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Abstract

Unlike on Earth where 3/4 of the surface is covered by oceans, the Martian surface has
rougher topography with greater magnitudes of mountains and valleys. The Martian at-
mosphere is less dense compared to the terrestrial one. The planetary boundary layer is
significantly shallower on Mars than on Earth. These differences indicate that the Martian
atmosphere should be very sensitive to the forcing from below. The major mechanism
which provides vertical coupling are atmospheric waves generated in the lower atmo-
sphere near the surface. These waves transport the momentum, energy, and heat away
from places of their generation in the lower atmosphere. Propagating upward the wave
disturbances grow in amplitude, and ultimately break or dissipate. They release the wave
energy and momentum to the zonal mean circulation, and thus affect the global trans-
port in the atmosphere of Mars. The main task of this work is to study various physical
phenomena which take place in the atmosphere near the surface with an emphasis on
the mechanisms of wave generation. Effects of the large scale longitudinal disturbances
on the general circulation, especially in the upper and middle atmosphere, are explored.
Results of numerical experiments with the General Circulation Model of the Martian At-
mosphere (MAOAM) show the sensitivity of the zonal mean circulation to the surface
properties. Planetary waves of different scales are generated by a flow over the topogra-
phy as well as by the inhomogeneous reaction of the surface and the lower atmospheric
layers to the solar heating. Solar tides are excited by the diurnal variations in the solar
energy absorption by the air, and especially, by the surface. These large scale disturbances
propagate upward and horizontally according to the selective transmission properties of
the atmosphere, and redistribute the wave momentum and energy. Breaking waves pro-
vide a torque to the mean zonal wind and maintain the global meridional transport. The
results of the numerical simulations showing the sensitivity of the polar night jet to the to-
pography, the inhomogeneous thermal inertia and the surface albedo, are presented here.
In order to validate the simulations, the numerical results are compared with observa-
tions from the Thermal Emission Spectrometer (TES) onboard the Mars Global Surveyor
(MGS). This work was a part of the ongoing Martian Atmosphere Observations And Mod-
eling (MAOAM) project to develop and validate a comprehensive state-of-the-art general
circulation model of the Martian atmosphere.






1 Introduction

1.1 The Martian Orbit and Climate

Basic planetary parameters of Mars are summarized in TableL&wig et al, 1999;

Leovy 2001] in comparison to Earth. According to this table, the Martian diameter is
approximately two times smaller than the terrestrial one, while the Martian orbital period

is about 2 terrestrial years long. The rotational periods of Mars and Earth are very close,
and both rotational axes are tilted by a similar degree. This means that there are seasons
on Mars, pretty much the same as on Earth.

The orbit of Mars has a significant eccentricity (Figure 1.1) compared to Earth. The
distance to the Sun during the aphelion is 1.2 times larger than during the perihelion. This
orbital asymmetry strongly affects the seasons and climate of Mars. Northern summers
occur near the aphelion, i.e. for the solar longitudd. pe= 90°. They last longer due to
the orbit characteristics, but generally are colder, while southern summers occur near the
perihelion ., = 270°). Although these summers are hotter, they last shorter.

The averaged surface temperature of the planet is around 218 K, but the instantaneous
surface temperature varies from as low=a$540 K during a nighttime in winters to as
high as~300 K during a daytime in summers. Dust storms most often occur in the
atmosphere of Mars during southern summérs£ 270°), and have a profound effect
on the temperature and circulation, especially below the mesosphere. The global mean
temperature profile on Mars in Figure 1.3 (dotted line) is shifted noticeably to high values
during dusty seasons.

1.2 The Martian Surface

Mars has very rough and jugged surfadaKosky and Phillips2001]. It is probably
the most irregular terrain among the planets of the Earth-type group. There are many
outstanding features on the Martian surfa8mijth and Zuber1996].

One of them is Olympus Mons in Figure 1.2. It is the greatest mountain in the solar
system. It rises up from the surrounding plains to 25-27 km. Its bottom is about 500 km
or more in diameter. The other prominent mountains are located in the Tharsis region and
feature the volcanoes Ascraeus Mons, Pavonis Mons and Arsia Mons, which are almost as
high as Olympus Mons. There are huge gorge systems, like the up to 8 km deep Marineris
Canyon which extends for about 4000 km. Almost all the surface is covered by craters,
like the 6 km deep and 2000 km in diameter Hellas basin, rift valleys, mountain ranges,
hills, and plains. The Southern hemisphere is a rugged high ground with a lot of craters
[Smith et al, 1999].



1 Introduction

Table 1.1: Fact sheet of comparison between Mars and Earth. Note that the Martian axis
tilt and rotation period are very similar to Earth ones. Besides, Mars has also seasonal and
diurnal variation against the atmosphere. However the orbit eccentricity is quite different.

The values are based deovy [2001].

Mean orbital radius I I 106 km
EccentricityT

Orbital period I Il Earth days
Rotational period . hrs
Equatorial radius

Mean density

Surface gravity

Axis tilt( ]

Surface temperature!(l

Atmosphere pressure

Solar constant

Ls =270°

Ls = 0°, Equinox

Figure 1.1: The geometry of the revolution of the Mars around the sun during the seasons.
The semi major axis is 1.52 (AU). Northern summer corresponds to near the aphelion, and
winter is near the perihelion.

Both Martian poles have permanent polar caps that consist of solid carbon dioxide
(dry ice) [Paige et al, 1994,Paige and Keeganl994]. The polar caps show a layered
structure where the ice is mixed with a dark colored dust. Carbon dioxide sublimes com-
pletely during northern summers, leaving layers of water kedet et al, 1995]. The
latitudinal extension of the polar caps depends on seasons, and may accompany by the
global atmospheric pressure change of up t§2as measurement on the Viking Lander
indicate Hourdin et al, 1995].

1.3 The Martian Atmosphere

Mars has a very thin atmosphere. It consists mostly of, (3.3%) [Conrath et al,

1973]. Other important constituents are (2.7%), Ar (1.6%), a very small amount of ©
(0.15%) and H,O (0.03%). The average atmospheric pressure on the ground level of Mars
is only about 6 hPa (& or less of the surface pressure on Earth, or the same pressure as
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1.4 Atmospheric Waves
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Figure 1.2: The Martian surface map image was taken from the Mars Orbiter Laser Al-
timeter (MOLA) on board MGS. This first MOLA global topographic model is given by
Smith et al[1999].

at about 35 km height). It varies strongly from 9 hPa at the bottom of the deepest basin
(Hellas) to 1 hPa on the top of Mt. Olympus. The thin Martian atmosphere maintains the
greenhouse effect, but the latter raises atmospheric temperature near the ground by only
5 degrees, far smaller than on Venus and Earth.

Strong seasonal atmospheric pressure variations were measured by the Viking Lan-
der 1 and 2. In particular, the surface pressure peaks during the time between autumnal
equinoxes in the Northern hemisphere and winter solstices. The pressure rises slightly
also near the aphelion before the summer solstices. The differences in the degree of
the atmospheric temperature increase near perihelion and aphelion are related to the ec-
centricity of the Martian orbit. The meltdown of the dry ice in the Southern polar cap
near the perihelion is accompanied by the increase of the atmospherimo@€entration,
and, therefore, by the rise of the atmospheric pressure. Afterwards, as the temperature
decreases again, G@reezes over, and the atmospheric pressure also gets lower. Dur-
ing aphelion, the rate of COmelting is lower because of the greater distance from the
Sun, and the atmospheric pressure increase is weaker compared to perihelion. Diurnal
air temperature variations are controlled by the absorption of the solar radiation by the
atmospheric C@[Smith et al, 1999]. As the thermal capacity of the air is small, the
temperature variations are stronger compared to Earth.

1.4 Atmospheric Waves

The atmospheres are usually subdivided into vertical layers according to the atmospheric
temperature distributions. These layers are shown in Figure 1.3 for Mars in comparison

9
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Figure 1.3: The variation of temperature with height in the Mars (Red line) and Earth
(blue line) atmosphere. The red solid line is valid in the non dusty season, and the dotted
lines correspond to the dusty season during day and night. Boundaries between the major
regions of the atmosphere (the lower, the middle and the upper atmosphere) occur at
heights of about 40 km and 100 km. Adapted from a temperature profdeitek[1992].

to Earth. The lowest level is called troposphere. The atmospheric temperature and circu-
lation in the troposphere is strongly affected by the surfetabprle 1999]. In particular,

the globally averaged temperature decreases with height in the troposphere because of
the influence of the overheated surface. On Mars, the troposphere extends up to 40 km
compared to 15 km on Earth. The stratosphere is the layer with the inversed temperature
gradient. On Earth, the stratosphergl6-50 km) is formed due to the existence of the
ozonosphere. The ozone strongly absorbs the solar ultra violet radiation and provides a
significant heating to the air. On Mars, the amount of the ozone is negligible. Therefore,
Mars has no stratosphere. The thermosphere is the upper part of the atmosphere. Temper-
ature grows up with height in the thermosphere due to the strong absorption of the solar
EUV and X-rays radiation as well as of high energy cosmic particles. The thermosphere
is primarily driven by this solar forcing, and the molecular viscosity is strong enough
that it dominates the dynamics there. The thermosphere on Mars begins somewhat higher
(=100 km) than that on Earth90 km). The areas above the stratosphere (on Earth) and

10
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Figure 1.4: The general characteristics of the atmospheric circulation referred to the sum-
mer in the Northern hemisphere. In this figure planetary wavegravity wavesG,
condensation flow?”, and zonal west windll” and east wind® are emphasized.

the troposphere (on Mars) are called mesosphere. The temperature and circulation in the
mesosphere are almost equally determined by the outer forcing (solar radiation absorp-
tion), and the mechanical forcing coming from the lower atmosphere. Sometimes, the
planetary tropospheres are called the “lower atmospheres”, the upper parts of the ther-
mospheres have the name “upper atmospheres”. The layers between the lower and upper
atmospheres are called the “middle atmosphere”. On Earth, the middle atmosphere in-
cludes the strato-, meso- and lower thermosphere, whereas on Mars, this term denotes the
upper part of the troposphere, mesosphere, and the lower thermosphere.

The vertical coupling between the atmospheric layers on Earth is schematically shown
in Figure 1.4. The main agents which provide the momentum, heat and energy exchange
in the vertical domain are the atmospheric waves. In the troposphere, the flow over the
topography, thermal contrasts over land and oceans, or over land with different ther-
mal characteristics, generate the waves with largest horizontal wavelengths. Since these
wavelengths are comparable to the planetary diameter, the waves are called “planetary
waves”. Instability of the zonal mean flow generates longitudinal disturbances of some-
what smaller size. These waves with horizontal wavelengths from 1/3 to 1/10 of the lati-
tudinal circle are called “synoptic” scale planetary waves. They are seen as a meandering
of the mean zonal flow, that consequently develops into cyclones and anticyclones. Since
these waves have noticeable horizontal phase velocities (with respect to an observer on
the surface), they are sometimes called “traveling” planetary waves. Synoptic scale trav-

11



1 Introduction

eling planetary waves significantly determine the circulation in the troposphere. These
waves usually cannot penetrate higher into the stratosphere (on Earth) or mesosphere (on
Mars). Instead, large-scale planetary waves can. The latter not only strongly affect the
circulation there, but are the major driving force for the global meridional transport in the
stratosphere.

