, the thermodynamic structure of the disk moderately
depends on the supernova rate. This is illustrated in Figure 3.5, where we plot time averaged
vertical profiles of the number density, pressure, and temperature for our models Q4, H4, and
F4. For the central region of the disk, we determine a scale height of ' 100 pc. Between 0.5
and 1.5 kpc the profiles become flatter and roughly follow an exponential with scale height of
' 400 pc (cf. Sec. 3.1 in Joung & Mac Low, 2006, and references therein). With an increase
in the supernova rate, the inner disk will more and more disperse resulting in a flatter profile
and a lower midplane density, respectively a higher midplane pressure.

To study the influence of the thermal instability on the vertical structure (and ultimately
on the field amplification process), we repeat our setup F4 with all parameters unchanged
except the coefficients of the cooling function, which we now take from Korpi et al. (1999).
As we can see in Figure 2.2, the cooling curve of Korpi et al. is similar to ours but does not
include the characteristic S-shape below 6000 K. Moreover, the curves strongly diverge for
temperatures above 107 K, resulting in a discrepancy of two orders of magnitude at 108 K.

The main effect of the neglect of the thermal instability, unsurprisingly, is the absence of
a cold inner disk, as can be seen in Figure 3.5. While the profile near the midplane is less
peaked, the warm thick disk is not changed much compared to model F4. This is consistent
with the fact that the two cooling curves are very similar in the temperature domain prevailing
at these galactic heights. The pressure stratification without TI is somewhat shallower and
already flattens out at z ' 0.6 kpc.

Although most visible in the case without TI, the characteristic kink in the pressure
profile is present, more or less pronounced, in all of our models and also appears in the
simulations of JML06. This kink marks the transition into the hot halo above the disk and
seems to be tightly related to the kinetic structure of the turbulent stratification (see Sec. 3.2.2
below). While this transition seems to be largely independent of the applied supernova rate,
its position depends on the gravitational potential. This is illustrated in Figure 3.6, where
we plot the same profiles for model F4 with half and double the gravitational acceleration.
Since our potential Φ(z) consists of two components reflecting a galactic halo and a stellar
population (with an assumed vertical distribution), one may think of various other possible
modifications to the external forces.

Rather surprisingly, the pressure profiles coincide for the inner part on the disk and the
individual curves fork to an ambient value at distinct points (see centre panel of Fig. 3.6).
At the same time, the density curves flatten out and reach an average floor density of '
0.001 cm−3. As expected, the scale height of the disk decreases with the steepness of the
gravitational potential. It is, however, not obvious why the ambient pressure scales with the
external force. This might be related to the static vertical distribution of the type I SNe
causing more explosions in the low density halo, where the gas is less efficiently cooled.
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Figure 3.7: Vertical profiles of the mean flow uz (light) and the turbulent velocity u′ (dark) for
models Q4, H4, and F4 averaged over t = 90–160 Myr. The random component shows a distinct
double-peaked shape, which is also reflected in the wind.

Figure 3.8: Same as Fig. 3.7, but for model F4 at varying external gravitational potential. The
M-shaped profile of u′ becomes narrower for stronger gravity.

3.2.2 Dynamical equilibrium and wind

The time averaged turbulent and mean velocity profiles for the three models Q4, H4, and
F4 (latter with and without TI) are depicted in Figure 3.7. The vertical structure of the
turbulent velocity shows a distinct M-shape, which peaks at ±1 kpc. The positive gradient of
u′ in the inner part of the disk strongly suggests an inward transport of the mean magnetic
field component, as will be discussed in more detail in Section 4.5.

The strong dip near the midplane is less pronounced in the case without TI, where no cold
inner disk forms. The inner part of the profiles is similarly shaped as the ones obtained from
MRI turbulence (Dziourkevitch, Elstner & Rüdiger, 2004; Piontek & Ostriker, 2007), but
considerably steeper. Crudely extrapolating the fall-off in turbulence intensity, we estimate
that MRI might become important in maintaining the observed velocity dispersions at galactic
heights of |z| >∼ 3 kpc. While the overall amplitude of the turbulence increases with the SN
intensity, its gradient seems to be less affected. The same holds for the wind, which reaches
an amplitude of ' 20 km s−1 at the upper end of the box – irrespective of the SN rate. For
the case without TI, the vertical gradient in the turbulent velocity is reduced (see rightmost
panel in Fig. 3.7).
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The wind shows a distinct modulation around z ' 0.8 kpc, i.e., the material ejected out
of the thick disk decelerates towards a “stagnation” point and is accelerated again. Unlike
the velocity dispersion, the structure of the wind is less affected by the neglect of thermal
instability; the amplitude of its modulation is diminished by about 50%, however.

The effect of gravity on the vertical structure of the turbulent velocity and wind can be
seen from Figure 3.8. Again, irrespective of the applied potential, the wind climbs to a value
of 20 km s−1 at the boundary of our box. Unlike the overall slope, the modulation in the
wind changes with the strength of the external force, and the deviations from the linear wind
profile are shifted towards the midplane when gravity is increased. Accordingly, the M-shaped
profile of the turbulent velocity becomes narrower. This indicates that the turbulence and
the mean flow are naturally linked with respect to their vertical structure.

The characteristic modulation of the galactic wind can be understood in terms of a dy-
namical equilibrium equation. If we write down the 1D Reynolds-averaged Euler equation,3

∂t (%uz) + ∂z

[
%u2

z +
1
3
%u′2z + p

]
= −% ∂zφ(z) , (3.1)

we see how the different effects are linked. In contrast to the original Euler equation, we
obtain an additional term, known as the Reynolds stress %u′iu

′
j , which describes the back-

reaction of the turbulence on the mean flow. The isotropic part of this tensor can be identified
with the kinetic pressure 1/3 %u′2z . Assuming a stationary solution ∂t (%uz) = 0, one can derive
a condition

u2
z +

1
3
u′2z + p/% + φ(z) = const . (3.2)

for dynamical equilibrium. Neglecting the self-gravity of the interstellar gas, we apply a
static external potential φ(z), but this still leaves us with three independent quantities. For
a static equilibrium (uz = 0), one can simply obtain the turbulent velocity stratification, e.g.,
from the observed density profile (Fröhlich & Schultz, 1996). Since we observe a wind in our
simulations, we have to consider all terms in Equation (3.2), however.

If we assume energy equipartition, we presume that the sum of the kinetic terms should
be equal to the external potential and the thermal temperature as illustrated in Figure 3.9,
where we plot the corresponding terms of Equation (3.2). We see that, in the central region
around the midplane, the different energy forms are indeed balanced. The point where the
kinetic energy drops from its equipartition value coincides with the peak in the turbulent
velocity, the local maximum in the wind profile, and the point where the pressure curve
becomes flat. This can be understood as follows: while inside this characteristic point the
pressure force and the turbulence gradient oppose each other (leading to the equipartition),
outside this point they act together. Since the pressure profile flattens and the profile in u′

steepens, the resulting wind reaches a “stagnation” point, before it is accelerated again by
the combined force of the kinetic and thermal pressure.

3.3 Thermal and kinetic distribution

For a brief look at various distribution functions, we separate the contributing phases into
four distinct temperature classes, which we select according to the branches of our cooling
function. To only capture the bulk of the unstable regime and not cut through the stable
populations around T = 6102 K and T = 141 K (see Table 2.1), we define the cold neutral
medium (CNM) to include material below T = 200 K and attribute the temperature range
from 200 K to 4400K to the unstable phase. This range is joined with the warm ionised

3For simplicity, we do not include the contributions from the cosmic ray pressure (not present in our
simulations) and the magnetic pressure (negligible in the high βP regime we consider).
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Figure 3.9: Vertical profiles of the total kinetic energy (grey line), thermal energy (dashed line), and
gravitational potential (solid line) for model F4 at varying external gravity.

medium (WNM) up to 105 K followed by the hot ionised medium (HIM) above 105 K. This
classification is to some point arbitrary and other authors indeed chose different intervals.4

3.3.1 Occupation fractions

In Figure 3.10, we present the phase space distribution of the disk gas for our model H4 at
half the galactic supernova rate. The colour coding shows the logarithmic volume fraction
dV/V . Overplotted are the equilibrium cooling curve (dashed line) and contours of constant
temperature (labelled in K). The stable branches of the equilibrium curve are richly popu-
lated, but unlike predicted by the classical two-phase model of Goldsmith, Habing & Field
(1969), there also exists gas in the radiatively unstable regime.

In phase space, the hot material at a range of medium densities (located in the upper
part of Fig. 3.10) corresponds to recent explosions. While the hot interior of the supernova
remnant cools slowly and effectively moves to lower pressures on isothermal lines, the dense
shell of the SNR cools more efficiently and takes a much steeper path in the phase space
diagram. The almost isobaric tails at the left side of the plot can be identified as old remnants
in approximate pressure equilibrium with their surroundings. The molecular clumps make
up the very right end of the distribution and extend down to temperatures of a few ten
Kelvin. The vast amount of material is restricted to a pressure range covering 1–2 orders
of magnitude which is much less than the range in density that extends over more than
six orders. Compared to the considerably higher resolved models of JML06 and AB05, our
simulations to some extent suffer from insufficient resolution to properly grasp the cold, dense
phase. It is claimed that a spatial resolution of ∼ 1 pc is necessary for converged results (cf.
Sec. 3.4 in de Avillez & Breitschwerdt, 2004b). The limited resolution of our model is also
reflected in the mass- and volume-fractions, which we want to discuss in the following.

For model H4 we find 0.1, 8, 70, and 22% of the volume occupied by the cold, unstable,
warm, and hot gas. At the full supernova rate (model F4) this is slightly shifted towards
52%, and 40% for the WNM, and HIM, respectively. The corresponding mass fractions are
4, 30, 62, and 4% (CNM, unstable, WNM, and HIM) for model H4, and 3, 28, 60, and 9% for
model F4. The volume fractions for the warm and hot medium at full supernova rate agree
well with the values of ∼ 50% and 41–51% given by JML06, who apply a very similar cooling
function and heating rate. As already reported in KBSTN99, we find the filling factor of
the hot phase to depend critically on whether clustering is applied. With fully uncorrelated
explosions, we register values up to fh ' 0.7 in agreement with the analytical prediction

4AB05, e.g., select five intervals divided at temperatures of 200K, 7900K, 16kK, and 105.5 K; JML06 only
distinguish three states divided at 200K and 17kK.
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Figure 3.10: Phase diagram of the supernova heated plasma in the midplane of model H4 for
t = 155–170 Myr. Overplotted are isothermal contours (labelled in K) and the equilibrium cooling
curve (dashed line). Adjacent plots show volume- (thin line) and mass- (thick line) weighted PDFs.

for this case by McKee & Ostriker (1977). In contrast, AB05, who restrict their explosion
sites to regions of low temperature and high density, find a much lower value of fh ' 0.2.
Observationally, this parameter is also very poorly constrained; (Dettmar, 1992) estimates
an upper limit of 0.5.

As would be expected from the turbulent nature of the simulations, a considerable amount
of the WNM resides in the thermally unstable regime. For model F4 we find equal parts by
mass in the stable respectively unstable WNM below 5000 K, for model H4 this reduces to
45% by mass. Although somewhat lower than the reported 60–70% in JML06 and AB05,
this is still consistent with the observational constraints by Heiles & Troland (2003).

3.3.2 Distribution functions

To aid the classification of the thermodynamic states of the various phases, it is useful to
compute volume- and mass-weighted histograms of the thermodynamic quantities. As can
already be seen from Figure 3.10, the distribution of the gas is very broad. While the classical
two-phase model assuming pressure equilibrium between the phases (Goldsmith, Habing &
Field, 1969) predicts a bimodal density distribution together with a simple Dirac-distribution
for the pressure, this is certainly not the case for such a turbulent environment. Nevertheless,
our PDFs, which we plot in Figure 3.11, bear some resemblance with the ones proposed
by the three-phase model of McKee & Ostriker (1977): The mass-weighted density PDF
(lower left panel of Fig. 3.11) shows three rather distinct peaks corresponding to a HIM at
n = 10−3.5 cm−3 and T = 106.5 K, a warm phase around 104 K, and a component consisting
of thermally unstable and cold gas at densities of ' 10 cm−3.

There has been some discussion on whether the distinct peaks of the distribution can
be fitted with log-normal distributions and to what extent the pressure histogram exhibits
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Figure 3.11: Comparison of distribution functions for models Q4, H4, and F4 averaged over t =
50 Myr. We show volume- (upper) and mass-weighted (lower row) PDFs of number density n (left),
gas pressure p/kB (centre), and temperature T (right panel).

Figure 3.12: Density distri-
bution functions for the gas
contained within |z| < 133 pc
of model F4. The plots illus-
trate how the various phases
contribute to the total PDF
(dashed envelope).

power-law tails (see e.g. Gazol et al., 2005). With the limited resolution of our models,
it does, however, not seem advisable to enter this discourse. While the lower end of our
pressure histogram is largely insensitive to the applied supernova rate, it will extend to higher
pressures for increasing supernova activity. Quite noticeably, the density peak at log n ' 1
disappears in our model F4, indicating that higher resolved simulations are indispensable to
study turbulence at higher SN rates.

To conclude the discussion on thermodynamic properties, Figure 3.12 demonstrates how
the different phases contribute to the total density distribution. The bulk of the PDF is
determined by the warm, unstable, and hot phases who show broad distributions in density.
In contrast to this, the contribution of the cold phase is strongly limited to the high density
regime. This is contrary to the simulations of AB05, who find cold gas down to densities of
n ' 0.01 cm−3 for the HD run and even as low as n ' 10−3 cm−3 for the MHD run. Since
our simulations are generally in the weak field regime, a comparison with their HD run seems
more appropriate. Still, there remains a discrepancy of three orders of magnitude which can
only be attributed to the inclusion of thermal conduction in our models.
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Figure 3.13: 2D histogram
of the velocity uz and num-
ber density n. Colour cod-
ing indicates the logarithmic
mass fraction within a hori-
zontal slice at z = 1kpc. The
adjacent plot shows the mass-
(thick line) and volume- (thin
line) integrated PDFs.

3.3.3 Velocity dispersions

Long before the era of the space telescopes and their highly resolved images of supernova rem-
nants and giant molecular clouds, it was already well established that the interstellar medium
is in a highly turbulent state. This knowledge was derived from observations of broadened
spectral lines, both in emission and absorption. When atoms and molecules absorb or emit
photons, the associated spectral lines are Doppler shifted with the relative velocity between
the observer and the source. Within a turbulent plasma, the atoms and molecules move at
random velocities. Combining the intensity of all photons the profile of a certain spectral
feature is convolved with the velocity distribution function, yielding a Doppler broadened
spectral line. The width of such a line is commonly referred to as velocity dispersion, indi-
cating the amplitude of the turbulent velocity field.

An example for a turbulent velocity distribution can be seen from Figure 3.13, where
we plot the 2D histogram of the vertical velocity versus density. One can see that the
distribution is biased towards negative velocities, i.e. inflow, for higher densities. Aside
from the systematic offset due to the mean flow, we observe a dispersion that considerably
broadens towards low densities, i.e. high temperatures. Also note that due to this trend
the width of the mass weighted histogram is somewhat smaller than that of the volume
weighted histogram. Taking into account the contribution from the galactic wind, which
especially becomes important in the outer parts of the disk, we consequently remove the
mean component of the flow from the velocity field before computing rms values.

Line of sight velocity in HI

For a direct comparison with observations, we also compute line-of-sight (LoS) velocity dis-
persions. Generally, these 1D dispersions are smaller compared to 3D by a factor of 1.5–2.0,
reflecting projection effects. For homogeneous, isotropic turbulence, the projection factor for
the rms velocity is given by(

1
4π

∫∫
(sin(θ) sin(φ))2 dφdθ

)−1/2

=

√
8
π
' 1.6 . (3.3)

From an observers point of view, there exists a number of ions whose spectral lines are used as
tracers at different temperature regimes and wavelengths. Assuming equilibrium ionisation,
one could in principle compute ion densities directly from the thermodynamic properties.
This allows to determine mass weighted LoS column densities and velocity dispersions as
seen in observations (see e.g. de Avillez & Breitschwerdt, 2005b, for a study of OVI). To
mimic the velocity profile of the HI emission line, Dib, Bell & Burkert (2006) select regions
with temperature T ≤ 12kK and density n ≥ 0.25 cm−3 to define the mass weighted LoS
dispersion σHI

.
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Q4 H4 F4

cold 2.4 (±0.2) 3.1 (±0.3) 4.8 (±0.6)
unst. 9.4 (±2.4) 12.1 (±2.3) 12.7 (±1.2)
warm 12.7 (±0.7) 16.8 (±1.3) 18.7 (±0.7)
hot 48.1 (±13.5) 58.1 (±15.6) 62.7 (±8.0)

Table 3.2: Turbulent veloci-
ties in km s−1, averaged over
6,8, and 9 snapshots within
t = 100–200Myr for models
Q4, H4, and F4.

For our basic models Q4, H4, and F4, we compute velocity dispersions from six, eight, re-
spectively nine snapshots between t = 100–200Myr and find values of 3.1, 4.3, and 5.9 km s−1

for σHI
. This is somewhat smaller than the observed dispersion of 7–9 km s−1 for the warm

HI intercloud medium (Kulkarni & Fich, 1985). Contrary to the simulations of Dib, Bell &
Burkert (2006), who report a constant value of ∼ 3 km s−1 irrespective of the applied SN
rate, we find σHI

to be increasing with the supernova rate. Besides assuming a much higher
galactic SN frequency of 2.58×102 Myr−1 kpc−2, their models neglected stratification.

A possible explanation for the constant dispersion in HI might be the limited resolu-
tion (7.8 pc) of their simulations, which – albeit comparable to ours (8.3 pc) – might have
more dramatic influences at higher SN rates. Apart from the different parameter regime,
the authors for their simulations use the ZEUS code which implements a non-conservative
formulation of the energy equation. In this formulation, the kinetic energy dissipated due to
the numerical truncation error at grid scale is not recovered in the thermal energy. This feed
back mechanism, which is naturally present in the conservative formulation (and can only
partly be covered by artificial viscosity within a non-conservative scheme), is particularly
important when using a radiative cooling function with a strong temperature dependence.
Without this “viscous” heating process at the cloud inter-cloud interfaces, there is less cold
material being returned to the thermally unstable regime and TI cannot be tapped efficiently
to mediate the turbulent energy, injected via the SNe, towards higher densities. It, however,
remains to be checked whether this can explain the saturated velocity dispersions.

Comparison of ISM phases

In Table 3.2, we report volume weighted turbulent rms velocities for three runs with varying
SN rate. The values for the cold phase show the same trend as the mass weighted LoS veloc-
ities discussed above. Compared to AB05, who find vrms ' 7 km s−1 for the T < 200 K gas in
their HD run, we fall short of this by ∼ 30%. Recalling the moderate resolution of our mod-
els, we do not consider this a dramatic difference, however. The trend of increased velocity
dispersion with higher supernova activity is less pronounced in the unstable gas. This implies
that the cooling instability plays an important role in maintaining the velocity dispersion in
the warm neutral medium. Additionally, while most of the given numbers are only fluctuating
on a 10% level, the values for the unstable phase show strong temporal fluctuations, reflected
in standard deviations of up to 25% for model Q4. This might indicate that this temperature
regime, particularly in regions of low SN activity, is prone to intermittent dynamics. As a
note of caution, it shall be remarked that, as mentioned above, the choice of the temperature
interval defining the unstable phase is rather delicate. Finally, the velocity dispersions in the
warm (19 km s−1) and hot (63 km s−1) phases of our run F4 are consistent with the ones by
AB05 and the observational references cited therein.

3.4 Spectral Properties

Turbulence inherently displays structures on a wide range of spatial scales. The concept of
spectral analysis of the turbulent flow dates back to Richardson, who initiated the paradigm
of the turbulent cascade (see Frisch, 1995, for an introduction). Based on the assumption that
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Figure 3.14: One-dimensional power spectra of the kinetic (a) and magnetic (b) energy and the
corresponding ratio (c), for six snapshots of model F4–BOX at the indicated times. Wavenumbers
are in grid units k0, the corresponding spatial scale can be inferred from the upper axis. In panels (a)
and (b), the energy is measured in the same arbitrary units.

the driving forces (dominant at the injection scale) as well as dissipative terms (dominant
at small scales) have little influence on the dynamics of the flow within an intermediate
wavenumber regime, Kolmogorov (1941), hereafter K41, derived his famous k−5/3 law for the
spectral energy within the so-called inertial range. In this range, the flow is dominated by
the non-linear terms of the Navier-Stokes equations justifying the central assumption of a
constant spectral transfer rate of the turbulent kinetic energy.

