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Abstract

In this thesis we investigate the existence and properties of stationary solutions of the flat
Vlasov-Poisson system. This system of partial differential equations can be used as a model
of extremely flat astronomical objects and is a combination between the two-dimensional
motion of particles and the three-dimensional interaction through their gravitational po-
tential.

The steady-states are constructed by the so-called energy-Casimir method developed by
Guo and Rein, where the minimization of a suitable energy functional provides existence
and non-linear stability of such steady-states. This thesis proceeds as follows. In Chapter 3
we adapt the reduction procedure for the energy-Casimir functional known in the full
three-dimensional case to get an existence and stability for a large group of polytropic
stationary solutions against all planar perturbations (not necessarily axially symmetric).
We also describe the connection between stability for the flat Vlasov-Poisson system and
stability for the flat Euler-Poisson system, a system describing dynamics of a thin disk of
ideal non-viscous fluid.

Chapter 4 investigates the ”limit” polytropic steady-state, the Kuzmin disk. The
Kuzmin disk is widely used in the astrophysical literature as a model for various flat
astronomical objects. Its limiting properties can be understood in the sense, that it has
finite mass, but the support is unbounded (as opposed to all polytropes with lower poly-
tropic index, which all have compact support). We prove also its non-linear stability
against general planar perturbations.

In Chapter 5 we introduce the new model describing a flat galaxy inside a halo of dark
matter. We show some a-priori estimates of the total energy and prove properties of the
energy minimizer.
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Abstract

In dieser Dissertation beschäftige ich mich mit dem flachen Vlasov-Poisson-System, einem
System partieller Differentialgleichungen, welches als Modell für hinreichend flache as-
tronomische Objekte weithin in Gebrauch ist. Im Zentrum der Arbeit steht die Entwick-
lung einer Existenztheorie für speziell geartete stationäre Lösungen dieses Systems und
die Untersuchung deren weiterer Eigenschaften. Die wesentliche Schwierigkeit bei der
flachen Variante des Vlasov-Poisson-Systems besteht in der Kopplung von zweidimension-
aler Teilchenbewegung und ”dreidimensionaler Wechselwirkung” durch gravitative Kräfte.

Die Konstruktion der stationären Zustände erfolgt mit Hilfe der sogenannten Energie-
Casimir-Methode, welche von Guo und Rein entwickelt wurde. Hierbei kann sowohl
die Existenz als auch die nichtlineare Stabilität von stationären Zuständen aus einem
Minimierungsprinzip gewonnen werden.

Diese Arbeit gliedert sich folgendermaßen: In Kapitel 3 wird die Reduktionsmethode
für die Energie-Casimir-Funktionale modifiziert, um die Existenz und die Stabilität für
eine große Klasse sogenannter Isotrope, das sind Lösungen, deren Verteilungsfunktion
nur von der Teilchenenergie abhängt, gegen allgemeine flache Störungen (nicht nur axial-
symmetrische) zu beweisen. Hier wird auch der Zusammenhang zwischen der Stabilität
des Vlasov-Poisson Systems und der Stabilität des Euler-Poisson Systems besprochen. Das
letztgenannte System wird als Modell für eine ideale nichtviskose Flüssigkeit benutzt.

In Kapitel 4 untersuche ich den unter dem Namen Kuzmin Disk bekannten Grenzfall der
polytropen Lösungen. Dieser ist ein in der Astrophysik weithin akzeptiertes Modell für
flache Objekte. Die Besonderheit dieser Grenzlösung besteht darin, dass dieser Zustand
zwar endliche Masse hat, aber sein Träger - im Unterschied zu allen anderen Polytropen
- unbeschränkt ist. Ich beweise in dieser Arbeit die nichtlineare Stabilität des Kuzmin
Disks gegen allgemeine flache Störungen.

In Kapitel 5 führe ich ein neues Modell ein, mit dem die Dynamik einer Galaxie
umgeben von einer Halo aus dunkler Materie beschrieben wird. Ich beweise die a-priori
Abschätzungen der Energie und beschäftige mich eingehend mit den Eigenschaften des
Minimizers.
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Notation

R
n n-dimensional Euclidean space with coordinates (x1, . . . , xn),

R
+ {x ∈ R : x > 0},

R
+
0 {x ∈ R : x ≥ 0},

Ck(Rn) space of all k times continuously differentiable functions,
Ckc (Rn) space of all functions in Ck with compact support,
BR {x ∈ R

n : |x| ≤ R},
BR1,R2 {x ∈ R

n : R1 ≤ |x| ≤ R2},
1M indicator function of a set M ,
Lp(Rn) Lebesgue space,
|| · ||Lp(Rn), || · ||p Lebesgue norm,

||f ||Lp(Rn) :=

(
∫

Rn

|f(x)|p
)1/p

,

Lp+(Rn) set of all function from Lp(Rn), which are non-negative almost
everywhere,

Lpw(Rn) weak Lebesgue space – space of all measurable functions f such
that

sup
α>0

α |{x : |f(x)| > α}|1/p <∞,

(·)+ positive part of a function,

(f(x))+ := max{0, f(x)},

∂f
∂x partial derivative,
∇xf x-gradient vector defined as

(∇xf)i :=
∂f

∂xi
,

∆U Laplace operator,
Df
Dt total (material) time derivative,
f ∗ g convolution of two functions,
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Notation

a · b Euklidean scalar product of two vectors,
δ(x1), δ

ε Dirac’s distribution in x1-coordinate and its standard regular-
ization,

Ekin(f) total kinetic energy of the state f,
Epot(f) total potential energy of the state f,
|| · ||pot norm derived from the potential energy defined as

||f ||pot :=
√

−2Epot(f),

〈·, ·〉pot scalar product derived from the potential energy defined as

〈f, g〉 :=

∫∫

f(x)g(y)

|x− y| dxdy,

FM minimization class of function,
H total energy functional,
C Casimir functional,
HC energy-Casimir functional,
Hr

C reduced energy-Casimir functional,

H(f, f̃) energy functional including dark matter distribution,
M,M3D,MFL combined constraint vector with ist flat and non-flat compo-

nent,
hM , h

r
M infimum of the energy(-Casimir) and reduced energy-Casimir

functional over appropriate set of functions

viii



1 Introduction

One of the most classical problems in astrophysics is to describe an evolution of an en-
semble of particles interacting among themselves through a force of some kind (gravity,
magnetism, radiation, etc.). Particularly in galactic dynamics, where the number of par-
ticles can reach the order of 107–1012, is important to choose a model which is a good
approximation of the reality, which is mathematically well enough understood and of
course it must be numerically computable in reasonable time. One of the most common
non-relativistic setups uses non-radiating, electric neutral point masses. The equations of
motion are then given by the Newton’s Second law

mj q̈j = G
n
∑

k=1
k 6=j

mjmk(qj − qk)

|qj − qk|3
, j = 1, . . . , n,

where G denotes the universal gravitational constant and mj , qj mass and position vector
of each individual particle. This second order system of ordinary differential equations to-
gether with proper initial conditions on positions qj and velocities q̇j gives us the classical
N–body problem. This model has, however, in the galactic scale several disadvantages. One
of the biggest problems is the number of equations to be solved, which is (and remains
in the nearest future) beyond the computational resources of contemporary computers.
This problem is often overcome by reducing the number of equations using for example
different methods of averaging.

The other option is to use statistical physics together with the theory of partial differ-
ential equations. Instead of describing a state of a system discretely for each individual
particle (which is often undesirable, since the biggest interest lies on a global behavior of
the system), we describe it globally as a density function f on a position-velocity phase-
space. In the three-dimensional setting we have

f : R × R
3 × R

3 → R
+
0 ,

where
∫∫

V
f(t, x, v) dxdv

represents the mass contained in the phase-space volume V in the time t. The spatial
density at position x is the sum over all velocities, i.e.

ρf (x) :=

∫

f(t, x, v)dv,

1



1 Introduction

and the total mass of the system in the time t is given by

M :=

∫∫

f(t, x, v)dxdv.

When we suppose that there are no collisions among the particles, the density function f
satisfies the so-called Liouville’s theorem, which states that the distribution of particles
in the phase-space is constant along the particle trajectories. That means, that the total
derivative

Df

Dt
= 0.

When the particle trajectories s 7→ (X(s, t, x, v), V (s, t, x, v)) obey the Newton’s equations
of motion

Ẋ(s, t, x, v) = V (s, t, x, v), (1.1a)

V̇ (s, t, x, v) = F(s,X(s, t, x, v)), (1.1b)

the previous equation has in the Eulerian description the following form:

∂f

∂t
+ v · ∇xf + F · ∇vf = 0. (1.2)

The equation (1.2) is called the Vlasov equation (or the collisionless Boltzmann equation).
The vector F represents a force field, which drives the motion of the particles.

When we assume that the only force that acts on the system is gravitation created
collectively by the particles, we can write

F = −∇U,

where U is the gravitational potential. The Vlasov equation will now have the form

∂f

∂t
+ v · ∇xf −∇xU · ∇vf = 0. (1.3)

The gravitational potential U is in the non-relativistic case given as a solution of the
Poisson equation

∆U = 4πρf , lim
|x|→∞

U(x) = 0. (1.4)

When we put the equations (1.3) and (1.4) together and supply suitable initial data f0,
we get the Vlasov-Poisson system:

∂f

∂t
+ v · ∇xf −∇xU · ∇vf = 0, (1.5a)

∆U = 4πρf , (1.5b)

lim
|x|→∞

U(t, x) = 0, (1.5c)

f(0, x, v) = f0(x, v). (1.5d)

2



The Vlasov equation can be of course coupled with other types of field equations as
well. If we want to investigate the evolution of particles in an electromagnetic field, we can
use the Maxwell equations and we get the Vlasov-Maxwell system. The Vlasov-Einstein
system results from a coupling with the Einstein gravitation equations and describes the
particle evolution in the framework of General Relativity.

The existence theory differs strongly from one type of system to another and in case
of the Vlasov-Poisson system, the global existence and uniqueness of a classical solution
for initial data f0 ∈ C1

c (R3) was proved in [20, 29]. The next sort of problems lies in the
stability analysis of stationary solutions. This particular field is, especially in astrophysics,
very important and receives a lot of attention. The results presented in this area originate
primarily from the collaboration between Y. Guo and G. Rein.

The first necessary step in order to analyze stability of stationary solutions is to prove,
that there are any stationary solutions. The strategy to construct them uses the conser-
vation law of total mechanical energy. We define for a time-independent potential U0(x)
the local (particle) energy E as

E(x, v) :=
1

2
|v|2 + U0(x).

This energy is constant along the particle trajectories given by (1.1). Hence E and any
function of E solves the Vlasov equation. It is therefore reasonable to search for stationary
solutions f0 in the form

f0(x, v) = φ(E(x, v)). (1.6)

With this ansatz the Vlasov equation (1.5a) is satisfied and the spatial density ρf0 becomes
a functional of the potential U0. In order to obtain the self-consistent stationary solution
of the Vlasov-Poisson system, we only need to solve (1.5b). If we find a solution to the
semi-linear Poisson equation, then (1.6) defines a stationary solution of the Vlasov-Poisson
system. It is natural, that only physically relevant solutions of this kind are allowed, for
example the ones with finite total mass and with compact support.

We do not go into details concerning the existence of the general stationary solutions
because the methods we use to prove stability of some of these solutions provide their
existence automatically. To illustrate the variety of stationary solutions using different
variations of (1.6) we give a few examples.

The ansatz

f0(x, v) = (E0 − E(x, v))k+, E0 < 0

leads for −1 < k < 7/2 to the so-called isotropic polytropes, spherically symmetric so-
lutions with compact support and finite mass. Existence and stability of those solutions
was proved in [15, 25, 26, 12]. The next class can be obtained if we allow dependence on

L(x, v) := |x× v|2,

3



1 Introduction

Figure 1.1: Example of the isotropic polytrope and stationary shell solution of the Vlasov-
Poisson system (radial and planar density profiles).

which is the square of the modulus of angular momentum. If we are still in the spherically
symmetric case, this quantity is also conserved along the particle trajectories (hence solves
the Vlasov equation). The form of f0 has in this case the form

f0(x, v) = (E0 − E(x, v))k+L(x, v)l, E0 < 0,

and for k > −1, l > −1, k + l + 1/2 > 0, k < 3l + 7/2 we again get the stable stationary
solutions of (1.5) (see [13]). The next (but definitely not last) type of stationary solutions
uses the ansatz

f0(x, v) = (E0 − E(x, v))k+(L(x, v) − L0)
l
+, E0 < 0, L0 > 0.

This class of solutions (so-called stationary shells) was first introduced in [22] and the
nonlinear stability was proved in [32].

All types of solutions mentioned above are spherically symmetric. Very little is known
about the existence of steady-states with less symmetry. One example is discussed in [23],
where axially symmetric solutions were obtained using the implicit function theorem as a
perturbation to a spherically symmetric one.

4



It is an easy exercise to show that the total energy functional

H(f) := Ekin(f) + Epot(f)

=
1

2

∫∫

|v|2f(x, v) dxdv − 1

2

∫∫

ρf (x)ρf (y)

|x− y| dxdy

=
1

2

∫∫

|v|2f(x, v) dxdv − 1

8π
||∇Uf ||22

remains conserved as the solution evolves, which makes it a natural candidate for a Lya-
punov function for the stability analysis. However, the Lyapunov approach works only
when the stationary state is a critical point of the energy. But when we expand the
functional H around some steady state f0 (with potential U0), we get

H(f) −H(f0) =

∫∫
(

1

2
|v|2 + U0(x)

)

(f − f0) dxdv − 1

8π

∫

|∇Uf −∇U0|2 dx,

which has clearly non-vanishing linear part, hence f0 cannot be a critical point of H.
The flow t 7→ f(t) preserves not only the total energy, but the phase-space volume as

well, hence all functionals in the form

C(f) :=

∫∫

Φ(f(x, v)) dxdv (1.7)

for Φ : R → R reasonably smooth remain conserved along the flow. The functional (1.7)
is called Casimir functional and it is an important tool in the stability analysis. When
we now define the combined energy-Casimir functional as

HC(f) := H(f) + C(f) (1.8)

and expand it around some steady state

f0 = φ(E), (1.9)

we obtain

HC(f) = HC(f0) +

∫∫

(

E + Φ′(f0)
)

(f − f0) dxdv

− 1

8π

∫

|∇Uf −∇Uf0|2 dx+
1

2

∫∫

Φ′′(f0)(f − f0)
2 dxdv + . . . .

Now there is a chance, that if we (at least formally) put Φ′ = −φ−1, we can cancel
the linear part out. That means that although f0 is not a critical point of the energy
functional H, it is a critical point of the energy-Casimir functional HC for the properly
defined Casimir functional. To obtain a stability result we expect the quadratic part in
the expansion above to be definite. But for physically relevant steady states with finite

5



1 Introduction

mass and bounded support we must put φ in (1.9) strictly decreasing (φ−1 must exist)
which implies Φ′′ > 0 and the definiteness of the quadratic part is lost.

To overcome this apparent failure of the energy-Casimir method, we reverse out ap-
proach. Instead of starting with an apriori given steady-state we start with an energy-
Casimir functional and try to minimize it in some class of admissible functions. The
minimizer, provided it exists, should be (as a critical point of the energy-Casimir func-
tional) a steady-state of the Vlasov-Poisson system and its minimizing property hopefully
gains some stability result.

6



2 The flat Vlasov–Poisson system

2.1 Disk-like galaxies

Most of the electromagnetic radiation emitted by a typical spiral galaxy comes from a
thin disk. Therefore it is reasonable to ask, whether the Vlasov–Poisson theory can be
modified, so that the dynamics of these very flattened objects can be investigated within its
framework. This question, as it stands, is too complex to be answered in all its generality
and a small portion of mathematical idealization is needed. We assume for simplicity, that
the whole visible galactic matter is concentrated in an infinitesimally thin layer (in our
case in the (x1, x2)–plane). To remain flat, we need the velocities to be concentrated on
the (v1, v2)–plane as well. This means that the phase-space and the spatial densities have
the form

f(t, x̃, x3, ṽ, v3) = f̃(t, x̃, ṽ)δ(x3)δ(v3), (2.1)

ρ(t, x̃, x3) = ρ̃(t, x̃)δ(x3),

where δ denotes the classical Dirac distribution and x̃ := (x1, x2), ṽ := (v1, v2). This
simplification is quite natural from a physical point of view. The objects in question are
already flat enough (according to [11] the so-called ”superthin” galaxies having an axial
ratio over 8:1) and to make them totally flat does not make much of a difference. From the
mathematical point of view, however, is the legitimacy of this approximation much more
delicate and still, according to our knowledge, not fully understood (see more discussion
on this topic in Chapter 6).

x3

x1, x2

Figure 2.1: Typical side profile of a spiral galaxy
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2 The flat Vlasov–Poisson system

Now we have to construct the equations governing the evolution of such a flat ensemble
of particles.

2.2 2D kinematics + 3D potential

The distribution function in the form (2.1) represents also a distributional solution of
(1.2). We have for every test function ϕ ∈ C∞

c (R6)

〈

∂f

∂t
+ v · ∇xf + F · ∇vf, ϕ

〉

R6

= 0.