The other class of atmospheric waves are the so-called “gravity waves” (GW), or
buoyancy waves. They have horizontal wavelengths from several tens to several hundreds
of km, periods from about 10 min to several hours (but always less than the rotational
period of the planet). They are excited in the lower atmosphere by a variety of sources
(like flow over the topography, convection, atmospheric fronts, etc.), and can propagate
vertically. The amplitudes of these waves grow with height (due to the density decrease),
and at some point the wave breaking occurs. The momentum, heat and energy carried out
from denser lower layers is released in the mesosphere and lower thermosphere. Gravity
waves are the major driving factor in the mesosphere and lower thermosphere of both
Mars and Earth.

The third class of atmospheric waves are the solar tides. Caused by diurnal variations
in the solar radiation absorption at or near the surface and in the atmosphere itself, these
waves have periods of the forcing (“diurnal tides”) or of higher harmonics (“semi-diurnal
tides” , etc.). Solar tides, like planetary and gravity waves, transport the momentum and
energy upward, break and/or dissipate, and thus release them in the mesosphere and lower
thermosphere. Together with PW and GW, solar tides maintain the meridional circulation
in the middle atmosphere.

1.5 Scientific Motivation

Solar tides, planetary and gravity waves play an important role in the global circulation

of Mars [Wilson and Hamilton1996;Banfield et al, 2000;Banfield et al, 2004]. Since

the atmosphere is thin, the disturbances generated near the surface easily transport the
momentum and energy upward. The middle atmosphere of Mars is extremely sensitive to
the forcing from these atmospheric disturbances. This high sensitivity is probably due to
the strong coupling between atmospheric layers through vertically propagating planetary
and gravity waves and tides. A large part of the wave action is able to propagate between
the hemispheres. Therefore, the knowledge of the middle and upper atmosphere dynamics
contributes to a better understanding of the general circulation and climate of Mars.

The rugged Martian topography and the contrasts in the thermal properties of the soil
provide an ample source of planetary and gravity waves. The planetary boundary layer is
significantly shallower#£200 m) on Mars than on Eart@ km). This means that the
disturbances excited near the Martian surface experience less damping from the diffusive
boundary layer than on Earth. In the terrestrial atmosphere, the major source of solar tides
is the diurnal variation in the absorption of the solar radiation by the water vapor in the
troposphere. On Mars, most of the absorption comes from the surface. This variations in
the heating are transferred to the atmospheric air, and represent the major source of the
tides. Recently detailed topograptydlacourt et a) 2003], surface albedd&hristensen
et al,, 2001], and thermal inertiaMellon et al, 2000] maps were obtained. These new
data facilitated an improvement in numerical simulations with general circulation models

12



1.5 Scientific Motivation

(GCM) to account for more precise representation of the wave generation.

General circulation models are an important and convenient tool in studying atmo-
spheric processes. Martian GCMs are becoming increasingly sophisticated both due to
improved parameterizations of physical processes, and due to more data from space mis-
sions and ground-based observations. By designing numerical experiments, it is possible
to explore the sensitivity of atmospheric parameters to various physical processes and
factors.

The purpose of this work is to study the influence of the surface on the Martian at-
mosphere dynamics, and especially on the global circulation in the middle atmosphere.
The main tool used here is the general circulation model of the Martian atmosphere called
MAOAM. This model is the result of collaboration between the University of Munich, the
Leibniz Institute of Atmospheric Physics and the Max Planck Institute for Solar System
Research. It was under development for a number of years. The author took part in this
development, in designing and carrying out numerical experiments with the GCM, and in
analyzing the results.

The structure of this work is the following. Chapter 2 describes the general circulation
model. A full description of this GCM is beyond the scope of this thesis. Only the relevant
parts of the model in the development of which the author took part are described. The
main results are given in Chapter 3. There, the results of sensitivity runs to explore various
aspects of the influence of the surface on the general circulation of Mars are presented.
These results contribute to the understanding of the atmospheric dynamics. At the same
time, the numerical experiments were a part of the rigorous GCM testing and validation
process. Comparisons of the model results with the measurements obtained from the
Thermal Emission Spectrometer onboard Mars Global Surveyor (MGS—HEz®Yigld
et al,, 2000;Smith 2004] constitute the content of Chapter 4.

13






2 Model Description

The main goal of the MAOAM project was to develop a general circulation model (GCM)
of the Martian atmosphere in the altitude range from the surface to approximately 130 km.
The new model is based on the mechanistic Mart—ACC (Martian Atmosphere — Circula-
tion and Climate) modelHbel and Berger1997]. The latter model was developed in
the context of the Mars-96 mission. This model was completely redesigned to accommo-
date for more effective numerical procedures and parallel processing. Significant changes
were introduced to its dynamical core, in particular, to the discretization, time integration
scheme, horizontal diffusion and near pole filtering. New physical parameterizations have
been adapted from terrestrial atmospheric GCMs or newly developed. A detailed descrip-
tion of the MAOAM GCM along with the discussion of its performance is presented in
[Hartogh et al, 2005].

Figure 2.1 presents a flowchart of the MAOAM GCM code structure. It consists of
four big and interconnected modules. The “driver” module controls the program flow,
keeps track of the model time, and controls the multiprocessing, if the parallel compu-
tation regime is involved. At first, it initializes all physical constants, parameters, and
fields, reads the surface property data (topography, thermal inertia, and surface albedo
maps), reads the initial condition data for the field variables in the “restart” regime, or
prescribes them in the “spinup” regime. Then the driver controls the time progression of
the simulation. The “model” module controls the computations during one time step. In
general, this part includes three big steps: calculations of the time derivatives (tendencies)
due to the dynamics, due to the subgrid-scale physics, and, finally, finding the field vari-
ables at the time + A¢. The steps 1 and 3 are coded in the “model” module, while the
step 2 is contained in the “physics” part of the code. Calculations of the tendencies due
to the “physics” usually consume most of the CPU time in the modern general circulation
models. In MAOAM, this part takes up to 95 percent of the total time, depending on the
model setup.

Finally, the “diagnostics” module handles the model output. Because the amount of
output data is enormous, the diagnostics must be optimized and focused on particular
tasks: the appropriate averaging, collecting only necessary data, computation of various
diagnostics quantities out of the field variables.

The authors contribution in the devlopment and modifications of the MAOAM model
is shown in Figure 2.1 with small stars in the lower right corners of the appropriate boxes.
The double bold stars denote the parts which were largely developed by the author. Single
bold stars show the parts of the code where the contribution of the author was significant.
Finally, single contoured stars mark the parts of the model where the author had to coop-
erate closely with other model developers in order to incorporate updates.

In this chapter, a brief description of the MAOAM GCM and some physical parame-

15



2 Model Description

Flowchart

( Start ) The author's implementation
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Improvement :
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Atmospheric Radiation
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Figure 2.1: A flowchart showing the simulation process with MAOAM. See description in
the text. The author’s participation is denoted with the stars in the lower right corners of
the appropriate boxes. Double bold stars show the parts largely developed by the author.
Single bold stars mark the parts of the code where the participation of the author was
significant. Single contour stars denote the parts where the author collaborated with other

developers.
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2.1 Basic Equations

terizations is presented. These are the parameterizations and the numerical code in which
the author was directly involved in developing, programming, implementing, testing and
validating. A short description of the model discretization is given at the end of this
chapter.

2.1 Basic Equations

In our work, we use the log-pressure vertical coordinate system defined asH1n (p/ps),
wherep, is a standard reference pressure (taken as 6 hPa}faed mean scale height

(= RT./g, Ts is a constant reference temperatukeijs the gas constant, andis the
gravity constant). We us# = 10.3 km for Mars, corresponding t6; ~ 200 K. In this
coordinate system, the atmosphere is always in hydrostatic equilibrium. The horizontal
momentum equations, the thermodynamic equation, and the continuity equation may be
expressed in spherical coordinatem[ton, 1975;Haberle et al, 1997] as follows

ou 0

0 10
— —_ 2 ) —_—— )
oT + o () + T (uvcose) + e (puw)
an2d
. <f N utan q)) 3 82 C @2.1)
a ox
dv 0 9, 19
En + s (uv) T (v cosqzb) + 202 (pvw)
an2 A [
= —u (f -+ utan Q) — 87 + Fr, (2.2)
a y
or 0 1 0 10
5 + E (Tw) cosd Dy (Twcosg) + 0oe (pTw)
KT Q
=Tt (2.3)
du 1 0 10
7 + w0s0 3y (vcose) + 202 (pw) =0, (2.4)

where
9 __1 9.6 _ 190
dr  acosp ON Oy adg’

where ¢ is latitude, A longitude, andz ~ 3394 km the Martian radius. The primitive
equations are frequently written using the temperdtuirestead of potential temperature,
6, in the following form:

0=T (ps/p)N = Texp (’{Z/H> ) (2.5)

wherex = R/c, andc, is the specific heat at constant pressure. Other variables are
the components of the velocity, v, w) (positive eastward, southwardv, and upward

17



2 Model Description

w), the atmospheric densipy Coriolis parametef = 2Qcos¢, geopotentialb, radiative
heating@, and frictional forcesd 'y, 7.

Under the hydrostatic equilibrium, the vertical pressure gradient balances the gravity
force, dp = —pgdz which can be rewritten as a function of the geopotential The
difference between the geopotential at the two levels is given by

dd = gdz = RT?(ZZ, (2.6)

whereT is the average temperature of the layer.

2.2 Frictional Effects

The friction force can be neglected except close to the planetary surface, and in regions
of strong wind shear near jet streams. The eddy friction due to convective mixing and
breaking gravity waves may also be important in other parts of the atmosphere.