Kolmogorov’s theory, which has been independently derived by Weizsäcker (1948), strictly
only applies to homogeneous, isotropic, incompressible turbulence in the limit of infinite
Reynolds numbers. Although there have been many attempts to generalise the concept to
the more complex cases of compressible, anisotropic, and particularly, magnetohydrodynamic
turbulence (see, e.g., Cho et al., 2003, for a recent review), there is no coherent picture of the
turbulent inertial range in the general case. Lacking laboratory experiments at sufficiently
high Reynolds numbers, the current research on MHD turbulence is largely based on numeri-
cal simulations with increasing spectral resolution, and spacecraft measurements of the solar
wind. Only recently, turbulence data from infrared observations in OMC1 has been analysed
by Gustafsson et al. (2006).

3.4.1 Energy spectra

To suite the demand of higher spatial resolution, we have performed an additional run F4–
BOX with a smaller, cubic domain of (400 pc)3. At a resolution of 1.6 pc, this model is very
similar to the one of Balsara et al. (2004), which neglects vertical gravity and the dissipative
terms in the MHD equations. Compared to the aforementioned model, that applied a box
length of 200 pc at a resolution of 0.8 pc, we choose a coarser grid to be able to better capture
the large-scale structure of the flow. This is because, with an expected integral scale of the
supernova remnants of 80 pc, the smaller box will likely exhibit periodicity effects.

In Figure 3.14, we plot the one-dimensional power spectra of the kinetic and magnetic
energy for several snapshots of our model F4–BOX. The predicted slope of −5/3 of the Kol-
mogorov theory for the inertial range of three-dimensional spectra has to be divided by the
surface element k2 of a shell in k-space to yield the corresponding value for the 1D spectrum.
The resulting slope of −11/3 for one-dimensional spectra has been overplotted in the figure.
Due to the limited resolution of our simulations we, however, do not observe an inertial range
in our simulations. According to the Kazantsev theory for the small-scale dynamo (see sec-
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Figure 3.15: Velocity structure functions of order p = 1–8 for model F4–BOX at t = 20Myr. The
diagonal and off-diagonal panels represent the longitudinal and transversal structure functions.

tion 5.2 in Brandenburg & Subramanian, 2005, for a recent account), the three-dimensional
magnetic spectrum should exhibit a power-law dependence of slope 3/2, which (translated to
our 1D spectrum) corresponds to a slope of −1/2, as indicated in Figure 3.14.

Surprisingly enough, unlike in forced turbulence simulations, the driving scale of the tur-
bulence is not clearly visible in the energy spectra. Similarly to Balsara et al. (2004), we
find the kinetic spectrum to fluctuate around a constant value, while the magnetic spectrum
grows in time. The impression that the magnetic energy saturates at late times is somewhat
misleading since the kinetic energy is particularly low at this instant in time. If one compen-
sates for this dependence and plots the magnetic energy spectrum normalised by the kinetic
energy Ekin(0), instead, one observes that the magnetic energy only grows slowly with respect
to the kinetic energy at the late stage.

Further evidence that the small-scale dynamo is indeed quenched at this time comes from
the fact that the shapes of the magnetic and kinetic energy spectra become very similar
(see panel (c) in Fig. 3.14). We see that the magnetic component is strongest in the small
scales at ∼ 5 pc with the peak slightly moving towards smaller scales at later times (cf.
Schekochihin, Boldyrev & Kulsrud, 2002). At t = 44 Myr, the profile becomes almost flat.
However, considering that the magnetic flux is ideally conserved for triple periodic boundary
conditions, this setup is, to some extent, of academic interest only.

3.4.2 Velocity structure functions

To better understand the spectral structure of the supernova driven turbulence in our simu-
lations, we will now briefly introduce the concept of structure functions and their associated
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Figure 3.16: Same as Fig. 3.15, but plotted versus S3(l), i.e., assuming extended self similarity.
Dotted lines indicate the range used for fitting the logarithmic slopes ζp.

scaling exponents. The velocity structure function Sp(l) of order p along x̂ is

Sp(l) = 〈 |v(r + lx̂)− v(r)|p 〉 ∝ lζp (3.4)

and accordingly for the other space dimensions. The idea behind this framework is that in-
termittent structures, i.e., structures that depart from strict self-similarity, will have different
effects on the exponents ζp which describe the scaling behaviour of the structure functions.

In Figure 3.15, we plot structure functions computed from a single snapshot of model
F4–BOX at t = 20 Myr. The plots are arranged in a grid representing the components of
the velocity vector (rows) and the spatial direction of the argument l (columns), i.e., the
diagonal and off-diagonal panels show the longitudinal and transversal structure functions,
respectively. Most notably, the highest order moments of the upper and lower left plots
exhibit distinct features at a scale of 90–100 pc which coincides with the asymptotic size of
a single supernova remnant near the midplane. Note that the features are not present in
the lower order moments of the structure functions and, hence, do not show up in the power
spectra (Fig. 3.14), either.

The universality of Kolmogorov’s four-fifths law for S3(l) has led Benzi et al. (1993) to the
discovery that the power-law character of the structure functions emerges more clearly when
plotted against the third order one. The authors also showed that the range of scales which
exhibit self similar scaling can be extended towards the dissipation scale and hence termed
the new technique extended self similarity (ESS). The reason for this is that the dissipation
seems to affect all moments of the structure function in the same manner, which means that
the particular choice of S3(l) is to some extent arbitrary. To obtain the scaling exponents ζp

from our simulations, we apply ESS as depicted in Figure 3.16 and fit the resulting slopes.
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Before discussing the outcome of our simulations we now want to give a short account on
recent phenomenological theories related to intermittent turbulence.

Intermittency corrections

While the Kolmogorov picture for incompressible turbulence predicts a linear dependence of
the form ζp = h p with h = 1/3, experimental results show deviations from this behaviour for
p > 3 (see She & Lévêque, 1994, and references therein). One idea related to this discrepancies
is that dissipation does not occur in the whole volume but only in a fractal subset related to,
e.g., vortex filaments (in the case of incompressible turbulence) or current sheets (in the case
of MHD turbulence). The geometric approach of the analytical β model (cf. Frisch, 1995)
explicitly takes into account the fractal co-dimension C = 3 −D of the assumed dissipative
structures. The subset of the turbulent flow that is available for the turbulent cascade is
then effectively reduced by a factor fl ∝ lC . The resulting scaling exponents are simple linear
functions ζp = p

3 +C(1− p
3). A turbulent flow may, however, exhibit a range of scalings, e.g.,

near shock structures the scaling parameter h may be reduced. Since structure functions of
higher order are more strongly influenced by singularities, the lowest value of h will dominate
at a given order p. The scaling exponent ζp = inf[h p + 3 − D(h)]h is then defined as the
infimum of the given fractal model of scaling h. This means that the functions ζ(p) and
D(h) are related via the Legendre transform (cf. Sec. 5.3 in Frisch, 1995). These so-called
multi-fractal or multi-scaling models can be expressed in a closed formula

ζSL
p =

p

9
+ 2

(
1−

(
2
3

)p/3
)

, (3.5)

as derived by She & Lévêque (1994), who assumed a value C = 2 corresponding to one-
dimensional vortex filaments. The formula has been further generalised by Politano & Pou-
quet (1995), who propose a relation

ζPP
p =

p

g
(1− x) + C

(
1− (1− x

C
)p/g

)
, (3.6)

where the coefficients g and x depend on the (assumed) scaling of the eddy velocity vl ∼ l1/g

and turnover time τl ∝ lx. In particular, these relations can be chosen to suite the conditions
of MHD turbulence (see e.g. Müller, Biskamp & Grappin, 2003, for a more recent account).

A corresponding specialisation relevant for interstellar turbulence has been proposed by
Boldyrev (2002), who takes the paradigm of so-called strong Alfvénic turbulence (Goldre-
ich & Sridhar, 1995) as a starting point. This phenomenological description of magnetic
turbulence is based on the assumption of a critical balance between the Alfvénic timescale
of magnetic perturbations along the field lines and the hydrodynamic turnover time of ed-
dies perpendicular to this direction. The central prediction of the phenomenology are a
scale dependent anisotropy k‖ ∝ k

2/3
⊥ and scaling relations vl ∝ l1/3 (i.e., Kolmogorov) and

τGS ∝ l2/3, respectively. Based on these relations together with an assumed co-dimension of
C = 1 (corresponding to dissipation in current-sheets), Boldyrev (2002) arrives at a scaling

ζB
p =

p

9
+ 1− 3−p/3 . (3.7)

Most notably, the respective energy-spectrum E(k⊥) is found to exhibit a scaling exponent
−(1 + ζ2) ∼ −1.74, which is compatible to the observational Larson law〈

u2
l

〉
∼ l 0.74...0.76 (3.8)

based on molecular cloud data (Larson, 1981).
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Figure 3.17: Scaling exponents ζp of the velocity structure functions Sp(l) averaged over seven
snapshots between t = 20 and 31.5 Myr. The overplotted curves indicate (from top to bottom) K41
scaling ζp = p/3, the She-Lévêque formula ζSL

p , Eq. (3.5), and the Boldyrev formula ζB
p , Eq. (3.7).

In Figure 3.17, we present the scaling exponents ζp as obtained from model F4–BOX.
The error-bars correspond to the standard deviation with respect to the time averaging, the
uncertainty from the fit procedure itself is considerably smaller. The scalings are consistent
with both the She-Lévêque and Boldyrev formula. This basically means that interstellar
turbulence does not fit a single scheme of “vortex filaments” versus “current sheets” but
rather comprises a multitude of fractal dimensions. Yet, the obtained curves nicely match
the shape of the predicted log-Poisson model, lending support to this particular mathematical
approach for describing the intermittency corrections. In contrast to our results, de Avillez &
Breitschwerdt (2007b), without exception, find scalings consistent with the Boldyrev formula.
For the case of their MHD run, the authors, however, observe a certain deviation from
D = 2, which they interprete as a modification due to the back reaction of the (dynamically
significant) magnetic fields.

From our simulations, we do not observe a clear trend between the longitudinal and
transversal structure functions, which is in agreement with theory and simulations by JML06,
who actually find a trend but rationalise it away by stating that the results are very sensitive
to the range of data points used for fitting. We find a similar behaviour for the higher order
moments: Going back to Figure 3.16, we see that, e.g. in the middle left panel, the lower order
structure functions are nearly perfect power laws whereas the moments with p > 5 flatten out
for higher values of S3(l). If the third order moment already shows non-monotonic behaviour,
the situation becomes even worse. Since the fits are strongly affected by these data points,
we have chosen to restrict the fit procedure to the subinterval where the ESS curves exhibit
obvious power laws (as indicated by the dotted lines in Fig. 3.16). In conclusion, we can
say that a decisive interpretation (and comparison) of the inferred scalings will require an
improvement of the current methods.
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Figure 3.18: Same as Fig. 3.15, but for the magnetic structure functions of order p = 1–8 for model
F4–BOX at time t = 20Myr.

3.4.3 Magnetic structure functions

In the case of incompressible MHD turbulence, the velocity and the magnetic field can be
combined into the Elsässer variables z± = v± vA with the Alfvén speed vA representing the
magnetic field. The symmetry between magnetic field and velocity is reflected in the analogy
between the equation of vorticity conservation and the induction equation. In consequence,
one expects that the turbulent properties of the two fields are tightly related – but does this
still hold in the case of compressible MHD turbulence? To make matters even more intricate,
our simulations of the turbulent ISM comprise an extremely large density contrast. The role
of density fluctuations in the interstellar turbulence is far from being understood, and recent
numerical investigations of Kowal, Lazarian & Beresnyak (2007) point at the fact that the
intermittency of the density and velocity field are indeed different.

The velocity structure functions that we presented in the previous section were mainly
dominated by the hot and warm ISM components. In contrast, the magnetic field is strongest
in regions of high density (cf. Sec. 3.5.1). This means that the emerging magnetic structures
are largely confined to the cold ISM phase which in turn is very clumpy. In consequence, the
magnetic structure functions which we plot in Figure 3.18 are almost flat on scales larger than
a few parsec, implying uncorrelated fields in-between the clumps. With only a few points
representing the inertial range, it becomes difficult to obtain reliable scaling exponents for
the magnetic field. Where this is possible, e.g. for Sx

p (lx) (see upper left panel of Fig. 3.18),
we find a scaling that is similar to the one for the velocity.

In conclusion, we can say that higher-oder two-point statistics are a viable tool to study
the intermittency corrections for the turbulent cascade. We have demonstrated that they
can proof useful even in the very complex scenario of compressible interstellar turbulence.
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The high density contrast due to condensations from thermal instability and the violent
driving from SNe, however, will make it necessary to consider density weighted quantities
as a modification to the current method. It is also perceived that an understanding of the
underlying theory is more easily gained by means of artificially forced simulations. This
is because simple setups are easier to restrict to certain parameter regimes, and hence the
dependence on a particular parameter (e.g. the Mach number of the flow, Padoan et al.,
2004) can be extracted more clearly.

3.5 The magnetised interstellar plasma

Apart from the mean-field dynamo, which is the main interest of this thesis, the amplification
of the small-scale, unordered field by driven turbulence constitutes an intriguing question in
its own right (see e.g. Schekochihin et al., 2004, and references therein). The fundamental
difference between the two processes is that the small-scale dynamo is always present in
flows with sufficiently high Rm (even in the absence of net helicity), whereas the large-scale
mechanism depends crucially on existing gradients to produce an inverse cascade, i.e., to
transfer magnetic energy to larger scales.

3.5.1 Small-scale dynamo

For the amplification of the small-scale magnetic field within the interstellar medium there
are two fundamental mechanisms: (i) compression in the shells of supernova remnants and
(ii) shear from turbulent motions.5 The basic difference between field compression and shear
is that in the former magnetic flux (with respect to a Lagrangian fluid element) is conserved,
whereas in the latter magnetic flux can be created or destroyed.

While compressible amplification is probably dominant in the disk midplane, where SNRs
and SBs are more strongly confined to existing cavities, shearing motions become more im-
portant with galactic height, where the explosions more easily break up into unordered turbu-
lence. This effect might also exhibit some resolution dependence in the sense that the break
up of the shells is probably enhanced at higher numerical resolution because the nonlinear
thin shell instability (NTSI, see e.g. Heitsch et al., 2007) is more adequately resolved.

Irrespective of the strong compressional driving via SNe, Balsara et al. (2004) and also
Slyz et al. (2005) find the solenoidal component of the velocity field to be dominating by
more than one order of magnitude. Only at the driving scale the two components contribute
equally. Similarly, Korpi et al. (1999) report 60–90% of the kinetic energy to be in vortical
motions, and partly attribute this to the so-called baroclinic effect. Conclusively, the high
level of solenoidal motions strongly supports the presence of a small-scale dynamo in the ISM.

If we assume that in the limit of ideal MHD the magnetic flux is frozen into the fluid, i.e.,
bound to a Lagrangian fluid element, we can derive a simple scaling relation. If we compress
such an element, the density will scale inversely with the volume, i.e., with the third power
of the associated length l. Because the magnetic flux through the surface is conserved, this
means that the magnetic field strength will scale with l−2 implying a relation |B| ∝ %2/3.

A different approach, which goes back to Chandrasekhar & Fermi (1953), assumes that the
Alfvén speed scales with the turbulent velocity δv, yielding a relation of the form |B| ∝ %1/2 δv.
Since the flow in our simulations is supersonic and also super-Alfvénic, it is not clear in how
far this scaling is applicable to our case. Radio observations by Niklas & Beck (1997) support
a similar exponent of 0.48 ± 0.05 for length scales down to about 100 pc.

5As a third effect, one might argue that the field can also be enhanced in condensations arising from the
cooling instability. To the knowledge of the author, this has not been studied, yet.
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Figure 3.19: Magnetic distribution within the midplane of models Q4, H4, and F4 between t = 120
and 160 Myr. Greyscales indicate the logarithmic volume fraction dV/V as a function of logarithmic
density and magnetic field strength. The overplotted linear regression shows slopes of 0.787 ± 0.005
for model Q4, 0.701 ± 0.005 for model H4, and 0.671 ± 0.005 for model F4, respectively.

3.5.2 Correlation with density

Numerical simulations of SN-driven turbulence generally produce a large scatter in the %|B|
relation. AB05 do not even consider a fit and claim the magnetic field to be uncorrelated with
density. However, these models are already saturated with respect to the magnetic pressure.
In our simulations, when we try to correlate the magnetic field strength with the density, we
find a very broad distribution with considerable scatter. If we, nevertheless, fit a power law
relation we infer a slope of about two-fifths, consistent with the results of Balsara & Kim
(2005), who found a best-fit value of 0.386. It is worthwhile remarking that this is rather
similar to the relation of our initial model, where we compute a slope of 0.348. Since our
initial stratification is based on a radiatively stable solution and assumes a constant plasma
parameter βP, it comprises the various effects related to the radiative cooling and heating, but
also the assumption of equipartition of the magnetic field strength with the thermal energy.
This points at the possibility that the correlation between density and magnetic field strength
might be determined from equipartition with thermal energy rather than equipartition with
kinetic energy as assumed in Chandrasekhar & Fermi (1953).

The distinctness of the correlation considerably improves if we restrict ourselves to the disk
midplane. In Figure 3.19, we show scatter plots of density versus magnetic field amplitude for
the midplane gas of our models Q4, H4, and F4. By means of a linear regression we fit slopes
of 0.787 for model Q4, 0.701 for model H4, and 0.671 for model F4, respectively. This is even
a bit steeper than would be expected from the simple picture of adiabatic field compression.
The additional enhancement of the magnetic field in high density regions might be explained
by the modified effective equation of state due to the radiative cooling.

3.5.3 Vertical field structure

In Figure 3.20 we plot vertical profiles of the mean radial and azimuthal magnetic field
components for our model H4. With a scale height of ' 80 pc, we observe the field to be
largely confined to the inner disk, i.e., the molecular gas near the midplane. In contrast,
the simulations of the CR buoyancy instability by Otmianowska-Mazur, Kowal & Hanasz
(2007), who do not include radiative cooling, show a shallower and also more irregular vertical
structure. In particular, their profiles exhibit a dip in the azimuthal field along with a zero
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Figure 3.20: Profiles of the regular radial and azimuthal field for model H4 at various times. The
results of the simulation (grey lines) are compared to reconsructed fields (black lines), computed from
E(z, t) via the mean-field induction equation (cf. Sec. 4.1). At t ' 0.85 Gyr, a field reversal with
pronounced dipolar symmetry occurs.

in the radial field at z = 0. In our simulations, the predominant symmetry with respect
to the midplane is found to be even (i.e. quadrupolar); this base mode is interrupted by
field reversals displaying odd (i.e. dipolar) symmetry. The distinct, oscillating behaviour has
been successfully reproduced in the 1D toy model (cf. Sec. 4.5), where the occurrence and
frequency of the periodic field reversals depend critically on the interplay of the diamagnetic
transport and the mean vertical velocity (cf. also Bardou et al., 2001).

Observations support quadrupolar symmetry (cf. Sec. 8.1 in Beck et al., 1996), which is
also the prevailing mode in most dynamo simulations. Even for a fast dynamo mechanism,
this poses the question of suitable seed fields of quadrupolar type to produce equipartition
fields within the required time. As has been shown by Kitchatinov & Rüdiger (2004), such a
seed field geometry can be provided by means of MRI.

Because of the tremendous timescale, the reversal phenomenon will, of course, never be
observed directly. This unexpected finding, nevertheless, poses an interesting question for
galactic dynamos: It has been found that four out of five galaxies show a radial field directed
towards their centre (cf. Krause & Beck, 1998). Based on this small observational sample,
the hypothesis has been put forward that the radial magnetic field has a distinct direction in
all spiral galaxies.6 Such a prediction, of course, is incompatible with an oscillating dynamo
mode where both directions are expected to appear equally frequent. Ultimately, three-
dimensional, global dynamo models – see discussion in Sec. 6.4 of Rüdiger & Hollerbach
(2004) – will have to show whether the reversals are an artifact of the chosen box geometry.