If we now use the Green’s theorem and expression (2.1) we get

−
〈

f,
∂ϕ

∂t
+ v · ∇xϕ+ F · ∇vϕ

〉

R6

= 0,

−
〈

f̃ δx3δv3 ,
∂ϕ

∂t
+ v · ∇xϕ+ F · ∇vϕ

〉

R6

= 0,

−
〈

f̃ ,

(

∂ϕ

∂t
+ ṽ · ∇x̃ϕ+ F̃ · ∇ṽϕ

)∣

∣

∣

∣

(x̃,0,ṽ,0)

〉

R4

= 0,

〈

∂f̃

∂t
+ ṽ · ∇x̃f̃ + F̃ · ∇ṽf̃ , ϕ(x̃, 0, ṽ, 0)

〉

R4

= 0.

We see here that the function f is a distributional solution of the three-dimensional Vlasov
equation if and only if f̃ solves the two-dimensional Vlasov equation with the modified
force term F̃, which has in the gravitational case the form

F̃(t, x̃) = −
∫

x̃− ỹ

|x̃− y|3 ρ̃(ỹ)δy3 dy = −
∫

x̃− ỹ

|x̃− ỹ|3 ρ̃(ỹ) dỹ.

When we simplify notations by dropping the tildes we obtain the following system of
partial differential equations describing the evolution of such flat ensemble of particles:

∂f

∂t
+ v · ∇xf −∇xUf · ∇vf = 0, x, v ∈ R

2, (2.2a)

U(t, x) = −
∫

ρ(y)

|x− y| dy, (2.2b)

lim
|x|→∞

U(t, x) = 0, (2.2c)

f(0, x, v) = f0(x, v). (2.2d)

This system is called flat Vlasov-Poisson system. We can see that although particles oc-
cupy the two-dimensional domain, the gravitational interaction remains three-dimensional

8



2.2 2D kinematics + 3D potential

in nature with a typical 1
r singularity in the potential. This distinguishes (2.2) from the

two-dimensional Vlasov-Poisson system, where the two-dimensional logarithmic gravita-
tional potential appears. The latter system can be used to model hypothetical infinitely
long cylindrical objects (see [6]).

The main difficulty in the analysis of (2.2) is that the potential is ”more singular” in
dimension two than in regular three-dimensional case. For example the force kernel x

|x|3 is

not even local integrable in R
2. As regards the existence theory we have ”only” existence

(without uniqueness) of local classical solution and global weak solution (both proved in
[5]), compared to the global unique classical solution for (1.5). The general existence
and uniqueness theory for singular solutions of (1.5) was established using the Coulomb
algebras was established in [14], but this concept seems to be too abstract to be used in
our stability analysis.

To analyze stability of stationary solutions of the flat Vlasov-Poisson system we modify
the variational energy-Casimir method described in Chapter 1.

9





3 Stability via reduction

The aim of this chapter is to prove the existence of a large class of non-linearly stable
steady states of the flat Vlasov-Poisson system. To do so we follow the approach developed
by Guo and Rein [15, 16, 17] in the regular, three dimensional situation. We prove that
under suitable assumptions on a prescribed function Φ : [0,∞[→ [0,∞[ the energy-Casimir
functional

HC(f) =
1

2

∫∫

|v|2f(x, v) dv dx− 1

2

∫∫ ∫∫

f(x, v) f(y,w)

|x− y| dv dxdw dy

+

∫∫

Φ(f(x, v)) dv dx

has a minimizer f0 subject to the constraint
∫∫

f(x, v) dv dx = M,

where M > 0, the total mass of the resulting steady state, is prescribed.
In [21] this approach has already been used to construct stable steady states of the flat

Vlasov-Poisson system. Here we obtain a number of improvements and extensions of this
earlier result. Firstly, we use a reduction procedure for proving the existence of a minimizer
of HC . This approach is mathematically more elegant and adequate, since the reduced
functional lives on the set of spatial densities ρ, and the main difficulty in the variational
problem lies in the potential energy part which does not really depend on f but only on
the spatial density induced by f . More importantly, the reduced variational problem is
of interest in its own right since it provides a stability result for the flat Euler-Poisson
system which is the fluid dynamical analogue of the kinetic Vlasov-Poisson system. For
the reduction procedure to work the function Φ has to satisfy certain growth conditions.
An example of a steady state which violates this growth condition is the so-called Kuzmin
disk which is known in the astrophysics literature and was not covered by previous results.
The Kuzmin disk is closely investigated in Chapter 4. Secondly, in [21] the perturbations
admissible in the stability result had to be supported on the plane and in addition had to
be spherically symmetric. In this thesis we remove the latter, unphysical restriction. It is
desirable to remove also the restriction that the perturbations have to live in the plane,
but that is much harder and is still under investigation (see the discussion on that topic in
Chapter 6). Lastly, we relax the assumptions on Φ the main one being that Φ be strictly
convex so that we cover a larger class of steady states, and we obtain stability estimates
in stronger norms than were obtained previously.

11



3 Stability via reduction

This chapter proceeds as follows. In the next section we introduce various function-
als and the reduced version of the variational problem, and we establish the connection
between the original and the reduced variational problem. In Section 3.2 we establish
the existence of a minimizer to the reduced problem using a concentration-compactness
argument; notice that the variational problem—both reduced and original—is non-trivial
since the energy-Casimir functional is not convex and is defined on functions supported on
R

2 or R
4 respectively. In Section 3.3 we derive our stability result, and in the Section 3.4

we consider the stability result for the Euler-Poisson system which arises from the reduced
functional.

3.1 Energy–Casimir functionals and reduction

For ρ = ρ(x) measurable we define the induced gravitational potential and potential energy
as

Uρ(x) := −
∫

ρ(y)

|x− y| dy,

Epot(ρ) :=
1

2

∫

Uρ(x)ρ(x) dx = −1

2

∫∫

ρ(x)ρ(y)

|x− y| dy dx;

the integrals
∫

without a subscript always (except Chapter 5) extend over R
2. It will also

be useful to introduce the bilinear form which corresponds to the potential energy, i.e.,
for ρ, σ : R

2 → R measurable,

〈ρ, σ〉pot :=
1

2

∫∫

ρ(x)σ(y)

|x− y| dy dx,

so that in particular Epot(ρ) = −〈ρ, ρ〉pot. For the convenience of the reader we collect
the main estimates for potentials, potential energies, and the above bilinear form, which
we will need.

Lemma 3.1. If ρ ∈ L4/3(R2), then Uρ ∈ L4(R2), and there exists a constant C > 0 such
that for all ρ ∈ L4/3(R2) the estimates

||Uρ||4 ≤ C||ρ||4/3, −Epot(ρ) ≤ C||ρ||24/3

hold. The bilinear form 〈·, ·〉pot defines a scalar product on L4/3(R2) with induced norm

||ρ||pot := 〈ρ, ρ〉1/2pot = (−Epot(ρ))
1/2,

in particular,

〈ρ, σ〉pot ≤ (Epot(ρ)Epot(σ))1/2 = ||ρ||pot||σ||pot.

12



3.1 Energy–Casimir functionals and reduction

Proof. Since 1/| · | ∈ L2
w(R2), the weak L2 space, the assertions on Uρ follow by the

generalized Young’s inequality [19, 4.3]. The estimate for the potential energy is nothing
but the Hardy-Littlewood-Sobolev inequality [19, 4.3] and follows by Hölder’s inequality,
and so does the fact that 〈·, ·〉pot is defined on L4/3(R2). The positive definiteness of 〈·, ·〉pot

can be shown exactly like the positivity of the Coulomb energy in the three dimensional
case, cf. [19, 9.8].

Let f = f(x, v) be a measurable function on phase space. We define the induced spatial
density, gravitational potential, and potential energy as

ρf (x) :=

∫

f(x, v) dv, Uf := Uρf
, Epot(f) := Epot(ρf ).

In addition, we define the kinetic energy

Ekin(f) :=
1

2

∫∫

|v|2f(x, v) dv dx,

the so-called Casimir functional

C(f) :=

∫∫

Φ(f(x, v)) dv dx

with Φ : [0,∞[→ [0,∞[ prescribed, and the energy-Casimir functional

HC(f) := C(f) + Ekin(f) + Epot(f).

The total energy Ekin +Epot as well as the Casimir functional C and hence also their sum
HC are conserved along sufficiently regular solutions of the flat Vlasov-Poisson system. As
regards Φ, we assume for the moment that

Φ ∈ C1([0,∞[) is strictly convex, Φ(0) = Φ′(0) = 0, lim
η→∞

Φ(η)/η = ∞.

These assumptions make Φ non-negative and Φ′ a bijection on [0,∞[.
Our aim is to show that the energy-Casimir functional HC has a minimizer in the

constraint set

FM :=

{

f ∈ L1
+(R4) | Ekin(f) + C(f) <∞, ρf ∈ L4/3(R2),

∫∫

f = M

}

,

where M > 0 is prescribed, and the subscript + indicates that only non-negative functions
are considered. Since the troublesome term in the functional is the potential energy
which actually depends only on the spatial density induced by f we introduce a reduced
variational problem for a functional which is defined in terms of spatial densities ρ. For
r ≥ 0 we define

Gr :=

{

g ∈ L1
+(R2) |

∫ (

1

2
|v|2g(v) + Φ(g(v))

)

dv <∞,

∫

g(v) dv = r

}

13



3 Stability via reduction

and

Ψ(r) := inf
g∈Gr

∫
(

1

2
|v|2g(v) + Φ(g(v))

)

dv.

The idea behind this construction is to first minimize the energy-Casimir functional over
all functions f(x, v) which upon integration in v give the same spatial density ρ, and
then minimize with respect to the latter in a second (and main) step. This approach was
introduced in [24, 33].

The reduced variational problem is to minimize the reduced functional

Hr
C(ρ) :=

∫

Ψ(ρ(x)) dx+ Epot(ρ)

over the set

F r
M :=

{

ρ ∈ L4/3 ∩ L1
+(R2) |

∫

Ψ(ρ(x)) dx <∞,

∫

ρ(x) dx = M

}

.

We need to establish a relation between minimizers of the original functional and mini-
mizers of the reduced one. Here we can essentially follow the corresponding results proved
for the three dimensional case in [24]. First of all we explore the relation between Φ and
Ψ. For a function h : R →] −∞,∞] we denote by

h∗(λ) := sup
r∈R

(λr − h(r))

its Legendre transform. In what follows constants denoted by C are always positive, may
depend on Φ and M , and may change their value from line to line.

Lemma 3.2. Let Φ and Ψ be as specified respectively defined above, and extend both
functions by +∞ to the interval ] −∞, 0]. Then the following holds:

(a) For λ ∈ R,

Ψ∗(λ) =

∫

Φ∗
(

λ− 1

2
|v|2
)

dv,

and in particular Φ∗(λ) = 0 = Ψ∗(λ) for all λ < 0.

(b) Ψ ∈ C1([0,∞[) is strictly convex, and Ψ(0) = Ψ′(0) = 0.

(c) Let k > 0 and n = k + 1.

(i) If Φ(f) = C f1+1/k for f ≥ 0, then Ψ(ρ) = Cρ1+1/n for ρ ≥ 0.

(ii) If Φ(f) ≥ Cf1+1/k for f ≥ 0 large, then Ψ(ρ) ≥ Cρ1+1/n for ρ ≥ 0 large.

(iii) If Φ(f) ≤ Cf1+1/k for f ≥ 0 small, then Ψ(ρ) ≤ Cρ1+1/n for ρ ≥ 0 small.

If the restriction to large or small values of f can be dropped then the corresponding
restriction for ρ can be dropped as well.

14



3.1 Energy–Casimir functionals and reduction

Proof. By definition

Ψ∗(λ) = sup
r≥0

[

λr − inf
r∈Gr

∫ (

1

2
|v|2g(v) + Φ(g(v))

)

dv

]

= sup
r≥0

sup
g∈Gr

∫
[(

λ− 1

2
|v|2
)

g(v) − Φ(g(v))

]

dv

= sup
g∈L1

+(R2)

∫
[(

λ− 1

2
|v|2
)

g(v) − Φ(g(v))

]

dv

≤
∫

sup
y≥0

[(

λ− 1

2
|v|2
)

y − Φ(y)

]

dv =

∫

Φ∗
(

λ− 1

2
|v|2
)

dv.

For λ ≤ 0 both sides of this estimate are zero, so consider λ > 0. If |v| ≥
√

2λ then
supy≥0[· · · ] = 0 and for |v| <

√
2λ the supremum is attained at y = yv := (Φ′)−1(λ− 1

2 |v|2).
Hence with the definition

g0(v) :=

{

yv for |v| <
√

2λ

0 for |v| ≥
√

2λ
,

we obtain the reversed estimate, and part (a) is established. Part (b) is standard for
Legendre transforms, and we refer to [24, Lemma 2.2] for the details. As to (c), if we
assume that Φ(f) ≥ Cf1+1/k for f ≥ 0 large, we find that Φ(f) ≥ Cf1+1/k−C ′ for f ≥ 0.
Hence for λ ≥ 0,

Φ∗(λ) = sup
f≥0

(λf − Φ(f)) ≤ C ′ + sup
f≥0

(

λf − Cf1+ 1
k

)

≤ C + C λk+1,

and

Ψ∗(λ) =

∫

|v|≤
√

2λ
Φ∗
(

λ− 1

2
|v|2
)

dv ≤ C

∫

|v|≤
√

2λ

[

1 +

(

λ− 1

2
|v|2
)k+1

]

dv

≤ Cλ+ C

∫

|v|≤
√

2λ

(

λ− 1

2
|v|2
)k+1

dv ≤ C + Cλk+2 = C + Cλ1+n.

Using the fact that Ψ∗∗ = Ψ we obtain the estimate

Ψ(ρ) = sup
λ≥0

(ρλ− Ψ∗(λ)) ≥ −C ′ + sup
λ≥0

(ρλ− Cλ1+n) = Cρ1+1/n − C ′,

which proves (c) (ii). The remaining estimates are shown in a similar way.

The relation between the minimizers of HC and Hr
C is as follows.

15



3 Stability via reduction

Theorem 3.3. (a) For every function f ∈ FM ,

HC(f) ≥ Hr
C(ρf ),

with equality if f is a minimizer of HC over FM .

(b) Let ρ0 ∈ F r
M be a minimizer of Hr

C with induced potential U0. Then there exists a
Lagrange multiplier E0 ∈ R such that the identity

ρ0 =

{

(Ψ′)−1(E0 − U0) , U0 < E0

0 , U0 ≥ E0

holds almost everywhere. The function

f0 :=

{

(Φ′)−1(E0 − E) , E < E0

0 , E ≥ E0
with E = E(x, v) :=

1

2
|v|2 + U0(x)

is a minimizer of HC in FM .

Proof. Since the proof follows the same lines as [24, Thm 2.1] we only indicate the main
arguments. The estimate in part (a) follows directly from the definitions. Next one can
show that if f ∈ FM is such that up to sets of measure zero,

Φ′(f) = E0 − E > 0 where f > 0, and E0 − E ≤ 0 where f = 0. (3.1)

with E defined as in (b) but with Uf instead of U0 and E0 a constant, then equality
holds in part (a). If f is a minimizer of HC , then the Euler-Lagrange equation implies
that f is of the above form for some Lagrange multiplier E0, and equality holds in (a).
The relation of ρ0 and U0 in part (b) is nothing but the Euler-Lagrange equation for
the reduced variational problem. If f0 is defined as in (b) then ρ0 = ρf0 , in particular,
f0 ∈ FM , and (3.1) holds by definition of f0. Hence equality holds in (a) for f0 so that by
part (a) for any other f ∈ FM ,

HC(f) ≥ Hr
C(ρf ) ≥ Hr

C(ρ0) = HC(f0),

which means that f0 minimizes HC.

Remark. (a) In the next section we show that under suitable assumptions on Ψ which
can be translated into corresponding assumptions on Φ the reduced variational problem
has a solution ρ0. The minimizer f0 obtained by the lifting procedure in part (b) of the
theorem depends only on the particle energy E. The latter is for the time-independent
potential U0 constant along characteristics of the Vlasov equation, and hence f0 is a steady
state of the flat Vlasov-Poisson system.

(b) If Hr
C has at least one minimizer in F r

M and if f0 ∈ FM is a minimizer of HC , then
one can show that ρ0 := ρf0 ∈ F r

M is a minimizer of Hr
C. This map is one-to-one between

the sets of minimizers of HC in FM and Hr
C in F r

M and is inverse to the mapping ρ0 7→ f0

described in part (b) of the theorem.
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3.2 Existence of a solution to the reduced variational problem

3.2 Existence of a solution to the reduced variational problem

In the present section we prove that the reduced energy-Casimir functional Hr
C has a

minimizer in the constraint set

F r
M :=

{

ρ ∈ L1
+(R2) |

∫

Ψ(ρ(x)) dx <∞,

∫

ρ(x) dx = M

}

,

where M > 0 is prescribed and Ψ satisfies the assumptions Ψ ∈ C1([0,∞[), Ψ(0) =
Ψ′(0) = 0 and

(Ψ1) Ψ is strictly convex,

(Ψ2) Ψ(ρ) ≥ Cρ1+1/n for ρ ≥ 0 large,

(Ψ3) Ψ(ρ) ≤ Cρ1+1/n′
for ρ ≥ 0 small,

with growth rates n, n′ ∈]0, 2[. The core of the proof is a concentration-compactness
argument to show that along a minimizing sequence the matter cannot spread out but
has to remain concentrated in a finite region of space. First however we show that the
energy-Casimir functional is bounded from below in such a way that minimizing sequences
are bounded in a suitable Lp space.