The friction force, which was symbolically written &5, = (F,, F},, F.), is equal to
the divergence of a stress tensorThe zonal (eastward) component of the friction force

consist of three parts:
1 /o ar, or.
FI- — _ o yr ZT ) 27

- p(8$+8y+62) @7

Near the surface the strongest wind shears are in the vertical direction, so that one can
neglect the first two terms iR,.. Thus

107,
p 0z

=

(2.8)

The stress tensor can be written as a time covariance of velocity fluctuatiors
pw'u’, where the bar indicates a time average, and the prime is a departure from the time
average. Thus, a flux-gradient relationship (the Newton viscosity law) of momentum and
sensible heat are given by

1o}
T = pwld = —pK. 2", (2.9)

0z

— 0
o = pw = —ngaf.,
0z
where K, (in cm? s71) is the coefficient of eddy viscosity (the vertical diffusion coef-
ficient), where the subscript denotesv, 6. The tendencies due to turbulent vertical

diffusion are calculated as follows:

(2.10)

10 ou

F, = ;& (PKu$>~, (2.11)
10 v

F, = ;a <PK7;£>7 (2.12)
10 oTr  RT

m= g (5 )| #3)
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2.3 The Convective Adjustment

The vertical diffusion coefficients are variable and reflect the intensity of the turbulent
mixing. FollowingKlemp and Wilhelmsofl978], andForget et al [1999], K, can be
determined using
1
K, - GE (2.14)
Pe
whereF is the turbulent kinetic energy;; is a constant (=0.516),is the mixing length
for the statically neutral case, the static stability functions determined locally by the
dimensionless vertical temperature gradient. We use the formula sugge&&thadar
[1962] for the mixing length] = kz/(1+kz/l,), where theé: (= 0.40) is the von Karman
constant, and the asymptotic mixing lengthis the adjustable parameter that we fixed to
a value of 200 m followingHaberle et al [1993].
The following stability functions are defined. Their values depend on the sign of the
Richardson numbeRi. For unstable condition{i < 0), we chose

¢l = o = (L= 40Ri) (2.15)
y CZ
and
Puw = 2 — 14 12Ri (2.16)
Cs
for the stable conditiongR: > 0), whereC, = 0.85 is the constantR: is defined as
. gd0/0z
Ri=2—5 (2.17)

whereA = 0u/0z + dv/0z is the wind shear.
The computation of mixing coefficients is based on the equation for the evolution of
the turbulent kinetic energg [Mailhot and Benoit1982;Forget et al, 1999]:

oF 12 32 O OF
5= CsE Cy B + ER K. P (2.18)
whereC; = K, ,A* + Ky(g/6)(08/0z), this term can contribute to the amplification
(C3 > 0) or decay (5 < 0). Cy = 0.1/, is always a positive constant.

2.3 The Convective Adjustment

During the model integrations, the vertical temperature gradient may become super-adiabatic.
Those situations are especially likely to happen in regions of a strong heating on the sur-
face. To allow for the convective effects in the model, the convective adjustiiengbe

and Strickler 1964; Ramanathan and Coaklg$978] is carried out in the models such

that the temperature profile is adjusted to the dry adiabatic one.

The decrease of temperature with increasing altitude is often called the “lapse rate”.
The adiabatic lapse raig, can be obtained by differencing the Equation (2.5) and equat-
ingdf/dz =0
dI  kTdp  kTpd® g

T = - - _ - = _— = == 2.19
d dz p dz p dz Cp7 ( )
dT kT dp kT
r, = —— -2 _ _™ 2.2
d dz p dz H (2.20)
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2 Model Description

If the potential temperature varies with height, then the actual lapsd'rate—dT/dz

will differ from the dry adiabatic lapse rai&;. In our model we use the Equation (2.20).
Making use of Equation (2.20), the convective condition will be evaluated from equa-

tions of the following type:

T
¢s = (0 —Ty)dz = —dT + ““dp, (2.21)
P

wherey;, is called the static stability parameter and is related+d’,. If I' = I'y, then an
air parcel adiabatically displaced from its position will tend to remain at its new location,
since its temperature will be the same as that of its surroundings. On the other hand, if
the atmosphere is static stalile< I'; (instablel’ > T';), then an air parcel adiabatically
lifted (lowered) from its equilibrium position will tend to sink (rise) back to its original
position Ramanathan and Coaklg$978].

Under this condition the temperature of two different layers between the bottom layer
zo and upper layet; is adjusted as follows:

e ps0Too + po (Toy + Fd)7 (2.22)

on + pzl

T21 = Tzo - Fd' (223)

2.4 The Radiation Balance

Diabatic heating in the mesosphere is important both as a driving source for the zonal
mean circulation and as a damping mechanism for eddies. At any point in the mesosphere,
the net diabetic heating rate¢ = Qs + @, (K s™!) represents the difference between

the heat input by the absorption of the solar insolatipnand the cooling due to the
divergence of the infrared emission fldX, in Figure 2.2. Consider first the case for
which net radiative heating is solely due to the infrared,®@nd, while solar absorption
results from the near-infrared bands.

2.4.1 Longwave Radiation

Carbon dioxide affects the transmission of the longwave radiation within the atmosphere
in the 15um band Ramanathan and Cesk974;Crisp et al, 1986;Hourdin, 1992]. The
rate of temperature change (heating/cooling rate) in the layer is
_10F

pc, 027

QL= (2.24)
whereF is the flux (W nT2) of longwave described as below.

We now consider the effects of longwave heating and cooling, allowing for both the
downward and upward propagation of the radiation fluxes. It can be shown that the up-
ward thermal irradiance at wavenumbeand height: is

or,(7, 2)

FI(2) = 7B, (0)7(0,2) T + 7 /0 "B i

(2.25)
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2.4 The Radiation Balance

Incoming Outgoing
Solar Longwave
Radiation Radiation

Reflected Solar
Radiation

‘ Emitted by Atmosphere

Absorbed by Atmosphere

Back
Surfacg Radiation
Radiation
Reflectdd by T
Surface Absorbed by Surface Absorbed by Surface

Figure 2.2: The Martian annual and global mean energy balance. Most of the incoming
solar radiation is absorbed by the surface. That heat is returned to the atmosphere as
sensible heat, as evapotranspiration (latent heat) and as thermal infrared radiation. Most
of this radiation is absorbed by the atmosphere, which in turn emits radiation both up and
down. The radiation lost to space comes from cloud tops and atmospheric regions much
colder than the surface. This causes a greenhouse effect.

Herer, (7', z) is the spectral transmittance, averaged over all solid angles to take account
of all slanting paths between heigtitandz, andB, (0) is the Planck function evaluated at

the temperature of the surface. The surface has been assumed to radiate as a black body.
Similarly, the downward irradiance is

R = - [ B T, (2.26)

there is no boundary term here since the downward thermal irradiance at the top of the
atmosphere is zero.
The net long wave spectral irradiance is

F,(2) = Fl(2) - F)(2) @.27)
and from this net longwave diabatic heating rgtg can be calculated using Equation
(2.24). Since the resulting expression or is quite complicated, a useful simplification
is the cooling-to-space approximatiofurek1985; Andrews 2000], in which the loss of

photon energy to space dominates the other contributions. We obtain a contribution to the
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2 Model Description

heating rate

mB,(z) 07,(2, 00)

—_ A ) 2.28
Q=2 T (2:28)
The factorr in this equation comes from the integration over all solid angles, and the
minus sign is from the fact that the power loss to space implies a negative heating at the
heightz.

The band absorptance is defined as

Ap.D) = [ alp. 1w (2.29)
wherep, T are the total pressure and absolute temperatyrés the monochromatic
absorption at the wave number In terms of the ratios of the absorbed and transmitted
radiation, we may write

1=a,+7,. (2.30)

Wide band models generally provide a value of the absorptdrfoea whole band as
a function of the optical path. The band models approximate the structure of thg CO
15-um band, these methods are interpolation formulas that connect the observed linear,
square root, and logarithmic region of the curve of growth. Such methods have been
widely used in studies of atmospheric radiative trans&wddyandBelton 1967;Cess
and Ramanathgnl972; Kiehl and Ramanathgr983]. They usually assume a simple
logarithmic functional form:

A(p,T) = 245l <1 +u(p) {4 +u(p) (1 n %)] 1/2) . (2.31)
where
wrae) =50 = [ () = (232)
and
B(T) = 4% (H%) ? (2.33)

are a dimensionless path length and a mean line width parameter, respectively, and
21.3(T/273)/2 is the effective band width (cm), S = §vY s, = 194.0 is the band
strength (cm? atn!) [Dickinson 1972],d = 1.56 is the mean line spacing (c),

~r = 0.0064 is the mean line width (cm'), w is the absorber amount (optical path, [atm
cm]). Then, we can replace the Equation (2.28) as follows:

0= 7B, (z) DA(z, ) _ 7B, (z) du(p?x,) dA(u)' 2.34)
PCp 0z PCp dz du
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2.4 The Radiation Balance

2.4.2 Solar Radiation

Atmospheric heating due to absorption of solar radiation in the near-IR bands,asCO
negligible below 30 km but becomes considerable above 50 km. A simple parameteri-
zation has been included which is similar in its effect to heating rates obtained in radia-
tive transfer in line-by-line calculations performed bypez-Puerta§1995] andLépez-
Valverde et al [1998] which include non local thermodynamic equilibrium (non-LTE)
effects. At pressurg, = 700 Pa and for a mean Mars—Sun distange= 227.92 x 10°

m, the heating rate corresponding to a zero solar zenith apgte () is taken to be
dT/ot = 1.3 K day! [Forget et al, 1999]. The heating rate at other pressur&lars—

Sun distance, and zenith angle is then computed as follow:

b
1+ (%) } , (2.35)

wherep,;;. = 0.00016 Pa is the pressure below which non-LTE effects are significant and
i = [(12244% 4 1) /1225]'/2 the cosine of the solar zenith angle corrected for atmospheric
refraction,b = 1.6 the pressure scale factdrilanueva 2004].

Do

2

T'VVL

Qs =13-"% i
r p

2.4.3 Energy Budget at the Surface

For the computation of the surface temperaflifea slab model is applieddierasch and
Goody 1968;Zhang et al, 1982] in the form of the energy budget equation

ar, 1
=9 = = (Fpea — Fsg) — Fo. 2.36
dt Cy ( Rad SH) G ( )
The surface balance considers the net flux of radiation at the suffagethe sensible
heat flux into the atmospherg;;, the heat flow into the substrat&; in Figure 2.3, and
the thermal capacity, of the slab defined by the thermal inertia

I =+/kpc, (2.37)

inJm2 K~ s71/2, wherek is the thermal conductivity (W m K—1), p the soil density
(kg m~3) andc, the specific heat of the soil (J k§K~1). In this model the latent heat
flux Frz is neglected.

Blackadar[1979] shows that the following formulation relates the amplitude and
phase of the slab temperature, wifrelated to the diurnal frequenayby

kpcy, 1
g =1/ =1/ —. 2.38
K 2w 2w ( )

The net flux of radiation at the surface results from a balance between the solar and
surface radiation fluxes:

Fraa = Fslw - F:’I‘W + FLlW - FLTW1 (2.39)

where the downward and upward arrows denote the incoming and outgoing radiation
components, respectively.
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@ ®) )
FLH
FsH
F
g FLH
FRad t ;

FRad

Fa Fa

Figure 2.3: Typical variation of terms of the surface energy balance for (a) daytime over
land; (b) nighttime over landdtull, 1997]. The arrow size indicates relative magnitude.
All symbols are related to Equation (2.36f. denotes the latent heat flux which is
ignored in our model.

The incident solar radiation flux is written as
Fiw = (T@/T)2UT(.47N: (2.40)

whererg is the radius of Sum; the Mars—Sun distance,the Stefan-Boltzmann constant,
T, the blackbody temperature of Sun andhe cosine of the solar zenith angle. The
outgoing short-wave solar radiation is the part reflected by the suRdge= AFL,,
whereA is the surface albedo so that the net short-wave radiatifgis= (1 — A) Fgy,, .