3.5.4 Pitch angles

As we have already pointed out in the introductory section, the observed radial pitch angles of
the magnetic field lend strong support to the dynamo paradigm. This means, in turn, that for

6Because dynamo theory is invariant with respect to this property, the preffered direction is thought to be
rooted in the underlying seed field mechanism (Krause & Beck, 1998).
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Figure 3.21: Synthetic observations of HI column density (colour coding), total intensity (contour
lines), and polarized intensity (vectors). The three panels demonstrate the effect of beam depolarisa-
tion when the maps are convolved with the kernel indicated by the square.

Figure 3.22: Radial pitch angle of the mean magnetic field averaged over four intervals of ' 200 Myr
at the beginning of model H4. The whole vertical range is displayed in the left panel while the right
panel shows a close-up of the inner disk.

any successful description of galactic magnetic fields it is mandatory to explain the large pitch
angles. The direct comparison of simulation data with observations is somwhat complicated
by the fact that radio polarisation maps (i) only provide LoS integrated polarisation vectors,
and (ii) are affected by beam depolarisation, i.e., anti-parallel components below the resolu-
tion given by the beam cross-section will cancel each other out. In Figure 3.21, we present
synthetic polarisation maps of our simulation results that have been obtained assuming a
background cyclotron emission of a relativistic electron gas with scaleheight hrel ' 0.5 kpc.
Since in our simulations the field is largely confined to the inner disk, the results are, however,
rather insensitive to the particular value of the scale height. The total intensity is computed
as the LoS integral of the synchrotron emissivity, which is assumed to be proportional to the
square of the perpendicular magnetic field component.

During their passage through the ISM, polarised radio waves are subject to Faraday
rotation. This is because, in the presence of a LoS component of the magnetic field, left-
and right-handed circularly polarized waves see a different effective refraction index. For
simplicity, we neglect the effects of Faraday rotation in the integration of the Stokes Q- and
U-parameters, which reflect the local orientation of the field component orthogonal to the
line-of-sight. This is justified by the fact that we do not consider a mean vertical field in our
simulations. It shall ,however, be mentioned that the turbulent component will cause some
degree of Faraday depolarisation.

In the left panel of Figure 3.21, we see that there exist regions of strongly polarised
emission showing a considerable pitch angle. As expected, the orientation of the vectors
corresponds to a trailing spiral, i.e., a negative sign of the pitch angle. To mimic the effect
of the finite beam cross section, we apply convolutions with increasing kernel sizes of 25,
50, and 100 pc to the obtained maps (indicated by the square in the lower left corner of
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b)

Figure 3.23: Field regularity
as a function of IR-based SFR
within NGC4254 (Chyży, 2008).
The symbols indicate the differ-
ent magnetic arms. Figure cour-
tesy of K.T. Chyży.

the maps). The vector scale is held fixed and we see that the amplitude of the polarisation
vectors is drastically reduced at a beam size of 100 pc. The contrast in the total intensity is
less affected, which implies that the overall polarisation level is generally underestimated by
observations of limited resolution.

Applying density and temperature thresholds (cf. Sec. 3.3.3) to select the HI gas, we
are able to compare the HI column density to the total intensity in the radio emission. High
column densities correspond to light colours in Figure 3.21, and we see that the radio emission
is reasonably correlated with the atomic gas. This is little surprising considering the strong
correlation of the magnetic field with the gas density in the midplane (cf. Sec. 3.5.1). It
remains to be studied whether this correlation with density carries over to the larger scales,
i.e. if the coherent magnetic fields decouple from the neutral gas. Observations of the ringed
galaxy NGC4736 (see Fig. 1.1), e.g., show a pronounced anti-correlation between the polarised
intensity and the Hα emission (Chyży & Buta, 2008).

Independent of observational uncertainties, Figure 3.22 provides a more quantitative mea-
sure of the pitch angles present in our simulations. The different curves show time averaged
vertical profiles for the orientation of the mean magnetic field in the horizontal direction.
Despite the strong fluctuations, we consistently observe negative values ranging up to −40◦

throught the disk. With the exception of the midplane, the profiles closely follow the shape
of the α profiles that we will introduce in Section 4.3. This is in accordance with mean-field
theory, which predicts that a strong α effect is necessary to produce a substantial pitch an-
gle. In the midplane, where the magnetic field is strongest, we find a value of −10◦ (see right
panel of Fig. 3.22). This value is found to be largely independent of the rotation rate and
supernova frequency.

3.5.5 Regular versus turbulent component

To study integral properties as well as the temporal evolution of the arising fields, we introduce
vertically integrated rms values 〈B̄R 〉 and 〈B̄φ 〉. In our simulations, the turbulent component
dominates over the regular by a factor of 2–3; we find values 〈B̄ 〉 : 〈B′ 〉 of 0.52 (±0.02) for
model Q4, 0.40 (±0.03) for model H4, and 0.31 (±0.01) for model F4. This trend with σ is
consistent with observations of strong regular fields in the inter-arm regions of spiral galaxies
(Beck, 2007). From IR-based star formation rates, Chyży (2008) observes a correlation

log (Breg : Btur) = −0.32 (±0.01) log SFR− 0.90 (±0.03) . (3.9)

From our values cited above, we find a somewhat steeper slope of −0.38 (±0.01). To obtain
an absolute comparison, we assume a Salpeter initial mass function (IMF) approximated by
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Figure 3.24: Evolution of the
turbulent and regular magnetic
field for model H4. For 〈 B̄R 〉 and
〈 B̄φ 〉 we show the results from
the direct simulation (grey lines)
together with the reconstruction
from E(z, t) (black lines). The in-
lay depicts the ratio of the mean
radial versus azimuthal magnetic
field corresponding to an average
pitch angle of ' 10◦.

Ψ(M) = k M−γ with γ = 2.35 and integrate the local SFR/SNR via

SFR =
∫

MΨ(M) dM [ M� Myr−1 kpc−2] , and (3.10)
SNR =

∫
Ψ(M) dM [Myr−1 kpc−2] . (3.11)

Choosing appropriate mass limits for the two integrals, we can convert our reference SN rate
σ0 to an equivalent of log SFR = −2.4. This means that our values fall short of the observed
values and lie to the lower left of the scatter plot depicted in Figure 3.23. Considering that
our model is mainly based on parameters obtained in the context of the Galaxy (e.g. the
gravitational potential), we have to be careful when comparing to different galaxies. It may be
interesting to check, whether the correlation can be matched more closely by a modified setup
for the case of NGC4254. Also further observations will be needed to proof the universality
of the observed correlation. Nevertheless, the quite good agreement between our simulations
and the observations indicates that this relation is probably rather general.

3.6 Mean-field dynamo

Despite the early success of the mean-field models, until now there has been no direct numer-
ical verification of the dynamo process in the galactic context. Although AB05 considered
the most realistic model of the interstellar medium to date, they did not include the galactic
rotation and shear necessary for a mean-field dynamo to operate. Balsara et al. (2004) found
a small-scale dynamo, but also neglected rotation and even vertical stratification – an even
more important prerequisite for large-scale dynamo action. Except for their neglect of ther-
mal instability,7 the simulations of KBSTN99 are very similar to ours. In fact, their model
served as a starting point for our investigations. However, due to the limited computational
resources available at the time, the simulations suffered from a too small box size which
prohibited a long term evolution into developed turbulence.

In theory, a mean-field dynamo is already possible under the combined action of Coriolis
forces and stratification, i.e., without shear. However, for our q = 0 models we only observe
a marginal amplification of the mean magnetic field after the kinetic energy has reached a
quasi-stationary state. Estimations based on the derived α parameters indeed show that the
dynamo numbers for the α2 dynamo are slightly subcritical. At the current point, we cannot
conclusively state whether the reason for this is indeed physical or merely a result of the
limited magnetic Reynolds number of the present simulations.

7The possible influence of TI on the mean-field dynamo will be discussed in Sec. 4.5.2.
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Figure 3.25: Comparison of the time evolution of the regular and fluctuating magnetic field strength
over kinetic energy for the various setups as defined in Table 3.1.

growth time Q4 H4 F1 F2 F4 F8

of 〈B′ 〉 [Myr] 90 92 500 140 102 54
of 〈B̄ 〉 [Myr] 90 89 500† 147 99 52

Table 3.3: Exponential growth
times for the standard set of mod-
els. †) for model F1 we find the
mean-field 〈 B̄ 〉 to decay in time.

If we include galactic differential rotation with q = 1, our simulations successfully produce
a galactic dynamo, i.e., we observe an exponential amplification of the mean magnetic field.
The exponential growth of the regular and fluctuating field in the simulation run H4 is
depicted in Figure 3.24. The e-folding time is on the order of 250 Myr and varies with the
reversals.

In the early phase of the evolution (but after the kinetic energy has reached a quasi
stationary state) we observe an e-folding time of ' 100 Myr, which is comparable to the values
obtained in simulations of the cosmic ray dynamo by Otmianowska-Mazur, Kowal & Hanasz
(2007) and about four times larger than the expected growth time for the magneto-rotational
instability (Dziourkevitch, Elstner & Rüdiger, 2004). Such short growth times, which are
rather unexpected from classical theory, are beneficial in explaining strong magnetic fields at
high cosmological redshift (Bernet et al., 2008).

3.6.1 Dependence on the main model parameters

After we have demonstrated that the galactic dynamo can indeed be operated by the tur-
bulence from supernova explosions we, of course, want to learn how the growth rate of the
dynamo is affected by the various parameters of our model.

Before we go into the discussion of our first basic parameter study (Gressel et al., 2008b),
we want to point out that, albeit many of the chosen values are representative of our own
galaxy, this is merely for practical reasons. Another, more subtle issue is the inherent limi-
tation of the dynamic range of any numerical simulation. In view of the tremendous value of
the magnetic Prandtl number within the ISM, we especially have to keep in mind that any
result drawn from our simulations ideally has to be transformed to this regime by means of
a suitable scaling relation. Computations at even moderate Pm are, however, extremely de-
manding. This is because both the viscous and resistive length scales have to be resolved on
the numerical grid. For all practical purposes, this means that a strict proof of convergence
is currently beyond the available numerical capabilities.
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We present the time evolution of the regular and fluctuating components of the various
models in the left panel of Figure 3.25 (cf. also Tab. 3.3). Rather surprisingly, even the
absolute value of the mean-field 〈B̄ 〉 increases with decreasing SN rate (models F4, H4, and
Q4). This is consistent with the trend in the turbulent diffusivity ηt, for which we measure
values of 2.0, 1.7, and 1.4 kpc km s−1, respectively. Observations, on the other hand, suggest
that 〈B̄ 〉 is independent of the star formation activity (Chyży, 2008).

For the range of parameters studied, we do not observe a significant dependence of the
growth rate on the supernova frequency σ, but only on the rotation rate Ω.8 For the models
F1–F8 we find e-folding times of ' 500, 140, 102, and 54 Myr for the amplification of 〈B′ 〉.
With exception of model F1, that directly corresponds to the parameters used in KBSTN99,
we find exponentially growing regular fields 〈B̄ 〉 with e-folding times of 147, 99, and 52Myr
for model F2, F4, and F8, respectively. For model F1 the regular field decays at ' 500 Myr.
The listed values have been obtained for a time frame of about 100 Myr after the turbulence
reaches a steady state. Due to the different time base, these values are not directly comparable
to the long-term growth rate of model H4, where the field reversals become important. The
initial amplification time scale for the models H4 and Q4 is ' 90 Myr, which is consistent
with the value observed in model F4.

In conclusion, it turns out that Ω >∼ 25 km s−1 kpc−1 is necessary for dynamo action to
occur, which coincides with the prediction of Schultz, Elstner & Rüdiger (1994). Nevertheless,
this value may still depend on the assumed gas density and the gravitational potential.

3.6.2 The importance of rotation

As has been noted in the previous section, we did not observe a dynamo in our simulations
with rotation alone. Since, on the other hand, we observe a dynamo in the case of combined
rotation and shear, it occurs natural to ask whether rotation then plays a role at all – or
whether it is simply the effect of the shear that efficiently closes the dynamo loop.

Ever since the origins of mean-field theory, rotation was considered the pivot point in the
generation of “cyclonic turbulence”. As we already learned in the introduction, mean-field
dynamos critically depend on some sort of anisotropy of the flow. The exception to this rule
is the so-called Ω×J -effect9 (Rädler, 1969), which, in the presence of an inhomogeneous mag-
netic field and differential rotation, already shows dynamo action for homogeneous, isotropic
turbulence (Kitchatinov, Pipin & Rüdiger, 1994). Based on recent shearing box simulations
with peculiarly elongated aspect ratios and Pm ' 1, Yousef et al. (2008) claim that a dynamo
can already be excited in the case of plain shear, i.e., in the absence of rotation. In addition,
the authors observe the generation of a large-scale vorticity in their simulations. While the
latter finding disagrees with the analytical prediction of Rüdiger & Kitchatinov (2006), the
former is at least excluded for order of unity magnetic Prandtl numbers by the same consider-
ations. Brandenburg et al. (2008), who infer dynamo coefficients from simulations, conclude
that “the shear-current effect [without stratification] is impossible”. Besides the possibility
to design laboratory based dynamo experiments with simplified geometry, the reason for the
increased interest in the particular case without rotation is mainly motivated by astrophysical
objects that do not show prominent rotation patterns such as irregular galaxies and galaxy
clusters.

With this recent controversy in mind, we now want to address the question, in how far
the galactic dynamo depends on rotation as a source of anisotropy. It is known from theory
that in the presence of a gradient in the turbulence intensity there exists an α effect for a
non-rotating sheared fluid (Rüdiger & Kitchatinov, 2006). Because our SN-driven galactic

8Because we do not vary the shear parameter q independently, we cannot yet determine whether the actual
dependence is on Ω, or rather on qΩ. This will, however, be subject to future studies.

9This effect is indeed present in our simulations as will be discussed in Section 4.1.2.
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Figure 3.26: Evolution of the regular and fluctuating magnetic field strength over kinetic energy for
model F4 compared to the cases of shear only (dark) and without thermal instability (light colour).

turbulence exhibits a strong vertical stratification, we should hence be able to observe this
mechanism. In Figure 3.26 we plot the temporal evolution of the mean and fluctuating
magnetic field strength for our model F4, with and without rotation.

We, first of all, notice that the irregular field is indeed amplified by the combined action
of turbulence and shear, although at a much lower rate as compared to the case where the
Coriolis force acts as an additional source of helicity. Whereas the turbulent field grows
steadily, we observe a decaying solution for the mean magnetic field. As we will see from
a detailed analysis of the measured dynamo coefficients in Section 4.3, this is not because
there is no α effect, but because the diamagnetic pumping is too weak to support the dynamo
against the galactic wind. In conclusion, we record that (differential) rotation is a necessary
prerequisite for an efficient galactic dynamo to operate.

3.6.3 The effects of secondary parameters

Besides the two fundamental effects of rotation and shear, our model depends on a number of
assumptions regarding further physical input parameters. The two most prominent features
which might have an influence on the overall outcome of our simulations are both related to
the vertical structure of the disk and, in the following, shall be briefly explored.

The role of thermal instability

As we mentioned before, the models of KBSTN99 served as a starting point for our in-
vestigations. A major difference of our model, compared to theirs, is the inclusion of the
thermally unstable branch of the radiative cooling function, leading to condensations via a
cooling instability. Because Korpi et al. did not find a galactic dynamo in their simulations,
this poses the interesting question whether TI plays an essential role in enhancing the in-
ward diamagnetic pumping which helps to improve the prospects of a super-critical dynamo.
Recalling the change of the disk morphology in the case without TI (see Sec. 3.2.1) and the
resulting change in the velocity structure (see Sec. 3.2.2), this seems a reasonably plausible
hypothesis. An alternative explanation, of course, might be given by the lower rotation rate
of Ω = 25 km s−1 kpc−1 in their models. Because we find this value to be marginal for the
operation of a dynamo, the role of thermal instability, however, remains ambiguous without
a direct comparison run.
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Figure 3.27: Time evolution of the regular and fluctuating magnetic field strength over kinetic
energy for model F4 under low, standard, and high gravity.

growth time low F4 high

of 〈B′ 〉 [Myr] 94 102 83
of 〈B̄ 〉 [Myr] 97 99 76

Table 3.4: Measured exponen-
tial growth times for model F4 at
varying external gravity.

In Figure 3.26, we display the regular and irregular components of the magnetic field
for the model F4–noTI. We measure e-folding times of 78 and 87Myr for the irregular and
mean magnetic field, respectively. This is somewhat smaller than the 100 Myr in the standard
case. If we take the gradient of the turbulent velocity as the defining criterion for the dynamo
efficiency, we should arrive at the conclusion that the weaker gradient in the turbulent velocity
will cause a smaller value for the inward pumping. Even with the less pronounced wind this
would mean that the conditions for our dynamo should have become worse – instead we find a
higher growth rate. We already see at this point, that even a qualitative analysis of the results
becomes tedious, based on kinematic quantities and intuition alone. The interpretation of the
results will, however, become easier if we include the knowledge about the dynamo coefficients
which will be derived in the following chapter. While we have to postpone the explanation for
the increased growth rate of model F4–noTI to Section 4.5.2, we already want to mention that
the thermal instability does not seem to affect the characteristic ratio γ̂ of the diamagnetic
pumping over the α effect. We conclude that KBSTN99 simply did not reach the critical
rotation rate, and the inclusion of TI does not significantly alter the picture.

Varying the external potential

As we can see in Figure 3.27, the impact on the dynamo when varying external gravity is less
drastic than the effects of neglecting rotation or thermal instability. Even though we alter the
gravitational force by a factor of two, we do not observe a significant change in the growth rate
of the dynamo. The e-folding times for the corresponding models are listed in Table 3.6.3.
With 94 and 97 Myr for the irregular and regular component, the amplification in the low
gravity case is comparable to the standard case, whereas the high gravity model with 83 and
76 Myr, respectively, shows a slightly faster field amplification. Taken the uncertainties in
the modelling, e.g. the effects of numerical resolution (which could not be studied, but might
be of influence here) this is considered to be within the range of fluctuations.

What dependence on the gravity would one have expected? As we learned in Section 3.2.2,
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the effective velocity profiles are very similar for the three cases (see Fig. 3.8), and only
the vertical scale height of the structures is modified. Because we here consider vertically
integrated values, these differences do not seem to be reflected in the overall growth rates.
After all, the dynamo numbers relevant for the field amplification are integral quantities of
the dynamo active volume. In this sense, the result of a universal growth rate with respect
to the gravitational potential seems plausible.

3.6.4 Slow versus fast dynamo

In laminar dynamos, the diffusion time, i.e., the relevant time scale for magnetic field recon-
nection,10 defines a lower limit for the growth time of the mean magnetic field. Because the
microscopic diffusivity is usually low, these dynamos are also referred to as “slow dynamos”.
Within the ISM, the diffusion time τη = L2/η related to the microscopic value η ' 108 cm2s−1

of the magnetic diffusivity by far exceeds the Hubble time. This implies that any efficient
galactic dynamo will have to be a “fast dynamo” in the sense that it works on a time scale
different than the diffusive one. If turbulence is involved, one expects the dynamo to operate
on time scales defined by ηt, accordingly. Although this still implies a dynamo of the “slow”
type, the associated time scale can be rather fast due to the much higher value of ηt.

While from theoretical considerations, this classification is rather straightforward, mat-
ters get more intricate when numerical modelling is involved. In view of the limited magnetic
Reynolds numbers of numerical simulations, the two regimes may not as easily be distin-
guished. The requirement of a “fast dynamo”, however, defines a necessary condition for the
robustness of the field amplification observed in simulations: To be able to explain magnetic
fields in the galactic context, the effect has to persist for low η, or high Rm, correspondingly.

Otmianowska-Mazur, Kowal & Hanasz (2007), in their models of the CR-driven buoyant
instability, observed that the CR dynamo crucially relies on the presence of an atomic diffu-
sivity η. In fact, the authors found the efficiency of the field amplification to scale with this
parameter. This can be seen as an indication that the buoyant rise of the CR bubbles rather
comprises a laminar process,11 and only the high value of the cosmic ray diffusivity leads to
the observed fast amplification time scale of ' 100 Myr.