Lemma 3.4. Under the above assumptions on Ψ and for ρ ∈ F r
M ,

∫

ρ1+1/n dx ≤ C + C

∫

Ψ(ρ) dx,

and

Hr
C(ρ) ≥

∫

Ψ(ρ) dx− C − C

(
∫

Ψ(ρ) dx

)n/2

.

In particular,
hr
M := inf

Fr
M

Hr
C > −∞.

Proof. The first estimate follows by assumption (Ψ2) and the fact that
∫

ρ = M . By
Lemma 3.1 and interpolation,

−Epot(ρ) ≤ C||ρ||24/3 ≤ C||ρ||(3−n)/2
1 ||ρ||(n+1)/2

1+1/n ≤ C + C

(
∫

Ψ(ρ) dx

)n/2

,

and since 0 < n < 2 the proof is complete.

We note an immediate corollary.

Corollary 3.5. Any minimizing sequence of Hr
C in F r

M is bounded in L1+1/n(R2) and
therefore contains a subsequence which converges weakly in that space.
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3 Stability via reduction

The concentration-compactness argument mentioned above relies on the behavior of
Hr

C(ρ) if ρ is scaled or split into several parts. We start with the latter; in the sequel BR
denotes the open ball of radius R > 0 about the origin.

Lemma 3.6. Let ρ ∈ F r
M . Then for R > 1,

sup
a∈R2

∫

a+BR

ρ(x) dx ≥ 1

RM

(

−2Epot(ρ) −M2R−1 − C||ρ||21+1/nR
−(3−n)/(n+1)

)

.

Proof. We split the potential energy as follows:

−2Epot =

∫∫

|x−y|≤1/R

ρ(x)ρ(y)

|x− y| dxdy +

∫∫

1/R<|x−y|<R
· · · +

∫∫

|x−y|≥R
· · ·

=: I1 + I2 + I3.

By Hölder’s and Young’s inequalities we obtain estimates

I1 ≤ ||ρ||1+1/n||ρ ∗ (1B1/R
1/| · |)||n+1 ≤ ||ρ||21+1/n||1B1/R

1/| · |||(n+1)/2

≤ C||ρ||21+1/nR
−(3−n)/(n+1),

I2 ≤ R

∫∫

|x−y|≤R
ρ(x)ρ(y) dxdy = MR sup

a∈R2

∫

a+BR

ρ(x) dx,

I3 ≤M2R−1.

We insert these estimates into the formula for −2Epot and rearrange terms to obtain the
assertion.

Next we investigate the behavior of the reduced functional under scalings.

Lemma 3.7. (a) For every M > 0, hr
M < 0.

(b) For every 0 < M ≤M the estimate hr
M

≥ (M/M)3/2hr
M holds.

Proof. For ρ ∈ F r
M and a, b > 0 we define ρ̄(x) := aρ(bx). Then

∫

ρ̄dx = ab−2

∫

ρdx,

Epot(ρ̄) = a2b−3Epot(ρ),
∫

Ψ(ρ̄) dx = b−2

∫

Ψ(aρ) dx.

To prove part (a) we fix a bounded and compactly supported function ρ ∈ F r
M and choose

a = b2 so that ρ̄ ∈ F r
M as well. By (Ψ3) and since 2/n′ > 1,

Hr
C(ρ̄) = b−2

∫

Ψ(b2ρ) dx+ bEpot(ρ) ≤ Cb2/n
′
+ bEpot(ρ) < 0
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3.2 Existence of a solution to the reduced variational problem

for b sufficiently small, and part (a) is established. As to part (b), we take a = 1 and
b = (M/M )1/2 ≥ 1. For this choice of parameters the mapping F r

M ∋ ρ 7→ ρ̄ ∈ F r
M

is
one-to-one and onto, and the estimate

Hr
C(ρ̄) = b−2

∫

Ψ(ρ) dx+ b−3Epot(ρ)

≥ b−3

(∫

Ψ(ρ) dx+ Epot(ρ)

)

=

(

M

M

)3/2

Hr
C(ρ)

proves the assertion of part (b).

Corollary 3.8. Let (ρi) ⊂ F r
M be a minimizing sequence of Hr

C. Then there exist δ0 > 0,
R0 > 0, and a sequence of shift vectors (ai) ⊂ R

2 such that for i sufficiently large,
∫

ai+BR0

ρi(x) dx ≥ δ0.

Proof. By Corollary 3.5, (||ρi||1+1/n) is bounded. By Lemma 3.7 (a),

Epot(ρi) ≤ Hr
C(ρi) ≤

1

2
hr
M < 0

for i sufficiently large, and the assertion follows by Lemma 3.6.

This corollary only shows that along a minimizing sequence not all matter can spread
uniformly. In the proof of the existence theorem below we shall actually see that the
matter remains within a ball of finite radius up to spatial shifts and an arbitrarily small
remainder. In such a situation we have the following compactness result:

Lemma 3.9. Let (ρi) ⊂ F r
M be such that

ρi ⇀ ρ0 weakly in L1+1/n(R2)

and such that the following concentration property holds:

∀ǫ > 0 ∃R > 0 : lim sup
i→∞

∫

|x|>R
ρi(x) dx < ǫ.

Then
Epot(ρi − ρ0) → 0 and Epot(ρi) → Epot(ρ0), i→ ∞.

Proof. By weak convergence ρ0 ≥ 0 a. e., and
∫

ρ0 ≤ M . We define σi := ρi − ρ0 so
that σi ⇀ 0 weakly in L1+1/n(R2), the concentration property holds for |σi| as well, and
∫

|σi| ≤ 2M . We need to prove that

Ii :=

∫∫

σi(x)σi(y)

|x− y| dxdy → 0,
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3 Stability via reduction

which is the first assertion. Since

Epot(ρi) −Epot(ρ0) = Epot(ρi − ρ0) +

∫

Uρ0(ρi − ρ0),

the fact that Uρ0 ∈ L4(R2) together with the weak convergence of ρi implies the second
assertion. For δ > 0 and R > 0 we split the domain of integration into three subsets
defined by

|x− y| < δ,

|x− y| ≥ δ ∧ (|x| ≥ R ∨ |y| ≥ R),

|x− y| ≥ δ ∧ |x| < R ∧ |y| < R,

and we denote the corresponding contributions to Ii by Ii,1, Ii,2, Ii,3. Young’s inequality
implies that

|Ii,1| ≤ C||σi||21+1/n||1Bδ
| · |−1||(n+1)/2 ≤ C

(∫ δ

0
r(1−n)/2 dr

)2/(n+1)

which can be made as small as we wish, uniformly in i and R > 0, by making δ > 0 small.
For δ > 0 now fixed,

|Ii,2| ≤
4M

δ

∫

|x|>R
|σi(x)|dx

which becomes small for i → ∞ by the concentration assumption, if we choose R > 0
accordingly. Finally by Hölder’s inequality,

|Ii,3| =

∣

∣

∣

∣

∫

σi(x)hi(x) dx

∣

∣

∣

∣

≤ ||σi||1+1/n||hi||1+n ≤ C||hi||1+n,

where in a pointwise sense,

hi(x) := 1BR
(x)

∫

|x−y|≥δ
1BR

(y)
1

|x− y|σi(y) dy → 0

due to the weak convergence of σi and the fact that the test function against which σi
is integrated here is in L1+n. Since |hi| ≤ 2M

δ 1BR
uniformly in i, Lebesgue’s dominated

convergence theorem implies that hi → 0 in L1+n, and the proof is complete.

We have now assembled all the tools we need to prove the existence of a minimizer of
the reduced functional.

Theorem 3.10. Let (ρi) ⊂ F r
M be a minimizing sequence of Hr

C. Then there exists a
sequence of shift vectors (ai) ⊂ R

2 and a subsequence, again denoted by (ρi), such that for
every ε > 0 there exist R > 0 with

∫

ai+BR

ρi(x) dx ≥M − ε, i ∈ N,
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3.2 Existence of a solution to the reduced variational problem

Taiρi := ρi(· + ai) ⇀ ρ0 weakly in L1+1/n(R2), i→ ∞,
∫

BR

ρ0(x) dx ≥M − ε.

Finally,
Epot(Taiρi − ρ0) → 0,

and ρ0 ∈ F r
M is a minimizer of Hr

C.

Proof. We split ρ ∈ F r
M as follows:

ρ = 1BR1
ρ+ 1BR2

\BR1
ρ+ 1R2\BR2

ρ =: ρ1 + ρ2 + ρ3.

The parameters R1 < R2 of the split are yet to be determined. Recalling the definition of
the bilinear form 〈·, ·〉pot,

Hr
C(ρ) = Hr

C(ρ1) + Hr
C(ρ2) + Hr

C(ρ3) − 2〈ρ1 + ρ3, ρ2〉pot − 2〈ρ1, ρ3〉pot.

If we choose R2 > 2R1, then

〈ρ1, ρ3〉pot ≤
C

R2
.

By Lemma 3.1 and interpolation,

〈ρ1 + ρ3, ρ2〉pot ≤ ||ρ1 + ρ3||pot||ρ2||pot

≤ C ||ρ1 + ρ3||4/3||ρ2||pot ≤ C ||ρ||(n+1)/4
1+1/n ||ρ2||pot.

If we define

Ml :=

∫

ρl(x) dx, l = 1, 2, 3,

then Lemma 3.7 (b) and the estimates above imply that

hr
M −Hr

C(ρ) ≤
(

1 −
(

M1

M

)3/2

−
(

M2

M

)3/2

−
(

M3

M

)3/2
)

hr
M

+ C
(

R−1
2 + ||ρ||(n+1)/4

1+1/n ||ρ2||pot

)

≤ C

M2
(M1M2 +M2M3 +M1M3)h

r
M

+ C
(

R−1
2 + ||ρ||(n+1)/4

1+1/n ||ρ2||pot

)

≤ Chr
MM1M3 + C

(

R−1
2 + ||ρ||(n+1)/4

1+1/n ||ρ2||pot

)

.

Here we used that for some constant C > 0 the following inequality holds:

x3/2 + y3/2 + z3/2 ≤ 1 − C(xy + xz + yz) for x, y, z ≥ 0 with x+ y + z = 1.
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3 Stability via reduction

Now we consider a minimizing sequence (ρi) ⊂ F r
M of Hr

C and choose shift vectors (ai) ⊂
R

2, δ0 > 0, and R0 > 0 according to Cor. 3.8. Since all our functionals are invariant under
spatial translations the sequence Taiρi = ρi(·+ai) is again minimizing and hence bounded
in L1+1/n(R2) so that up to a subsequence we can assume that it converges weakly to
some ρ0 ∈ L1+1/n(R2). We choose R1 > R0 so that by Cor. 3.8, Mi,1 ≥ δ0 for i large, and

−Chr
Mδ0Mi,3 ≤ C R−1

2 + C||ρ0,2||pot + C||ρi,2 − ρ0,2||pot + Hr
C(Taiρi) − hr

M .

Given any ε > 0 we increase R1 > R0 such that the second term on the right hand side
is smaller than ε. Next we choose R2 > 2R1 such that the first term is small. Now that
R1 and R2 are fixed, the third term converges to zero by Lemma 3.9, and since Taiρi is
minimizing the remainder follows suit. Therefore for i sufficiently large,

∫

BR2

Taiρi dx = M −Mi,3 ≥M − (−Chr
Mδ0)

−1ε.

The strong convergence of the potential energies now follows by Lemma 3.9. By weak
convergence ρ0 ≥ 0 a.e., and for any ε > 0 there exists R > 0 such that

M ≥
∫

BR

ρ0 dx ≥M − ε,

in particular ρ0 ∈ L1(R2) with
∫

ρ0 = M . The functional ρ 7→
∫

Ψ(ρ) dx is convex, so by
Mazur’s lemma [19, 2.13] and Fatou’s lemma

∫

Ψ(ρ0) dx ≤ lim sup
i→∞

∫

Ψ(Taiρi) dx.

Hence ρ0 ∈ F r
M with

Hr
C(ρ0) ≤ lim sup

i→∞
Hr

C(ρi) = hr
M ,

and the proof is complete.

Remark. (a) Thm. 3.10 provides a minimizer ρ0 of the reduced energy-Casimir functional
Hr

C under the assumptions (Ψ1)–(Ψ3). By Thm. 3.3 this minimizer can be lifted to a
minimizer f0 of the original energy-Casimir functional HC . By Lemma 3.2 the function Ψ
satisfies the necessary assumptions if Φ which appears in the original Casimir functional
satisfies the following ones: Φ ∈ C1([0,∞[), Φ(0) = Φ′(0) = 0 and

(Φ1) Φ is strictly convex,

(Φ2) Φ(f) ≥ Cf1+1/k for f ≥ 0 large,

(Φ3) Φ(f) ≤ Cf1+1/k′ for f ≥ 0 small,

22



3.3 Stability of minimizers

with growth rates k, k′ ∈]0, 1[.

(b) As will be seen in the next section the mere fact that f0 minimizes HC is not sufficient
for stability. However, let (fi) ⊂ FM be a minimizing sequence of HC . By Thm. 3.3 (a) the
sequence of induced spatial densities ρi = ρfi

is minimizing for Hr
C . Choose a subsequence

of (ρi) (and (fi)) and shift vectors such that the assertions of Thm. 3.10 hold, and denote
the shifted subsequence again by (fi). We claim that this sequence converges weakly to
f0. Clearly, (fi) is bounded in L1+1/k(R4) with bounded kinetic energy, and Epot(fi) =
Epot(ρi) → Epot(ρ0). Any subsequence of (fi) must therefore have a weakly convergent
subsequence with weak limit f̃0 which is a minimizer of HC and induces the same spatial
density ρ0 and potential U0. But then by Thm. 3.3, f̃0 = f0 so that indeed fi ⇀ f0 weakly
in L1+1/k(R4).

(c) For k ≥ 1 one can still obtain stability results, cf. [8] for the Kuzmin disk which
corresponds to Φ(f) = f3/2, i.e., k = k′ = 2. However, the reduction approach cannot
work, because as we shall see in the last section this approach implies stability for the
Euler-Poisson system where stability is probably lost at n = 2, i.e., k = 1.

3.3 Stability of minimizers

Now that the existence of a minimizer is proven, we can explore its dynamical stability
properties. So let ρ0 be as obtained in Thm. 3.10 and f0 as induced by Thm. 3.3. A simple
expansion shows that

HC(f) −HC(f0) = d(f, f0) + Epot(f − f0), (3.2)

where for f ∈ FM and with the Lagrange multiplier E0 from Thm. 3.3 (b),

d(f, f0) :=

∫∫

[Φ(f) − Φ(f0) + E(f − f0)] dv dx

=

∫∫

[Φ(f) − Φ(f0) + (E − E0)(f − f0)] dv dx

≥
∫∫

[Φ′(f0) + (E − E0)](f − f0) dv dx ≥ 0

with d(f, f0) = 0 iff f = f0. For the positivity of d we use the strict convexity of Φ and
the form of f0 according to Thm. 3.3 (b); by that theorem the term in brackets vanishes
on the support of f0. We recall that −Epot(f) = 〈ρf , ρf 〉pot = ||ρf ||2pot defines a norm on
ρf , cf. Lemma 3.1; note that the right hand side in Eqn. (3.2) is d(f, f0) − ||ρf − ρ0||2pot.
We obtain the following stability result; C2

c (R4) denotes the space of compactly supported
C2 functions on R

4.

Theorem 3.11. Let f0 be a minimizer of HC on FM obtained from a minimizer ρ0 of
Hr

C, and assume that the minimizer is unique. Then for any ε > 0 there exists δ > 0
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3 Stability via reduction

such that for any classical solution [0, T [∋ t 7→ f(t) of the flat Vlasov-Poisson system with
f(0) ∈ C2

c (R4) ∩ FM and ||f(0)||1+1/k = ||f0||1+1/k the estimate

d(f(0), f0) + ||ρf(0) − ρ0||2pot < δ

implies that for each t ∈ [0, T [ there exists a shift vector a ∈ R
2 such that

||f(t) − Taf0||1+1/k + d(f(t), Taf0) + ||ρf(t) − Taρ0||2pot < ε.

Proof. Assume that the assertion were false. Then there exists ε > 0, tj > 0, fj(0) ∈
C2

c (R4) ∩ FM with ||fj(0)||1+1/k = ||f0||1+1/k such that for every j ∈ N,

d(fj(0), f0) − Epot(fj(0) − f0) <
1

j
(3.3)

but for any shift vector a ∈ R
2,

||fj(tj) − Taf0||1+1/k + d(fj(tj), Taf0) − Epot(fj(tj) − Taf0) ≥ ε. (3.4)

Since HC is preserved along solutions we have from (3.2) and (3.3) that

HC(fj(tj)) = HC(fj(0)) → HC(f0),

i.e., (fj(tj)) is a minimizing sequence. By Thm. 3.10 and the remark at the end of
the previous section there is a sequence of shift vectors (aj) ⊂ R

2 such that up to a
subsequence,

lim
j→∞

Epot(Tajfj(tj) − f0) → 0.

By (3.2) this implies that d(Tajfj(tj), f0) → 0. For the convergence of || · ||1+1/k we use
the fact that ||fj(t)||1+1/k = ||fj(0)||1+1/k = ||f0||1+1/k for any t > 0. By the remark,

Tajfj(tj) ⇀ f0 weakly in L1+1/k(R4), and hence Tajfj(tj) → f0 strongly in L1+1/k(R4).
But these convergence results for Tajfj(tj) contradict (3.4).