The incoming longwave radiatioﬁéw which comes from the atmosphere and the
outgoing longwave radiatiom“LTW are given by the Stefan-Boltzmann law, assuming a
given emissivitye [Sutherland et aJ 1979;Pollack et al, 1993]. Subscripy andatm
denote surface and atmosphere, respectively. The net radiation flux at the surface is then
given by

Fraa = Fly (1 — A) — €g0T, + €atmo Ty

atm?

(2.41)
The heat fluxes into the ground is calculated from the equation
FG = Km (Tg - Tm) ) (242)

where K, =~ w is the heat transfer coefficient afig), is set equal to the running zonal
average ofl, [Pollack et al, 1981].

The sensible heat flux between two plates due to the combined molecular conduction
and turbulent transfer, derived theoretically®ierasch and Goodji 968], can be written

1/3
Fsi = 0.089p¢,2"% (T, — Togm)™* (ﬁ) , (2.43)
wherex ~ 8 cn? s! is the thermal diffusivity, and’ ~ 10 cm? s~! the kinematical
viscosity.
The condensation temperature of O&®approximated as 149.2 K. We use the surface
thermal inertia mapHorget et al, 2001] and the surface albedo global m&@hifistensen
et al, 2001] as measured by Mars Global Surveyor-TES.
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2.5 Discretization and Parameterization

2.5 Discretization and Parameterization

The spatial discretization of all variables is done in a spherical coordinate system on a

regular grid with the resolutiohhz, Ay, andAz in the vertical domain. The derivatives

of the field variables'(¢) (atmospheric and surface temperatures, three components of

the wind velocity, and the geopotential) are approximated with central differences, e.g.
dF(z) F(z+1)—F(z—-1)

dr 20x ‘ (2.44)

To prevent a build-up of the kinetic and potential energy at the shortest resolved spatial
scales and the associated instability, a horizontal dissipation is introduced in the form of
the Shapiro filter (see the flow chart in Figure 2.1). Effectively, the Shapiro filter approx-
imates the scale selective horizontal diffusion acting on the smallest scale disturbances,
and not affecting the larger scales.

The temporal discretization is done through the introduction of three time levels for
all the variables: the “past”, “now”, and “future”. The time stepping is done using the
leapfrog scheme with the time resolutidn = 100 s. In the leapfrog method, the “future”
values,F'(t + At) are calculated from the “past’(t — At) using the time derivatives
(“tendencies") from the “presentil,F(¢)/dt:

F(t+ At) = 2At%it) + F(t — At). (2.45)
Although this scheme gives a second order of the approximatiofAgit with respect

to the finite time step\¢, an instability may develop due to a decoupling the solutions at
the odd and even time steps (a zig-zag solution). To avoid this, either the Euler backward
schemesK(t) = F(t — At) + (At)[dF(t)/dt]) are turned on after a certain amount of
time stepsfbel and Berger1987], or the small Asselin time filter (a correction©ft)

after F'(¢t + At) is calculated) is usedartogh et al, 2005].
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3 Simulation Results

We carried out numerical sensitivity tests to study the interactions between the Martian
atmosphere and the surface. The major mechanism which provides the coupling between
the surface and the upper atmosphere are atmospheric eddies. In this work we consider
large scale eddies simulated with the model: solar tides and planetary waves. In numerical
simulations, it is possible to test hypothetical cases which never occur in reality. These
numerical tests help to explain interactions between different physical processes, and to
highlight the importance and effectiveness of these processes.

Four main experiments are discussed in the next three sections. They are summarized
in Table 3.1: (1) only solar tides are included, but the topography and material distribu-
tions on the surface (albedo and the thermal inertia) are neglected; (2) flat topography, but
taking account of diurnal variations; (3) only the topography is included, diurnal varia-
tions and the surface material distributions are neglected; (4) considering all the physics,
i.e. diurnal variations, topography, and the surface albedo and thermal inertia.

The results of simulations confirmed that the interactions between the eddies and the
surface take place in the lower as well as in the middle and upper parts of the atmosphere.
The global atmospheric circulation in the mesosphere is driven by breaking tides, plan-
etary and gravity waves generated at and near the surface. In this chapter, we focused
our analysis on the following: effects of solar tides, thermally and mechanically excited
stationary waves, baroclinic waves; effects of the topography and the material properties
(albedo and thermal inertia) on the circulation in the atmosphere.

Generally, all the field variableg = u, v, w, T, etc. can be represented as a sum of
harmonics

P\, @, z,t) = U, (¢, z) exp {f’i(aQt —sA+ @o,s)] , (3.1)

where® is the phase, and the summation is assumed over natwatl s. Of course,
only real parts are assumed in (3.1) for physical variables.

Table 3.1: Numerical sensitivity tests for Section 3.1-3.4.
RunNo. Solarcycle Topography Albedo and Thermal inertia
1 + — —

+ + |

2 + +
3 — —
4 + +
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3 Simulation Results

3.1 Solar Tides

Solar tides are the longitudinal disturbances which follow the sun and are generated due
to the absorption of the solar radiation by the atmosphere and surface. Therefore, sources
of the solar tides lie mainly in the middle atmosphere and near the surface.

Figure 3.1 presents the results of the simulation (Run-1) with only diurnal variations
of the solar radiation included. This means that only solar tides are allowed to be excited
in the model. The arrows in Figure 3.1a show the direction of the wave action flux asso-
ciated with tides, or the Eliassen-Palm (EP) flux. These arrows indicate that the diurnal
disturbances are generated mostly near the surface, and propagate upward. Only the fluxes
with the magnitude exceeding a certain value are plotted in Figure 3.1b. It is seen that the
magnitude of the wave action flux decreases with height up to 60 km. This suggests that
the excitation of the tide near the surface is stronger than in the middle atmosphere. In
the Martian atmosphere, the solar radiation is mainly absorbed by Tis is because
the main radiatively active constituent is @@nd no other molecules (like ozone, water
vapor, etc) play a noticeable role, unlike in the Earth atmosphere.

The EP flux decreases with height because the tides experience dissipation and/or
breaking in the upper atmosphere. Formally this is represented through the divergence or
convergence of EP fluxe¥, - F. Areas ofV - F < 0 are shaded in Figure 3.1a,b. The EP
flux divergence enters the equation for the mean zonal circulaindrgws et al 1987]:

Ty + 0" [(a cos @) " (Tcos )y — f] + W,

= (ppacos ) 'V - F. (3.2)

where,7* andw* are the residual velocities defined@s= 7 — p; ' (pov'd’/6.). and

W =W+ (acosp) " (cos '8 /0.)4; ¢ is the latitude f is the Coriolis parameter, aridi

is the EP flux. It is seen from (3.2), th&t- F' can accelerate or decelerate the mean zonal
wind @, or force the mean meridional transport

The analysis of the output from Run-1 shows that the wave action flux is composed
of two types of waves. One with the frequency= 1 (diurnal tide), and the other = 2
(semidiurnal tide). They originate from the diurnal variations in heating at the surface
and in the atmosphere. The semidiurnal tide represents a second harmonics of the diurnal
heating cycle due to the nonlinearity of the atmosphere. It is seen from Figure 3.2 that
the semidiurnat = 2 tide dominates above 60 km, except in the Northern polar latitudes
higher than 60N. Thes = 2 tide is strong in the upper Southern hemisphere, while the
o = 1 tide dominates in the upper Northern hemisphere. This is caused by the different
propagation properties for both tidal components.

The tidal energy flux directed, in general, upward from the surface and the middle at-
mosphere (where tides are excited). A significant propagation in the meridional direction
is also seen in Figure 3.1a. Thus, tides are spread into all areas of the atmosphere. Ac-
cording to the EP flux divergence in Figure 3.1b, most of the energy flux dissipates in the
upper atmosphere. There, it strong affects the mean circulation because the atmospheric
density gets lower with height. The negative EP flux divergence is in the winter hemi-
sphere and in the polar region of the summer hemisphere, but is positive in the summer
middle hemisphere. The areas of the positive EP flux divergence is denoted by the light
shade in Figure 3.1b. It shows that the associated torque applied on the zonal wind is
eastward. On the other hand, the negative EP flux divergence means the westward zonal
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3.1 Solar Tides
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Figure 3.1: Results of the run including only tides (Run-1) for perpetyak 90° after

40 sols spinup. (a): The arrows denote the EP flux, and the negative EP flux divergence
shaded. (b): EP flux divergence for in [m!ssol~']. (c): Stream lines are for the residual
mean zonal circulation. (d): Solid lines are for the zonal mean temperature with the
contour interval 5 K, dotted lines on the shade denote westward (negative) zonal mean
winds, and the dotted lines on the light shade is for eastward (positive) zonal mean winds
with the contour interval 10 mrs.

acceleration of the mean zonal winigas follows from the simplified version of Equation
(3.2) (see Andrews et al 1987])

— v =py'V - F. (3.3)

Figure 3.1c shows that a large southward meridional circulation exists between the
upwelling in the summer hemisphere and the downwelling in the winter hemisphere. It
is also caused by the EP flux divergence, as seen from the equation above. In general,
the Coriolis force associated with the factbrcauses the flow to curve toward the right
hand side in the Northern hemisphere, and towards the left hand side in the Southern
hemisphere. To balance the torque by the flux divergence with the Coriolis force for the
flows, the meridional flow must appear. Therefore, the meridional circulation is caused
by the EP flux divergence.

The upper atmospheric temperature has two warm spots in the both hemispheres, as
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3 Simulation Results

Run-1: Tidal Waves
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Figure 3.2: Amplitude of the v-wind deviation (- 7*) vs. ¢ in Run-1. A 40 sols time

series has been analyzed. Panels on the right sides are also v-wind deviations in latitude-
longitude projection at 10 km (bottom), 40 km (middle) and 80 km (top). Contour inter-
vals are 2.5 ms' (middle and bottom) and 15 nr5(top).

shown in Figure 3.1d. Although the solar radiative heating is stronger in the summer
hemisphere above the middle atmosphere, the cooling occurs over 70 km because the
upwelling flow creates an adiabatic expansion of the air, and therefore, the cooling in
the summer polar region. Hence, the temperature distribution over the summer pole is
determined by the balance between the adiabatic cooling and solar heating. In the winter
hemisphere, an unusual thing is that the warm spot exists at 75 kni&t@@ause the
adiabatic heating exceeds the diabatic one by about 8 K Day

The energy of waves modifies the residual circulation, changes the temperature dis-
tribution, and drives the thermal wind. These effects are known as the “wave-driven
circulation”.