The described picture changes significantly as soon as the Reynolds number is high enough
to allow for developed turbulence. The integral length scale L is now efficiently broken down
to the Kolmogorov microscale where the atomic diffusion takes over. Varying the microscopic
value of η does now only change the extent of the inertial range towards higher wavenumbers.
Because the dynamics in the intermediate range of wavenumbers is only governed by the non-
linear term of the Navier-Stokes equation, the viscous dissipation is no longer relevant for
the large-scale flow. This implies that a turbulent dynamo should be insensitive to variations
in η, as soon as a critical value Rm > Rmc is exceeded. With a rotation frequency of
100 km s−1 kpc−1 and a box dimension of Lx = 0.8 kpc, we yield a magnetic Reynolds number
Rm = L2Ω/η ' 10, 000 for our model H4. This is marginally sufficient to guarantee for
developed turbulence (cf. Sec. 3.4). In Figure 3.28, we present growth times for model H4 as
a function of magnetic Reynolds number. The different values for Rm are obtained by the
variation of η at fixed rotation rate Ω.

As can be seen from the comparison with the values for η = 0 (unconnected data points
in panel (c) of Fig.3.28), the highest value Rm = 20, 000 is probably already affected by the
finite value of the inherent numerical diffusivity of our code. This quantity, however, cannot
easily be assessed directly. Moreover, the interpretation of the results becomes complicated
by the fact that the assumed asymptotic growth rate in the limit of high Rm can be explained

10Reconnection is important to change the topology of the fields. This becomes obvious in the schematic
stretch-twist-fold picture of magnetic field amplification (see e.g. Childress & Gilbert, 1995).

11The authors, actually, state that no scale separation is manifest in the spectra of their simulations.
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Figure 3.28: Regular (a) and fluctuating (b) magnetic field strength normalised to the kinetic energy
for model H4 for different magnetic Reynolds numbers Rm and constant Pm = 2.5. For clarity the
ordinate of the different models has been offset by an order of magnitude each. For Rm = 10, 000 we
also show a comparison run at half grid resolution. In panel (c) we compare the growth rates for the
turbulent (diamonds) and regular (triangles) magnetic field as obtained from a linear regression. The
unconnected data points to the right correspond to a run with η = 0, providing an indication for the
level of numerical diffusivity.

in two contrary ways, i.e., the possible effect due to a finite numerical diffusivity cannot be
distinguished from the expected turbulent behaviour without a proper convergence study.
To estimate the influence of the finite grid resolution, we have performed a fiducial run at
double the grid spacing for Rm = 10, 000 (see panels (a) and (b) of Fig. 3.28). The obtained
values are consistent with the higher resolved run and thus provide an indication that the
simulation results are converged at this level of Rm and below.

Having confirmed the reliability of the numerical results, we can now try and interprete
the obtained growth times. Contrary to the laminar case, we observe the growth rate τ−1

e

to be an increasing function of the magnetic Reynolds number Rm for both the regular and
turbulent magnetic field. This lends further evidence to the hypothesis that the SN-driven
dynamo operates in the turbulent regime and thus remains efficient in the limit of high
Rm. As pointed out above, this finding is subject to verification by a full-blown numerical
convergence study (which is currently infeasible). We, nevertheless, are confident that the
observed trend will persist, and the SN-driven dynamo is indeed capable of explaining galactic
magnetic fields at realistically high magnetic Reynolds numbers.
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Chapter

4
Understanding the Galactic

Dynamo

4.1 Mean-field theory

In the previous chapter we have seen that supernova turbulence together with rotation and
stratification can drive a galactic dynamo with e-folding times of ' 100 Myr. The numerical
verification of the operability of such a dynamo based on first principles marks an important
step towards understanding the process of field amplification in the interstellar medium. The
results also show that direct simulations constitute a valuable tool in studying the dependence
on certain parameters. However, because of the immense complexity of the non-linear MHD
equations at high Reynolds numbers, the outcome of the simulations has to be interpreted
according to an underlying theory that has to be rooted at an intermediate level of complexity.
As we have learned in the introductory chapter, before the advent of powerful computers the
exploration of dynamo effects in turbulent flows was largely based on the mean-field approach.
In the following, we want to discuss how this analytical description can be compared with
direct simulations – and how this will aid us in understanding the simulation results.

In the framework of mean-field electrodynamics1 (Krause & Rädler, 1980; Rüdiger &
Hollerbach, 2004), one usually splits the fluid variables into a mean part, denoted by over-
bars, and a fluctuating part, here indicated by a prime. The basic idea behind this is to
treat the large-scale evolution of the system independently from the underlying turbulence.
Accordingly, we split the fluid velocity u into ū+u′ and the vector of the magnetic induction
density B into B̄ + B′. The concept of averaged equations goes back to the end of the
nineteenth century when Osborne Reynolds applied the formalism to the Euler equations
and thereby derived an additional turbulent stress. Similar to the Reynolds equation for a
turbulent hydrodynamic flow, one can derive an induction equation for the mean-field B̄.
For our case of a differentially rotating medium this mean-field equation reads:

∂tB̄ = ∇×
[

(ū + qΩxŷ)×B̄ + E − η∇×B̄
]

, (4.1)

where we included the term qΩxŷ×B̄, representing the background shear. The effect of the
turbulence on the mean flow, i.e., the creation of the large-scale magnetic field from unordered
motion, is described by the correlation between the fluctuating velocity and magnetic field
components, more specifically the so-called mean electromotive force (EMF), defined by E =

1sometimes also referred to as mean-field MHD

53
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u′×B′. The dissipative term in Equation (4.1) is due to the microscopic diffusivity η which
shall not be confused with its counterpart ηt, created by the turbulence itself. As we will see
in a moment, ηt is embodied in the electromotive force E and will add up with the microscopic
diffusivity η to yield an effective value of ηT = ηt + η. Usually the microscopic value can be
neglected in comparison with the turbulent one.

4.1.1 The closure ansatz

As common to mean-field theories, the newly derived formula is not self-contained with
respect to the large-scale variables. This is because the additional term E , albeit only in an
averaged fashion, still contains the small scall fluctuations u′ and B′. To find a closure for
the mean-field equation, one therefore strives to parameterise the electromotive force with
respect to averaged quantities, i.e., E is regarded as a functional of ū, B̄, and statistical
properties of u′. For simplicity, we here adopt the standard description, where E is supposed
to depend on the mean-field and its gradients:

Ei = αijB̄j + ηijk∂kB̄j . (4.2)

Specifying the averaging procedure, one can compute the values of the tensorial parameters
αij and ηijk by means of direct numerical simulations. In our case, we use spatial averages
along horizontal slabs which further simplifies the equations, as only vertical gradients arise.
Brandenburg & Sokoloff (2002) showed that in this case the eddy diffusivity tensor can be
reduced and one yields:

Ei = αijB̄j − η̃ijεjkl∂kB̄l , i, j ∈ {R,φ} , k = z , (4.3)

where there exists a unique mapping η̃il = ηijkεjkl such that

η̃xx = ηxyz , η̃xy = −ηxxz , η̃yx = ηyyz , η̃yy = −ηyxz . (4.4)

We tacitly assume that the mean-field coefficients are constant in time (in a quasi-stationary
sense) and furthermore describe the instantaneous and local influence of the turbulence on
the mean-field. In the most general framework, the α tensor is regarded as a kernel including
non-local and retardation effects (see e.g. Brandenburg, Rädler & Schrinner, 2008).

The assumption of constant dynamo coefficients is strictly only applicable in the weak
field limit. As soon as the magnetic field is strong enough to affect the turbulence itself, the
dynamo parameters will be inverse functions of the magnetic field strength, i.e., the stronger
the field becomes, the stronger it inhibits its amplification. In this so-called quenching regime
the field amplification is slowed down until a stationary state is reached. We want to point out
that in the scope of the current work the dynamo coefficients are measured in the unquenched
regime where the magnetic field is well below equipartition.

4.1.2 The dynamo tensors

In the following, we want to briefly describe, how the different coefficients from Equation (4.3)
affect the field amplification process they parameterise. The role of the non-vanishing tensor
components becomes more obvious when we write them down in their matrix representation
with respect to a cylindrical coordinate system [êR, êφ, êz]. For simplicity, we furthermore
assume that the off-diagonal entries of both tensors are totally antisymmetric. In this case,
we can replace the according elements by the components of vectors γ and δ, respectively.
Because, in our simulations, the axis of rotation is parallel to the gravity force, this assumption
is in accordance with the theoretical prediction for α by Kitchatinov, Pipin & Rüdiger (1994).
The question whether η̃ possesses a significant symmetric contribution in its off-diagonal
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elements will be addressed in Section 4.4.1. The parameterisation, in its simplified form, now
reads:

E(z, t) =

 αR −γz γφ

γz αφ −γR

−γφ γR αz

 B̄(z, t)−

 η̃R δz −δφ

−δz η̃φ δR

δφ −δR η̃z

 ∇×B̄(z, t) , (4.5)

where we make use of the convention αR ≡ αRR etc. to abbreviate the notation for the diag-
onal elements. Because we consider mean-fields which only depend on the vertical coordinate
z, the anti-symmetric vectors γ and δ can be expressed by the scalars γz and δz. If we further
assume B̄z = 0, we yield the following expression for the radial and azimuthal components
of the electromotive force:(

ER

Eφ

)
=

(
αR −γz

γz αφ

)(
B̄R

B̄φ

)
−

(
η̃R δz

−δz η̃φ

)(
−B̄φ,z

B̄R,z

)
. (4.6)

A brief look at the last term of this equation shows that the curl operator swaps the radial
and azimuthal components of the mean magnetic field and introduces a change of sign in one
of them. This mixing of the directions is important to understand the role of the various
coefficients. Since the electromotive force itself enters the induction equation as ∇×E , this
effect is similarly introduced to the terms including α, whereas it is cancelled again for the
terms including η̃, leaving them with a global change in sign. When we insert Equation (4.6)
into the mean-field induction equation (4.1), we thus yield

B̄R,t =
[
−(ūz + γz) B̄R − αφ B̄φ

+(η̃φ + η) B̄R,z + δz B̄φ,z

]
,z

(4.7)

B̄φ,t =
[

αR B̄R − (ūz + γz) B̄φ

−δz B̄R,z + (η̃R + η) B̄φ,z

]
,z

+ qΩ B̄R . (4.8)

Note that for the diagonal elements of the α tensor the radial and azimuthal components of
B̄ are now exchanged – this is where the main feedback loop of the dynamo process is closed.
As a note of caution, we want to emphasis that the one-dimensional, simplified system of
equations does, of course, not comprise the full set of dynamo solutions. Particularly, it does
not reflect the thin disk geometry commonly considered for global mean-field models. The
ansatz, however, closely resembles the geometry of our vertically elongated box, and many
results of the direct simulations can in fact be reproduced qualitatively in the 1D approach.

Diagonal elements

A closer look at the Equations (4.7) and (4.8) reveals that the diagonal elements of α are
not the only terms that mutually couple the poloidal and toroidal field. Together with the
differential rotation qΩ, they yield the dominant contribution to the dynamo effect, however.

In the absence of other effects, one usually speaks of an α2-type dynamo, referring to the
intertwined effects of αR and αφ. In the case of differential rotation, αR becomes dispensable
and a feedback loop can be achieved by the mutual coupling via the αφ and qΩ terms. This
kind of amplification mechanism, which is also thought to be responsible for the magnetic
field creation inside the sun, is commonly referred to as αΩ type dynamo. Because the
Ω mechanism is usually dominating, this class of dynamos is characterised by very small
pitch angles. Since we observe galactic fields with large pitch angles, we consequently have
to seek for an α2Ω-type solution.

Because the sign of the α effect depends on Ω · g, i.e., the orientation of the axis of
rotation with respect to gravitation, one expects αR to have odd symmetry with respect
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to the midplane.2 If we assume positive (negative) values in the top (bottom) half of the
simulation box, consequently, the gradient in αR is positive near the midplane. Given a mean
radial field of quadrupolar symmetry, this property carries over to ∂z (αR B̄R), which implies
that this term has the same sign as B̄R itself. Since we introduced the shear parameter
q to be negative, a positive value of αR (in the northern “hemisphere”) implies that the
induction from the turbulence works against the background shear qΩ, increasing the pitch
angle, whereas a negative value would imply the opposite. If we, on the other hand, assume
dipolar symmetry for B̄R, the two terms will in any case work in accordance in one half of
the box and in discordance in the other half, respectively. In this case one would expect
oscillating solutions for the dynamo equation.

Diamagnetic pumping

In our derivation of the dynamo coefficients, we have replaced the anti-symmetric part of
the α tensor by a vector γ. This is equivalent to writing a term γ×B̄ in the EMF. Taking
a look at Equation (4.1) we see that γ× B̄ is formally identical to the term ū× B̄. We
hence conclude that γ describes the transport of the mean-field due to the turbulence. It is
important to note that, although this term formally looks like an advection term, it is not.
This is because, unlike ū, which does also transport the fluctuating field B′, the so-called
diamagnetic pumping γ per definition does only affect the mean-fields.3

The turbulent pumping can be understood in analogy to a diffusion process, which follows
a gradient in concentration. It can be shown that, similarly, a gradient in the turbulence
intensity u′2 will lead to a turbulent transport of the mean-field towards regions of lower
turbulence amplitude. Since we restrict ourselves to vertical gradients in the mean-fields and
assume B̄z = 0, the only non-vanishing component of this vector is

γz =
1
2

(αφR − αRφ) , (4.9)

describing the turbulent pumping in the vertical direction. If we go back to Equations (4.7)
and (4.8), we see that γz simply adds up to the mean vertical velocity uz.

Turbulent diffusivity

By a similar argument as for the pumping velocity γz, we can derive the meaning of the
diagonal elements of η̃. Since they appear in the same places as the molecular diffusivity η,
it is self-evident to interprete them as turbulent diffusivity

ηt =
1
2

(η̃R + η̃φ) . (4.10)

Due to its origin in the turbulent nature of the flow, this quantity is sometimes also referred
to as “eddy diffusivity”.

Because the magnetic field components have undergone two curl operations in the dif-
fusive part of the induction equation, the coefficients η̃R and η̃φ have switched places and
η̃R (somewhat confusingly) is now responsible for the diffusion of Bφ and vice versa. This
can, however, be understood if one recalls that the tensor index refers to the spatial direction
rather than the component of the magnetic field. Although the turbulent contribution to the
resistivity is found to be dominant by many orders of magnitude, the molecular quantity still
plays an important role in defining the magnetic Reynolds number Rm of the flow.

2This is the very same effect that makes the trade winds in the Earth’s atmosphere follow different directions
in the northern and southern hemisphere and determines the sense of rotation in cyclones.

3As we shall see in Sec. 4.5, this difference poses a nice solution to the helicity flux issue.
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The Rädler effect

As we have already noted, the diagonal elements of α are not the only coefficients that couple
the radial and azimuthal component of the mean magnetic field. Whereas αR and αφ directly
mix the mean-field back into the electromotive force, the off-diagonal elements of η̃ feed back
the associated gradients. The possibility of driving a so-called Ω×J -type dynamo via this
effect4 was first discovered by Rädler (1969). Like for the pumping term γz, the vector δ
reduces to

δz =
1
2

(η̃Rφ − η̃φR) . (4.11)

If we write down the coupled system only retaining the shear- and δ-terms and apply a Fourier
decomposition, we yield

− iωB̄R = −δz k2
z B̄φ

−iωB̄φ = (δz k2
z + qΩ) B̄R , (4.12)

and from evaluating the associated determinant we can derive a necessary condition

− δzk
2
z (δzk

2
z + qΩ) > 0 (4.13)

for dynamo action (Brandenburg, 2005). Because of the (assumed) antisymmetric nature of
η̃Rφ and η̃φR, this is only possible for qΩ 6= 0, i.e., in connection with differential rotation.
More specifically, since q was defined negative, the coefficient δz has to be positive to allow
for a growing dynamo solution. A dispersion relation including the dissipative terms can be
found in Appendix B of Brandenburg (2005).

4.2 The SOCA approach

Reynolds averaged equations draw their practical usability from the assumed closure. In our
case, we have chosen the closure given by Equation (4.2). This parameterisation seems rather
arbitrary at first glance. In the following we want to briefly demonstrate, how this approach
can be justified by the neglect of third order correlations.

Generally speaking, the attempt to evaluate the highest order terms leads to a cascade
of equations including even higher order moments of the fluctuations – this is known as the
closure problem. An example for a closure based on higher order correlations is the so-called
τ -approximation (Vainshtein & Kichatinov, 1983) where triple correlations are approximated
in terms of quadratic moments via a relaxation time τ(k).

4.2.1 Homogeneous turbulence

Following Krause & Rädler (1980), we now focus on the second order closure (SOCA) and
write down the induction equation for the perturbed magnetic field B′:

∂tB
′ = ∇×

[
u′×B̄ + (ū + qΩxŷ)×B′ − u′×B′ + u′×B′ − η∇×B′ ] . (4.14)

We see that the turbulent EMF, i.e. u′×B′, enters this equation with a negative sign.
This occurs naturally if we recall that this term is responsible for the coupling between the
mean and fluctuating field. Besides the turbulent EMF and the dissipative term, there is an
induction term due to the mean-field, u′×B̄, the advection/induction term (ū + qΩxŷ)×B′,
and the term u′×B′, quadratic in the fluctuations.

4Applying spectra of the mixing-length type, this term is found to vanish in the so-called τ -approximation
– see Section 4.3 in Rüdiger & Hollerbach (2004).
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Figure 4.1: Time averaged logarithmic gradients of the gas density % (upper panel) and the turbulent
velocity u′ (lower panel) for model Q4. Two distinct disk components with scale heights of 40 pc and
350 pc are clearly visible (dashed lines).

The simplification introduced by SOCA now is to neglect the terms quadratic5 in the
fluctuating quantities within the evolution equation (4.14) for B′, i.e., the turbulent EMF
and the correlation u′×B′. In the limit of high conductivity we thus yield

B′(r, t) =
∫ t

0
∇×

[
u′(r, t′)×B̄(r, t′)

]
dt′ , (4.15)

where we have simultaneously dropped the contribution by the mean flow (ū + qΩxŷ) to
focus on the effects caused by the turbulence. From this formulation, we already see that
the parameterisation via α should ideally be considered as some sort of Green’s function. To
yield an explicit expression for the mean EMF we now evaluate the correlation

u′(r, t)×B′(r, t) =
∫ t

0
u′(r, t)×

[
∇×

[
u′(r, t′)×B̄(r, t′)

] ]
dt′ . (4.16)

To arrive at a closed expression with respect to B̄, we have to make further assumptions –
this is where the Strouhal number St = τc u′/lc comes into play. In the limit St � 1, we
can take the mean-field to be constant over the time interval relevant for the integration. If
we accordingly assume B̄(r, t′) ' B̄(r, t) for |t − t′| � τc, this implies that the right hand
side of Equation (4.16) can be expressed in terms of B̄ and ∇×B̄ alone, hence justifying the
chosen parameterisation. After some tensor algebra one arrives at the fundamental (scalar)
SOCA expressions for α and η̃ in the limit of high conductivity and homogeneous, isotropic
turbulence:

α = −1
3

∫ ∞

0
u′(r, t) · ∇ × u′(r, t− τ) dτ ,

ηt =
1
3

∫ ∞

0
u′(r, t) · u′(r, t− τ) dτ . (4.17)

If we further approximate the integrals, we finally yield

α = −1
3

u′ · ∇×u′ τc and ηt =
1
3

u′2 τc , (4.18)

5These terms would enter the mean EMF as triple correlations, hence the name.
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Figure 4.2: Quasilin-
ear α effect for model
Q4, computed via Equa-
tion (4.19). The differ-
ent curves correspond to
the values of τ listed in
Table 4.1, below.

τ [Myr] Ω∗ Ψ% Ψu s

2.0 0.41 0.79 0.55 1.42
2.8 0.58 0.77 0.57 1.37
4.0 0.82 0.74 0.58 1.29
5.6 1.16 0.69 0.57 1.21

Table 4.1: SOCA weighting functions (RK93) for
different values of the assumed correlation time τ
applied to model Q4.

where we infer that the α effect is proportional to the negative mean value of the kinetic
helicity density, whereas the turbulent diffusion is proportional to the square of the fluctuating
velocity. Note that both expressions are in fact quadratic in u′ as would be expected from
the second order approach. Of course, these expressions have to be modified in the presence
of inhomogeneities in the turbulent velocity field and density.