Remark. (a) The uniqueness assumption on f0 in the above theorem is made mostly
in order to avoid technical complications. It suffices if f0 is isolated with respect to the
topology of our stability estimate. If there should be a continuum of minimizers then the
set of minimizers itself is stable; we refer to [16, Thm. 4] for such a formulation of the
result in the three dimensional case. We are not aware of a case where there is a continuum
of minimizers with fixed mass M . For a closely related variational problem it has been
shown that the above stability estimate remains valid even then [30].

(b) As opposed to the three dimensional case [20, 27, 29] there is no global existence
and uniqueness result to the initial value problem for the flat Vlasov-Poisson system yet.
Hence our stability result is conditional in the sense that it holds as long as a suitable
solution exists. A local existence and uniqueness result for smooth solutions with initial
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3.4 Connection to the Euler–Poisson system

data in C2
c (R4) as well as a global existence result for weak solutions to the flat system

was established in [5]. We could also carry out our stability analysis in the framework of
these global weak solutions, but this would only bury the main ideas under technicalities.

(c) By interpolation between L1 and L1+1/k we obtain a stability estimate for ||f(t) −
Taf0||p with p ∈]1, 1 + 1/k]. If we assume that the initial perturbations have supports
of uniformly bounded measure we can include the case p = 1, if we assume a uniform
bound on the L∞ norm of the initial perturbations we can by interpolation include all
p ∈ [1 + 1/k,∞[; notice that both the measure of the support and the L∞ norm are
invariant under classical solutions of the Vlasov-Poisson system.

(d) The need for the shifts in the stability estimate arises from the Galilei invariance of
the Vlasov-Poisson system. If f0 is a steady state then for any fixed V ∈ R

2 the function
f0(x − tV, v − V ) is a time dependent solution; f0 is simply put into a uniformly moving
coordinate system. But while the distance of this perturbation to the steady state grows
linearly in t, it is arbitrarily close to the steady state at t = 0 for V small.

3.4 Connection to the Euler–Poisson system

A self-gravitating matter distribution can be described on the microscopic, kinetic level
represented by the Vlasov-Poisson system or on the macroscopic, fluid level represented
by the Euler-Poisson system. The reduction technique connects the stability problems for
these two viewpoints. In the three dimensional situation this connection was observed in
[25]. In the flat case the corresponding Euler-Poisson system reads

∂ρ

∂t
+ div(ρu) = 0,

ρ
∂u

∂t
+ (u · ∇x)u = −∇xp− ρ∇xU,

U(t, x) = −
∫

ρ(t, y)

|x− y| dy,

with the equation of state

p(ρ) = ρΨ′(ρ) − Ψ(ρ).

Here p denotes the pressure of the fluid and u denotes its velocity field; the meaning of
ρ and U is as before. If ρ0 is a minimizer of the reduced energy-Casimir functional Hr

C ,
then using the Euler-Lagrange identity in Thm. 3.3 (b) it is easy to check that ρ0 and the
zero velocity field u0 ≡ 0 solve the flat Euler-Poisson system. Clearly, the state (ρ0, u0)
minimizes the energy

H(ρ, u) =
1

2

∫

|u|2ρdx+

∫

Ψ(ρ) dx+ Epot(ρ),
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3 Stability via reduction

among the states with
∫

ρ = M . Formally, the energy is conserved along solutions of the
Euler-Poisson system. An expansion about (ρ0, u0) gives

H(ρ, u) −H(ρ0, u0) =
1

2

∫

|u|2ρdx+ d(ρ, ρ0) + Epot(ρ− ρ0),

where

d(ρ, ρ0) :=

∫

[Ψ(ρ) − Ψ(ρ0) + (U0 − E0)(ρ− ρ0)] dx ≥ 0.

Now the stability proof proceeds in the same way as in the Vlasov case. We can for every
ε > 0 find a δ > 0 such that for every solution t 7→ (ρ(t), u(t)) of the flat Euler-Poisson
system with ρ(0) ∈ F r

M , which preserves energy and mass, the initial estimate

1

2

∫

|u(0)|2ρ(0) dx+ d(ρ(0), ρ0) + ||ρ(0) − ρ0||2pot < δ

implies that as long as the solution exists and up to shifts in space,

||ρ(t) − ρ0||1+1/n +
1

2

∫

|u(t)|2ρ(t) dx+ d(ρ(t), ρ0) + ||ρ(t) − ρ0||2pot < ε.

Neither in the flat case nor in the three dimensional one is there an existence theory for
global solutions of the Euler-Poisson system, which preserve all the necessary quantities,
so the result is conditional in this sense.
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4 The Kuzmin disk

We will construct the Kuzmin disk by minimization of the energy functional H which is
defined as

H(f) =
1

2

∫∫

|v|2f(x, v)dxdv − 1

2

∫∫

ρf (x)ρf (y)

|x− y| dxdy (4.1)

=: Ekin(f) + Epot(f)

over the set

FM :=

{

f ∈ L1
+(R4);

∫∫

f3/2dxdv = M,Ekin(f) <∞
}

, (4.2)

where M > 0 is an arbitrary prescribed constant. The technical difficulties of the limiting
case arise from the fact that the kinetic energy, potential energy as well as the norm || · ||3/2
are invariant under the transformation

Sλf := λ−4f(λ−4x, λv), λ > 0. (4.3)

This kind of scaling invariance is not present in the cases k < 2.
We will proceed as follows. In Section 4.1 we derive the explicit formula for the Kuzmin

disk by minimizing the energy functional and using the sharp constant in the Hardy-
Littlewood-Sobolev inequality, in analogy to [2], where the optimal Sobolev inequality was
used to construct the Plummer sphere. Since we are dealing with an infinite-dimensional
dynamical system, the fact that this state minimizes the energy does not automatically
imply its stability. We will later see that the crucial property for the stability to hold (at
least in our variational approach) is convergence of the potential energies along minimizing
sequences of H. In Section 4.2 we prove this convergence as well as the stability result
with respect to perturbations restricted to the plane in which the steady state lives.

4.1 Existence

The main result of this section is the following theorem:

Theorem 4.1. There exists a unique minimizer f0 of H on FM which, up to translations
in x-space and scalings (4.3), has the form

f0(x, v) = [(−CME(x, v))+]2 a.e. (4.4)
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4 The Kuzmin disk

with potential U0 and density ρ0 given by (again up to translations and scalings corre-
sponding to (4.3),

ρf0(x) = CM

(

1

1 + |x|2
)3/2

, Uf0(x) = −CM
(

1

1 + |x|2
)1/2

.

f0 is indeed a steady-state of (2.2).

Proof. For each f ∈ FM we define

hf (x, v) :=
1

2
|v|2 + Uf (x),

N
−/+
f := {(x, v) ∈ R

4;hf (x, v) < 0/ ≥ 0}.
Then the energy functional can be written as

H(f) =

∫

N−
f

hffdxdv +

∫

N+
f

hffdxdv + |Epot(f)|. (4.5)

We can use Hölder’s inequality to estimate the first term on the right hand side as follows:

−
∫

N−
f

hffdxdv ≤
[∫

f3/2dxdv

]2/3
[

∫

N−
f

|hf |3dxdv
]1/3

. (4.6)

A simple computation gives us the value of the last integral:

∫

N−
f

|hf |3dxdv = 2π

∫

R2

∫

√
−2Uf (x)

0

∣

∣

∣

∣

1

2
|v|2 + Uf (x)

∣

∣

∣

∣

3

|v|d|v|dx

= 2π

∫

R2

∫ Uf (x)

0
s3dsdx =

π

2

∫

R2

|Uf (x)|4dx =
π

2
||Uf ||44.

In [2] the Sobolev inequality was used to estimate the Lp norm of the potential by the norm
of ∇U . This is unfortunately not possible here since we have no information about the
gradient of the potential. Instead we use the Hölder and the Hardy-Littlewood-Sobolev
inequality to achieve a similar estimate. By the reflexivity of L4(R2) there exists ϕ ∈
L4/3(R2) with ||ϕ||4/3 = 1 such that the following holds:

||Uf ||44 =

[∫

Ufϕdx

]4

= 16〈ρf , ϕ〉4pot ≤ 16||ρf ||4pot||ϕ||4pot (4.7)

= 4|Epot(f)|2
[∫∫

ϕ(x)ϕ(y)

|x− y| dxdy

]2

≤ 4C2
HLS|Epot(f)|2||ϕ||44/3 (4.8)

= 4C2
HLS|Epot(f)|2,
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4.1 Existence

where we recall the definitions of 〈·, ·〉pot and || · ||pot as introduced in [7]:

〈ξ, ψ〉pot :=
1

2

∫∫∫∫

ξ(x, v)ψ(y,w)

|x− y| dxdydvdw

=
1

2

∫∫

ρξ(x)ρψ(y)

|x− y| dxdy =: 〈ρξ, ρψ〉pot,

||ξ||pot := 〈ξ, ξ〉1/2pot =
√

−Epot(ξ)

=
√

−Epot(ρξ) =: ||ρξ ||pot,

||ξ||pot ≤ C||ρξ||4/3 ≤ C||ξ||3/2,

where ξ, ψ ∈ L3/2(R4). As one can see the above definitions are equivalent for distribution
functions as well as for their induced spatial densities (by integrating over velocities). In
this paper we will use both notations interchangeably. The above expressions define a
scalar product and induced norm on L3/2(R4) (resp. L4/3(R2)). Now from (4.5) we have

H(f) ≥
∫

N+
f

hffdxdv + |Epot(f)| −
(

2πM2C2
HLS

)1/3 |Epot(f)|2/3

≥ −8π

27
M2C2

HLS, (4.9)

where we have dropped the non-negative integral over N+
f and minimized with respect

to |Epot(f)| to obtain the last estimate. Now we investigate the optimal case when the
inequalities in (4.6), (4.7) and (4.8) reduce to equalities. In (4.6) equality is achieved when

f(x, v) = α|hf (x, v)|2θ(−hf (x, v)),

where α is some constant and θ is the usual Heaviside function. This implies that the
density must be in the form

ρf (x) =
2π

3
α|Uf (x)|3.

The function ϕ in (4.7) must of course satisfy

|Uf (x)|4 = β|ϕ(x)|4/3,

and finally equality in (4.8) holds when

ϕ(x) = π−3/4σ−3/2

(

1 +

∣

∣

∣

∣

x− ξ

σ

∣

∣

∣

∣

2
)−3/2

, σ > 0, ξ ∈ R
2,

see [18]. With a little algebra we can combine the above four equations and show that α
and β depend only on M with

α = 2−634π−2C−4
HLSM

−2,

β = 2−232π−2C−2
HLSα

−2,
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4 The Kuzmin disk

and that energy of this optimal state is precisely the value which appeared as a lower
bound in (4.9). The explicit forms of the density and potential of the minimizer are now

ρf (x) = CMσ
−3/2

(

1 +

∣

∣

∣

∣

x− ξ

σ

∣

∣

∣

∣

2
)−3/2

,

Uf (x) = −CMσ−1/2

(

1 +

∣

∣

∣

∣

x− ξ

σ

∣

∣

∣

∣

2
)−1/2

.

To verify (2.2b) we define for ψ ∈ L4/3(R2) functional

R(ε) :=
〈ρf + εψ, ρf 〉pot

||ρf + εψ||4/3||ρf ||4/3

and since R has its maximum at ε = 0,

d

dε
R(ε)

∣

∣

∣

∣

ε=0

= 0.

After some algebra we get (2.2b).

4.2 Existence and stability

First we formulate some a-priori estimates.

Lemma 4.2. For all f ∈ FM the following holds:

(a) ρf ∈ L4/3(R2) with

∫

ρ
4/3
f dx ≤

(∫∫

f3/2dxdv

)2/3 (∫∫

|v|2fdxdv

)1/3

≤ CEkin(f)1/3.

(b) Uf ∈ L4(R2) with

−Epot(f) ≤ C||ρf ||24/3 ≤ CEkin(f)1/2.

Proof. By splitting the v-integral according to |v| ≤ R and |v| > R we get:

ρf (x) =

∫

|v|≤R
f(x, v)dv +

∫

|v|>R
f(x, v)dv

≤ π1/3

(∫

f3/2dv

)2/3

R2/3 +R−2

∫

|v|2fdv =: I(R).
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4.2 Existence and stability

Now we optimize I(R) with respect to R:

dI

dR
=

2π1/3

3

[∫

f3/2dv

]2/3

R−1/3 − 2R−3

∫

|v|2fdv.

If we now set the derivative above equal to zero to obtain the minimum we find

R =

[

3
∫

|v|2fdv

π1/3
(∫

f3/2
)2/3

]3/8

,

and

ρf (x) ≤ C

(∫

f3/2dv

)1/2(∫

|v|2fdv

)1/4

.

Hence by Hölder’s inequality,

∫

ρ
4/3
f dx ≤ C

∫ (∫

f3/2dv

)2/3 (∫

|v|2fdv

)1/3

dx (4.10)

≤ C

(∫∫

f3/2dxdv

)2/3 (∫∫

|v|2fdxdv

)1/3

≤ CEkin(f)1/3,

and the estimate (a) is proved. The assertion (b) follows by the Hardy-Littlewood-Sobolev
inequality [19, Sec. 4.3].

A lower bound for H immediately follows from Lemma 4.2:

Corollary 4.3. There exists a constant C > 0 such that for f ∈ FM

H(f) ≥ Ekin(f) − CEkin(f)1/2,

in particular,
hM := inf

FM

H > −∞

and Ekin is bounded along minimizing sequences for H in FM .

Now we explore the behavior of H and ||f ||3/2 under scaling transformations.

Lemma 4.4.

(a) Let M > 0. Then hM < 0.

(b) For all M,M̄ > 0,

hM̄ =

(

M̄

M

)2

hM . (4.11)
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4 The Kuzmin disk

Proof. For a given function f(x, v) we define a rescaled function f̄(x, v) := f(ax, bv). Then
∫∫

f̄3/2dxdv =

∫∫

(f(ax, bv))3/2dxdv = (ab)−2

∫∫

f3/2dxdv,

i.e., f ∈ FM iff f̄ ∈ FM̄ where M̄ := (ab)−2M . Next

Ekin(f̄) =
1

2

∫∫

|v|2f(ax, bv)dxdv = a−2b−4Ekin(f),

Epot(f̄) = −1

2

∫∫∫∫

f(ax, bv)f(ay, bw)

|x− y| dwdvdxdy = a−3b−4Epot(f).

To prove (a) we fix any f ∈ FM and let a = b−1 so that f̄ ∈ FM as well. Then

H(f̄) = b−2Ekin(f) + b−1Epot(f) < 0

for b > 0 sufficiently large, since Epot(f) < 0. To prove (b) we choose a = 1. Then

H(f̄) = b−4H(f), (4.12)

and since b−2 =
(

M̄/M
)

and the mapping f 7→ f̄ is one-to-one and onto from FM to FM̄ ,
(b) follows.

The key step in our stability analysis is the convergence of the potential energy along
minimizing sequences. This will be treated by the following series of lemmas:

Lemma 4.5. If (gi) is a sequence which converges weakly to g in L1(R2) and (hi) is a
sequence bounded in L∞(R2) which converges almost everywhere to h, then

gihi ⇀ gh weakly in L1(R2).

For a proof we refer to [10, Prop. 5]. In order to analyze the convergence of the potential
energy along the minimizing sequence we first consider axially symmetric densities.

Definition 4.6. A function f : R
4 7→ R is called axially symmetric if

f(x, v) = f(Ax,Av), x, v ∈ R
2, A ∈ SO(2).

A function ρ : R
2 7→ R is called axially symmetric if

ρ(x) = ρ(Ax), x ∈ R
2, A ∈ SO(2).

Later we will remove the symmetry restriction. Note that when viewed as a function
on R

6 respectively R
3 through

f̃(x1, x2, x3, v1, v2, v3) = f(x1, x2, v1, v2)δ(x3)δ(v3),

ρ̃(x1, x2, x3) = ρ(x1, x2)δ(x3),

these functions are really axially symmetric with respect to the x3-axis.
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4.2 Existence and stability

Lemma 4.7. Let (ρi) ⊂ L4/3(R2) be bounded, axially symmetric, supp ρi ⊂ BR1,R2, where
BR1,R2 := {x ∈ R

2; 0 < R1 < |x| < R2 <∞}, and assume that

ρi ⇀ ρ0 weakly in L4/3(R2).

Then
Epot(ρi − ρ0) → 0.

Proof. First we note that due to the condition of the support of (ρi) this sequence is also
bounded in L1(R2) and has the property

ρi ⇀ ρ0 weakly in L1 ∩ L4/3(R2).

We would like to apply Lemma 4.5 to the sequences (ρi) and (Ui) := (Uρi). The bound-
edness of (Ui) in L∞(R2) can be proved using estimates from [21] for the symmetric
potentials:

|Ui(x)| = |Ui(r)| = 4

∣

∣

∣

∣

∫ R2

R1

s

r + s
ρi(s)K

(

2
√
rs

r + s

)

ds

∣

∣

∣

∣

≤ C

∫ R2

R1

sρi(s)K

(

2
√
rs

r + s

)

ds

≤ C||ρi||4/3

(

∫ R2

R1

s

[

K

(

2
√
rs

r + s

)]4

ds

)1/4

≤ C + C

(
∫ R2

R1

| ln(1 − [r, s])|4ds
)1/4

,

where r := |x|, [r, s] := min{r/s, s/r} and K denotes complete elliptic integral of the first
kind defined as

K(ξ) :=

∫ π/2

0

dϕ
√

1 − ξ2 sin2 ϕ
=

∫ 1

0

dt
√

1 − ξ2t2
√

1 − t2
, 0 ≤ ξ < 1.