3.2 Thermally Forced Stationary Planetary Waves

The surface temperature depends on the thermal inertia and surface albedo for a given
solar and thermal radiative fluxes. The thermal radiation exchange is faster if the thermal
inertia is small. Then the temperature difference is larger during days and nights (see
Equation (2.36-2.38)). For example, the thermal inertia for snow and dry soil is of the
order of 16 J m2 s'/2 K1, for the saturated soil, still water and ice it is of the order

of 10°, and 10 for stirred water. In the areas with large thermal inertia, the surface
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Figure 3.3: These surface parameters are used in the model. Top: Martian topography in
km; middle: the surface albedo map; and bottom: the thermal inertia map it 3'/

K~!. Note that the permanent ice caps on both poles (e.g. north and south°@¥ 120

0°) play an important role in the stationary wave generation in the polar region.
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Figure 3.4: Panels (a, c, d) are the same as in Figure 3.1, but for Run-2. Panel (b) shows
the ratio of the EP flux divergence (Run-2 divided by Run-1), which means that in the
lightest area the EP flux divergence is increased in Run-2.

temperature keeps warm even during the night, the same happens for the terrestrial oceans
[Ringler and Cook1999].

The Martian surface has a significant contrast of the thermal inertia and the surface
albedo, as shown in Figure 3.Rigffer et al, 1997]. The thermal inertia alternates from
I = 80 to 300, and creates a net contrast in the middle latitudes betwé&8rahsl 50N.

One can expect to find stationary waves generated over the uneven surface material char-
acteristic, like over the oceans and land contrasts on Earth. The numerical experiment
Run-2 is effectively the same as Run-1 but the thermal inertia and surface albedo maps
were added. The topography is flat in this experiment so far.

In Figure 3.4a, although the EP flux distribution is similar to the one in Figure 3.1a, the
residual circulations are different, especially above the middle atmosphere around 50 km
in Figure 3.1c and 3.4c. The meridional circulation in the northern upper atmosphere turns
into the opposite side above the equator and is directed towards the summer polar region
despite the positive EP flux divergence which provides the torque towards the equator.
The summer polar warm spot is not only smaller than in the previous simulation in spite
of the adiabatic heating caused by descending flow, but also the winter hemisphere’s warm
spot is stronger although the downward flow is almost half of the intensity compared to
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Figure 3.5: These figures compare the results of Figure 3.1 and 3.4 in the middle atmo-
sphere to show differences in detail. (a): Solid lines are for the averaged temperature
deviation [ p,.0 — T pen)» dotted are for the cooling rates deviation, and the shaded area
denote the negative w-winds deviations (downflows). (b): Solid lines are for the v-winds
deviations, dotted are for the u-winds deviations, and shade is for the EP flux divergence
differences.

the previous simulation.

Some stationary waves are present in the simulation in the middle atmosphere. They
are generated over surface contrasts of the albedo and thermal inertia, and propagate ac-
cording to the EP flux in Figure 3.4a. These waves have magnitudes of 10-20, m s
longitude wavenumbers= 1 and 2, and are distributed symmetrically around the equator
in Figure 3.6. The magnitudes usually increase with height, as mentioned in the previous
Section 3.1, until the waves are completely obliterated. The inhomogeneous surface fea-
tures modulate tidal waves as well. The latter shows up in the amplitude of the solar tide
o = 1. Compared to the Run-1 it becomes stronger in the upper Southern hemisphere,
and weaker in the Northern hemisphere in Figure 3.7.

In the upper Southern hemisphere, the positive EP flux divergence forces the equa-
torward meridional flow, as shown in Figure 3.4b and 3.5b. Therefore, the meridional
circulation weakens (compared to Run-1 in Figure 3.5b), as does its descending branch.
The corresponding adiabatic cooling is then weak, causing weaker polar warming in Fig-
ure 3.5a.

In the upper atmosphere near the equator, with this positive flux divergence scenario
and small Coriolis force, an air parcel stands still when the meridional transport in the
Southern hemisphere slows down, and turns to the north.

In the upper Northern hemisphere, the warm area over the polar region is colder than in
Run-1. This is because in order to compensate for the adiabatic heating by the descending
flow, the atmospheric cooling due to the €iBcreases. On the other hand, the descending
flow converges over the north pole and produces the adiabatic heating at 40 km in Figure
3.5a, thus inducing the clockwise circulation in the Northern hemisphere.

Figure 3.5a indicates that the difference in temperatures between the Run-1 and Run-
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Run-2: Stationary Planetary Waves
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Figure 3.6: Amplitude of v-wind deviationv(— 7*) for stationary planetary waves in
Run-2 from 40 sols of integration &t = 90°.

2 does not apparently agree with the corresponding cooling rates. The explanation can
be given to this: the thermally forced stationary waves modify the meridional flow, and
indirectly affect the atmospheric radiative cooling through the modified temperature dis-
tribution.

Therefore, the upper atmospheric circulation is obviously affected by thermally forced
stationary waves generated by biases in the solar radiation absorption on the surface as-
sociated with spatially varying albedo and thermal inertia.

3.3 Mechanically Forced Stationary Planetary Waves

We use the term “mechanically forced” for the waves which are generated by the flow
over the topography.

In the Run-3, the realistic topography was introduced, but the diurnal variations of
the solar heating were turned off, and the surface albedo and thermal inertia were set to a
constant. As the result, only longitudinal disturbances which appear in the simulation are
“mechanically forced” planetary waves. They include forced waves (stationary planetary
waves) and free Rossby waves (traveling mid-latitudes waves with non-zero frequencies).
Figures 3.8 and 3.9 present the results of the simulation for the Run-3. Figure 3.8 shows
the stationary waves with the magnitude of the meridional velocity fluctuatidnsf
about 30 m s! and the longitude wavenumber= 1. But free Rossby waves with the
amplitude of few m s! ando < 0 are too small to be in the simulation. Both appear
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3.3 Mechanically Forced Stationary Planetary Waves

Tidal Waves: Ratio of Run-2 / Run-1
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Figure 3.7: Same as in Figure 3.2, but for the ratio of Run-2 and Run-1 for tide).
Frequency = 1 in the equatorial middle atmosphere and-= 2 in the southern upper
atmosphere have more than 1 mf amplitude. This means that the tides are affected by
the surface thermal inertia and albedo distributions.

in the winter hemisphere because Rossby waves tend to propagate only into the eastward
zonal winds, as the waves with long wavelengths are easily affected by the variation of the
Coriolis forcef with latitude, the so-called effect (3 = df /dy, see alsdolton[1992]).
Therefore, the wave action (EP) flux is seen in the areas covered by the eastward jet in
Figure 3.9a,d. According to Figure 3.9b, the EP fluxes associated with these waves are
about 10 times stronger in the lower atmosphere than those associated with the solar tides.

In Figure 3.9a, the negative EP flux divergence due to the waves generated by the
topography dominates strongly in the middle atmosphere in the southern mid-latitudes.
The southward torque due to the negative flux divergence forces the meridional wind.
This results in the eastward Coriolis force in the Southern hemisphere. The magnitude
of the EP flux divergence is the strongest ovet3@t 40 km. The intensified southward
transport extends far to the South pole in the middle atmosphere in Figure 3.9c. Accord-
ingly, the downward branch of the circulation cell is also stronger, and the atmosphere is
heated up near the poles due to the adiabatic heating. The intensity of the eastward zonal
jet is consistent with the strong temperature gradient in this re@@amies and Haberle
1996]. Consequently, the axis of the jet on the latitude-altitude plane is tilted. In the
summer hemisphere around*6Dat 30 km, the northward torque by the negative EP flux
divergence creates the clockwise meridional circulation in Figure 3.9c.

Figure 3.9d demonstrates that removal of the solar tide and leaving the topographically
generated waves creates a pole-to-pole layer of the temperature maximum at 80 km. This
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Run-3: Stationary Planetary Waves
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Figure 3.8: Same as in Figure 3.2, but for stationary wawves {*) in Run-3 (only
mechanical forcing is included).

maximum at 80 km reminds of the stratopause in the atmosphere of Earth. However,

unlike on Earth where the stratopause is the result of an enhanced solar absorption by
ozone and the related diabatic heating, the temperature inversion in the presented run
has a pure dynamical reason. Since the heating rates in this run are equal to diurnally
averaged heating rates from the control run, all changes in the mean circulation pattern
can be attributed entirely to the lack of the forcing by tides.

Stationary planetary waves not only affect the mean zonal circulation but modulate
solar tides (Example of Earth reported Byngler and Cool1999]). The stationary
planetary waves influences the solar tides. Figure 3.10 compares the time series of the
meridional velocityp, at 80 km for the Run-4 with the “full physics” included (panel a),
and for the Run-2 with the same physics but flat surface (panel b). In both cases, diurnal
and semidiurnal tidal signatures are seen. However, the magnitudes of tidal oscillations
and their modulation in the absence of stationary planetary waves (panel b) are much
weaker. Interactions between the stationary planetary waves and solar tides can occur
either directly through nonlinear interactions and/or linear modulation, or by means of
changing the background zonal mean circulation, and, therefore, affecting the propagation
of both types of eddies.
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Figure 3.9: Panels (a, c, d) are the same as in Figure 3.1, but for Run-3. (b) is the ratio of
the EP flux divergence (Run-3 divided by Run-1), which means that in the lightest area,
the EP flux divergence is increased in Run-3 (including only the topography).
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Figure 3.10: Wave oscillations of the local v-wind at 80 kmiZip = 90° (2 sols are
shown) after 38 sols running, (a) in Run-4 and (b) in Run-3. According to the figure, the
difference in waves shows the influence of stationary planetary waves on solar tides.
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Figure 3.11: Simulation results with the full physics (Run-4) for perpetyat 90° after

40 sols running. (a): the zonal mean temperature with the contour interval 5 K. (b): dotted
in shade is for the westward (negative) zonal mean winds, in light is for the eastward
(positive) zonal mean winds with the contour interval 10 Th.gc): Stream lines of the
residual mean zonal circulation. (a): Arrow lines denote the EP flux, and shade is for the
negative EP flux divergence. (e): the ratio of the EP flux divergence (Run-3 divided by
Run-4). (f): the ratio of the EP flux divergence (Run-2 divided by Run-4).
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3.4 Simulation with all Types of Waves Included

Figure 3.11 shows the results for the Run-4. Itis seen that, in the summer hemisphere over
30°N and at 30 km height, the clockwise circulation is generated because the negative EP
flux divergence enforces the northward flow. The eastward Coriolis force (which arises for
the northward flow) compensates for the westward acceleration produced by the negative
flux divergence. As the result of the momentum balance, the westward wind near the
equator appears. The temperature maximum at 70 km over the summer pole is the result
of the combined effect of the diabatic heating (increased solar IR radiation absorption),
and the adiabatic heating associated with the downward motions (a smaller clockwise
cell). The temperature maximum over the winter pole centered around 60 km is entirely
due to the adiabatic heating associated with the downward air Yidigdn 1997]. The
westward zonal winds cover almost the entire upper atmosphere.

Figure 3.11e,f show, in which area tides or stationary planetary waves (SPW) affect
in EP flux divergence; Run-3 divided by Run-4 (panel e) and Run-2 divided by Run-4
(panel f). As a result of Figure 3.11e, SPW generated from only topography propagate to
the winter middle hemisphere. While thermally forced SPW induced by the diurnal solar
insolation propagate to the upper atmosphere on the equator and the summer hemisphere
in Figure 3.11f.