4.2.2 The case of stratified turbulence

Applying the SOCA framework, Rüdiger & Kitchatinov (1993, hereafter RK93) derived the
turbulent α effect resulting from gradients in the density % and the turbulent velocity u′.
The according horizontal components of the turbulent α effect in this case are

αRR = αφφ = −τ2Ω u′2
(

Ψ%∇ log % + Ψu∇ log u′
)

, (4.19)

with weighting functions Ψ% and Ψu. The corresponding gradients ∇ log % and ∇ log u′ for
our model Q4 are depicted in Figure 4.1, where we, first of all, notice that the two gradients
show opposite signs. This implies that, at least in the central part of the disk, the related
effects work against each other. Note that, unlike ∇ log %, the gradient in u′ changes its sign
in the halo. The logarithmic slopes show distinct peaks near the midplane corresponding to
the dense inner disk. Beyond |z| >∼ 100 pc a second peak with a scale height of h ' 350 pc
becomes visible. As is illustrated6 by dashed lines in Figure 4.1, the shape of the profiles
approximately corresponds to a functional dependence ∼ ∂z e−(z/h)2 .

To estimate the relative contribution of the two effects, one has to consider that the
profiles are multiplied by an additional factor of u′2 in the final expression for α. Because u′

has a minimum at z = 0, the strong gradient of the inner disk will only show up weakly in
the α profile. For the outer peak in the gradients, the density dominates by about a factor
of two. In the following, we want to infer how these amplitudes are modified by the relative
weights introduced by SOCA theory.

The dependence on the two weighting functions Ψ% and Ψu can alternatively be regarded
as a weighted gradient ∇ log(%s u′), where the newly introduced factor s = Ψ%/Ψu represents

6While the components are visible in both quantities, we only plot one curve per panel for clarity.
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the ratio of the two functions characterising the contributions of the density and velocity
stratification. The mixing functions are found to depend on the rotation rate, expressed by
the Coriolis number Ω∗ = 2τΩ, as

Ψ%(Ω∗) = Ω−2
∗ + 6Ω−4

∗ − 6 + 3Ω2
∗ − Ω4

∗
Ω5
∗

tan−1 Ω∗ and

Ψu(Ω∗) = Ω−2
∗ + 9Ω−4

∗ − 9 + 4Ω2
∗ − Ω4

∗
Ω5
∗

tan−1 Ω∗ (4.20)

(RK93). In the limit of slow rotation (Ω∗ <∼ 1) the arithmetic function can be expanded and
we yield the approximations

Ψ%(Ω∗) '
4
5
− 8

105
Ω2
∗ and Ψu(Ω∗) '

8
15

+
16
105

Ω2
∗ , (4.21)

implying that the weighting factor approaches the value s → 3/2 in the limit Ω∗ → 0. Note
that the first order correction is rather weak for Ω∗<∼ 1, which implies an α effect that (in the
slow rotation limit) increases linearly with Ω. The exact values of the functions for different
assumed correlation times τ are listed in Table 4.1 and we see that the turbulent α effect is
largely determined by the gradient stemming from the density stratification rather than the
turbulent velocity profile.

Altogether, the two effects are not easily separable, however. This is because the density
profile is, at least partly, determined by the kinetic pressure from the SNe and, vice versa,
the turbulent velocity profile depends on the momentum balance (cf. Sec. 3.2.2) and thus
on the density. In Figure 4.2, we present the α profiles computed from the density and
velocity distribution of model Q4. Because the positive gradient in u′ is compensated by the
strong decline in density, the resulting α effect is found to be positive in the the northern
“hemisphere” of our box. We also observe that the gradients are sufficiently steep to already
produce a strong dynamo effect for moderately low correlation time τ . This, of course, has to
be seen in perspective with the relatively high rotation rate of Ω = 100 km s−1 kpc−1 in model
Q4. Nevertheless, even if we scale down the results to 25 km s−1 kpc−1, as representative of
our own Galaxy at R�, the value needed to produce α ' 10 km s−1 is still somewhat shorter
than the commonly assumed τ = 10 Myr. This will become more obvious if we directly
compare the profiles measured from the simulations with the predictions made by SOCA
theory in the following section.

4.3 Dynamo coefficients from solid body rotation

For the practical purpose of our analysis of the simulation data, we restrict ourselves to the
parameterisation defined by Equation (4.2). To efficiently perform the inversion of this tensor
equation we apply the test field approach proposed by Schrinner et al. (2005, 2007) which
has been adopted for the shearing box case by (Brandenburg, 2005).

Earlier attempts to extract the dynamo coefficients from simulations (with non-trivial field
geometry) were based on least square fit methods (Brandenburg & Sokoloff, 2002; Kowal
et al., 2005). These approaches mainly suffered from the fact that in regions where B̄ or
∇B̄ becomes small the inversion of the (inherently overdetermined) problem will become
inaccurate. To circumvent these difficulties, one can try and solve Equation (4.2) for well
behaved tracer fields, i.e., fields with simple geometry and gradients which are fixed in time.
The main advantage of this method is that one can choose as many test-fields as are necessary
to make the problem well determined. The fact that the tracer fields B̄ remain constant in
time, however, does not imply that the electromotive forces u′×B′ that comprise the LHS of
Equation (4.2) are only depending on u′. To properly include the non-linear evolution of the
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Figure 4.3: Dynamo α and η̃ coefficients for model F4–ROT, i.e., for the case of solid body rotation.
Quantities indicated by the ordinate labels are plotted in dark (αRR, . . . ) and light (αφφ, . . . ) colours,
respectively. The panels show: (a) the diagonal elements of the dynamo tensor, (b) the transport
coefficients – compared with the profile of the mean flow (dashed line), (c) the turbulent diffusion
which roughly follows the SOCA prediction (dashed line), and (d) the off-diagonal elements of η̃.

test-field fluctuations B′, one thus has to solve an extra set of passive induction equations
(see Appendix B). Although this adds a considerable overhead to the computation, the direct
determination of the dynamo coefficients from simulations outweighs this additional demand
in computing resources by far.

4.3.1 The α effect from rotation

As we already mentioned in the outline, we aim to understand the galactic field amplification
process in a bottom-up approach, i.e., starting from the most basic setup. In the picture
of cyclonic turbulence, there are two indispensable prerequisites: rotation7 and stratifica-
tion. While the Coriolis force creates the vorticity in the expanding remnants, the positive
(negative) vertical expansion velocity in the top (bottom) half of the remnant will intro-
duce opposite signs in the helicity. With a homogeneous distribution of the remnants, this
would imply a cancellation of the contribution from the top and bottom half of the remnants
when taking the ensemble average. We thus see that in addition to the helicity generation
mechanism we need an additional source of inhomogeneity.

From these considerations, our T4 series of models as well as model F4-ROT should
embody a non-vanishing α tensor. We indeed find this effect, as is shown in Figure 4.3 where
we plot the dynamo α and η̃ coefficients for model F4-ROT averaged over four consecutive
time intervals spanning a range of t ' 50 Myr. The subintervals were chosen to allow for the
definition of some sort of standard deviation and get a feel for the level of scatter present in
the simulations. Apart from the inherent fluctuations due to the violent driving, the test-field
method suffered from a considerable amount of noise in our early models. This is why we
could not accurately determine the off-diagonal elements of η̃ for model T4 (cf. Sec. B.2.2).

7Or alternatively: shear, as we will see in Sec. 4.4.1 below.
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In accordance with SOCA theory, the (horizontal) diagonal elements of α are positive
(negative) in the top (bottom) half of our simulations box – see panel (a) of Fig. 4.3. The
amplitude of the observed α effect is on the order of 5 km s−1 with approximately equal values
for αRR and αφφ. The equal strength of the two components is in accordance with the ex-
pected isotropy in the horizontal part of the tensor. This occurs natural since, in the absence
of differential rotation, the radial and azimuthal direction are locally indistinguishable. From
the comparison of the amplitudes with the SOCA prediction (cf. Sec. 4.2), we infer a corre-
lation time τ ' 3.6 Myr (Gressel et al., 2008a) which is somewhat lower than the commonly
assumed value of 10 Myr.

Our dynamo profiles can, in principle, be directly compared with the results based on
the uncorrelated-ensemble approach (cf. Fig. 8 in Ferrière, 1998, hereafter F98). This model
yields peak values of αRR ' 6 km s−1, and αφφ ' 2.6 km s−1 (see also Tab. 4.2). While we
typically observe amplitudes of the same order, the results of F98, in general, depend strongly
on the variation of the input parameters with the galactocentric radius R – a variation that
is not explicitely considered in our models, and hence, makes an exact comparison difficult.
Whereas the profiles derived from the semi-analytical approach in F98 extend to galactic
heights of up to 6 kpc, the α effect in our simulations vanishes at the box interfaces. Although
this is, most likely, an effect of the limited vertical box size, the profiles of the model F4–noTI
(see Fig. 4.11 on page 73) are well contained within the vertical extent of the box, giving rise
to the assumption that the α effect might be restricted to a much narrower vertical range
than suggested by the profiles in F98. A distinct conclusion will, however, require additional
simulation runs covering greater galactic heights.

4.3.2 Diamagnetic pumping

The coefficients describing the diamagnetic pumping are plotted in panel (b) of Figure 4.3.
As already pointed out in connection with the velocity profiles (see Fig. 3.7 on p. 27), the
structure of the turbulent velocity dispersion implies an inward transport of the mean mag-
netic field. This inward pumping is indeed present in our simulations, and the off-diagonal
elements αφR and αRφ have negative and positive signs in the top half of our box, respec-
tively. The resulting transport coefficient γz thus becomes negative and has an amplitude of
the order of 5–10 km s−1. From the similar shape of the two profiles, we conclude that the
residual symmetric part of the off-diagonal elements lies in the margins of fluctuations and
is thus negligible.

The sign of the transport coefficient γz < 0 is in so far remarkable, as it contradicts the
“escape velocity” Vesc > 0 predicted by the models of Ferrière (1992). These analytical models
were based on isolated, non-interacting remnants, and the finding of an outward diamagnetic
transport is, in fact, true for these single remnants. The assumption that the ensemble average
can be performed by a simple convolution, however, is wrong, and non-linear simulations can
yield important new insights.

Another important prediction of the said models was the relative strength γ̂ = |α| : |γz| of
the dynamo process with respect to the turbulent pumping: Early analytical calculations by
Ferrière (1992) and semi-analytical models by Kaisig, Rüdiger & Yorke (1993) and Ziegler,
Yorke & Kaisig (1996) arrived at prohibitively high values for γ̂. After all, the last work in
this series of papers (i.e., F98) added the effect of stratification (resulting in pea- and peanut-
shaped remnants) and thus arrived at moderate values of γ̂ ' 6, which would, in principle,
allow for growing dynamo solutions (Schultz, Elstner & Rüdiger, 1994). In contrast, second
order theory (Rüdiger & Hollerbach, 2004) arrives at a considerably lower value of γ̂ ' 2.5.

If we compare the amplitudes in the two upper panels of Figure 4.3, we, in accordance
with SOCA theory, infer a ratio of about two. Being a factor of three smaller than the
most optimistic value from analytical models, this greatly enhances the possible efficiency
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αRR αφφ γz γ̂ ηt τ Ω∗ Cα

[ km s−1] [ km s−1] [ km s−1] [ kpc km s−1] [Myr]

T4 3.1 3.8 -7.8 2.1 0.9 2.7 3.6 0.7 3.3
T4–NCL 7.3 4.3 -24.7 5.9 2.4 2.2 2.8 0.6 1.4
T4–SNII 0.8 0.8 -1.8 2.5 0.6 1.0 3.6 0.7 1.2
T4–KIN 3.2 2.0 -8.3 4.1 0.6 1.2 3.4 0.7 2.6

F98 6.0 2.6 16.0 6.2 18. – – 0.2
0.7 0.5 4.0 6.6 2. – – 0.3

Table 4.2: Dynamo parameters for solid body rotation. Signs refer to the top half of the box, the
values for ηt apply to the inner (|z| ≤ 0.8 kpc) and outer region of the disk, respectively. Coherence
time τ and Coriolis number Ω∗ are estimated from a comparison with SOCA-profiles for αφφ. For
comparison we also list peak values from F98, for R = 7kpc, and R = 8.5 kpc, respectively.

of the dynamo process. Moreover, the negative sign of γz allows for a compensation of the
diamagnetic transport by a galactic wind. This is indeed observed in our simulations, as
is demonstrated by the dashed line representing the mean vertical velocity uz in panel (b)
of Figure 4.3. With the effective transport velocity determined by the residuum of the two
effects, the prospects for dynamo action are further improved. Apart from the cancellation
of the unhelpful vertical transport, the combined action of the pumping and wind might pose
a nifty solution to the “catastrophic quenching” scenario.

4.3.3 Turbulent diffusion

The feedback loop via the diagonal elements of α and the diamagnetic transport via γz

are only one side of the coin. In the end the operability (and growth rate) of a dynamo
is determined by the dissipative effects from the turbulent diffusion ηt. In panel (c) of
Figure 4.3, we plot the diagonal elements η̃RR, and η̃φφ, which show the same amplitude of
' 2 kpc km s−1. Similar as with the diagonal elements of α, this can be understood via the
indistinguishability of the radial and azimuthal radial direction in the case without shear.
The profiles of the turbulent diffusion are compared to the classic prediction τ/3 u′2 (with
a constant coherence time τ), and a reasonable match is obtained. If we study the curves
more closely, we see that we have to decrease the value for τ near the midplane, and increase
it away from the midplane to improve the congruence of the profiles. This trend of an
increased coherence time τ with galactic height z agrees well with the assumed expansion of
the remnants near and away from the midplane.

The amplitude of the turbulent diffusivity βv(z) in F98 agrees well with the value we
obtain for η̃RR, and η̃φφ – at least for z <∼ 1.5 kpc and R = 8.5 kpc. Whereas we observe a
decline in u′2 beyond z ' 1 kpc,8 the profiles in F98 peak at z = 2–4 kpc for the various
values of R. The source of this discrepancy is either rooted in the different input parameters,
or, more likely, in the contrary conceptual approach: If we look at Figure 9 in F98, we
see pea-shaped super bubbles extending over several kiloparsec; within the semi-analytical
framework, these bubbles are thought to expand coherently. Accordingly, they give rise to
the high peak values in the dynamo coefficients far away from the midplane, where their
lifetime is supposedly higher due to the lower external gas pressure. In our simulations, we
only see such “bubbles” at a very early stage, before the turbulence is fully developed. Once
the thermal instability has produced a clumpy, heterogenous ISM, the bubbles easily break
up into unordered turbulence and the coherent expansion is suppressed. In our simulations,

8This result might, however, still be affected by the limited horizontal box size of our simulations.
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the turbulence is not only created by the SBs but also acts back on them, i.e., unlike in the
theoretical model, we actually measure the turbulent diffusivity in a self-regulated regime.

The relative amplitudes of the processes relevant for dynamo action are commonly mea-
sured by means of dimensionless numbers. The dynamo number characteristic for the α effect
is defined as

Cα = αH/ηt . (4.22)

We compute this number assuming a characteristic length H = 0.8 kpc and applying the
ηt value from the inner part of the disk (cf. Tab. 4.2). In accordance with an analytical
estimation based on this number (Schultz, Elstner & Rüdiger, 1994), the runs without shear
are still sub-critical, i.e., no field amplification is expected for the pure α2 dynamo. We remark
that this finding should in no way be regarded as a general exclusion of the possibility of a
SN-driven dynamo in the case of solid rotation. Further simulations at higher magnetic
Reynolds number yet have to demonstrate whether differential rotation is indeed essential
for the dynamo to work, or, if it was only that the critical values for dynamo action were
not achieved in the rigid rotating case, given the assumed density profile and gravitational
potential used in the current simulations.

Finally, as illustrated in panel (d) of Figure 4.3, the off-diagonal elements of the diffusion
tensor η̃ indeed possess the correct sign to make the parameter δz positive. This is the case
over a wide range of the vertical domain and the term is negative only within a few minor
regions. According to the discussion in Section 4.1.2, this means that the antisymmetric
off-diagonal entries can in fact contribute to the overall dynamo effect. With an amplitude of
<∼ 0.5 kpc km s−1, the effect is somewhat smaller than the diffusion from the diagonal elements,
but by far not negligible. In the absence of any α effect or vertical transport, these values, in
the 1D toy model described in Appendix B.3, produce an exponentially growing stationary
mode with quadrupolar symmetry.

Damping of MRI modes

Apart from its importance for the dynamo, the turbulent diffusion caused by the SNe might
also have implications for other processes in the ISM. Sellwood & Balbus (1999) have pro-
posed that (mainly in regions of little star formation activity) the observed uniform level of
turbulence in the neutral hydrogen may be explained by the magneto-rotational instability.
Simulations by Dziourkevitch, Elstner & Rüdiger (2004) and Piontek & Ostriker (2005, 2007)
demonstrate that this is indeed possible. Irrespective of the fact that MRI is not needed to
explain the turbulence in regions with strong SN feedback, it is nevertheless interesting to
ask whether it provides a contribution to the amplification of magnetic fields in galactic
disks. This is in so far worthwhile to be considered, as MRI provides a very efficient way to
extract kinetic energy from the background shear flow. Based on the considerations in Jin
(1996), we crudely estimate that the inferred amount of diffusion present in our simulations
would in principle suffice to damp short wavelength MRI modes for reasonably high βP. A
definite conclusion will, of course, require further investigations by means of combined direct
simulations. Such models will, however, have to properly resolve the unstable MRI modes
as well as the outer scale of the supernova remnants – which sets very high demands on the
computational resources. Even if MRI is found to be critically damped by the SNe, it will
still have to be considered as a possible mechanism to explain halo fields and, beyond that,
might serve as a pre-amplifier generating stronger seed fields.

4.3.4 Comparison of models

In Table 4.2, we compile dynamo parameters from a set of simulation runs based on the setup
T4, discussed above. To study the effect of coherent SNe within super bubbles, we have
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disabled the clustering prescription for type II SNe within the model T4–NCL. This means
that all SNe are now placed at random positions, and only the vertical distribution remains
constrained. As described in Section 3.1.2 on page 23, the morphology is quite different
in this case and strong vertical streaming motions, commonly referred to as “chimneys”,
are observed. These are also reflected in the high values for γz and uz. Also the turbulent
diffusivity is high in the disk midplane, which is not the case for the other runs, where ηt scales
with the galactic height. Although the α effect is somewhat stronger in this case, the ratio γ̂
is substantially increased due to the high level of diamagnetic transport. Along with the high
level of diffusion, the dynamo number is decreased to a value close to unity, thus rendering
dynamo action rather improbable. The low value of τ = 2.8 Myr in the model T4–NCL
indicates that a higher coherence time might be achieved by a more realistic prescription
for the modelling of SBs – ultimately a self-consistent, self-regulatory approach via a star
formation criterion would be highly desirable to properly mimic the spatial distribution of
OB-associations (de Avillez & Breitschwerdt, 2005a).

In model T4–SNII, we neglect the field SNe and only consider (clustered) type II events.
Here we see that the velocity dispersion, and related to it the turbulent diffusion, predom-
inantly arises from the more broadly distributed type I SNe – despite their lower rate by a
factor of eight. Because theses events are mainly located in the dilute hot plasma, where the
cooling time is long compared to the dense plasma in the midplane, these explosions, can
develop a much higher velocity dispersion and more easily break up into turbulence. From
the drastic changes in the models T4–SNII and T4–NCL, we reason that an accurate repre-
sentation of the SN distribution is of uttermost interest. In this respect, the current models
will have to be refined based on the growing knowledge from observations. The different
level of turbulence in the case of clustered SNe might particularly be important in view of
cosmological simulations, where the kinetic feedback from SNe may change the efficiency of
the structure formation.