Now we can estimate the logarithm as

| ln(1 − [r, s])| ≤
{

C
(

1 − r
s

)−1/8
0 ≤ r ≤ s,

C
(

1 − s
r

)−1/8
0 ≤ s ≤ r.

(4.13)

With this estimate we can according to the position of r estimate the value of the corre-
sponding potential. In the case 0 ≤ r ≤ R1 we get

∫ R2

R1

| ln(1 − [r, s])|4ds ≤
∫ R2

R1

(

1 − r

s

)−1/2
ds ≤ C

∫ R2

R1

(s−R1)
−1/2ds <∞,
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4 The Kuzmin disk

for R1 ≤ r ≤ R2

∫ R2

R1

| ln(1 − [r, s])|4ds ≤ C

(∫ r

R1

(

1 − s

r

)−1/2
ds+

∫ R2

r

(

1 − r

s

)−1/2
ds

)

≤ C(1 + 4(R2 −R1)
1/2) <∞,

and for r ≥ R2
∫ R2

R1

| ln(1 − [r, s])|4ds ≤ CR
1/2
1 (R2 −R1)

1/2 <∞.

Now

Ui(r) − U0(r) = −4

∫ R2

R1

s

r + s
(ρi(s) − ρ0(s))K

(

2
√
rs

r + s

)

ds

= −4

∫ R2

R1

s(ρi(s) − ρ0(s))K

(

2
√
rs

r + s

)

1

r + s
ds→ 0 a.e. i→ ∞,

since for each r > 0,

K

(

2
√
r·

r + ·

)

∈ L4([R1, R2]).

The latter follow easily from (4.13). Now we can use Lemma 4.5 to conclude that

Epot(ρi) =
1

2

∫

Uiρidx→ 1

2

∫

U0ρ0dx = Epot(ρ0).

Now

Epot(ρi − ρ0) = Epot(ρi) − Epot(ρ0) −
∫

U0(ρi − ρ0),

and the fact that U0 ∈ L4(R2) and the weak convergence of (ρi) in L4/3(R2) prove the
assertion.

Now that the convergence of the potential energies is proved, the existence of a minimizer
follows. The restriction that we obtain a minimizer in the class of axially symmetric
functions in FM will be removed below.

Theorem 4.8. Let (fi) be a minimizing sequence of H in FM which is axially symmetric.
Then there exists f0 ∈ FM , (λi) ⊂ R

+ and a subsequence of (fi) (also denoted by (fi))
such that

Sλi
fi ⇀ f0 weakly in L3/2(R4),

Epot(Sλi
fi − f0) → 0.

Moreover, f0 is a minimizer of H over FS
M := {f ∈ FM ; f axially symmetric}.
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4.2 Existence and stability

Proof. Let (fi) be a minimizing sequence. From the definition of FM we have

||fi||3/23/2 = M.

First we choose λi, such that the sequence (Sλi
fi) has the following property

∫

|x|<1

∫

(Sλi
fi)

3/2dvdx =

∫

|x|≥1

∫

(Sλi
fi)

3/2dvdx = M/2, i ∈ N. (4.14)

For notational simplicity we will from now one denote by (fi) the sequence (Sλi
fi) which

has the property (4.14). Because of the boundedness of (fi) in L3/2(R4) we can extract a
subsequence (without change of notation) such that

fi ⇀ f0 weakly in L3/2(R4).

Clearly, f0 is non-negative and axially symmetric. From the weak convergence we have

Ekin(f0) ≤ lim inf
i→∞

Ekin(fi) <∞, (4.15)
∫∫

f
3/2
0 ≤ lim inf

i→∞

∫∫

f
3/2
i = M. (4.16)

We have to show that f0 is actually a minimizer of H. The key step is to show that
∫∫

f
3/2
i

cannot concentrate either at the origin or at infinity. We claim that for each ε > 0 there
exists N ≥ 1 such that

lim sup
i→∞

∫

r≤1/N

∫

f
3/2
i dvdx+ lim sup

i→∞

∫

r≥N

∫

f
3/2
i dvdx < ε. (4.17)

If not, there exists an ε0 > 0 such that up to a subsequence
∫

r≤1/N

∫

f
3/2
i dvdx+

∫

r≥N

∫

f
3/2
i dvdx ≥ ε0 (4.18)

for any N ≥ 1. Since f0 ∈ L3/2(R4), for any ε > 0 there exists N0 ≥ 2 such that

∫

r≤1/N0

∫

f
3/2
0 dvdx+

∫

r≥N0

∫

f
3/2
0 dvdx < ε. (4.19)

We now split fi into four parts. The essential part f e
i is defined as

f e
i := fi11/N0≤r≤N0

.

The small part f s
i is defined as

f s
i := fi[11/N4

0≤r≤1/N0
+ 1N0≤r≤N4

0
].
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4 The Kuzmin disk

And finally the two concentrated parts are defined as

f c
i = f c1

i + f c2
i := fi1r≤1/N4

0
+ fi1r≥N4

0
.

The energy split corresponding to the parts just described is

H(fi) = H(f e
i ) + H(f s

i ) + H(f c1
i ) + H(f c2

i )

−2(〈f s
i , f

e
i + f c

i 〉pot + 〈f c1
i , f

e
i 〉pot + 〈f c1

i + f e
i , f

c2
i 〉pot). (4.20)

The crucial step is to estimate the interaction terms in (4.20). The first term is easily
bounded by

〈f s
i , f

e
i + f c

i 〉pot ≤ ||f s
i ||pot||fi||pot ≤ C||f s

i ||pot

By Lemma 4.7, (4.10) and (4.19), we have for fixed N0 (up to a subsequence)

||f s
i ||pot → ||f s

0||pot ≤ C||ρfs
0
||4/3

≤ C

{∫∫

∣

∣f0

[

1r≤1/N0
+ 1r≥N0

]∣

∣

3/2
}1/2

< Cε1/2.

The estimate for the second term follows:

2〈f c1
i , f

e
i 〉pot =

∫∫

ρc1
i (x)ρe

i (y)

|x− y| dxdy

≤
(

1

N0
− 1

N4
0

)−1 ∫

B
1/N4

0

ρi(x)dx

∫

BN0

ρi(x)dx

≤ C

(

1

N0
− 1

N4
0

)−1

||ρi||24/3
1

N2
0

N
1/2
0 ≤ CN

−1/2
0 .

The last term can be treated as

〈f e
i + f c1

i , f
c2
i 〉pot ≤

∫

ρc2
i (x)Uρei+ρ

c1
i

(x)dx ≤ ||ρi||4/3||Uρei +ρc1i
||L4({|x|≥N4

0})

≤ CN
1/2
0

(

∫ ∞

N4
0

|x|−3d|x|
)1/4

≤ CN
−3/2
0 ,

where we used the estimate

|Uρei+ρc1i
(x)| ≤

∫

|y|≤N0

ρi(y)

|x− y|dy ≤ 1

|x| −N0
||ρi||L1({|x|≤N0})

≤
C||ρi||4/3N1/2

0

|x| , |x| > 2N0.
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4.2 Existence and stability

Without loss of generality we may by (4.18) assume that

0 < ε0/2 ≤
∫

|x|≥N4
0

∫

f
3/2
i dvdx ≤M/2.

Now by the scaling equation (4.11) and the fact that hM < 0 we have

H(fi) ≥









||f e
i ||

3/2
3/2

M





2

+





||f s
i ||

3/2
3/2

M





2

+





||f c1
i ||3/23/2

M





2

+





||f c2
i ||3/23/2

M





2

hM

−Cε1/2 −CN
−1/2
0

≥







1 −
||f c2

i ||3/23/2

M





2

+





||f c2
i ||3/23/2

M





2

hM − Cε1/2 − CN
−1/2
0 ,

which is a contradiction with (fi) being a minimizing sequence. Notice that we may choose
ε sufficiently small and N0 sufficiently large. Now having established the claim about the
concentration we can finally prove the convergence of the potential energy term:

||fi − f0||pot ≤ ||1|x|≤1/Nfi − 1|x|≤1/Nf0||pot

+||11/N≤|x|≤Nfi − 11/N≤|x|≤Nf0||pot

+||1|x|≥Nfi − 1|x|≥Nf0||pot.

Both the first and third term are uniformly small if N is large due to (4.17). For now
fixed N the second term goes to zero by Lemma 4.7. Hence

Epot(fi − f0) → 0.

Therefore we have, letting i→ ∞ and observing (4.15)

H(f0) ≤ hM .

In order for f0 ∈ FM we must have
∫∫

f
3/2
0 = M . Suppose on the contrary that

∫∫

f
3/2
0 =

M̄ < M . Using the scaling f̄0(x, v) := f0(x, (M̄/M)1/2v) we have from the scaling equality
(4.12):

H(f̄0) =

(

M̄

M

)−2

H(f0) =

(

M̄

M

)−2

hM < hM ,

and f̄0 ∈ FM , which is contradiction and f0 ∈ FM .

In Lemma 4.7 and 4.8 we needed the symmetry assumption in order to prove the con-
vergence of the potential energy terms along the minimizing sequence. This would of
course limit our stability result to stability against axially symmetric perturbations only.
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4 The Kuzmin disk

To overcome this shortcoming we have to generalize the compactness properties of the
potential energy for general minimizing sequences. We use the same trick as in [16] and
define the for the cut-off parameter N > 1,

h|N (x, v) :=

{

h(x, v) if 1/N ≤ h(x, v) ≤ N,
0 otherwise.

Lemma 4.9. Let (fi) ⊂ FM be a minimizing sequence. Then there exists a sequence
(λi) ⊂ R

+ such that up to a subsequence the following holds:

(a) For any ε > 0 there exists some N > 1 such that for all sufficiently large i ∈ N,

||Sλi
fi − (Sλi

fi)|N ||3/2 < ε.

(b) There exists a sequence (ai) ⊂ R
2 and ε0 > 0, R0 > 0 such that for all sufficiently

large i ∈ N,
∫

(ai+BR0
)×R2

(Sλi
fi)

3/2dxdv ≥ ε0.

(c) Let gi := TaiSλi
fi, gi ⇀ g0 weakly in L3/2(R4) and ρi := ρgi ⇀ ρ0 weakly in

L4/3(R2). Then for any R > 0

Epot(1BR
ρi − 1BR

ρ0) → 0.

Proof. To prove (a) we use Theorem 4.8. We consider (f∗i ), the sequence of axially sym-
metric rearrangements with respect to x of (fi), which is again minimizing in FM . By
Theorem 4.8 there exists a symmetric minimizer g such that Sλi

f∗i ⇀ g weakly in L3/2(R4).
Since ||Sλi

f∗i ||3/2 = ||f∗i ||3/2 = M = ||g||3/2 it follows that Sλi
f∗i → g strongly in L3/2(R4).

Now since Sλi
f∗i is axially symmetric and decreasing in |x| and equi-measurable with Sλi

fi
we have Sλi

f∗i = (Sλi
fi)

∗. For notational purposes we define gi := Sλi
fi in the proofs of

(a) and (b).
Now for ε > 0 we chose N > 1 such that ||g||L3/2(AN ) < ε/2 where AN := {g ≤ 1/N∨g ≥

N}. Let Ai,N := {g∗i ≤ 1/N ∨ g∗i ≥ N}. Then for i sufficiently large,

||g∗i − g∗i |N ||3/2 = ||g∗i ||L3/2(Ai,N ) ≤ ||g∗i − g||L3/2(Ai,N ) + ||g||L3/2(Ai,N )

≤ ε/2 + ||g||L3/2(Ai,N ).

Up to a subsequence, g∗i → g pointwise almost everywhere, so lim supi→∞ 1Ai,N
≤ 1AN

a.e. and by Fatou’s lemma

lim sup
i→∞

||g||L3/2(Ai,N ) ≤ ||g||L3/2(AN ) < ε/2.

So up to a subsequence we have for sufficiently large i

||g∗i − g∗i |N ||3/2 < ε.
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4.2 Existence and stability

For any function h ≥ 0 and p ≥ 1 we have the identity
∫

(h− h|N )p = p

∫ ∞

0
sp−1µ{h1{h<1/N∨h>N} > s}ds

= p

∫ ∞

0
sp−1 [µ{s < h < 1/N} + µ{h > max{s,N}}] ds

= p

∫ ∞

0
sp−1 [µ{s < h∗ < 1/N} + µ{h∗ > max{s,N}}] ds

=

∫

(h∗ − h∗|N)p.

Now if we take h = gi = Sλi
fi then with the help of Sλi

f∗i = (Sλi
fi)

∗ we have (a).
To prove (b) we split for N > 1, gi = gi|N + (gi − gi|N ) and proceed as in Lemma 4 in

[16]. Firstly we define for R > 1

KR(x) :=







R , |x| < 1/R,
1/|x| , 1/R ≤ |x| ≤ R,

0 , |x| > R,

and

FR(x) :=
1

|x|1{|x|>R}(x), GR(x) :=

(

1

|x| −R

)

1{|x|<1/R}(x).

It is easy to check that the latter split gives

1

|x| = KR(x) + FR(x) +GR(x). (4.21)

Now according to (4.21) we split the potential energy as
∫∫

ρi(x)ρi(y)

|x− y| dxdy = I1 + I2 + I3,

where ρi := ρgi|N
. We estimate the parts as follows

|I1| ≤ R

∫∫

|x−y|<R
ρi(x)ρi(y)dxdy ≤ RCN sup

y∈R2

∫

y+BR

ρi(x)dx

≤ CNR
3/2 sup

y∈R2

[
∫

y+BR

ρ
4/3
i dx

]3/4

≤ CNR
3/2 sup

y∈R2

[∫

y+BR

∫

gi
3/2
|N dvdx

]1/2

,

|I2| ≤ 1

R

∫∫

ρi(x)ρi(y)dxdy ≤ CNR
−1,

|I3| ≤ ||ρi||3/2||ρi ∗GR||3 ≤ C||GR||3/2 ≤ CNR
−1/3.
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4 The Kuzmin disk

In the last estimate we used the boundedness of ρi in L3/2(R2) which comes from the
boundedness of gi|N in L3/2 ∩L∞(R4). Now since gi is a minimizing sequence we have for
any R > 1 and i sufficiently large

hM/2 > H(gi) ≥ Epot(gi) = Epot(gi|N + (gi − gi|N ))

= Epot(gi|N ) + Epot(gi − gi|N ) − 2

∫∫ ρgi|N
(x)ρgi−gi|N

(y)

|x− y| dxdy

≥ Epot(gi|N ) + Epot(gi − gi|N ) − C||gi − gi|N ||3/2
≥ −(|I1| + |I2| + |I3|) +Epot(gi − gi|N ) −C||gi − gi|N ||3/2.

Now we have

lim inf
i→∞

[

sup
y∈R2

∫

y+BR

∫

g
3/2
i dvdx

]1/2

≥ lim inf
i→∞

[

sup
y∈R2

∫

y+BR

∫

gi
3/2
|N dvdx

]1/2

≥ CN lim inf
i→∞

|I1|R−3/2

≥ CNR
−3/2

[

−hM/2 −R−1 −R−1/3

+Epot(gi − gi|N ) − C||gi − gi|N ||3/2
]

.

Now from part (a) and Lemma 4.2 we can choose N > 0 such that Epot(gi−gi|N )−C||gi−
gi|N ||3/2 > hM/4. Then we choose R > 0 large enough so that the term in the brackets is
positive, and we have (b). As to (c), it is enough to prove that

||gi − g0||pot(BR×BR) → 0, i→ ∞,

where we use the notation

〈ξ, ψ〉pot(M) :=
1

2

∫∫

M

ρξ(x)ρψ(y)

|x− y| dxdy, ||ξ||pot(M) := 〈ξ, ξ〉1/2pot(M),

where BR = {x ∈ R
2; |x| < R}. We split for any δ > 0 the integration domain into two

parts:

M1 := {(x, y) ∈ R
4; |x| < R, |y| < R} ∩ {|x− y| < δ},

M2 := {(x, y) ∈ R
4; |x| < R, |y| < R} ∩ {|x− y| ≥ δ}.
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4.2 Existence and stability

We estimate the first part as follows:

||gi − g0||pot(M1) ≤ ||gi − gi|N ||pot(M1) + ||gi|N − g0|N ||pot(M1)

+||g0|N − g0||pot(M1)

≤ ||gi|N − g0|N ||pot(M1) + C||gi − gi|N ||3/2 + C||g0|N − g0||3/2
≤ ||ρgi|N−g0|N ||3/2||1Bδ

| · |−1||1/23/2 + C||gi − gi|N ||3/2
+C||g0|N − g0||3/2

≤ CN

(
∫ δ

0
r−1/2dr

)1/3

+ C||gi − gi|N ||3/2 (4.22)

+C||g0|N − g0||3/2
= CNδ

1/6 + C||gi − gi|N ||3/2 + C||g0|N − g0||3/2. (4.23)

Next we estimate the second part:

1

2
||gi − g0||pot(M2) =

∣

∣

∣

∣

∫∫

M2

ρgi−g0(x)ρgi−g0(y)
|x− y| dxdy

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

ρgi−g0(x)hi(x)dx

∣

∣

∣

∣

≤ ||ρgi−g0||4/3||hi||4 ≤ C||hi||4,

where

hi(x) := 1BR(x)

∫

|x−y|≥δ
1BR(y)

1

|x− y|ρgi−g0(y)dy → 0.