3.5 Baroclinic Waves

An uneven topography triggers not only stationary and gravity waves, but also free Rossby
waves, or baroclinic waves. Besides stationary waves forced by the flow over the topog-
raphy, free modes of planetary waves exist in the atmosphere. These waves are called
baroclinic planetary waves. Unlike the stationary harmonics, they can travel in the east-
ward or westward directions, and therefore sometimes are called the traveling planetary
waves. Naturally, their moving peaks and troughs create a non-zero frequency for the ob-
server on the surface. The periods of baroclinic waves are always longer than the period
of the planet rotation. Similar to stationary planetary waves, baroclinic waves are excited
predominantly in the lower atmosphere, but their energy (wave action) can be transported
away and up. Thus, both types of waves propagate in the meridional plane in a similar
fashion. Baroclinic waves are generated by the flow instability (“baroclinic instability”),
triggered by the topography, or by thermal inhomogeneitigsdzen et g11980]. Baro-

clinic waves were detected on Mars during the in-situ measurements by Viking Lander 1
(VL1; landed at 50.62V and 24.92N in 1982) in mid-latitudes near the surface during

the dusty season froth, = 200° to 300 [Sutton et al 1978].

According to the VL1, baroclinic waves are strong in the dusty season, but weak dur-
ing the L, = 90° season Hourdin et al, 1995]. Figure 3.12 shows the daily averaged
surface pressure oscillations measured by VL1. Figure 3.13 presents the frequency spec-
trum for these oscillations obtained with the Fast Fourier transform (FFT) arburd
9, 180, 270 and 360. Long period waves with the frequencies: 0.25 and 0.4 were
observed around,, = 270 and 360 in Figure 3.13. However, they were weak during
L, = 90 and 180 at the VL1 landing site. This means that the lower part of the atmo-
sphere in summers is baroclinically more stable than during winters because of smaller
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Figure 3.12: Surface pressure detected by Viking Lander 1 (VL1) landing at°33-62
24.92N.
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Figure 3.13: The frequencies (s¢) of the surface pressure from VL1 using the Fourier
transform for 20 sols in four seasons, (@)= 0°, (b) 90, (c) 180, (d) 270. According

to (b) and (c), the surface pressure oscillations are too small to be detected because of the
weak baroclinic waves depended on latitude.

meridional temperature gradients between the poles and mid-latitudes. As the result, less
baroclinic waves are excited during this time in the Northern hemisphere. Generally,
baroclinic waves are strong on Mars in the troposphere below 30 km near the prograde
jet at mid- to high latitudes in the winter hemisphere. At least two reasons can explain
the increase of the baroclinic instability, and as a result, stronger baroclinic wave activity
during this time of the Martian year: stronger absorption of the solar radiation by the
surface at perihelion, and the enhanced absorption during dust storms normally occurring
during this season.

The sensitivity tests presented in Figure 3.14 were designed to explore the effect of
the surface. The model was ran for clear sky conditions (no dust heating is included) for
the perpetual seasorls = 90° and L, = 270°. The upper row in Figure 3.14 presents
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Figure 3.14: Simulation results for amplitude (mt}versus frequency (sol) of the v-

wind near the surface (10 km) in southern winter (a, b, a’, b’) and northern winter (c, d, ¢’,
d’) where baroclinic waves becomes strong. Two types of the topography are considered
in this experiments: Top panels (a, b, c, d) are for normal topography; bottom (a’, b’, c’,
d’) are for the north-south reversed topography. Panels (a, b, ¢’, d’) show no waves in the
winter hemisphere, while panels (a’, b’, ¢, d) show some waves.

the frequency spectra for the time series of the v-wind near the point corresponding to
the winter hemisphere for the two seasons. It is seen that no long period waves were
generated in the winter hemisphere far = 90°, whereas a clear and strong planetary
wave signal is seerv(~ 0.25) in the winter hemisphere fat, = 270¢°. The lower row
of panels in Figure 3.14 presents the same spectra but calculated from the runs with the
topography reversed with respect to the equator. Again, no baroclinic waves are generated
during theL, = 90° winter. For theL, = 270 winter, the result is strikingly different:
very weak wave generation occurs with the reversed topography.

The Martian topography has a definite latitudinal slope with higher lands in the South-
ern hemisphere, and lower ones in the North&ichardson et al[2002] andTakahashi
et al. [2003] discussed the influence of this inter-hemispheric slope on the meridional
circulation. They showed that the differences in the surface heating associated with vari-
ations of the optical depth due to the topography are negligibly small. They also demon-
strated that the main effect of the tilted lower boundary is the asymmetry of the meridional
circulation. Here we extend their analysis by exploring the effect of the asymmetry on the
baroclinic instability of the lower atmosphere, and, therefore, on planetary wave genera-
tion. For that, it is convenient to use an estimate for the baroclinic growthiategiven
by [Holton, 1992;Takayabu and Takehir@003]

Ke; = AfJ2ND, (3.4)

where the vertical wind sheak, = du/dz is proportional to—dT'/dy, f is the Coriolis
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Figure 3.15: Zonally averaged temperature and eastward wind. The shaded areas indicate
the growth rate of the baroclinic instabiliti ¢; given by Equation (3.4) fol., = 90°,

starting from 30 in intervals of 10. The top panels show the results for a topography
consisting of 3 steps with zonally constant heights. The panels (a’, b’) are for the realistic
topography. Right panels (b, b’) are for the north-south reversed topography.

factor, D is the atmospheric thickness taken here as 25 km, sl the Brunt-Vaisala
frequency (related to the vertical gradient of the mean temperature):

dl' g
N=Y ERN .
T (dz + cp) (3:5)

Figure 3.15 presents the distributions of the growth fatecomputed from the results of

the four sensitivity tests conducted for the perpetual sedscea 90°. In Figure 3.15a,b

the MOLA topography was replaced by 3 plateaus with different heights in north-south
direction but constant height in east-west direction. The systematic latitude gradients are
shown. It is seen that most of the baroclinic wave generation occurs in mid-latitudes
of the winter (Southern) hemisphere where the meridional temperature gradient is the
steepest, and the wind shear is the strongest. It is seen from Figure 3.15b that, for the
idealized topography, wave generation is stronger when the surface height grows towards
the Northern hemisphere. The lower panels in Figure 3.15a’,b’ present the calculated
Kc; for the realistic (panel a’) and the reversed (panel b’) topography. For the realistic
topography, the baroclinic wave generation in b’ is more remarkable than a’, because
wind shear is strong if the highland-hemisphere is heated like b’. This is in an agreement
with the conclusion from Figure 3.14. On the other hand, this is same as the idealistic case
shown in the upper two panels. It is obvious that both latitude and longitude variations of
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Figure 3.16: Same as in Figure 3.15, but for Rossby wave numlgiven by Equation
(3.7).

the surface topography contribute to the shape of the meridional circulation, and, as the
result, to the intensity of waves generated near the surface.

3.6 The Influence of the Topography on Wave Propaga-
tion

In the end of the above Section 3.5, we considered the effects of the topography on plan-
etary wave generation. In this section, we explore how the topography affects the propa-
gation of the waves once they were excited. For simplicity, we limit our consideration by
stationary planetary waves only & 0), but a similar analysis can readily be extended to
traveling (baroclinic) harmonics. For these waves, the propagation condition is given by

u > 0 (3.6)

s < aCOS®(§74Hf;N2>7 3.7)

wheres is the longitudinal wavenumber of the harmonicis the latitudinal gradient of
the Coriolis parametef, H is the scale height, and is the Brunt-Vaisala frequency in
Equation (3.5). Only harmonics withsatisfying (3.7) can propagate vertically.

Figure 3.16 presents the largest longitude wavenumtfer propagating planetary
waves calculated for the same conditions as in Figure 3.15. We see from Figure 3.16
that shorter waves (with largej are able to propagate near the surface and close to the
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equator. Higher and closer to the poles, the propagation condition selects only longest
harmonics. For the idealized zonally symmetric topography (panels a,b), more waves
can propagate vertically in the case of a South-North surface slope than for the realistic
topography (panels a’,b’). For the realistic topography, not only the excitation is stronger,
but the condition for planetary wave propagation is better for the case in Figure 3.16a,b.
Note, that the stationary planetary waves can propagate only in the areasuwvhefe
Traveling waves withr # 0 can propagate also when< 0.

We have shown that the distribution of the topography affects the generation and prop-
agation of planetary waves. In the next section, we consider how the topography affects
the zonal mean circulation of the Martian atmosphere.

3.7 The Influence of the Topography on the Mean Circu-
lation

Distributions of isotherms in the Martian atmosphere depend on both the solar heating and
the topography and material features on the surface. Our simulations confirm the obser-
vations of seasonal asymmetry in the circulation between the two solsfices90° and

270 in Sections 3.5-3.6. Under the no dust conditions, the mass stream function (and the
related meridional velocities andw [Santee and Crisl995]) are 3 times larger during

the L, = 270 solstice. Partially, this is explained by 1.5 times stronger solar radiation
flux: 730 W n! on perihelion (., = 270 versus 500 W m'! on aphelion {, = 90°)

due to the eccentricity of the orbit. In explaining the difference in the circulation strength,
the remaining factor two can be attributed to the asymmetry in the topogr&piyh and

Zuber, 1996;Takahashi et a] 2003].

In previous Sections 3.1-3.4, we demonstrated that planetary waves and solar tides in
the middle and upper atmosphere have large magnitudes. They are generated mainly near
the surface, propagate upward, and deposit the momentum through the convergence of EP
fluxes. These waves and tides are important sources of the momentum which maintains
the meridional Hadley circulation at these heights. We now turn our attention to the
question of how the Martian topography affects the circulation in the lower atmosphere.

Usually, in the inter-tropical convergence zone (ITCZ) on Earth, a low near-surface
pressure creates the ascending current, which constitutes an upward branch of the merid-
ional circulation. Similarly, in ourL, = 90° simulation, a low pressure zone resem-
bling the ITCZ gives rise to the Hadley circulation. However, the downward flow in the
descending convergence zone (DCZ) in the winter hemisphere is more intense than the
upward flow in the ascending convergence zone (ACZ) in the summer hemisphere.