The dynamo coefficients listed in Table 4.2 are representative for the unquenched regime
of the dynamo, i.e., the field strength is well below its equipartition value. It, nevertheless,
seems valuable to check on the influence of the small-scale magnetic field on the inferred
mean-field parameters. For example, Kitchatinov & Rüdiger (1992) have proposed that the
anisotropy in the magnetic field created by a small-scale dynamo can lead to an additional
source of magnetic field transport. By means of the test fields it is possible to obtain the
dynamo coefficients even for the case of a hydrodynamic simulation. This has been done for
the model T4–KIN, representing the kinematic case, with the back reaction of the magnetic
fields ignored.

In fact, the obtained values for model T4–KIN (see Tab. 4.2) show some deviations from
the standard case T4. Whereas the level of the turbulent diffusion seems to be reduced, the
amplitude of the vertical pumping is found to be very similar. Because of the smaller value
for αφφ, the ratio γ̂ seems to be increased. Due to the inherent uncertainties in these early
models, it is, however, not clear whether this trend is indeed significant. For more conclusive
results, the kinematic case will have to be compared to models with stronger magnetic fields
and with the diagnostics improved as described above.

4.4 Dynamo coefficients from differential rotation

In the previous section, we have studied the α effect arising from the combined action of
stratification and solid body rotation. Although we indeed found a non-vanishing contribu-
tion to the α effect, we did not observe a dynamo. This is not the end of the world, of course,
since the galactic environment is characterised by strong differential rotation, anyway. Pro-
ceeding with our bottom-up approach of understanding the galactic dynamo, we now want
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αRR αφφ γz η̃RR η̃φφ δz Cα CΩ

[ km s-1] [ km s-1] [ km s-1] [ kpc km s-1] [ kpc km s-1] [ kpc km s-1]

Q4 1.3±0.8 1.2±0.4 −3.1±0.8 1.3±0.3 1.6±0.4 0.3±0.2 0.7 43.

H4 0.8±0.8 1.7±0.5 −3.5±0.8 1.5±0.2 1.8±0.1 0.3±0.1 0.6 39.

F4 1.6±0.7 2.0±1.0 −4.1±1.3 1.6±0.2 2.0±0.1 0.4±0.3 0.8 36.

F4–ROT 1.6±0.5 2.1±0.6 −3.3±0.8 1.4±0.2 1.2±0.1 0.2±0.2 1.1 –
F4–SHR −1.5±0.6 −1.1±0.3 −2.9±0.4 1.3±0.2 1.5±0.2 (0.1±0.2) 0.7 45.

F4–noTI 0.8±0.5 1.2±0.1 −2.3±0.5 1.2±0.2 1.3±0.2 0.2±0.1 0.6 50.

Table 4.3: Overview of the obtained dynamo coefficients for differential rotation. Signs for the
coefficients αRR, αφφ, and γz apply to the northern “hemisphere”. The numbers for these parameters
are integral mean values, computed separately for the top and bottom half of the box. The remaining
coefficients apply to |z| > 0.8 kpc, except for model F4–noTI, where we integrate the mean values over
0.4 kpc < |z| < 1.2 kpc to account for the smaller size of the dynamo-active region.

to explore how the picture changes in the regime of differential rotation. If we add shear to
the rotation, we expect consequences in three different ways: (i) the flow is now, at least in
principle, unstable against the magneto-rotational instability, (ii) the critical dynamo number
is considerably lowered due to the new induction term, and (iii) there is an additional source
of anisotropy, and potentially helicity, in the turbulence itself.

As we have discussed above, MRI is probably overwhelmed by the high value of the
turbulent diffusion. Moreover, even in the absence of the SNe, the magnetic field is still too
weak in our simulations to be able to adequately resolve the unstable MRI modes on the
numerical grid. We hence conclude that any effects due to (i) can be safely ignored at the
current point – which does not imply, that this subject should not be studied at a later stage,
of course; approaching equipartition field strengths, MRI might very well become important.

The striking simplicity and beauty of the MRI lies in the way it draws its power from the
vast reservoir of kinetic energy stored in the differential rotation. The very same source of
power can also be tapped by a more general dynamo mechanism. As we already mentioned,
in the presence of differential rotation, the α effect merely has to serve in closing the feed-
back loop. The prospects of field amplification are thus drastically improved. To quantify
this effect, we define the dynamo number

CΩ = −qΩH2/ηt , (4.23)

which describes the relative strength of the mean induction over the dissipation. For αΩ dy-
namos the product D = Cα CΩ ' 30 now serves as a characteristic number determining
whether field amplification can be obtained. As we have seen in the previous chapter, this
type of dynamo is indeed super-critical in the galactic context and shows growth times of
' 100 Myr. Apart from changing the very basic conditions for the dynamo, linear shear, even
in the absence of rotation, can already alter the structure of the turbulence and provide a
substantial source of helicity (Yousef et al., 2008). Like vertical stratification and rotation,
it introduces a new preferred direction to the flow. How does this term contribute to the
overall α effect in our model?

4.4.1 Cartesian shear

Before we turn to the complete picture including shear and rotation, we want to follow a brief
detour and study the α effect that linear shear imprints on the interstellar turbulence. The
more subtle question, why no dynamo is observed in this case, will be discussed separately
in Section 4.5.3.
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Figure 4.4: Same as Fig. 4.3 but for model F4–SHR, i.e., for the case of plain Cartesian shear. Note
the inverse sign (compared to F4–ROT) of the diagonal elements of α in panel (a) and the odd parity
of the coefficient −η̃φR in panel (d).

The dynamo parameters are again obtained via the test-field method, and we present the
corresponding results in Figure 4.4. Integral amplitudes of the various profiles are listed in
Table 4.3, where the sign of the coefficients is representative of the top half of the simulation
box. As can be seen in panel (a) of Figure 4.4, the α effect from Cartesian shear has the
opposite sign as in the case of solid body rotation (cf. Sec. 2.1 in Rüdiger & Kitchatinov,
2006). This can intuitively be understood in terms of the opposite radial velocity gradients
in the cases of solid body rotation and galactic shear. Unlike the Coriolis force, which equally
acts on the radial and azimuthal component of the velocity field, the shear only affects the
former. Consequently, we expect the α effect to be anisotropic, and we indeed find the radial
component αRR to be prevailing. In sight of the substantial fluctuations (see Fig. 4.4), we
cannot yet decide whether this trend is in fact significant. A stronger radial contribution
would, however, be consistent with the results of Ziegler (1995), who studied the evolution
of isolated remnants and found αRR to be significantly reduced in the case of differential
rotation, while αφφ was less affected by the additional shear.

If we compare the transport coefficient γz for the cases of solid body rotation and Carte-
sian shear, we see that the values are consistent within the error margins. This is in excellent
agreement with the prediction by SOCA theory, which states that this term is solely de-
termined by the combined vertical gradient ∇ log(% u′) and is independent of the rotation
rate Ω (RK93). Whereas the tensor component η̃RR related to the dissipation of B̄φ is also
consistent for the two cases, the component η̃φφ is somewhat enhanced in the case of linear
shear. This anisotropy seems plausible since the shearing of the radial field B̄R enhances the
curl of the field and hence the susceptibility to dissipation. A similar increase of ηt has been
found by Mitra et al. (2008), who consider helically forced turbulence under the influence of
external shear.

With respect to the Rädler effect, we find a possibly interesting difference between the
effects of rotation and shear: In the model F4-ROT η̃Rφ and −η̃φR are positive in the whole
domain corresponding to the totally antisymmetric case. Also both terms display an even
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Figure 4.5: Same as Fig. 4.3 but for model F4, i.e., for the case of differential rotation.

parity with respect to the midplane. Contrary to this, in the model F4-SHR, the η̃φR term
shows a trend towards odd parity. Because the sign of η̃Rφ remains unclear for z > 0, we
cannot draw a definite conclusion yet. There is some indication, however, that the off-diagonal
part of the η̃ tensor, at least for z < 0, might possess a non-vanishing symmetric contribution.

4.4.2 Differential rotation

Considering the non-linearity of the underlying equations, one may reason whether differential
rotation can simply be regarded as a superposition of “rotation plus shear”. Although this is
certainly not the whole truth, we in fact find some evidence, that the effects we observed in
the models F4–ROT and F4–SHR are also reflected in model F4, which represents the case
of differential rotation.

Compared to the case of solid body rotation, the coefficient αR, in the very inner part of
the disk, seems to pick-up the negative slope ∂zα|z=0 present in model F4–SHR. A possible
explanation for this is the smaller asymptotic radius of the supernova shells in the thick inner
disk. With the limited expansion phase, the effect of the Coriolis force is relatively weaker
as for the larger shells away from the midplane. This, on the other hand, means that the
effects due to the shear might be more important for |z| < 100 pc. The negative slope at
z = 0 becomes particularly evident for model F4–noTI, where we neglect thermal instability
(see Fig 4.11). Because of the different thermal structure of the disk without TI, the effect
seems to be more pronounced in this case.

As we see in Figure 4.7, for model Q4, the α effect vanishes for z < 400 pc – a trend
that is already visible in model H4 (cf. Fig. 4.6). The α effect from rotation seems to be
“quenched” by the additional negative contribution from the shear. 9 A similar result of
α quenching via shear has recently been obtained by Mitra et al. (2008) for simulations
of helically forced turbulence (see also Leprovost & Kim, 2008, for a theoretical account).
Although our supernova-driven turbulence, under the influence of the Coriolis force, might

9Since the inner region does not significantly contribute to the overall amplitude, this effect is not visible
in the values of Table 4.3.
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Figure 4.6: Same as Fig. 4.3 but for model H4.

Figure 4.7: Same as Fig. 4.3 but for model Q4.
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be comparable to the helical forcing, at the current point, it can only be speculated whether
the two observed effects have a common origin.

As discussed at the end of Section 4.4.1, the second major difference between the models
F4–ROT and F4–SHR concerned the symmetry of the tensor element η̃φR (represented by a
grey line in the corresponding figures). While its counterpart η̃Rφ (black line) is invariably
positive for differential rotation (models Q4,H4, and F4), η̃φR does not show a distinct sign,
in this case. As one would suspect, this might be inherited from model F4–SHR.

Dependence on supernova rate

In the following, we want to briefly study how the dynamo coefficients depend on the applied
supernova rate. Since the models Q4, H4, and F4 only span a factor of four in σ, we
are, however, restricted to a rather limited region in parameter space. Moreover, the three
different models are, more or less, all in the saturated regime with respect to the driving.
This means that the time between two distinct explosions is short compared to the relaxation
time of the turbulence. As we have seen from the horizontal slices in Figures 3.2 and 3.3,
there are, nevertheless, pronounced differences in the sheared out structure of the remnants.
To this respect, the main effects of the variaton in the SN frequency are (i) the overall level
of the turbulence (see Fig. 3.7 on p. 27) and (ii) the relative strength of the driving compared
to the shear (see lower panels in Figs. 3.2 and 3.3 on p. 24).

If we compare the first three rows of Table 4.3, we find a slight trend towards increasing
amplitudes for higher SN rates in all the parameters. This trend is rather marginal for
αRR, αφφ and γz, which are thought to depend on the gradient of u′, whereas it is more
pronounced in the diffusive coefficients η̃RR and η̃φφ, which, according to SOCA theory, scale
directly with u′2. For the parameter δz, we do not observe a significant dependence on σ.
Overall, the obtained coefficients are in reasonable agreement with theoretical considerations.
Because the diagonal α and η̃ coefficients show a comparable dependence on the supernova
rate, the corresponding dimensionless number Cα has a constant value of 0.6± 0.1 for all the
models. The trend towards higher turbulent diffusivities ηt is reflected in decreasing numbers
CΩ, which are also consistent with the anti-correlation of the field regularity with the star
formation activity (see Sec. 3.5.5).

4.5 The effect of vertical transport processes

The kinetic energy deposited into the interstellar medium by supernovae is tremendous; no-
body doubted that this kind of driving would create an α effect of sufficient strength to
power a galactic dynamo. It was perceived from the very beginning, however, that the vig-
orous driving from the SNe, at the same time, would create a strong diamagnetic transport.
Both inward and outward pumping were found to drastically diminish the prospects of dy-
namo action – Schultz, Elstner & Rüdiger (1994), in fact, found a rather narrow range of
permissible values for γ̂. The scepticism was finally affirmed by the dominant pumping found
under the assumption of an ensemble of uncorrelated explosions (cf. Sec. 1.3.2). In view of
the unquestionable importance of the vertical pumping, we now want to try and understand
the simulation results presented in Section 3.6. For this, we shall be aided by a simple 1D
mean-field model based on the dynamo coeffcients derived above.

4.5.1 Symmetry considerations

With Cα CΩ ' 35–40, the models Q4, H4, and F4 are well super-critical under the αΩ mech-
anism. In the absence of vertical transport, we, accordingly, obtain an oscillatory solution
with dipolar symmetry, i.e., odd parity with respect to z = 0. The corresponding dynamo
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Figure 4.8: “Butterfly” diagram of the mean radial and azimuthal field as computed from the 1D
toy model with parameters αR, αφ, and ηt taken from model H4. Vertical transport processes γz and
ūz are neglected. The colour coding is corrected for the exponential growth of the rms values 〈 B̄R 〉
and 〈 B̄φ 〉, respectively.

Figure 4.9: Same as above, but now including the contribution of the diamagnetic pumping γz and
the mean flow ūz. The vertical asymmetry at the first reversal is a relic of the mixed inital conditions
and disappears already for the second reversal.

pattern is depicted in Figure 4.8, where we draw the “butterfly” diagram of B̄R(z, t) and
B̄φ(z, t). This result, obviously, does not match the quadrupolar symmetry found in our di-
rect simulation runs. The picture is, however, drastically changed if we add the diamagnetic
transport and wind, which we have neglected so far.

Due to the inclusion of the vertical transport processes, the effective dynamo number is
somewhat reduced and we enter a new regime, where now the quadrupolar mode is dominant
(cf. Fig. 2 in Bardou et al., 2001); the resulting pattern is shown in Figure 4.9. While the
dynamo solution still shows an oscillatory character, the period between the reversals is now
considerably longer. Varying the ampitude of the pumping, we infer that the corresponding
time scale is related to the effective wave speed of the field patterns, i.e., it depends critically
on the residual transport velocity.

The first field reversal in Figure 4.9 already seems to exhibit the characteristic skewness
we observe in the direct simulations. The effect, however, already disappears again at the
second reversal and we conclude, that it is merely a relic of the initial conditions. Because
we expect our numerical discretisation to exactly preserve the overall symmetry, we have to
be careful not to exclude certain dynamo modes ab initio. We therefore initialise our models
with a mixed dipolar and quadrupolar initial field geometry. Although the dipolar mode
quickly decays away, it is still visible at t = 0.5 Gyr, resulting in the slightly asymmetric field
pattern.

If we now include the effects due to the off-diagonal part of the η̃ tensor, the picture is
again refined (see upper panels of Fig. 4.10). As we have discussed in Section 4.4.1, there is
some indication of a possible mixed symmetric and antisymmetric contribution in these tensor
elements. Particularly in the case of Cartesian shear, we observed a significant symmetric
part – but only in the lower half of our simulation box. If we add this symmetric term to our
mean-field model, the vertical symmetry is broken and we recover the lopsidedness present
in the direct simulations (see lower panels of Fig. 4.10). Considering the simplicity of the
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Figure 4.10: Same as Fig. 4.9, but additionally including a mixed (anti-)symmetric contribution
in the off-diagonal elements of η̃ (upper panels). Now the lopsided dipolar symmetry in the field
reversals persists and closely resembles the features seen in the direct simulation H4 (lower panels).

parameterisation, we regard this as a remarkable level of resemblance. The similarity of the
results might even seem more striking if we compare the computational effort necessary to
produce the respective figures: whereas the direct simulation took several weeks on a cluster
with 128 CPUs, the toy model ran in less than five seconds on the authors work station –
overall this makes a difference of a factor of ∼ 109 in computing time. The example illustrates
the possible “gain” inherent in the mean-field approach, albeit realistic global models, of
course, will have to be performed in 3D. In the end, one should, however, not be misguided
by the impressive speedup of mean-field models – we have to keep in mind that these models
are merely a toy without the knowledge from direct simulations, and that results based on
first principles cannot simply be replaced by intuition.

4.5.2 The role of thermal instability

In Section 3.6.3, we have seen that the overall changes introduced by the neglect of thermal
instability enhance the growth rate of the galactic dynamo by about twenty five percent.
From the examination of the main kinematic characteristics, we could not derive a conclusive
explanation for this. The main differences compared to the standard case were a slightly
lower overall level of the turbulent velocity dispersion along with a drastically reduced inner
gradient (see Fig. 3.7 on p. 27). Whereas the former finding implies a higher value for Cα

and thus favours a more efficient dynamo, the latter implies a weaker diamagnetic pumping
γz, which poses a threat due to the possibly enhanced outward transport by a dominating
galactic wind.

With the diagnostics of the test-field method at hand, we are now in the position to
directly query these hypotheses. In Figure 4.11, we present the eight tensor components
for the model neglecting thermal instability. First of all, we notice that the radial α effect
is reversed in the inner part of the disk. As has been discussed above, this might be a
consequence of a dominating contribution from the shear effect in the absence of a strong
density gradient. The particular shape of the resulting α profile is found to slightly alter
the field geometry. The growth rate of the dynamo, however, remains largely unaffected by
this additional feature. As expected from the weaker gradient in both % and u′, the overall
amplitude of the dynamo coefficient αφ is reduced in the inner part of the disk. Further away
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Figure 4.11: Same as Fig. 4.3 but for model F4–noTI, i.e., without thermal instability.

from the midplane, the influence of the stratification becomes weaker and the contribution
from u′2 becomes more important (cf. Eq. 4.19) – consequently the peak amplitudes are
comparable to model F4.

The curves for model F4–noTI are well contained within the vertical extent of the sim-
ulation box. This is particularly evident for the pumping terms in panel (b) of Figure 4.11.
Despite the apparent differences in ∇ log u′, the amplitude of γz is only moderately lower
than in model F4. In accordance with the standard model, the mean flow ūz is opposite
to the pumping and has a slightly higher amplitude compared to γz. In view of the inward
travelling dynamo pattern in the case of a positive α effect, this implies near ideal conditions
for the dynamo. Furthermore, the characteristic ratio γ̂ ' 2 is unaffected by the neglect of
TI – a finding that points into the direction that this ratio is ultimately governed by a very
fundamental mechanism. Much as we expected from the lower overall level of u′, the value
for the turbulent diffusion is somewhat reduced in model F4–noTI.

In conclusion we can say that all relevant processes are slightly attenuated in the case
neglecting TI – or, to use a positive formulation – they are enhanced under the effect of the
thermal condensation. If we put together all the pieces, the effective dynamo number Cα CΩ

is only marginally higher compared to the standard case. Because the effect of the vertical
transport processes is not reflected in these numbers, they ultimately have little significance
for the real case. Experiments based on the 1D toy model, however, indicate that the different
growth rates are consistent with the varying level of transport present in the models. As we
will see in the next section, the approximate balance of the diamagnetic pumping and the
mean flow has profund implications for the overall efficiency of the dynamo process.

4.5.3 The importance of rotation

From the analysis of our simulation runs presented in Section 3.6.2, we have demonstrated
that no amplification of the mean-field was obtained under the influence of plain shear. As
we want to point out, the only difference of the models lies in the fact that the Coriolis force
is disabled for model F4–SHR. Because curvature terms are neglected in the shearingbox



74 CHAPTER 4. UNDERSTANDING THE GALACTIC DYNAMO

Figure 4.12: Same as Fig. 4.9 but for model F4–SHR, where the α effect possesses the opposite sign
compared to model F4. In contrast to the case of rotation, the dynamo pattern (in the absence of
vertical transport) now travels outwards.

Figure 4.13: Exponential growth rate of 〈 B̄R 〉 as a function of the diamagnetic pumping velocity
γz for different peak values ūz of the galactic wind. The curves are computed from the 1D toy model
applying parameters from setup F4 (left panel) and F4–SHR (righ panel). Note the different intervals
of the abscissae. Negative values for τe correspond to decaying solutions.

approximation, the linear radial profile of the background velocity is identical in both cases
and the amplitude of the shear is still given by the term qΩ – which is why we kept the “F4”
in the nomenclature of the model. The “negative” outcome of the run F4–SHR marks an
important result in support of the picture of cyclonic turbulence. Since the particular setup
only represents a single region in parameter space, the general implication of the finding
may, however, be challenged. To broaden the scope of its applicability, we have to study the
underlying mechanism. To do so, we conduct a parameter study based on the afforementioned
1D toy model. To closely resemble the simulation runs, the basic parameter sets will be taken
from the models F4–SHR and F4, respectively.