The reason for the above convergence is weak convergence of ρgi−g0 and the fact that the
test function against which is ρgi−g0 tested lies in L4(R2). Now since |hi| ≤ 1BR

CM/δ,
converges hi → 0 in L4(R2) by Lebesgue’s dominated convergence theorem. The majoris-
ing function for hi of course does not depend on i, since from (a) we can find such N that
the last two terms in (4.23) remain small for all i sufficiently large and then we can fix δ
to control CN . Now with δ being fixed we can pass through the dominated convergence
argument.

The existence theorem for the minimizer in the general class FM is the following:

Theorem 4.10. Let (fi) ⊂ FM be a minimizing sequence of H. Then there exists
a minimizer f0 ∈ FM , a subsequence (also denoted by fi), a sequence of translations
Taifi(x, v) = fi(x + ai, v) with (ai) ⊂ R

2 and a sequence of scalings Sλi
with λi > 0 such

that

H(f0) = infFM
H = hM ,

TaiSλi
fi ⇀ f0 weakly in L3/2(R4),

Epot(TaiSλi
fi − f0) → 0.
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4 The Kuzmin disk

Proof. We choose (λi), (ai), ε0 > 0, R0 > 0 according to Lemma 4.9 and define gi :=
TaiSλi

fi, which is again a minimizing sequence in FM . This sequence is bounded in
L3/2(R4) and by Lemma 4.2 the induced spatial densities ρi are bounded in L4/3(R2).
Now we can pick subsequences (without changing the notation) such that

gi ⇀ f0 weakly in L3/2(R4),

ρi ⇀ ρ0 := ρf0 weakly in L4/3(R2).

By weak convergence and convexity of || · ||3/23/2

Ekin(f0) ≤ lim inf
i→∞

Ekin(gi) <∞,

∫∫

f
3/2
0 dxdv ≤ lim inf

i→∞

∫∫

g
3/2
i dxdv = M.

We have to show the convergence of the potential energies. We use the method of splitting
introduced in [16] and for R > R0 we split gi as follows:

gi = gi1BR0
×R2 + gi1BR0,R×R2 + gi1BR,∞×R2

:= g
(1)
i + g

(2)
i + g

(3)
i . (4.24)

From Lemma 4.9 we already know that Epot(g
(1)
i + g

(2)
i ) converges to Epot(g

(1)
0 + g

(2)
0 ) for

any fixed R. So it is enough to show that for any ε > 0

lim inf
i→∞

|Epot(g
(3)
i )| < ε (4.25)

for R large enough. By Lemma 4.2 it is sufficient to show that

lim inf
i→∞

∫∫

(

g
(3)
i

)3/2
dxdv < ε. (4.26)

To prove this we split the energy functional H according to (4.24):

H(gi) = H(g
(1)
i ) + H(g

(2)
i ) + H(g

(3)
i )

−2〈g(2)
i , g

(1)
i + g

(3)
i 〉pot − 2〈g(1)

i , g
(3)
i 〉pot

=: H(g
(1)
i ) + H(g

(2)
i ) + H(g

(3)
i ) − I1

i − I2
i .

Now from the boundedness of Epot(ρ
(1)
i + ρ

(3)
i ) we get the estimate

I1
i ≤ C||g(2)

i ||pot.
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4.2 Existence and stability

Since ρ
(2)
i converges weakly in L4/3 to ρ

(2)
0 := ρ01BR0,R

we have from Lemma 4.9 (c)

Epot(ρ
(2)
i − ρ

(2)
0 ) → 0, i→ ∞. (4.27)

The second mixed term I2
i we estimate for R > 2R0 as follows:

I2
i ≤

∫

BR0

ρi(x)dx

∫

BR,∞

|y|−1ρi(y)dy ≤ C

(

R0

R

)1/2

.

Now from Lemma 4.11 we can write (with M
(m)
i := ||g(m)

i ||3/23/2,m = 1, 2, 3)

H(g
(1)
i ) + H(g

(2)
i ) + H(g

(3)
i ) ≥ h

M
(1)
i

+ h
M

(2)
i

+ h
M

(3)
i

=





(

M
(1)
i

M

)2

+

(

M
(2)
i

M

)2

+

(

M
(3)
i

M

)2


hM

≥





(

M
(1)
i +M

(2)
i

M

)2

+

(

M
(3)
i

M

)2


hM

=

[

1 − 2
M

(1)
i +M

(2)
i

M

M
(3)
i

M

]

hM

and thus

hM −H(gi) − C1hMM
(1)
i M

(3)
i ≤ I1

i + I2
i

≤ C2

[

||f (2)
0 ||pot + ||g(2)

i − f
(2)
0 ||pot +

(

R0

R

)1/2
]

.

Now suppose that (4.26) is false. Then there exists some ε1 > 0 such that for every R > 0
and i large

∫∫

(g
(3)
i )3/2dxdv ≥ ε1.

Define
ε2 := −C1hMε0ε1 > 0,

where ε0 is as in Lemma 4.9 (b) and then increase R0 from that lemma such that

C2||f (2)
0 ||pot ≤ ε2/4. Next choose R > 2R0 such that C2(R0/R)1/2 ≤ ε2/4. Then, for

i large,

hM −H(gi) + ε2 ≤ hM −H(gi) − C1hMM
(1)
i M

(3)
i

≤ 1

2
ε2 + C2||g(2)

i − f
(2)
0 ||pot.
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4 The Kuzmin disk

By (4.27) this contradicts the fact that (gi) is minimizing. Thus (4.26) holds and (4.25)

follows. Now it remains to show that
∫∫

f
3/2
0 dxdv = M . This follows exactly as in the

proof of Theorem 4.8.

Now we can give the stability proof of the minimizer against general perturbations.
But before that we need to define the appropriate distance on the phase space from the
minimizer:

d(f, f0) :=

∫∫ [(

1

2
|v|2 + U0

)

(f − f0) −
2

3CM
(f3/2 − f

3/2
0 )

]

dvdx,

where CM is as in (4.4). It easy to check that d(f, f0) ≥ 0 for all f ∈ FM and d(f, f0) = 0
only if f = f0. The energy difference of a state f from the minimizer f0 is then

H(f)−H(f0) =

∫∫ (

1

2
|v|2 + U0

)

(f − f0)dvdx+ Epot(f − f0) (4.28)

= d(f, f0) + Epot(f − f0).

Theorem 4.11. Let f0 ∈ FM be a minimizer of H over FM defined in (4.2). Then for
every ε > 0 there exists δ > 0 such that for any solution t 7→ f(t) of the flat Vlasov-Poisson
system with f(0) ∈ C2

c (R4) ∩ FM

d(f(0), f0) + |Epot(f(0) − f0)| < δ

implies that for every t > 0 as long as the classical solution exists there exist λ > 0 and
a ∈ R

2 so that
d(f(t), SλTaf0) + |Epot(f(t) − SλTaf0)| < ε.

Proof. Assume the assertion is false. Then we can find ε0 > 0, solutions to the Vlasov-
Poisson system fi and times ti such that

d(fi(0), f0) + |Epot(fi(0) − f0)| < 2−i

and
d(fi(ti), SλTaf0) + |Epot(fi(ti) − SλTaf0)| ≥ ε0 (4.29)

for every λ > 0 and a ∈ R
2. Since the energy is preserved along classical solutions of the

Vlasov-Poisson system, (fi(ti)) is also a minimizing sequence. Notice that by Theorem 4.1
the minimizer f0 is unique up to translations and scalings. By the analysis above we have

Epot(fi(ti) − Sλi
Taif0) → 0.

Using (4.28)
d(fi(ti), Sλi

Taif0) → 0,

which is clearly a contradiction with (4.29).
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5 Flat galaxies with dark matter halos

5.1 Motivation

Today, the existence of dark matter is considered as a well-respected theory in astrophysics.
One of the evidences that speak for its existence is the analysis of the rotation curves in
spiral galaxies. Around 1970 by that time widely accepted Keplerian extrapolation (with
the fall-off in the rotation speed as R−1/2 in the outer regions of the galaxy) was confronted
with the improved sensitivity of observations showing that the profiles of the rotational
velocities are rather flat with no signs of the proposed decay. One possible explanation
was that there exists a massive halo of ”undetectable matter” around the spiral galaxy
which extends to larger radii then the optical disk, which would correct the profile from
Keplerian to relatively flat (or even slightly increasing). This conclusion was first stated
in [9]. For an introduction to the dark matter theory we refer to [3, Chapter 10] and
references there.

We consider a model of this situation using the Vlasov-matter. According to our knowl-
edge the first attempt to model galactic dark matter halos using the Vlasov-type matter
was done in [28], where the Vlasov equation in the polytropic setup was used to investigate
the structure of the halos. Here we follow a different approach. In [15, 16] a variational
technique for the Vlasov-Poisson system was used to prove existence and non-linear stabil-
ity of certain equilibria in galactic dynamics. In Chapter 3 and 4 a similar approach based
on [21] was used for the flat Vlasov-Poisson system, which is in fact a singular case of the
three dimensional case, where all the particles are concentrated in a plane. In this chapter
we combine those two methods and prove the existence of stationary solution of a mod-
ified Vlasov-Poisson system, where both flat and normal distribution functions appear.
The flat part will be used to model the normal ”visible” matter and non-flat part for the
dark matter. We would like to point out that we do not study the decoupled system with
dark matter as an external potential as in [28]. Here, normal and dark matter evolve and
interact with one another through the common potential which they create collectively.

We suppose that both normal and dark matter are of Vlasov-type and interact with
each other through a gravitational potential given as a solution of the Poisson equation.
The system of partial differential equations governing the evolution of such an ensemble
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5 Flat galaxies with dark matter halos

can be (at least formally) written as:

∂f

∂t
+ v · ∇xf −∇xUc · ∇vf = 0, (5.1a)

∂f̃

∂t
+ ṽ · ∇x̃f̃ −∇x̃Uc(·, 0) · ∇ṽf̃ = 0, (5.1b)

Uc(x) := Uf (x) + Ũf̃ (x) = −
∫

R3

ρf (y)

|x− y| dy −
∫

R2

ρ̃f̃ (ỹ)

|x− (ỹ, 0)| dỹ, (5.1c)

lim
|x|→∞

Uc(x) = 0, (5.1d)

where f(t, x, v) : R × R
3 × R

3 → R
+ (resp. f̃(t, x̃, ṽ) : R × R

2 × R
2 → R

+) is the
distribution function of dark (resp. normal) matter. Throughout this chapter we use the
notation convention that all variables with (resp. without) tilde are used for flat (resp.
non-flat) quantities. Also we use the simplified notation ρ := ρf , ρ̃ := ρ̃f̃ , Ũ := Ũf̃ etc..

In Section 5.2 we present some integrability results for the flat potential. The Section
5.3 introduces the variational setup and presents a brief review of the existence results for
the decoupled problems which play an important role throughout this chapter. In Section
5.4, where we prove some a-proiori estimate for the energy functional. Finally, the last
section describes the properties and structure of the minimizer.

5.2 Integrability of the flat potential

In order to analyze the mixed term in (5.3), we need some information about integrability
of the flat potential in R

3. Some regularity result are presented in [21], but those are with
respect to the plane x3 = 0 and do not say anything about the quality of Ũ perpendicular
to that plane.

Lemma 5.1. Let ρ̃ ∈ L4/3(R2). Then Ũ ∈ L6(R3) with ∇Ũ ∈ L2(R3) and

||Ũ ||L6(R3) ≤ C||ρ̃||L4/3(R2),

||∇Ũ ||L2(R3) ≤ C||ρ̃||L4/3(R2).

Proof. We use the general form of Minkowski’s inequality (see [19, p. 47]) and Young’s
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5.3 Variational setup

inequality to obtain the first assertion:

||Ũ ||66 =

∫

R2

∫

R

(∫

R2

ρ̃(ỹ)

|x− (ỹ, 0)| dỹ

)6

dx3 dx̃

≤
∫

[

∫ (∫

ρ̃6(ỹ)

(|x̃− ỹ|2 + x2
3)

3
dx3

)1/6

dỹ

]6

dx̃

= C

∫
[
∫

ρ̃(ỹ)

|x̃− ỹ|5/6 dỹ

]6

dx̃ = ||ρ̃ ∗ | · |−5/6||6L6(R2)

≤ C||ρ̃||6
L4/3(R2)

||| · |−5/6||6
L

12/5
w (R2)

.

To prove the second estimate we simply repeat the above procedure for

∇Ũ(x) =

∫

ρ̃(ỹ)(x− (ỹ, 0))

|x− (ỹ, 0)|3 dỹ

and we get

||∇Ũ ||22 ≤
∫

R2

∫

R

(∫

R2

ρ̃(ỹ)

|x− (ỹ, 0)|2 dỹ

)2

dx3 dx̃

≤
∫

[

∫ (∫

ρ̃2(ỹ)

(|x̃− ỹ|2 + x2
3)

2
dx3

)1/2

dỹ

]2

dx̃

= C

∫ [∫

ρ̃(ỹ)

|x̃− ỹ|3/2 dỹ

]2

dx̃ = ||ρ̃ ∗ | · |−3/2||2L2(R2)

≤ C||ρ̃||2
L4/3(R2)

||| · |−3/2||2
L

4/3
w (R2)

.

In both calculations we used that | · |−λ ∈ L
n/λ
w (Rn).

5.3 Variational setup

Before we begin with the minimization procedure, we have to choose the appropriate
functional to be minimized and a suitable minimization class of functions. In previous
chapters we chose the total mechanical energy as our functional and as a class we chose
all positive functions with some Lp and kinetic energy bounds. We will use the same
strategy here. The total energy in this case is the sum of total energies of the individual
components (flat galaxy and dark matter halo) plus the interaction potential energy, which
comes from the fact, that galactic matter is under the influence of dark matter’s gravity
and vice versa. We can write

H(f, f̃) = H(f) + H̃(f̃) +
1

2

∫

Ũ(x)ρ(x) dx+
1

2

∫

U(x̃, 0)ρ̃(x̃) dx̃.
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5 Flat galaxies with dark matter halos

Note that the last two integral make sense as long as we provide some integrability con-
ditions (specified later) on f and f̃ , the first one directly from Lemma 5.1 and the second
one using the following estimate:

||U(·, 0)||L4(R2) ≤ sup
ϕ∈L4/3(R2)

∫

|U(x̃, 0)ϕ(x̃)|dx̃
||ϕ||4/3

= sup
ϕ∈L4/3(R2)

∫

|ρ(x)Ũϕ(x)|dx
||ϕ||4/3

≤ C||ρ||L6/5(R3).

In the calculation above we used the equality
∫

|U(x̃, 0)ρ̃(x̃)|dx̃ =

∫∫

ρ(y)ρ̃(x̃)

|(x̃, 0) − y| dx̃dy =

∫

|Ũ(x)ρ(x)|dx. (5.2)

We will use the symmetry relation (5.2) to merge the mixed terms and minimize the
total energy functional

H(f, f̃) := H(f) + H̃(f̃) +

∫

Ũρdx (5.3)

= Ekin(f) + Epot(f) + Ẽkin(f̃) + Ẽpot(f̃) +

∫

Ũρdx

under the constraint

FM :=
{

(f, f̃)|f ∈ L1
+(R6), f̃ ∈ L1

+(R4) , ||f ||1 ≤M, ||f ||1+1/k1 ≤ N,

||f̃ ||1 ≤ M̃, ||f̃ ||1+1/k2 ≤ Ñ ,

f(x̃, x3, ṽ, v3) = f(x̃,−x3, ṽ,−v3),
Ekin(f) + Ẽkin(f̃) <∞

}

,

where M := (M,N, M̃ , Ñ) ∈ (R+)
4

denotes the constraint vector, 0 < k1 < 7/2, 0 < k2 <
2 and

Ekin(f) :=
1

2

∫∫

|v|2f(x, v) dxdv,

Ẽkin(f̃) :=
1

2

∫∫

|ṽ|2f̃(x̃, ṽ) dx̃dṽ,

Epot(f) := −1

2

∫∫

ρf (x)ρf (y)

|x− y| dxdy,

Ẽpot(f̃) := −1

2

∫∫ ρ̃f̃ (x̃)ρ̃f̃ (ỹ)

|x̃− ỹ| dx̃dỹ

represent the total kinetic and potential energies. We denote by M3D := (M,N) the
non-flat and by MFL := (M̃ , Ñ) the flat part of M. The symmetry of f with respect to
the x1, x2 and v1, v2 planes is necessary to maintain the galactic disk flat.
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5.3 Variational setup

A lot of the properties derived in the next section depends on the existence and proper-
ties of so-called decoupled minimizers. This means minimizers of the variational problems,
where one of the components is missing. Note, that this problem is not exactly the same as
the one we discussed for example in Chapter 3. Here we have two separate Lp constrains
and not a sum of those as it was in Chapter 3.

In the case of a trivial flat component, the existence of a minimizer was proved for exam-
ple in [1]. We briefly repeat the proof for the other case of vanished non-flat component,
since the method itself is analog. We want to find a minimizer of the energy functional
H̃ under the MFL constraint. With the help of the Riesz rearrangement inequality ([19,
p. 87]) and the fact, that the kinetic energy as well as the constraints are invariant under
the spherically symmetric rearrangement, we get that your problem is equivalent to the
same problem, when the functions f̃ have the form

f̃(x̃, ṽ) = ϕ(|x̃|, |ṽ|),

where the function ϕ : (R+)2 → R
+ is nonincreasing. Before we prove the actual existence,

we need some preliminary estimates for f̃ . From the monotonicity of f̃ and Lq and Ẽkin

bounds for each q ∈ [1, 1 + 1/k2] we have

f̃ q(x̃, ṽ)|x̃|2|ṽ|2 ≤ C

∫ |x̃|

0

∫ |ṽ|

0
ϕq(r, s)rs ds dr ≤ CÑ q

q ,

f̃(x̃, ṽ)|x̃|2|ṽ|4 ≤ C

∫ |x̃|

0

∫ |ṽ|

0
ϕ(r, s)rs3 ds dr ≤ CẼkin(f̃).