Figure 3.17 presents a series of experiments to study the sensitivity of the meridional
circulation to the position of surface inhomogeneities. For simplicity and in order to focus
on the effects of the topography only, we turned off the tides by replacing the diurnally
varying heating with its daily averaged value. This is done in the same manner as in the
experiments Run-2 described in Section 3.2. To specify a disturbance on the surface, we
used a zonally symmetric “hill” with the size of one grid step in height and latitude. This
corresponds td\z = 1.14 km andAy = 296 km. Figure 3.17 consists of 4 panels (a—

d), each panel being composed of two subpanels. Upper subpanels show EP fluxes with
arrows, and their negative divergences with shaded areas. The lower subpanels present

44



3.7 The Influence of the Topography on the Mean Circulation

altitude, km

altitude, km

90S 60S 30S EQ 30N 60N 90N 90S 60S 30S EQ 30N 60N 9ON

Figure 3.17: Results of the experiments showing the dependence on the topography for
Ly, = 90 with diurnal solar insolation included. (a): Flat topography everywhere (same

as Run-1). (b): Idealized zonal “hill” is placed on equator,8Qc), and 30N (d). Each

panel is composed of two subpanels. The upper subpanels show EP fluxes with arrows,
and their negative divergences with shaded areas. The lower subpanels present the mean
zonal temperatures (dashed lines), and meridional mass stream functions with intervals
100 x10° kg s7! (solid lines).

the mean zonal temperatures (dashed lines), and meridional mass stream functions (solid
lines). Figure 3.17a displays the results for the flat surface. It is seen that the eddies are
generated near the surface mostly as a response to convective instability. They represent
normal resonance modes of planetary waves. The magnitudes of these waves are weak,
as well as their EP fluxes and the EP flux divergences. The resulted circulation (lower
subpanel) is also weak. It represents a direct response to the latitude gradient of the
heating. The solid lines in this panel (a) show that the circulation cell is located mainly in
low latitudes. This is the so-called thermally induced direct Hadley circulation.

Figure 3.17c¢ presents the results of the experiment in which the “hill” was located near
30°S in the winter hemisphere. This disturbance on the surface generates eddies. The lat-
ters propagate upward, dissipate above, and deliver a torque for the meridional circulation.
Two cells are seen in the lower subpanel: the clockwise and anti-clockwise ones. The
clockwise circulation is directed against the thermally induced Hadley cell, i.e. it tends to
weaken the cross-equatorial transport. In Figure 3.17b, we put the surface disturbance on
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Figure 3.18: Same as in Figure 3.17, but for realistic topography (a), and for the north-
south reversed one (b).

the equator. Again, an extensive generation of eddies occurs near the “mountain”. Almost
a symmetric two-cell circulation, similar to the equinox circulation in the terrestrial tro-
posphere, is formed in the tropics. Finally, the results for the run with the “hill” &iN30

are shown in Figure 3.17d. The superposition of the two-cell circulation induced by the
disturbance on the surface with the thermally direct Hadley circulation produces a highly
asymmetric meridional transport. The mechanically induced counter-clockwise cell tends
to extend the poleward flow. As the result, a “horn” in the zonally mean temperature is
formed in mid-latitudes of Southern hemisphere. The counter-clockwise cell is almost 10
times stronger compared to the pure thermally induced circulation in Figure 3.17a.

In the previous set of experiments, tides were turned off and topography were idealize
to highlight the effects of the disturbance on the surface. Figure 3.18 presents the results
of simulations with the diurnal solar cycle included. Instead of a small “bump” on the
surface, a realistically topography (Figure 3.3) was imposed in these experiments. In this
more realistic case, the EP flux divergence associated with the tides and topography forces
a stronger meridional circulation. In Figure 3.18a, this topography was set normally, and
north-south reversal in Figure 3.18b. Qualitatively, the results are similar to the ones
presented above. The disturbance of both experiments induces a large-cell circulation
that superimposes the thermally direct Hadley transport. Comparing on Figure 3.18a,b,
the disturbance in the summer hemisphere affects the circulation stronger. The clockwise
cellis weak and localized, whereas the anti-clockwise cell tends to enhance and extend the
Hadley circulation. The isothermes (dashed lines) are formed relied on the topographic
trend in comparing bottom subpanels as well as resulfEakghashi et al[2003]

3.8 The Local Circulation Induced by Mountains

In the previous Sections 3.5-3.7, we explored the effects of an idealistic zonally symmet-
ric topography on the zonal mean circulation. In this section, we consider the circulation
near the surface and the topography effect for the realistic conditions, i.e. limited in
both latitudinal and longitudinal dimensions. Mars has tall mountains in low- and mid-
latitudes, for example Alba (401, 110°W), Olympus (20N, 130°'W), and Tharsis (15,

46



3.8 The Local Circulation Induced by Mountains

(a Lat.60N d Lat.40N
40
30
20 7=
10

40
30
20
10

Altitude, km

40
30
20
10

(b)

3032‘:%@%@@3@%%@ 0.9

£0.21 (7002 021

§O1 T T T T T O : 01

< 0c)60E120E180120W60W 0O
401 0
W[8) (T O (
2017 o

10

0_

7 40_

5 30 30
S20P ‘ 20

£10 108
0 01
40 40
30 30
20 20

—_
[eNe]

0 60E 120E180120W60W 0 0 60E120E180120W60W 0

Figure 3.19: Temperature (panels a,d), surface albedo (white dots (b,e)), thermal inertia
(black dots (b,e)), and u-wind (c,f) fdr, = 90° at 60N (a,b,c) and 4N (d,e,f). Each

panel (a,c,d,f) is composed of three subpanels. Top are for the average between day and

night: (2am + 2pm)/2. Middle is the deviation2pm — 2pm". Bottom is the deviation:
2am — 2am”.
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120°W) in Figure 1.2. At low latitudes, Olympus and Tharsis can significantly block the
dominant zonal wind, and the Martian bore waves were confirmeeidikersgill[1984].

In low- and mid-latitudes, daily variations of the surface temperature and wind at and near
the surface are very strong during summdoshi et al, 1997].

Longitudinal variations of the atmospheric fields simulated in the control run with the
“full” physics are presented in Figures 3.19-3.21. The model output was processed in a
manner to imitate the measurements taken from Mars Global Surveyor (MGS). MGS is
on a polar orbit, and observes the atmosphere and surface at almost the same local time:
2 pm and 2 am. We also selected only the fields corresponding to 2 pm and 2 am to study
their longitudinal dependences.

Figures 3.19-3.21a,d (second subpanel) present the difference between the daytime
temperature and the daytime averaged temperafisg Tgpmz). Itis seen that, during
the daytime, atmospheric air is hotter over the mountains. The strongly heated moun-
tain surface contrasts with the relatively cold surrounding air. Convective fluxes and/or
upwelling transport the heat up, and create areas of warm temperature over the moun-
tains. During nighttime (2 am), the surface cools down faster than the surrounding air
[Blumsack et a] 1973]. This leads (third subpanels in Figure 3.19-3.21a,d) to night-
time temperature inversions over tall mountains. These inversions are not that persistent
compared to the daytime warming, but they create distinctive circulation patterns around
mountains. The first subpanels in Figures 3.19-3.21c,f present the daily mean longitu-
dinal wind, u, and the daytime (second subpanels) and nighttime (third subpanels) de-
viations @agm2pm — U2am,2pm”)- It IS seen that the horizontal wind is also affected by
mountains. When the background wind is eastward, positive temperature disturbances
propagate upward from the top of the mountain in second subpanels of Figure 3.21a,d.

Longitude-latitude wind distributions near the surface are shown with vectors in Fig-
ure 3.22. Similar maps were presented in the simulation studiekdnwy and Mintz
1969; Barnes et al 1996; Fenton et al, 2001]. They compare well with the simula-
tions with our model. Figure 3.22a shows the atmospheric temperature disturbance and
winds disturbance at 7 km height, and panel (b) is for at 15 km. Persistent vortices are
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3.8 The Local Circulation Induced by Mountains

Figure 3.23: Martian winds stream lines in 3D simulation with the topography at 11 km
(a), and 22 km (b). Axis numbers show the grid points in our model. Surface color red
means high and green means low.

Figure 3.24: Wind field from Figure 3.23 between 1B@&nd 360E, and between<Cand
90°N around Alba (40N, 110W) and Olympus (2TN, 130W).

seen around Alba (40!, 110W) and the basin Hellas at (7B, 40°S). The direction

of the wind velocities in these vortices at 15 km (panel b) are consistent with anticy-
clones (high-pressure) and cyclones (low-pressure), respectively. These persistent wind
and temperature disturbances are the manifestation of stationary planetary waves in the
lower atmosphere. 3-dimensional plots in Figure 3.23 visualize the nonzonal nature of the
near surface circulation. It is clearly seen from Figure 3.23a that the clockwise circulation
dominates around Alba, and the upwelling over the Olympus and Tharsis is strong. There,
Olympus and Tharsis are painted with red color. According to Figure 3.23b which shows
the fields below 22 km, the spiral wind trajectories are tilted eastward with height. This
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3 Simulation Results

MAOAM: Surface Temperature (K), Ls=90
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Figure 3.25: Simulated surface temperaturelfpe= 90° at noon.

flow gets stronger near the equator and goes up along the slope, as shown in Figure 3.24b.
The westward winds on the equator have to climb and detour the mountain. Then the
winds turn finally left, and turns out strong eastwards winds in mid-latitudes of the winter
hemisphere. Therefore, strong upwelling above Olympus and Tharsis is resulted from the
forced clockwise circulation around Alba.

3.9 The Surface Temperature

The global thermal inertia and surface albedo of Mars has been investigatedthy
[2005] in detail, in particularly the relationship between the surface properties and the sur-
face temperature. Indeed, the surface temperature strongly depends on eleidiens [

nar et al, 1999]. In this section, we consider interactions between the surface and near
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3.9 The Surface Temperature

surface atmosphere. The main emphasis here is made on the influence of varying topog-
raphy, thermal inertia and albedo on the generation of temperature disturbances in the
atmosphere. A relevant study of the relationship between the temperature surface and the
thermal inertia will be considered in the Section 4.4.

The surface temperature depends on the thermal inedizd surface albedd, for
details see Section 2.4.3. In areas with a largde surface temperature remains warmer
even during nights. This is similar to the terrestrial ocean with large thermal capaisity,
proportional to the square root of the thermal capacity. The range of temperature variation
during day and night depends énThe surface albedd controls the ratio between the
reflection and absorption of the solar flux. For smlthe solar absorption on the surface
is weak.

Figures 3.19-3.21b,e present the global thermal inertia and surface albedo prescribed
from observationsNlellon, 2003]. In the top panel (Figures 3.19-3.21a,b), the atmo-
spheric temperature near the surface around mountains is smaller than in the basin. In
general, the diurnally averaged atmospheric temperature tends to decrease with height,
such that the temperature near the surface is usually the hottest in the entire vertical col-
umn. However, temperature inversions at some places have been detected in the radio
science (RS) occultation experimentsijson et al, 2003;Hinson et al, 2004]. These
measurements have usually higher vertical resolution compared to TES. Meanwhile, TES
has also detected temperature inversions around the mountaifEag66 120W. This
will be discussed in the next chapter.

In the second subpanels in Figures 3.19-3.21a,b, where daytime temperatures distur-
bance are shown, the surface temperature is especially large near the top of the mountains,
where/ is small. This can easily be understood since, when heated, the surface tempera-
ture tends to rise faster in areas with the smalleburing days, an overheated (in areas
with the smalll) surface can cause a convection, which, in turn, reduces lapse rates. On
the other hands, in the third subpanels, where the nighttime temperatures disturbance are
shown, the surface temperature sharply decreases in the areas of sFa@llthe condi-
tions of smalll/large A (i.e. for small ratios/ /A), even the daily averaged surface and
near surface atmospheric temperatures cool down faster than the air above. The net effect
of this can be vertical temperature inversions over the areas with faht the surface.