The paramount difference between the cases of differential rotation and cartesian shear
was the reverse sign in the α effect. Because the shear parameter independently defines a
sense of orientation, this overall sign is indeed significant.10 As we can see in Figure 4.12,
the dynamo solution corresponding to negative values of αR and αφ, in fact, exhibits a very
different wave pattern. It shall be noted that, like in the upper panel of Figure 4.9, the
depicted solution corresponds to the case neglecting vertical transport. Whereas the actual
modes are very distinct in the two cases, the overall growth times are very similar – which
particular implies that we observe field amplification in both cases. To explain the even
qualitatively different behaviour found in the direct simulations we have to consider the
additional effects caused by the vertical transport.

In Figure 4.13, we present growth rates of dynamo solutions obtained from a small pa-
rameter study varying the amount of the diamagnetic pumping γz and the amplitude of the

10This is contrary to the case of an α2 dynamo, where the overall sign of the α coefficients is unimportant.
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mean flow ūz. The results shown in the left hand panel correspond to parameters αR, αφ,
and ηt inferred from run F4. We want to remark that the two velocities cannot simply be
subtracted to compute the residual velocity. This is due to the different shape of the two
contributions (cf. Sec. B.3.1). Whereas the definition of γz, for better comparison, is adopted
from the integral mean values listed in the tables, the numbers for ūz mark the peak values
at z = 2kpc. As a rule of thumb, the peak values for αRφ and αφR can be estimated by
doubling the numbers given for γz. Following this definition, the fastest growing solutions are
reached at an outward “residual” velocity of ' 7 km s−1, which agrees well with the findings
of Schultz, Elstner & Rüdiger (1994) and Bardou et al. (2001). The e-folding time of these
models can be as low as 40 Myr, which is already comparable to the timescales obtained from
MRI simulations.

For strong inward pumping (i.e., for γz < 0) we observe a slow growing asymptotic mode
with an e-folding time of ' 0.3 Gyr. In this limit, the growth rate is probably determined
by the midplane value of the diffusivity ηt. If, on the other hand, the amplitude of the
diamagnetic transport is reduced, the wind can efficiently remove the created field and the
dynamo mechanism is drastically quenched. In the case of differential rotation, we find a
limit of ' 15 km s−1 for the critical residual velocity, i.e., even a weak inward pumping allows
for growing dynamo solutions. For γz ' −3.5 km s−1 and ūz = 20 km s−1 we approximately
recover the growth rate of the direct simulation.

In the case of plain shear, the situation is dramatically changed. Because of the adverse
sign of the dynamo coefficients, the dependence on the diamagnetic pumping is found to be
more critical (see right panel of Fig. 4.13). Since the basic solution already constitutes of
outward travelling dynamo waves, a much stronger inward pumping becomes necessary to
balance already a moderate wind. Although the configuration, at least in principle, would
allow for growing solutions with e-folding times of ' 0.1 Gyr, the critical threshold is well
below the level present in our simulations. Without an additional effect enhancing the rate
of turbulent transport, the possibility of a supernova-driven galactic dynamo based on shear
alone is thus rendered unlikely.

Because our direct simulations are based on very fundamental assumptions, this result
has to be seen as a rather general one. The main restriction to the given argumentation
lies in the neglect of the vertical field component and the corresponding tensor element αzz.
Further investigations will have to show whether the result remains valid if this term is
included. Although the 1D model closely resembles the elongated shearing box of our direct
simulations, it has to be checked carefully, in how far this 1D approach puts constraints on
the admissible dynamo solutions. With respect to the simulations we have already explored
the validity of the results with respect to the magnetic Reynolds number (see Sec. 3.6.4).
There, however, remains the possibility that the relevant effects also depend non-trivially on
the magnetic Prandtl number Pm.
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Chapter

5
Conclusions

In this thesis, I present local box simulations of a differentially rotating, vertically stratified,
turbulent interstellar medium threaded by weak magnetic fields. The two main aspects of
this work are (i) the verification of a helicity-based field amplification mechanism driven by
SNe, and (ii) the study of this effect via mean-field coefficients.

Starting from the perceived theoretical requirements for a disk galaxy dynamo, a “min-
imal” model for the interstellar medium has been developed. As a central ingredient, we
apply optically thin radiative cooling and heating to account for the heterogeneous, multi-
phase nature of the ISM. The vertical stratification of the galactic disk is approximated by
a static external potential, representing the contributions of a stellar disk population and
a dark matter halo. Improving over existing models, I compute a radiatively stable initial
solution to avoid the transient collapse observed in other models. The central feature of our
simulations is the driving of turbulence via (several thousand) localised injections of thermal
energy, which closely resemble the kinetics of the vigorous supernova feedback present in
the ISM. Unlike for artificial forcing, the energy and distribution of the SNe are determined
by observable physical parameters. This approach, which was first pursued by Korpi et al.
(1999), marks an important step towards the understanding of field amplification in spiral
galaxies based on first principles.

With respect to the more general morphological features (i.e., volume filling factors, mass
fractions, velocity dispersions, energy spectra, and structure function scalings) our results
agree reasonably well with similar findings by Joung & Mac Low and de Avillez & Breitschw-
erdt. If details are concerned, there is also a certain amount of tension between the models.
The reason for this lies in the choice of input parameters, as well as in differences in numerical
resolution. As has been demonstrated by de Avillez & Breitschwerdt (2004b), the demands
for modelling a numerically converged cold ISM phase are tremendous.

The focus of the presented thesis lies in the investigation of the generation and evolution of
galactic magnetic fields. Therefore, it becomes mandatory to include differential rotation – an
effect which is not taken into account in the models of de Avillez & Breitschwerdt and Joung &
Mac Low. From a technical point of view, the inclusion of shear means a major complication in
connection with adaptive mesh techniques. The aforementioned models, however, draw their
particular strength from this strategy, which allows to follow the evolution of the turbulent
ISM to greater galactic heights without sacrificing numerical resolution near the midplane.
In comparison, our simulations come up with grid spacings coarser by a factor of eight, and
a vertical box size of 4 kpc as compared to 20 kpc. Despite the smaller vertical extent of our
model, we demonstrate that we capture the fundamental process of a disk-halo circulation.

77
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By means of a fiducial run at half the grid resolution (compared to our standard model) we,
furthermore, provide evidence that the findings relevant for dynamo excitation are reasonably
converged and robust with respect to the numerical approximation.

In addition to the general, ISM-related findings, we show that, in the case of differential
rotation, the turbulence created by SNe does, in fact, exponentially amplify the mean mag-
netic field (Gressel et al., 2008b). The timescale of the associated mechanism is on the order
of hundred million years and, thus, can easily explain the observed strong magnetic fields in
young galaxies (Bernet et al., 2008). The very possibility of such a dynamo has long been
disputed, specifically, after semi-analytical models predicted prohibitively high values for the
related diamagnetic transport. We highlight the importance of rotation in the generation of
helicity by showing that a similar mechanism, based on Cartesian shear alone, does not lead
to an amplification of the mean field. This finding impressively confirms the classical picture
of a dynamo based on cyclonic turbulence (Steenbeck, Krause & Rädler, 1966; Parker, 1971).

The symmetry of the mean magnetic field with respect to the midplane is found to be
quadrupolar. This predominant mode is interleaved with field reversals of dipolar symme-
try. The observation of this distinct oscillating behaviour required the simulation of several
hundred turnover times and could only be achieved on massively parallel computers. Obser-
vationally, the quadrupolar mode is favoured (cf. Sec. 8.1 in Beck et al., 1996), and suitable
seed fields can be provided by MRI (Kitchatinov & Rüdiger, 2004). Although the reversal
phenomenon will, of course, never be observed directly, this unexpected finding, nevertheless,
poses an interesting result for dynamo theory in general.

The numerical representation (Hanasz et al., 2004) of the cosmic ray driven dynamo pro-
posed by Parker (1992) depends critically on a finite level of the microscopic diffusivity η. In
contrast, we demonstrate that the α effect resulting from the direct driving via SNe persists
at moderately high magnetic Reynolds numbers – a finding which strongly supports the rel-
evance of the effect for the real ISM. Coinciding with the value predicted by Schultz, Elstner
& Rüdiger (1994), we find a lower threshold of Ω ' 25 km s−1 kpc−1 for magnetic field am-
plification. Furthermore, the observational correlation of field regularity with star formation
activity (Chyży, 2008) is approximately recovered within our simulations. The same holds for
the observed high pitch angles of up to 35◦, with the restriction that the dominating region
of the field only exhibits values of 10◦. Because it is not obvious which region of the disk
actually contributes to the observed angles, this does, however, not necessarily imply a dis-
crepancy. Finally, the influence of thermal instability as well as the strength of the external
potential are found to be of minor importance for the overall field amplification.

To aid the elementary understanding of the underlying dynamo mechanism, we interpret
our results in the framework of mean-field magnetohydrodynamics, i.e., we determine dynamo
tensors α and η̃, which parameterise the effects of turbulence in the large-scale induction
equation in terms of the mean-field and its gradient, respectively.

The dynamo profiles αRR(z) and αφφ(z) obtained with this method agree well with the
theoretically predicted α effect (Rüdiger & Kitchatinov, 1993). As expected for the case of
solid body rotation, both coefficients have approximately the same amplitude and show a
positive (negative) sign in the top (bottom) half of the simulation box. From a comparison
with the SOCA prediction for stratified, rotating turbulence, we infer a correlation time
τc ' 3.5 Myr, which is about a factor of three lower than has been commonly assumed.
Moreover, we find even shorter coherence times for the models that neglect the clustering
of type II SNe. This trend is consistent with the assumption of a higher level of coherency
for correlated super bubbles. At the current level of approximation, we apply a prescribed
clustering algorithm as a proxy for the distribution of stars within OB associations. Hence,
we conjecture that a higher value for the coherence time might be obtained if a more accurate
representation of the clustering is achieved. It shall be noted that, within the paradigm of
mean-field modelling, the coherence time is a free parameter and little is known about its
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true value within the interstellar medium.
The inferred coherence time τc roughly corresponds to the classical evolution time of

a single remnant, which is defined by the condition that the expansion velocity of the shell
reaches the level of the velocity dispersion within the ambient medium. This should, however,
not be taken too literally since the picture of a supernova remnant as a well defined entity is
certainly misleading in the context of the heterogeneous ISM. From the computed structure
functions, we estimate a correlation length of lc = 80–100 pc. This agrees well with the
findings of de Avillez & Breitschwerdt (2007b), who measure this quantity by means of two-
point correlation functions. While the inferred value of lc is similar to the asymptotic diameter
of a single remnant near the midplane, it is considerably smaller than the commonly assumed
“average size” of evolved super bubbles.

With these two characteristic flow parameters, we can compute the dimensionless Strouhal
number St = τc u′ l−1

c , for which we obtain values of 0.1, 0.5, 0.7, and 2.3 for the cold,
unstable, warm, and hot phase, respectively. As we recall, the limit of small Strouhal numbers,
St � 1, was a formal requirement of the SOCA approximation. While the stated numbers are
certainly not “small”, they are of the order of unity – which implies that SOCA expressions
can be regarded as reliable order of magnitude estimates. This result is of considerable
importance since general numerical simulations are inherently limited to the study of magnetic
Prandtl numbers close to unity. To obtain robust scaling relations with respect to Pm, SOCA
theory (and closures based on higher order moments) will remain indispensable.

The dynamo profiles obtained for the case of differential rotation can, in principle, be
directly compared with the results based on the uncorrelated-ensemble approach (Ferrière,
1998). In general, we measure similar amplitudes, but find the α profiles to be contained
within a smaller vertical range than predicted by this model. For the turbulent diffusivity
we find a similar trend. As has been discussed, a dependence of our results on the box size
cannot yet be excluded. We, nevertheless, presume this disagreement to be rooted in the
assumption of “coherently expanding” super bubbles, as opposed to the chaotic turbulence
represented in our direct simulations.

Concerning the diamagnetic pumping term γz, we encounter even more severe discrep-
ancies between the “uncorrelated ensemble” and our simulations. In accordance with SOCA
theory, which predicts that this term has its origin in the spatial variation of the turbulence
intensity, we find negative (positive) values for γz in the top (bottom) half of our simulation
box. In contrast, Ferrière arrives at an escape velocity Vesc > 0. While this is indeed correct
for a single explosion, this property, obviously, does not carry over to the ensemble, which
evidently shows that the interactions between the remnants must not be ignored.

Within the scope of this thesis, we restrict ourselves to the unsaturated regime of the
dynamo mechanism. The very particular nature of the obtained vertical transport processes,
however, suggests an interesting quenching scenario which shall be briefly discussed in the
following: In the classical notion, the dynamo is saturated via an inverse dependence of the
diagonal elements αRR and αφφ on the magnetic field strength approaching its equipartition
value. A characteristic property of this so-called α quenching is the suppression of the pitch
angle in the quenched regime. This occurs because the differential rotation qΩ, which is
unaffected by the quenching, becomes the dominant effect.

If, on the other hand, the saturation process is controlled by the quenching of the diamag-
netic advection, the dynamo could be brought into saturation without destroying the pitch
angle. The strong inward transport which we observe in our simulations might be opposed by
a buoyant pumping1 (Kitchatinov & Rüdiger, 1992). For weak fields, this term scales with
the square of the Alfvén velocity vA and is directed towards lower densities, i.e., upward.
This, in turn, implies that the effective inward pumping may be reduced at increasing field

1This term, similarly to γz, describes an effective turbulent transport, and is thus rather distinct from the
normal buoyancy due to the magnetic pressure.
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strength. Because the role of the galactic wind will be reinforced if the turbulent transport
is attenuated, the dynamo may already saturate before the actual α quenching comes into
play. With an unquenched α effect, it becomes possible to explain the high observed pitch
angles at equipartition field strength. Preliminary mean-field models (Elstner, private com-
munication) suggest that such a “wind quenching” can indeed produce higher pitch angles in
the saturated regime.

Beyond this quenching scenario, we want to shortly address an ongoing discussion on the
efficiency of mean-field dynamos: Based on very general considerations, Vainshtein & Catta-
neo (1992) have raised serious criticism against dynamo theory in the limit of high magnetic
Reynolds numbers Rm. Vainshtein & Cattaneo argue that, because magnetic helicity is ide-
ally conserved in this case, the creation of large-scale helicity by a dynamo process has to be
accompanied by an accumulation of small-scale helicity of the opposite sign. Consequently,
the large-scale dynamo is catastrophically quenched, where the term “catastrophic” refers to
the fact that the quenching function is proportional to Rm. With an estimated Rm = 1018

for the interstellar medium, this quenching would indeed be catastrophic. With an effective
magnetic Reynolds number of Rm = 104, the effect is most likely much less pronounced in
our simulations – which has to be kept in mind, when interpreting the results.

A possible solution to the described issue may be given by the existence of sufficiently
strong helicity fluxes, as discussed in Sur, Shukurov & Subramanian (2007). If the dynamo-
active region can be efficiently cleaned from the small-scale helicity, the quenching effect
might be annihilated. In their zero-dimensional mean-field model, the authors, in addition to
the mean induction equation, dynamically evolve a magnetic contribution αm to the dynamo
effect. This term is based on the current-helicity of the flow, and is supposed to represent the
quenching due to the small-scale fields. The related non-linear system shows an interesting
behaviour: A non-vanishing amplitude of the saturated field can only be obtained under the
contribution of an outward mean velocity. Such a wind will, however, also remove the created
mean magnetic field.

Alternatively, the authors consider a contribution of the helicity flux discovered by Vish-
niac & Cho (2001), which similarly improves the operability of the dynamo. Yet, the models
do not yield saturation levels of the field that are comparable with observations. As a com-
plement to these studies, we suggest that the vertical transport which we observe in our
direct simulations might naturally improve the situation: On one hand, the strong wind ef-
ficiently removes the small-scale helicity while, on the other hand, the mean field is subject
only to the, much lower, residual velocity given by the additional inward pumping. With an
approximate balance of these two very distinct transport processes, the dynamo operates in
an optimal state, while the catastrophic quenching is inherently circumvented. Although our
models are currently only representative of the regime of moderate Rm (where the quenching
is probably still weak), the described scenario might already be embodied in our simulations
– a hypothesis which is further supported by the sustained high growth rates for low values of
the microscopic diffusivity η. First preliminary simulations, moreover, show that our current
setup is indeed capable of obtaining equipartition field strengths – which strongly suggests
that catastrophic quenching is not in effect.

Having demonstrated that direct driving via supernovae is a powerful mechanism for
amplifying galactic magnetic fields, the current work opens new perspectives for global mean-
field models. With simulation-based dynamo parameters replacing analytical derivations,
which were primarily based on intuition, the mean-field approach can finally be put on a
solid foundation. As many dependencies remain to be explored, the current simulations can
only be regarded as a starting point for more comprehensive parameter studies. Moreover,
the highly important aspect of quenching has completely been neglected within the current
thesis. Ultimately, future simulations at enhanced numerical resolution will have to show
how the supernova driven turbulence is affected in the regime of saturated fields.



Appendix

A
Code Validation

A.1 Flux-matching at sheared interfaces

To account for the large-scale galactic shear, our model makes use of the so-called shearing
box formalism, where the radial boundary conditions for the fluid variables %, m, ε, and e,
i.e., the mass-, momentum-, thermal energy-, and total energy-density, respectively, take a
time-dependent shifted-periodic form:

f(x, y, z) 7→ f(x̃, ỹ, z), f ∈ {%,mx,mz, ε}
my(x, y, z) 7→ my(x̃, ỹ, z) ∓ % w,

e(x, y, z) 7→ e(x̃, ỹ, z) ∓my w + 1/2 % w2, (A.1)

where w = qΩLx, x̃ = x ± Lx, and ỹ = y ∓ wt. Since the y coordinate of above mappings
varies continously in time, there is some kind of interpolation necessary to map the ghost-zone
values onto the finite grid. For our implementation, the same piecewise linear reconstruction
is used as for the numerical scheme.

A.1.1 The conservation of hydrodynamic fluxes

As the numerical fluxes are nonlinear functions of the primitive variables, any form of inter-
polation will lead to a small inconsistency. We avoid this by matching the computed x fluxes
at the sheared domain boundaries. It is straightforward to map fluxes not containing my.
For the remaining quantities, we derived the following expressions for the numerical fluxes
(Gressel & Ziegler, 2007):

F x
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,j,k
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(%)w ,
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(e) = F̂ x
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(e) ∓ F̂ x
ı̃+1

2
,̃,k

(my) w + 1/2 F̂ x
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2
,̃,k

(%)w2 , (A.2)

where the hat stands for the piecewise linear interpolation procedure used, and tilde marks
the corresponding indices of the zones to map from.

A.1.2 The conservation of magnetic fluxes

Applying Gauß’ theorem to the integral form of the induction equation, one can show that
the azimuthal field, in the case of ideal MHD, grows linearly with the net radial magnetic
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flux:
∂t 〈B〉 = −w

V
ŷ

∫
∂X

dy dzBx , (A.3)

that is, for zero net radial field, the mean magnetic flux through the shearing box is conserved.
Our implementation satisfies this condition to machine accuracy for the x and z component
of the magnetic field and to truncation error for the y component. To achieve this, we apply
additional boundary conditions to the electric field fluxes. This is necessary because the
velocity offset w enters the fluxes via the electromotive force:

E(x, y, z) 7→ E(x̃) ± w ŷ ×B . (A.4)

Similar to the above expressions for the hydrodynamic fluxes, we derived mappings for the
electromotive forces (Gressel & Ziegler, 2007):
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= Ĝx
ı̃+1

2
,̃,k
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, (A.5)

with the same notation as in Equation (A.2) above. In addition, b+ (b−) is the the maximal
(minimal) wave-propagation direction-sensitive speed at yj+1

2
, and ’N’ (’S’) indicates piecewise

linear reconstruction at the northern (southern) cell interface.