As a result, we immediately get the local bounds on the distribution function f̃ :

f̃(x̃, ṽ) ≤ g(x̃, ṽ) :=

{

C
|x̃|2/q|ṽ|2/q , for |ṽ| ≤ V (|x̃|),
C

|x̃|2|ṽ|4 , for |ṽ| > V (|x̃|),

where V (|x̃|) > 0 is an arbitrary function. When we now want to calculate the spatial
density ρg, we get

ρg(x̃) =
C

|x̃|2/q
∫ V (|x̃|)

0

|ṽ|
|ṽ|2/q d|ṽ| + C

|x̃|2
∫ ∞

V (|x̃|)

|ṽ|
|ṽ|4 d|ṽ|

=
C

|x̃|2/q V
2−2/q(|x̃|) +

C

|x̃|2V 2(|x̃|) .

For the choice

V (|x̃|) = Vq(|x̃|) := |x̃|(1−q)/(2q−1)

we get

ρg(x̃) ≤ |x̃|−2q/(2q−1)
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5 Flat galaxies with dark matter halos

with the exponent s := −2q/(2q − 1) being such that

s < −3/2, if 1 < q < 3/2, (5.4a)

s > −3/2, if q > 3/2. (5.4b)

Now we split our estimates for f by choosing q = 1+1/k2 > 3/2 for |x̃| ≤ 1 and q ∈ [1, 3/2]
for |x̃| > 1:

f̃(x̃, ṽ) ≤ g(x̃, ṽ) :=























C
|x̃|2/(1+1/k2)|ṽ|2/(1+1/k2) for |x̃| ≤ 1 ∧ |ṽ| ≤ V1+1/k2(|x̃|),
C

|x̃|2|ṽ|4 for |x̃| ≤ 1 ∧ |ṽ| > V1+1/k2(|x̃|),
C

|x̃|2/q|ṽ|2/q for |x̃| > 1 ∧ |ṽ| ≤ Vq(|x̃|),
C

|x̃|2|ṽ|4 for |x̃| > 1 ∧ |ṽ| > Vq(|x̃|).

Now from (5.4) we have

ρf̃ (x̃) ≤ ρg(x̃) ≤
{

Crs1 with s1 > −8/5 for |x̃| ≤ 1,
Crs2 with s2 < −8/5 for |x̃| > 1.

(5.5)

The crucial part is to prove the convergence of the potential energies along the minimizing
sequence f̃n (see proof of Theorem 3.10). Since we have here the estimate 0 ≤ f̃n ≤ g, the
finiteness of the potential energy for g would allow us to pass to limit using the dominated
convergence theorem. But from the Hardy-Littlewood-Sobolev inequality we have

|Ẽpot(g)| ≤ C||ρg||24/3,

which is, thanks to the bound (5.5), finite.

5.4 Properties of H
First we need to establish a lower bound on H.

Lemma 5.2. For all (f, f̃) ∈ FM the following holds:

Let n1 = k1 + 3/2, n2 = k2 + 1. Then ρ ∈ L1+1/n1(R3), ρ̃ ∈ L1+1/n2(R2) with

||ρ||1+1/n1
≤ CN (k1+1)/(n1+1)Ekin(f)3/(2k1+5),

||ρ̃||1+1/n2
≤ CÑ (k2+1)/(n2+1)Ẽkin(f̃)1/(k2+2),

−Epot(f) ≤ C||ρ||26/5 ≤ CMEkin(f)1/2,

−Ẽpot(f̃) ≤ C||ρ̃||24/3 ≤ CMẼkin(f̃)1/2.
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Proof. We use the classical optimization method (used for example in the proof of Lemma
4.2) to prove the first two inequalities. For fixed R > 0 we split the v-integral and using
Holder’s inequality and the definition of the kinetic energy we get

ρ(x) =

∫

|v|≤R
f(x, v) dv +

∫

|v|>R
f(x, v) dv

≤
(

4

3
πR3

)1/(k1+1)(∫

f1+1/k1(x, v) dv

)k1/(k1+1)

+
1

R2

∫∫

|v|2f(x, v) dv dx =: I(R).

To obtain the optimal value of R we set the first derivative

dI

dR
= 0.

After some algebra we get the first assertion. In the same manner we prove the flat
version of this estimate. The last two inequalities follow using interpolation and the
Hardy-Littlewood-Sobolev inequality.

Lemma 5.3. The functional H is bounded from below on FM, i.e.

0 > hM := inf
FM

H > −∞.

Proof. We have for each (f, f̃) ∈ FM

∣

∣

∣

∣

∫

ρ(x)Ũ (x) dx

∣

∣

∣

∣

≤ ||ρ||6/5||Ũ ||6 ≤ C||ρ||6/5||ρ̃||4/3

= CEkin(f)1/4Ẽkin(f̃)1/4 ≤ CMEkin(f)1/2 + CMẼkin(f̃)1/2,

H(f, f̃) ≥ Ekin(f) − CMEkin(f)1/2 + Ẽkin(f̃) − CMẼkin(f̃)1/2 +

∫

Uf̃ρdx

≥ Ekin(f) − CMEkin(f)1/2 + Ẽkin(f̃) − CMẼkin(f̃)1/2. (5.6)

The negativeness of hM is an easy consequence of

hM < H(f3D
0 , fFL

0 ) = H(f3D
0 ) + H̃(fFL

0 ) +

∫

Ũ0ρ0 dx < 0.

51



5 Flat galaxies with dark matter halos

Having established the lower bound on H we can choose a minimizing sequence

(fn, f̃n) ⊂ FM, H(fn, f̃n) → hM.

From (5.6) we get that both the kinetic and the potential energies are bounded along the
minimizing sequence:

Ekin(fn) + Ẽkin(f̃n) + |Epot(fn)| + |Ẽpot(f̃n)| ≤ CM. (5.7)

The bound CM could be find easily by putting H(fn, f̃n) ≤ 0 (which is true for large n)
in to the bound (5.6).

In order to analyze the mixed nonflat-flat terms, we need some information about how
strong the mixed potential energy term is with respect to the potential energies of its
individual components.

Lemma 5.4. Let ρ ∈ L
6/5
+ (R3), ρ̃ ∈ L

4/3
+ (R2). Then

I(ρ, ρ̃) :=

∫∫

ρ(x)ρ̃(ỹ)

|x− (ỹ, 0)| dxdỹ ≤ 2|Epot(ρ)|1/2|Ẽpot(ρ̃)|1/2.

Proof. First we show the assertion under the further assumption ρ, ρ̃ ∈ C∞
c . We have

I(ρ, ρ̃) =

∫

ρ̃(ỹ)(ρ ∗ | · |−1)(ỹ, 0) dỹ =

∫

ρ̃(ỹ)(ρ ∗ | · |−1)(y) dδy3 dỹ

= lim
ε→0+

∫

ρ̃(ỹ)(ρ ∗ | · |−1)(y) dδεy3 dỹ = lim
ε→0+

∫∫

ρ(x)ρ̃(ỹ)δε(y3)

|x− y| dxdy

≤
(
∫∫

ρ(x)ρ(y)

|x− y| dxdy

)1/2

lim
ε→0+

(
∫∫

ρ̃(x̃)ρ̃(ỹ)δε(x3)δ
ε(y3)

|x− y| dxdy

)1/2

≤
√

2|Epot(ρ)|1/2 lim
ε→0+

(
∫∫

ρ̃(x̃)ρ̃(ỹ)δε(x3)δ
ε(y3)

|x̃− ỹ| dxdy

)1/2

= 2|Epot(ρ)|1/2|Ẽpot(ρ̃)|1/2.

Now when the smoothness of ρ and ρ̃ is not available, we use the standard regularization
ρε := ρ ∗ δε, ρ̃ε := ρ̃ ∗ δ̃ε and we have:

I(ρ− ρε, ρ̃− ρ̃ε) ≤ C||ρ− ρε||6/5||ρ̃− ρ̃ε||4/3 → 0, ε→ 0+,

I(ρ, ρ̃) − I(ρε, ρ̃ε) → 0, ε→ 0+

Now we present some classical compactness properties of the Poisson integral.
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Theorem 5.5. Let (ρn) ⊂ L1+1/n1(R3) and (ρ̃n) ⊂ L1+1/n2(R2) be a bounded sequences
with

ρn ⇀ ρ0 weakly in L1+1/n1(R3),

ρ̃n ⇀ ρ̃0 weakly in L1+1/n2(R2).

Then for each R > 0 we have

Epot(1BR
ρn − 1BR

ρ0) → 0,

Ẽpot(1B̃R
ρ̃n − 1B̃R

ρ̃0) → 0,
∫

(1BR
ρn − 1BR

ρ0)Ũ1B̃R
ρ̃n−1B̃R

ρ̃0 dx→ 0.

Proof. The convergence of non-flat potential energies was proved for example in [16] and
for the flat case we can use Lemma 3.9. Finally, the convergence of the mixed term follows
from Lemma 5.4.

In the next lemma we explore concentration properties of a minimizing sequence.

Lemma 5.6. Let (fn, f̃n) ⊂ FM be a minimizing sequence of H. Then for all sufficiently
large n ∈ N

∫

Ũnρn dx < − MM̃

2(R3D
0 +RFL

0 )
, (5.8)

where R3D
0 and RFL

0 are the radii of some chosen decoupled minimizers f3D
0 and fFL

0

subject to constraints M3D and MFL shifted so, that they are spherically (resp. axially)
symmetric. Further we can find (ãn), (b̃n) ⊂ R

2, ε0 > 0 and R0 > 0 such that

∫

(ãn,0)+BR0

∫

fn dv dx ≥ ε0, (5.9)

∫

b̃n+B̃R0

∫

f̃n dṽ dx̃ ≥ ε0 (5.10)

for all sufficiently large n ∈ N.

Proof. Assume that (5.8) is false. Then we have

H(fn, f̃n) = H(fn) + H̃(f̃n) +

∫

Ũnρn dx ≥ hM3D + h̃MFL − MM̃

2(R3D
0 +RFL

0 )

≥ H(f3D
0 ) + H(fFL

0 ) +
1

2

∫

ŨFL
0 ρ3D

0 dx = H(f3D
0 , fFL

0 ) − 1

2

∫

ŨFL
0 ρ3D

0 dx
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5 Flat galaxies with dark matter halos

which is clearly a contradiction. We used hM3D and h̃MFL as a symbols for the infimas of
the energy functionals corresponding to the decoupled problems.

For R > 1 we split | · |−1 as

1

|x| = KR(x) + FR(x) +GR(x)

:= 1{1/R≤|x|≤R}
1

|x| + 1{|x|≥R}
1

|x| + 1{|x|≤1/R}
1

|x|

We use the latter splitting of the Poisson kernel to split the mixed potential energy as

∣

∣

∣

∣

∫

Ũnρn dx

∣

∣

∣

∣

=

∫∫

ρn(x)ρ̃n(ỹ)

|x− (ỹ, 0)| dxdỹ = J1 + J2 + J3.

We have

|J1| ≤ R

∫∫

|x−(ỹ,0)|<R
ρn(x)ρ̃n(ỹ) dxdỹ ≤ M̃R sup

ỹ∈R2

∫

(ỹ,0)+BR

∫

fn(x, v) dv dx,

|J1| ≤ R

∫∫

|x̃−ỹ|<R
ρn(x)ρ̃n(ỹ) dxdỹ ≤MR sup

x̃∈R2

∫

x̃+B̃R

∫

f̃n(ỹ, ṽ) dṽ dỹ,

|J2| ≤ R−1

∫∫

ρn(x)ρ̃n(ỹ) dxdỹ ≤MM̃R−1,

|J3| ≤ ||ρn||1+1/n1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

|x̃−ỹ|<1/R

ρ̃n(ỹ)

|x− (ỹ, 0)| dỹ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n1+1

≤ C||ρn||1+1/n1
||ρ̃n ∗ (G̃R)n1/(n1+1)||n1+1

≤ C||ρn||1+1/n1
||ρ̃n||1+1/n2

||(G̃R)n1/(n1+1)||γ
≤ C||ρn||1+1/n1

||ρ̃n||1+1/n2
R−σ ≤ CMR−σ

with γ and σ defined as

1 < γ :=

(

1

n1 + 1
+

1

n2 + 1

)−1

, (5.11)

0 < σ :=
2

γ
− n1

n1 + 1
. (5.12)

We recall, that for the present choice of k1 and k2 we have 3/2 < n1 < 5, 1 < n2 < 3. The
last inequality in the J3 estimate comes from the boundedness of fn, f̃n using M and from
the boundedness of kinetic energies (5.7). From (5.8) we have for n large

− MM̃

2(R3D
0 +RFL

0 )
>

∫

Ũnρn dx = −|J1| − |J2| − |J3|.
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Hence

|J1| ≥ MM̃

2(R3D
0 +RFL

0 )
− MM̃

R
− CMR−σ,

sup
ỹ∈R2

∫

(ỹ,0)+BR

∫

fn dv dx ≥ R−1

(

M

2(R3D
0 +RFL

0 )
− M

R
− CM

M̃
R−σ

)

. (5.13)

For R sufficiently large the right hand side is positive, which proves (5.9). When we repeat
the same procedure, but using the second estimate of J1, we get

sup
x̃∈R2

∫

x̃+B̃R

∫

f̃n dṽ dỹ ≥ R−1

(

M̃

2(R3D
0 +RFL

0 )
− M̃

R
− CM

M
R−σ

)

, (5.14)

which in turn gives (5.10).

The expressions (5.13) and (5.14) allow us to formulate the following Corollary:

Corollary 5.7. Let the constraint vector M satisfies 0 < M0 ≤M ≤M1,0 < M̃0 ≤ M̃ ≤
M̃1,0 < N0 ≤ N ≤ N1,0 < Ñ0 ≤ Ñ ≤ Ñ1. Then the constants ε0 and R0 in (5.9) and
(5.10) can be chosen independently of M and (fn, f̃n), depending only on the bounds M0

and M1.

Proof. From (5.13) and (5.14) we have for n sufficiently large

sup
ỹ∈R2

∫

(ỹ,0)+BR

∫

fn dv dx ≥ R−1

(

M0

2(R3D
max +RFL

max)
− M1

R
− CM1

M0
R−σ

)

,

sup
x̃∈R2

∫

x̃+B̃R

∫

f̃n dṽ dỹ ≥ R−1

(

M̃0

2(R3D
max +RFL

max)
− M̃1

R
− CM1

M̃0

R−σ
)

,

where R3D
max and RFL

max are maximal radii of the decoupled minimizers with all possible
constraints M satisfying the bound above. Note that these maximum radii are as well
functions of M0,M1 and are bounded and R3D

max is away from zero. The boundedness can
be proved by the classical scaling and splitting argument with (see [21, Lemma 4,5,6])

Definition 5.8. We say, that the constraint vector M ∈ (R+
0 )4 has at least one nontrivial

component, when
(M > 0 ∧N > 0) ∨ (M̃ > 0 ∧ Ñ > 0).

Lemma 5.9. Let M1,M2 ∈ (R+
0 )4. Then the following holds:

hM1
+ hM2 ≥ hM1+M2 . (5.15)

If both M1 and M2 have at least one nontrivial component, then there exists ε (depending
only on M1 and M2) such that

hM1
+ hM2 ≥ hM1+M2 + ε. (5.16)
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5 Flat galaxies with dark matter halos

Proof. We construct two minimizing sequences with

H(f1
n, f̃

1
n) → hM1 ,

H(f2
n, f̃

2
n) → hM2 .

From the Minkowski’s inequality we have (f1
n + f2

n, f̃
1
n + f̃2

n) ∈ FM1+M2 which gives

hM1+M2 ≤ H(f1
n + f2

n, f̃
1
n + f̃2

n) = H(f1
n, f̃

1
n) + H(f2

n, f̃
2
n) −

∫∫

ρ1
n(x)ρ

2
n(y)

|x− y| dxdy

−
∫∫

ρ̃1
n(x̃)ρ̃

2
n(ỹ)

|x̃− ỹ| dx̃dỹ −
∫∫

ρ1
n(x)ρ̃

2
n(ỹ)

|x− (ỹ, 0)| dxdỹ −
∫∫

ρ2
n(x)ρ̃

1
n(ỹ)

|x− (ỹ, 0)| dxdỹ

≤ H(f1
n, f̃

1
n) + H(f2

n, f̃
2
n) → hM3D + hMFL .

Now when M1 and M2 have each at least one nontrivial component, we can without loss
on generality assume that sequences are already shifted so that the analogy of assertions
(5.9) or (5.10) holds for ε10, ε

2
0, R

1
0 and R2

0 without spatial shifts for these nontrivial com-
ponents. Then we pick from the above estimate that mixed term which contains the latter
components. Here we demonstrate the case when both non-flat components are nontrivial:

hM1+M2 ≤ H(f1
n + f2

n, f̃
1
n + f̃2

n) ≤ H(f1
n, f̃

1
n) + H(f2

n, f̃
2
n) −

∫∫

ρ1
n(x)ρ

2
n(y)

|x− y| dxdy

≤ H(f1
n, f̃

1
n) + H(f2

n, f̃
2
n) −

∫∫

B
R1

0
×B

R2
0

ρ1
n(x)ρ

2
n(y)

|x− y| dxdy

≤ H(f1
n, f̃

1
n) + H(f2

n, f̃
2
n) −

ε10ε
2
0

R1
0 +R2

0

→ hM1 + hM2 −
ε10ε

2
0

R1
0 +R2

0

.

Since ε from the previous lemma comes implicit from Lemma 5.6, the analogy of Corol-
lary 5.7 holds for ε as well.

5.5 Properties of the minimizer

Say we have proved the existence of the minimizing element (f0, f̃0) of the variational
problem describen above. First we have to exclude the possibility that f0 ≡ 0 or f̃0 ≡ 0.
The case with both parts vanishing we can rule out simply from hM < 0. The case when
only one component vanishes cannot happen either, since we can substitute the trivial
component by the minimizer from the decoupled problem and obtain a state with lower
energy. The next lemma proves that at the constraints are always in some sense saturated
by minimizer.
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5.5 Properties of the minimizer

Lemma 5.10. Let (f0, f̃0) ∈ FM be a minimizer of H over FM. Then

||f0||1 = M ∨ ||f̃0||1 = M̃,

||f0||1+1/k1 = N,

||f̃0||1+1/k2 = Ñ ,

Proof. Let us say for example ||f0||1+1/k1 < N . We define for a, b, c, d, e > 0 a new,

rescaled state (f∗0 , f̃
∗
0 ) as

f∗0 (x, v) := af0(bx, cv),

f̃∗0 (x̃, ṽ) := df̃0(bx̃, eṽ).

For kinetic and potential energies holds:

Ekin(f
∗
0 ) = ab−3c−5Ekin(f0),

Epot(f
∗
0 ) = a2b−5c−6Epot(f0),

Ẽkin(f̃
∗
0 ) = db−2e−4Ẽkin(f̃0),

Ẽpot(f̃
∗
0 ) = d2b−3e−4Ẽpot(f̃0),

∫

Ũ∗
0 ρ

∗
0 dx = adb−4c−3e−2

∫

Ũ0ρ0 dx.

We know choose the parameters a, b, c, d, e so that

||f∗0 ||1 = ||f0||1, H̃(f̃∗0 ) = H̃(f̃0), and

∫

Ũ∗
0 ρ

∗
0 dx =

∫

Ũ0ρ0 dx.

This is true for
a = γ3, c = γ, b = d = e = 1, γ > 0.

For this particular choice of a, b, c, d, e we have

||f∗0 ||1 = ||f0||1,
||f̃∗0 ||1 = ||f̃0||1,

||f∗0 ||1+1/k1 = γ3/(k1+1)||f0||1+1/k1 ,

||f̃∗0 ||1+1/k2 = ||f̃0||1+1/k2

and for the energy

H(f∗0 , f̃
∗
0 ) = γ−2Ekin(f0) + Epot(f0) + H̃(f̃0) +

∫

Ũ0ρ0 dx.

Hence we can surely choose γ > 1 so that we get a state which still lies in FM and
has lower energy. With the same argument we get saturation for the flat part as well,
||f̃0||1+1/k2 = Ñ . The last thing to prove is saturation of the minimizer in L1 norm.
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5 Flat galaxies with dark matter halos

Assume that ||f0||1 < M ∧ ||f̃0||1 < M̃ . In the scaling introduced above we choose

a = γ−7, b = d = γ−4, c = e = γ, γ > 0.

For this choice of scaling parameters we have

||f∗0 ||1 = γ2||f0||1,
||f̃∗0 ||1 = γ2||f̃0||1,

||f∗0 ||1+1/k1 = γ(2k1−7)/(k1+1)||f0||1+1/k1 ,

||f̃∗0 ||1+1/k2 = γ(2k2−4)/(k2+1)||f̃0||1+1/k2 ,

and
H(f∗0 , f̃

∗
0 ) = H(f0, f̃0).

We can now choose γ > 1 such that (f∗0 , f̃
∗
0 ) ∈ FM and M−M0 has at least one non-trivial

component. Now we use the strict subadditivity (5.16) and get

hM < hM0 + hM−M0 ,

which contradicts the fact H(f0, f̃0) = hM.

Finally, we prove that the minimizers of the energy functional are functions of a total
mechanical energy. We use the classical Lagrange multiplier method presented for example
in [15, 16, 27, 4].

Theorem 5.11. Let (f0, f̃0) be the minimizer obtained in the previous section with poten-
tials (U0, Ũ0). Then

f0(x, v) =

(

E0 − Ec(x, v)

λ

)k1

+

a.e.,

f̃0(x̃, ṽ) =

(

Ẽ0 − Ec(x̃, 0, ṽ, 0)

λ̃

)k2

+

a.e.,

where Ec(x, v) := 1
2 |v|2 + U0(x) + Ũ0(x). The Lagrange multipliers are defined as

E0 :=
1

||f0||1

(

2k1 + 5

3
Ekin(f0) + 2Epot(f0) +

∫

ρ0Ũ0 dx

)

< 0,

Ẽ0 :=
1

||f̃0||1

(

(k2 + 2)Ẽkin(f̃0) + 2Ẽpot(f̃0) +

∫

ρ0Ũ0 dx

)

< 0,

λ :=
2(k1 + 1)Ekin(f0)

3||f0||1+1/k1
1+1/k1

> 0,

λ̃ :=
(k2 + 1)Ẽkin(f̃0)

||f̃0||1+1/k2
1+1/k2

> 0.
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5.5 Properties of the minimizer

Proof. Let (f0, f̃0) be a minimizer of H with corresponding potentials (U0, Ũ0). We first
define two new functionals

G(f) := H(f, f̃0),

G̃(f̃) := H(f0, f̃).

From the definition of H we get

G(f) − G(f0) = Ekin(f) − Ekin(f0) + Epot(f) − Epot(f0) +

∫∫

(ρf − ρ0)Ũ0 dx, (5.17)

G̃(f̃) − G̃(f̃0) = Ẽkin(f̃) − Ẽkin(f̃0) + Ẽpot(f̃) − Ẽpot(f̃0) +

∫∫

(ρ̃f̃ − ρ̃0)U0(·, 0) dx̃.

We now define for each fixed ε > 0 the set Sε := {(x, y) ∈ R
6 : ε ≤ f0(x, v) ≤ ε−1}.

Now let η ∈ L∞(R6) be a real-valued function with compat support such that η ≥ 0
a.e. for (x, v) ∈ R

6\supp f0 and supp η ⊆ (R6\supp f0) ∪ Sε. For t ∈ [0, T ] and T =
(||η||1 + ||η||1+1/k1 + ||η||∞)−1ε/2 we define

ft(x, v) := α3(t)||f0||1
f0 + tη

||f0 + tη||1
(x, α(t)v),

where

α(t) :=

( ||f0||1+1/k1

||f0||1
||f0 + tη||1

||f0 + tη||1+1/k1

)(k1+1)/3

.

Note that we have for t ∈ [0, T ]

||ft||1 = ||f0||1, ||ft||1+1/k1 = ||f0||1+1/k1

and that f0 + tη ≥ 0 a.e.. From the bounds (for ε small enough)

||f0||1
2

≤ ||f0 + tη||1 ≤ ||f0||1 +
ε

2
,

||f0||1+1/k1

2
≤ ||f0 + tη||1+1/k1 ≤ ||f0||1+1/k1 +

ε

2

we can infer that α is a smooth function on [0, T ] and

α′(t) =
k1 + 1

3
α(t)





||η||1
||f0 + tη||1

−
∫∫

(f0 + tη)1/k1η dxdv

||f0 + tη||1+1/k1
1+1/k1



 .

Moreover sup[0,T ] α
′′(t) is bounded. Now we have from (5.17) for t ∈ [0, T ]

G(ft) − G(f0) =

( ||f0||1
α2(t)||f0 + tη||1

− 1

)

Ekin(f0) +
||f0||1t

α2(t)||f0 + tη||1
Ekin(η)(5.18)

+

( ||f0||21
||f0 + tη||21

− 1

)

Epot(f0) +
||f0||21t

||f0 + tη||21

∫

ρηU0 dx

+
||f0||21t2

||f0 + tη||21
Epot(η) +

( ||f0||1
||f0 + tη||1

− 1

)∫

ρ0Ũ0 dx

+
||f0||1t

||f0 + tη||1

∫

ρηŨ0 dx.
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By a Taylor expansion at t = 0+ we obtain

||f0||1
α2(t)||f0 + tη||1

− 1 = −t





||η||1
||f0||1

+ 2
k1 + 1

3





||η||1
||f0||1

−
∫∫

f
1/k1
0 η dxdv

||f0||1+1/k1
1+1/k1







+O(t2),

||f0||1t
α2(t)||f0 + tη||1

= t+O(t2),

||f0||21
||f0 + tη||21

− 1 = −2||η||1t
||f0||1

+O(t2),

||f0||21t
||f0 + tη||21

= t+O(t2),

||f0||1
||f0 + tη||1

− 1 = −||η||1t
||f0||1

+O(t2),

||f0||1t
||f0 + tη||1

= t+O(t2),

where the notation O(t2) means that the rest terms are bounded by Ct2 with C not
depending on t. When we now substitute the above estimates into (5.18), we obtain

G(ft) − G(f0) = t

∫∫

(Ec − E0 + cf
1/k1
0 )η dxdv +O(t2)

with E0 and c given in Theorem 5.11. Recalling the free choice of η and letting ε→ 0 we
get that E − E0 ≥ 0 on R

6\supp f0 and that

f0 =

(

E0 − Ec

λ

)k1

a.e. on supp f0.

By repeating the same procedure for the functional G̃ we get the assertion for f̃0.

Finally we would like to point out some remarks concerning this chapter:

1. Although we know that the minimizer must be a function of total mechanical energy,
we have so far no existence result. The conjecture is that the existence of the energy
minizer should be proved using the the concentration compactness argument (see
for example [16]) as it was done in the decoupled problems. The key argument,
convergence of the potential energies,is however in out combined setup more difficult.
We need to prove that

∀ε > 0∃R > 0 : lim inf
n→∞

(

|Epot(fn1|x|>R)| + |Ẽpot(f̃n1|x̃|>R)|
)

< ε,

which is beyond our reach for the moment.
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5.5 Properties of the minimizer

2. Even if we had the existence result, we could not say that the minimizer is a station-
ary solution to (5.1). To do so, we need the potentials U0 and Ũ0 to be sufficiently
regular or we need another (perhaps weaker) sence of solutions which allows less reg-
ularity on the potentials. In this sence, we can call this minimizer a ”conditional”
steady-state of the combined Vlasov-Poisson system.
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6 Further tasks and open problems

As in [5], we would like to close this thesis with a small set of (partially) open questions
or problems, which are connected to the topic.

6.1 Numerical computation of flat stationary solutions

In the full three-dimensional case the numerical computation of stationary solutions of
the Vlasov-Poisson system is very straightforward. The minimizing state of the energy
Casimir functional and its spatial density must have in the isotropic case the form

f0(x, v) = (E0 − E)k+,

ρ0(x) = C(E0 − U0)
k+3/2
+ .

The only thing to do now is to calculate the potential which solves the Poisson equation.
In our case

∆U0 = C(E0 − U0)
k+3/2
+ . (6.1)

Since the minimizer (and its potential) is spherically symmetric, we look only for radial
solutions of (6.1). In spherical coordinates (6.1) becomes the following ordinary differential
equation in r = |x|:

1

r2
(r2U ′

0)
′ = C(E0 − U0)

k+3/2
+ ,

which can be numerically easily solved when a suitable initial condition on the potential
U0 is prescribed.

In the flat case the situation is slightly more complicated. We do not have the Poisson
equation, instead of that we have for the potential U0 the singular integral equation (2.2b)
to solve. This is not very convenient from the numerical point of view since the support
of U0 is unbounded.

Instead of computing the potential U0 we can try to compute the spatial density directly
using the numerical minimization of the reduced energy-Casimir functional (3.1) under
the total mass constraint. Since our problem is now again one-dimensional (we work with
the axially symmetric functions), we used a modified steepest descent method to do the
minimization.

Since the reduction is possible in the full three-dimensional case (see [24]), we can
use this fact to test our method. However, the minimizer coming from the numerical
minimization need not to be the same as the one obtaine by analytical methods. The
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Figure 6.1: Test of numerical minimization for two 3D steady-states with polytropic in-
dexes k = 0.5 and k = 1.0. The red lines show the density profiles calculated
with the ODE method, blue points show density profiles calculated with the nu-
merical minimization of the reduced energy-Casimir functional. Green points
show the initial state used in minimization (step function).

Figure 6.2: Numerical minimization of the reduced flat energy-Casimir functional for poly-
tropes k = 0.25, 0.5, 0.75 (red,green and blue line) with normal and logarithmic
horizontal scale.
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6.2 Approximation of flat solutions

numerical minimization provides only local minimizers of the reduced flat energy-Casimir
functional and there is no guarantee that these minimizers are global as requested by the
theory in Chapter 3 (even if the minimizers calculated in the full three-dimensional case
are apparently global).

6.2 Approximation of flat solutions

This problem was already stated in [5], but we think it is important enough for us to
mention it at least one more time. The real astronomical objects are of course not totally
flat, but three dimensional with some finite (possibly small) thickness. This fact immedi-
ately leads to the following question: Is it possible to approximate the flat Vlasov-Poisson
system by the full three dimensional Vlasov-Poisson system? In mathematical language,
the problem stands as follows. We have some class of initial conditions

f ε0 (x, v) := f̃0(x̃, ṽ)δ
ε(x3)δ

ε(v3).

Each of the functions above, when sufficiently regular with compact support, launches
according to the standard existence theory a global classical solution of the Vlasov-Poisson
system. According to the existence theory for the flat Vlasov-Poisson system (see [5]),
function f̃0 launches (again under some assumptions) a local classical solution of the flat
Vlasov-Poisson system. Since f ε0 approximates f̃0 (in distributional sense), we would like
to know if the solutions associated to f ε0 approximate in any sense the solution launched
from f̃0.

6.3 3D-stability of flat objects

This problem is slightly connected to the previous one. All stability results for the flat
Vlasov-Poisson system presented in this thesis prove stability against all perturbation
living in a plane. This unphysical restriction is of course undesired since flat astronomical
objects surely undergo perturbations perpendicularly to this plane. A very interesting
(and according to our knowledge still open) question is, whether some stationary solution
of the flat Vlasov-Poisson system keeps any of its stability properties even if we drop the
above restriction for the perturbation.

The motivation which supports the conjecture, that some stability property should hold,
lies in the analysis of the total energy functional for the three-dimensional approximation
of some flat steady-state. We define this flat steady-state f0 and its approximation f ε0 as

f0(x, v) := f̃0(x̃, ṽ)δx3δv3 ,

f ε0 (x, v) := f̃0(x̃, ṽ)δ
ε(x3)δ

ε(v3),
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where δε is the usual approximation of the Dirac’s distribution. Now for the total energy
we have the following estimate:

H(f ε0 ) =
1

2

∫∫

|v|2f̃0(x̃, ṽ)δ
ε(x3)δ

ε(v3) dxdv − 1

2

∫∫ ρf̃0(x̃)ρf̃0(ỹ)δ
ε(x3)δ

ε(y3)

|x− y| dxdy

≥ 1

2

∫∫

|ṽ|2f̃0(x̃, ṽ)δ
ε(x3)δ

ε(v3) dxdv − 1

2

∫∫ ρf̃0(x̃)ρf̃0(ỹ)δ
ε(x3)δ

ε(y3)

|x̃− ỹ| dxdy

=
1

2

∫∫

|ṽ|2f̃0(x̃, ṽ) dx̃dṽ − 1

2

∫∫ ρf̃0(x̃)ρf̃0(ỹ)

|x̃− ỹ| dx̃dỹ

= H̃(f̃0).

As we see, the energies of the approximations are always greater than the energy of the flat
steady-state. We of course cannot build any result whatsoever on this calculation. The
approximation we chose is very special and there is a chance that the energy inequality
fails to hold if we take some different approximation. We also cannot expect that some
flat steady state minimizes the total three-dimensional energy, because we already know
how the global energy minimizers look like and they are spherically symmetric and not
flat (see [15, 17, 12] etc.). What could be true is that the flat steady state is a local
minimizer of the energy in some sense. However, the analysis of local minimizes of the
energy functional lies momental beyond the reach of the energy-Casimir method.

6.4 Stability of planetary rings

In recent work [31], the energy-Casimir method was used to prove the existence and
nonlinear stability of stationary shell solutions of the three-dimensional Vlasov-Poisson
system with a fixed central point mass. This type of solutions can be used for example as
a model for quasars, astronomical objects believed to be massive black holes surrounded
by galactic matter. It is very probable that the same approach should work in the flat
case as well. Now, if we replace the central point mass with some spherically symmetric
stationary solution, which has the same mass, we get a reasonable model describing the
dynamics of planetary rings. Note that the external potential acting on the flat shell would
be the same, hence the existence and all properties of such stationary solutions would not
alter from the ones with point mass in the center. A careful analysis of the variational
problem under this setup would surely provide some stability results.
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[5] S. Dietz. Flache Lösungen des Vlasov-Poisson Systems. PhD thesis, Ludwig
Maximilians-Universität, München, 2002.

[6] J. Dolbeault, J. Fernández, and O. Sanchéz. Stability of the Gravitational Vlasov-
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