A.2 Momentum source terms

For our local Cartesian coordinate frame, we apply the so called Hill system. This approxi-
mation is based on the local expansion of the equations of motion resulting in a tidal force
2% qΩ2xx̂. Together with the Coriolis force −2%Ωẑ × v, the momentum source terms can be
formally written as an effective Coriolis force −2%Ωẑ × (v + qΩxŷ) acting on the perturbed
velocity δvy = vy + qΩx. Although this formulation would in principle allow for an exact
Coriolis update (via an analytic rotation of the velocity vector) numerical experiments indi-
cate that such an update is not compatible with the multi-stage integration scheme. Thus, we
decide to implement the source terms unsplit, i.e., as explicit forces within the Runge-Kutta
time integration.

Gardiner & Stone (2005) point out the importance of conserving the energy contained in
the epicyclic mode. This ideally conserved quantity can be derived from the energy budget
in the limit of inviscid flow and reads

Eepi = 1/2 % 〈uR〉2 + 1/2 % 〈uφ〉2
(2Ω)2

κ2
, (A.6)

with κ the epicyclic frequency. While this formally looks like a kinetic energy, it also includes
the potential energy with respect to the epicyclic displacement. We have found that it is
important to implement the source terms in an unsplit fashion to avoid oscillations in this
energy that would otherwise arise from systematic splitting errors.

From 2D shearing sheet simulations, the error in the epicyclic energy is found to be
independent of the mode amplitude. For constant excitation amplitude, the error is growing
linearly in time. The measured relative error per orbit decreases with resolution, reflecting
the third-order convergence of the underlying time integration scheme. For comparison, we
have also tested two conventional (operator split) methods for the source terms: method (A)
forward-Euler integrates the Coriolis forces while method (B) treats the Coriolis term via
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Figure A.1: Convergence of the
relative errors in the epicyclic en-
ergy for A (triangles), B (squares),
and the unsplit method (diamonds).
Least-square fits with (logarithmic)
slopes of -1.79, -1.66, and -3.04 are
indicated by the respective lines.

rotation of the momentum vector. By expanding the trigonometric functions, one can show
that method A gives a first order approximation to method B. Both methods (in contrast to
the unsplit one) lead to oscillations, with frequency 2Ω, in the epicyclic energy. Figure A.1
compares the residual errors as a function of resolution, clearly favouring the unsplit approach.

A.3 Isolated remnants

In our ISM-model, turbulence is driven via supernova explosions, which are modelled as
local injections of thermal energy. The initial energy distribution is smeared over three
standard deviations of a Gaussian support. To practically determine a feasible dimension
for the kernel, we conducted test simulations of single SNRs with initially Gaussian shape of
varying width as depicted in Figure A.2. Due to the self-similarity in the adiabatic expansion
phase, it is sufficient to apply a FWHM of 20 pc to adequately represent the energy injection
without excessively suppressing the numerical time step. Numerical solutions with increasing
spatial resolution ∆s have been tested against the analytical description by Cioffi, McKee
& Bertschinger (1988) as illustrated in Figure A.3. The results agree well, and we see that
convergence can be obtained for grid spacings below 3.1 pc. This corresponds to the findings
reported in Mac Low et al. (2005).
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Figure A.2: Parameter study for single SNR. Symbols mark the radius of the traced density peak for
three different smoothing lengths of the initial energy profile. Error bars indicate the range where the
density is above the ambient value. The solid line indicates the analytical solution by Cioffi, McKee
& Bertschinger (1988).

Figure A.3: Same as in figure A.2, but for three different grid spacings ∆s, indicating convergence
of the numerical solution (see inlay).



Appendix

B
The Mean-field Approach

B.1 The test-field method

To avoid complications with the inversion of the tensorial equation (4.2), we apply the test-
field approach proposed by Schrinner et al. (2005, 2007). The method has also recently
been adopted to the shearing box case by Brandenburg (2005). Earlier approaches to the
computation of dynamo coefficients from simulations (Brandenburg & Sokoloff, 2002; Kowal
et al., 2005) were based on least square fit methods. The major drawback with these was that,
in regions where B̄ or ∇B̄ vanishes, the inversion will become singular. One can circumvent
these difficulties by solving Equation (4.2) for properly defined test-fields, i.e., fields with
simple, well behaved geometry and gradients. The price for this is that one has to evolve an
extra (passive) induction equation for each field. In reality we do not evolve the test-field
B(ν) itself but its associated fluctuations, i.e., we integrate

∂tB′(ν) = ∇×
[
u′×B̄(ν) + (ū+qΩxŷ)×B′(ν)

−u′×B′(ν) + u′×B′(ν) − η∇×B′(ν)

]
,

∇·B′(ν) = 0 ,

(B.1)

with the velocity u taken from the direct simulations and for constant B̄(ν), with ν = 0 . . . 3
for the case of B̄z = 0 and horizontal averages. Note that η here denotes the physical, i.e.,
microscopic diffusivity.

We implemented these additional equations within NIRVANA employing the constrained
transport paradigm to exactly satisfy the solenoidal constraint. The actual method uses up-
winding to guarantee stability, while second order in space is attained via piecewise linear
reconstruction. For this, we apply the same slope limiter as in the actual code. Our proce-
dure is very similar to the methods described in Teyssier, Fromang & Dormy (2006). The
time integration is finally performed with a second order Runge-Kutta method to minimise
synchronisation overhead compared to the full third order update of the MHD equations.
This is important if the number of test-fields is further increased, especially, since the com-
putation of ū and u′×B′ requires collective communication. The exact discretisation of the
system (B.1) is described in detail in section B.2.

For the particular choice of the four test-fields B̄(ν), we use the ones from Brandenburg
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Figure B.1: Radial component Ex(z) of the mean electromotive force. The thick gray line shows
the time averaged value over a period of 50Myr, while the shaded area gives the rms fluctuations.
Thin lines are the mean EMFs as reconstructed from Equation (4.2) with dynamo parameters (α, η̃)
computed via the least square fit (white line) and test-field (black line) approach.

(2005), which are

B̄(0) = cos(k1z) x̂ , B̄(1) = sin(k1z) x̂ ,

B̄(2) = cos(k1z) ŷ , B̄(3) = sin(k1z) ŷ , (B.2)

with k1=π/Lz and Lz the vertical extent of the box. For each of the test-fields, we compute
the corresponding mean electromotive force

Ē(ν) = u′ × B′ . (B.3)

The dynamo coefficients can then be computed via Equation (4.2), which, for the x compo-
nent, takes the form

Ē(0)
x =αxxc−ηxxz k1s , Ē(1)

x =αxxs+ηxxz k1c ,

Ē(2)
x =αxyc−ηxyz k1s , Ē(3)

x =αxys+ηxyz k1c , (B.4)

with similar expressions for Ē(ν)
y and Ē(ν)

z , and where we have abbreviated sin(k1z) and
cos(k1z) with “s” and “c”, respectively. By identifying the coordinates x, y, and z with the
indices 1, 2, and 3 the solution to this set of equations can be compactly written as(

αij

k1ηij3

)
=

(
c s

−s c

)(
Ē(2j−2)

i

Ē(2j−1)
i

)
, (B.5)

with i ∈ {1, 2, 3}, and j ∈ {1, 2} in the case of B̄z=0. In contrast to the least square fit
method, Equation (B.5) can be directly computed for each z, yielding vertical profiles for the
dynamo parameters.

We have implemented and tested both the least square fit and the test-field method.
Figure B.1 shows a comparison for the most basic check one can apply, i.e., reconstructing
the EMF from the computed coefficients according to Equation (4.2). On can see that both
methods perform well on reproducing the simulated data. While for the fit method this
seems obvious, we want to point out that the test-field method in no way relies on the actual
magnetic field from the simulation (as long as there is no significant quenching involved).

B.2 Implementation details

For the discretisation of the test-field induction equation, we follow the concept of constrained
transport (CT), in which the solenoidal constraint is automatically satisfied to roundoff error.
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The guiding idea is to apply a discrete version of Stokes’ theorem. In the resulting finite-
surface approach, the magnetic field components 〈Bx〉, 〈By〉, and 〈Bz〉 are regarded as face
averages and centred at the faces (of the corresponding coordinate direction), while the
electric fields 〈Ex〉, 〈Ey〉, and 〈Ez〉 are thought of as line integrals along the edges of a
particular face.

B.2.1 Discretisation

We follow standard notation and index the centre of a cubic grid cell with (i, j, k). If we
combine all the terms of the rhs of Equation (B.1) into one electromotive force E=u×B′ −
u′×B′+u×B̄−η∇×B′, the basic update from time tn to time tn+1 of the induction equation
∂tB′=∇×E reads:
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The next task in constructing a numerical scheme is to specify how the edge-centred electric
fields are obtained: −u′×B′ and u×B̄ can be regarded as source terms and are discretised
in a straightforward fashion. The treatment of the diffusive part −η∇×B′ has been closely
adopted from the original NIRVANA code. The crucial term here is u×B′, describing the
advection of B′ with the given flow u. It can be shown that simple central averages of the
form
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(B.9)

would lead to an unconditionally unstable numerical scheme. This has also been pointed out
by Teyssier, Fromang & Dormy (2006). A strict proof for a corresponding advection type
equation can be found in Hirsch (1988). To obtain a numerically stable solution, we decide
to use the upwind states of the magnetic field components, i.e.,
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instead. This comes at the price of reducing the spatial order of the scheme. Second order can,
however, be recovered by piecewise linear reconstruction of the magnetic field components.
This is indicated by the labels W, E, S, N, T, and B, denoting reconstruction towards the
west/east, south/north, and top/bottom direction. Non-oscillatory behaviour is achieved by
the use of a slope limiter. For consistency, we chose the same limiter that is applied in the
general code (Ziegler, 2004). Finally, the time integration is performed via a second-order
Runge-Kutta scheme:

B′(∗) = B′(n) + δt ∇× E(B′(n),u(n), B̄) ,

B′(n+1) =
1
2

[
B′(n) + B′(∗) + δt ∇× E(B′(∗),u(n+1), B̄)

]
, (B.13)

where we use the time step δt computed from the (more restrictive) Courant condition of the
actual MHD-scheme. The test-fields are not updated with the full third order Runge-Kutta
method to minimise overhead. This is important because the averaging procedure includes
additional collective MPI-communication. Application of boundary conditions, synchronisa-
tion, and (in the case of AMR) mesh fix-up, however, are still aligned with the main scheme
since the predictor step is the same in both cases.

B.2.2 Improvements

Within the test-field concept, the electromotive force u′×B′, related to the tracer fields, is
supposed to pick up the effects of the turbulent flow on the magnetic field. This tracing
of the turbulence is supposed to be sensitive for fluctuations over timescales comparable to
the turbulent turnover time. This is also consistent with the picture of scale separation, i.e.,
slowly varying mean-fields and uncorrelated fluctuations on intermediate time scales.

Since our models are evolved over time scales that are long compared to τc, the fluctu-
ations B′ will, however, keep their memory for much longer than is desired. As we can see
from Equation (4.14), the “fluctuation” of the EMF term, i.e. u′×B′ − u′×B′, enters the
induction equation for B′ as a source term. These high order correlations, in fact, introduce
a considerable level of noise into the method and drastically degrade the signal to noise ratio
of the derived coefficients. Matters become worse because there is no efficient damping term
in the evolution equation for B′. Whereas turbulent diffusion per definition only affects the
mean-field, the microscopic diffusivity η entering Equation (4.14) results in a damping time
scale of τη = L2/η ' 1.5 Gyr for L = 100 pc.

To avoid the effects of the accumulation of long term fluctuations, we periodically reset
the test-field fluctuations B′ to zero. This (artificially) introduces a finite temporal domain
of dependence, which is in accordance with the assumptions of the mean-field concept and
drastically improves the signal to noise ratio of the measured dynamo coefficients. In an
alternative approach, we suppose an artificial damping time scale by introducing an additional
sink term of the form −B′/τart. For sufficiently low τart

>∼ 4τc, this approach will also result
in a diminished level of noise.

As a note of caution, we do not want to conceal that one has to be careful about choosing
the periodic “refresh rate” or the artificial damping time scale, respectively, as too low values
will markedly decrease the amplitude of the measured coefficients. However, since B′ enters
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Figure B.2: Assumed vertical profiles of the dynamo coefficients for the 1D toy model. The labels
indicate the free parameters of the model related to the profiles: radial and azimuthal α effect, vertical
pumping and wind, lower and upper bounds for the diffusivity ηt, and (anti-)symmetric δ-effect,
respectively. Additional free parameters include the rotation rate Ω and the shear rate q.

the EMF linearly, all coefficients will be affected in the same manner and one could in principle
correct for this attenuation of the signal. Albeit the suggested “cleaning procedures” might
seem rather ad-hoc at first glance, we have to recall that we can always check the consistency
of the derived parameters via the reconstruction of the mean EMF. Since we independently
compute u′×B′ from the actual fields B′, the mean-field coefficients derived by means of the
test-field approach have to fulfil E(z, t) = αB̄(z, t)+η̃∇×B̄(z, t), with the mean electromotive
force E(z, t) and the mean-field B̄(z, t) taken from the direct simulations.

B.3 One-dimensional toy model

Based on the coefficients obtained from the tracer fields, we want to explore more closely the
effects due to the various tensor elements. If one can reproduce the results of the direct sim-
ulations in the mean-field approach, this drastically aids the understanding of the underlying
fundamental mechanisms. For this purpose, we have implemented a simple one-dimensional
“toy” model representing the 1D mean-field induction equation. The basic design idea was
to stay as close as possible to the actual data from the simulations. Like in the direct simula-
tions, we neglect vertical fields and a possible contribution of the term αzz. Because of these
restrictions, the resulting model can in no way claim to be representative of the general case.
In principle, there is, however, no objection against performing full 3D mean-field models
based on the obtained coefficients.

B.3.1 Model profiles

It has been found that already the particular shape of the α profiles can have profound im-
plications on the excited dynamo modes (see e.g. Giesecke et al., 2005, for a drastic case).
We, therefore, try to mimic the observed profiles as closely as possible. Figure B.2 depicts
a schematic representation of the assumed model profiles along with the corresponding am-
plitudes which enter the model as free parameters. The diagonal elements of the α and η̃
tensors can be adjusted independently to account for anisotropies. Because, in our simula-
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tions, we do not find a clear trend with respect to the off-diagonal elements of η̃, we explicitly
allow for a possible symmetric contribution. Contrary to this, the off-diagonal elements of α
are assumed to be totally antisymmetric such that αφR and αRφ are reduced to a common
parameter γz. The depicted model profiles are essentially governed by the function

P(z) = sin(π
z

2 h1
) e−z2/h2 , (B.14)

with h1 = 1.5 kpc and h2 = 1.0 kpc, respectively. Whereas αR, αφ, and γz are directly
proportional to P(z), the diffusivity tensor η̃ is assumed to have the shape according to
±P(z)2. For the diagonal elements we, furthermore, add a floor value eta0. The wind
profile ūz, which also enters the mean-field induction equation, comprises the same sinusoidal
modulation on top of a linear ramp. Although there is, certainly, space for fine-tuning of
the profiles, we want to keep the number of free parameters as low as possible. In principle,
one could even apply smoothed α profiles directly from the simulations, or alternatively, take
the SOCA expressions as a starting point for the shape of the curves. We, however, believe
that the chosen approach strikes a reasonable balance between removing essential physics
and getting lost in too many free parameters.

B.3.2 Discretisation of the equations

For the implementation of the 1D toy model we follow the same approach as for the test-field
fluctuations B′, i.e., we apply the staggering given by constrained-transport1 in combination
with up-winding to guarantee the numerical stability of the resulting scheme. The imple-
mented equations read:

B̄R,t =
[
−(ūz + γz) B̄R − αφ B̄φ

+(η̃φφ + η) B̄R,z − η̃φR B̄φ,z

]
,z

(B.15)

B̄φ,t =
[

αR B̄R − (ūz + γz) B̄φ

+η̃Rφ B̄R,z + (η̃RR + η) B̄φ,z

]
,z

+ qΩ B̄R , (B.16)

with η the molecular value of the diffusivity, Ω the rotation frequency, and q the shear
parameter. The off-diagonal elements of the η̃ tensor are obtained as a superposition

η̃Rφ = δS
z + δA

z and η̃φR = δS
z − δA

z (B.17)

of the symmetric and antisymmetric contributions δS
z and δA

z , respectively. The system of
equations is explicitly evolved in time by means of a second-order Runge-Kutta scheme.

1The solenoidal constraint is, of course, trivially fulfilled in the case of B̄z = 0 and gradients in z, only.
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Fröhlich, H.-E. & M. Schultz (1996, July). The vertical structure of the galactic gaseous disk
and its relation to the dynamo problem. A&A 311, 451–455.

Fromang, S. & J. Papaloizou (2007, December). MHD simulations of the magnetorotational
instability in a shearing box with zero net flux. I. The issue of convergence. A&A 476,
1113–1122.

Fromang, S., J. Papaloizou, G. Lesur & T. Heinemann (2007, December). MHD simulations
of the magnetorotational instability in a shearing box with zero net flux. II. The effect of
transport coefficients. A&A 476, 1123–1132.

Gardiner, T. A. & J. M. Stone (2005, September). Energetics in MRI driven Turbulence.
In E. M. de Gouveia dal Pino, G. Lugones & A. Lazarian (Eds.), Magnetic Fields in the
Universe: From Laboratory and Stars to Primordial Structures., Volume 784 of American
Institute of Physics Conference Series, pp. 475–488.

Gazol, A., E. Vázquez-Semadeni & J. Kim (2005, September). The Pressure Distribution in
Thermally Bistable Turbulent Flows. ApJ 630, 911–924.

Giesecke, A., G. Rüdiger & D. Elstner (2005, October). Oscillating α2-dynamos and the
reversal phenomenon of the global geodynamo. AN 326, 693–700.

Goldreich, P. & S. Sridhar (1995, January). Toward a theory of interstellar turbulence. 2:
Strong alfvenic turbulence. ApJ 438, 763–775.

http://adsabs.harvard.edu/abs/1995A%26A...302..691D
http://adsabs.harvard.edu/abs/1995A%26A...302..691D
http://adsabs.harvard.edu/abs/2004A%26A...423L..29D
http://adsabs.harvard.edu/abs/2004A%26A...423L..29D
http://adsabs.harvard.edu/abs/2005mpge.conf..117E
http://adsabs.harvard.edu/abs/1988ApJ...332..659E
http://adsabs.harvard.edu/abs/1988ApJ...332..659E
http://adsabs.harvard.edu/abs/1992ApJ...391..188F
http://adsabs.harvard.edu/abs/1992ApJ...391..188F
http://adsabs.harvard.edu/abs/1998A%26A...335..488F
http://adsabs.harvard.edu/abs/1998A%26A...335..488F
http://adsabs.harvard.edu/abs/2000A%26A...358..125F
http://adsabs.harvard.edu/abs/2000A%26A...358..125F
http://adsabs.harvard.edu/abs/2001RvMP...73.1031F
http://adsabs.harvard.edu/abs/1965ApJ...142..531F
http://adsabs.harvard.edu/abs/1969A%26A.....1..388F
http://adsabs.harvard.edu/abs/1969A%26A.....1..388F
http://adsabs.harvard.edu/abs/1995tlnk.book.....F
http://adsabs.harvard.edu/abs/1996A%26A...311..451F
http://adsabs.harvard.edu/abs/1996A%26A...311..451F
http://adsabs.harvard.edu/abs/2007A%26A...476.1113F
http://adsabs.harvard.edu/abs/2007A%26A...476.1113F
http://adsabs.harvard.edu/abs/2007A%26A...476.1123F
http://adsabs.harvard.edu/abs/2007A%26A...476.1123F
http://adsabs.harvard.edu/abs/2007A%26A...476.1123F
http://adsabs.harvard.edu/abs/2005AIPC..784..475G
http://adsabs.harvard.edu/abs/2005ApJ...630..911G
http://adsabs.harvard.edu/abs/2005ApJ...630..911G
http://adsabs.harvard.edu/abs/2005AN....326..693G
http://adsabs.harvard.edu/abs/2005AN....326..693G
http://adsabs.harvard.edu/abs/1995ApJ...438..763G
http://adsabs.harvard.edu/abs/1995ApJ...438..763G


94 BIBLIOGRAPHY

Goldsmith, D. W., H. J. Habing & G. B. Field (1969, October). Thermal Properties of
Interstellar Gas Heated by Cosmic Rays. ApJ 158, 173–+.
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