These peculiarities of the surface characteristics can result in a generation of station-
ary planetary waves, and the subsequent wave energy propagation in the atmosphere. The
westward and upward propagation of the hot temperature disturbances generated over the
surface on the mountain slope in the Southern hemisphere is seen second subpanels in
Figure 3.21a,d, but in the Southern hemisphere. These differences of the energy propa-
gation depending on the latitude are due to refractive properties of the mean circulation.
The latters are mainly the functions of the mean zonal wind, as explained in Section 4.3.

Comparison of the second and third subpanels reveals the differences between day-
and nighttimes temperature disturbances in Figure 3.20-3.21a,d. During the day (second
subpanel), the disturbances propagate mostly in the vertical direction, while during the
nights (third subpanel), the wave train paths are tilted with height. The strong convection
occurring during the daytime helps to extend the temperature disturbances vertically, but
during nights, when there is no or very weak convection, vertical propagation is inhibited.
The influence of the convection appears to be stronger than that of the topography and
local winds, therefore the vertical propagation dominates. Without the convection, only a
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3 Simulation Results

E
North Pole South Pole

Figure 3.26: Both polar views are taken by satellite observations during the Martian sum-
mer season. (a): The Northern polar cap is largely composed of frozen water after carbon
dioxide ice sublimates. This view of the cap was obtained by Mars Global Surveyor dur-
ing the northern summer. The cap is roughly 1095 km across. (b): The Southern polar
cap is composed of carbon dioxide ice. This view was obtained by the Viking Orbiter.

dynamical generation of disturbances (the flow over the topography) takes place.

3.10 The Influence of the Polar Caps

Polar caps cover both polar regions of Mars. The Southern polar cap is composed of
almost pure C@ and the Northern polar cap consists of 85 percent @@l 15 percent
H,O [Langevin et a12005;Hansen et al 2005]. The polar cap temperature depends on
the ratio of CQ and H,O. The average Northern polar cap temperature is 146 K, and the
Southern one is 142 KPaige and Ingerso]l1985].

During the L, = 90° season, the diameter of the Northern polar cap in summer is
1100 km, but C@in the cap almost vanishes, and®remains, while the Southern polar
cap grows in winters. On the other hand, during the= 270> season, the diameter of
the Northern polar cap grows, while the Southern polar cap shrinks to an average 420 km.
According to Figure 3.26, the area covered by both caps varies depending of the season.
Around L, = 9C° (northern summer and southern winter), the Northern polar cap shrinks
up to 80S latitude, and the Southern cap expands up ttN48t the L, = 270 season,
the Northern cap extends up to°A) and the Southern one shrinks to°85Hence, the
interactions of the atmosphere with the surface must be considered, especially since the
surface temperature contrasts due to the caps represent the source of forced stationary
planetary waves. These waves generated near the polar caps were detected by MGS-TES
[Colaprete et al 2005;Fukuhara and Imamurg2005].

The polar caps formation is different for each hemisphere because of the large ec-
centricity of the Martian orbit. The distance of the planet from the Suh,at 90° is
farther than at,, = 270°. Therefore, Southern polar cap variations are greater than at
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3.10 The Influence of the Polar Caps
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Figure 3.27: Simulated surface temperature on the Southern polar cap during southern
summer ., = 270°).

the Northern one. This means that a greater amount of ice evaporates during the southern
summer (., = 270°) and condenses during the Southern winfgr-€ 90°). On the other
hand, the area covered by the Northern cap almost does not change with s€aliagk |
et al, 1990]. The dissolving of the Southern cap occurs with the longitudinal asymmetry
[Paige et al, 1994,Paige and Keegarnl994], and this asymmetry (Figure 3.26b) modi-
fies the temperature and circulation, especially during southern sumiéastara and
Imamura 2005].

To estimate the influence of the polar cap contrasts on the atmospheric temperature
and winds, we designed four numerical experimentdfoe= 270°: (A) only the topog-
raphy and the solar cycle were taken into account, (B) the imposed surface temperature
prescribing the Southern polar cap was added to (A), (C) the surface albedo and thermal
inertia were added to (A), (D) combines all the features of (A), (B), and (C). The simu-
lated atmospheric temperatures in Figure 3.29 were obtained at 2 pm and 2 am local times
in line with the TES measuremen®dnfield et al, 2003,Fukuhara and Imamurz2005].
The figure consists of four panels for each experiment from (A) to (D). The top subpanels
in the figure present stationary waves determine@,as= (Toqm + Topm)/2. The mid-
dle and bottom subpanels show the disturbances of the temperature during for daytime,
Topm — Topm, and nighttime g, — Taam, respectively. The u- and w-components of the
wind are plotted in the same manner in Figures 3.30 and 3.31 respectively.

The surface temperature on the Southern cap (including the zonal asymmetry) was set
to the constant value of 146 K-grget et al, 1996]. In other words, a time independent
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Figure 3.28: The surface albedo (white) and thermal inertia (black)°&.80

geographical distribution of the cap was presumed. The initial constant surface tempera-
ture distribution corresponds to the cap in Figure 3.26b and simulation result after running
3.27,i.e. the ice is assumed to cover the territory fron?%0€ 40°E, and from 90S to

80°S. The temperature in the grids surrounded the cap are set to 187 K, i.e. equal to the
evaporation temperature of the carbon dioxide.

Figure 3.29A (first subpanel) shows the longitudinal disturbanee?2 (the temper-
ature maximum near 3& and 150W) which appears exclusively due to the mountain
terrace. According to the first subpanel in Figure 3.31A, this column temperature distur-
bance is the result of a strong downwelling flow caused by the step in the topography.
All other longitudinal disturbances (except for the temperature maximum &wisére
associated with the tides. For example, the hot temperature band fréWwE8@0 km to
30°E at 40 km at 2 pm (second subpanel) shifts frofE3at 20 km to 150W at 40 km
at 2 am (third subpanel). Similarly, the cold spot abov&/@Gt 30 km at 2 pm moves
to 120°E at 30 km at 2 am. Figure 3.30A also confirms that the u-wind disturbances are
associated with the stationary wave and tides. For tides, some oscillation are detected, for
example, the eastward wind area atB@t 10 km, and the westward wind at 40 km at 2
pm is replaced by a reversed pattern at 2 am.

In Figure 3.29B (first subpanel), the stationary wave remarkably appears near the
surface when the longitudinal asymmetry of the Southern polar cap is introduced. Its
magnitude is twice as large compared to the disturbance at 30 km. Figure 3.30B shows
that the u—wind is smoother than for Figure 3.30A. This is because the wind shear over
120°W in Figure 3.30B is smaller, and a new area of the upwelling is generated above the
terrace on the polar cap 190in Figure 3.31B.

Results of (C) are similar to (A), but a comparison of the second subpanels during
the daytime shows that the magnitude of the temperature disturbance in (C) is somewhat
larger than in (A). It is caused by a stronger absorption of the solar radiation due to the
lower albedo in the area around the terrace BA.20W) in Figure 3.28.

Consideration of the results for the case (D) (which effectively is the sum of (A), (B)
and (C)) shows the following. First, the downwelling near the terrace step at\1pfb-
duces the vertically extended positive temperature disturbance. Second, the asymmetrical
polar cap generates the strong stationary planetary wave near the surface. And third, other
waves seen in the simulations are caused by the tides. The main conclusion of the simu-
lation results presented in this section is that the longitudinal asymmetry of the Southern
polar cap enforces a strong stationary planetary wave near the surface, which, however,
does not propagate high enough.
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3.10 The Influence of the Polar Caps

0 60F120F 180120W60W 0 0 60E120E180120W60W 0

Figure 3.29: Atmospheric temperature duribg= 270° at 80°'S. (A) denotes the result
considering only the topography and solar cycle. (B) the polar surface parameterization
is added to (A). (C) the surface albedo and thermal inertia are added to (A). (D) is for the
“full physics” Run: (D) = (B) + (C). Each panel is composed of three subpanels. Top
is for the average between day and nigi2um + 2pm) /2. Middle is for the deviations:

2pm — 2pm”. Bottom is for the deviation®am — 2am”.
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Altitude, km
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Figure 3.30: Same as in Figure 3.29, but for the u-wind.
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Altitude, km
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Figure 3.31: Same as in Figure 3.29, but for the w-wind.
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4 Comparison of the Simulations with
Measurements

4.1 Introduction

In the previous Chapter 3, we presented the results of simulations with the general circula-
tion model of the Martian atmosphere described in Chapter 2. In this chapter, we compare
the simulations with available measurements, and discuss the performance of the model.
The most extensive set of air and surface temperature measurements was provided by
the Thermal Emission Spectrometer (TES) onboard Mars Global Surveyor (MBa8) [
field et al, 2000;Conrath et al, 2000]. We processed and analyzed the global data from
the nadir observations. MGS-TES observed the atmospheric and surface temperature at
fixed local times (2 pm and 2 am) all over the globe. The description of the satellite’s
orbit, the instrument itself, and the discussion of the temperature retrievals was provided
by Christensen et al[[1992, 1998] and@hang et al [2001]. Temperature disturbances as-
sociated with stationary planetary waves (SPW) can be extracted from the measurements
as (Topm + Toum)/2 [Banfield et al, 2003; Hinson et al, 2004]. Day- and nighttime
temperature disturbances due to SPW are determin&g,as- T;pm andThem — Ty
respectively. For this chapter, the model output was processed in the very same way to
make the direct comparison with MGS-TES possible.

4.2 The Zonal Mean Temperature

First, we compare the simulated zonal mean climate with the observations. Figure 4.1
presents the temperature deduced from the nadir measurements by TES (the right panels),
and the model temperatures in the corresponding vertical domain (the left panels).

The Figure 4.1 of., = 90° shows an overall agreement in magnitudes and patterns of
the temperature fields. The discrepancies near the surface may partly arise due to differ-
ences in the zonal averaging procedures in the model and observations. It is important to
note that the vertical resolution of TES near the surface decreases, and is about 10 km. In
the Southern hemisphere, the model successfully capiiidedreezing surface tempera-
tures up to approximately 68, the strong meridional gradients in mid-latitudes, and the
polar minimum.

Since the meridional gradients of the diabatic heating/cooling rates are weaker at
equinoxes, the circulation fak, = 180° is less robust.Forget et al. [1999] pointed
out the sensitivity of the simulated equinox circulation patterns to the dynamical core of
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Figure 4.1: Top panels are zonal mean temperaturé for 90° (a) simulated with the
model, (b) obtained from the TES measurements. The contour interval is 10 K. Middle
panels are fol, = 180° and bottom forL, = 270°.

the model, or, ultimately, to the ability of the model to resolve the eddies. The results of
our simulations for., = 180° are compared with the TES temperature measurements in
Figure 4.1 ofL, = 180°. A very good agreement in zonal mean temperatures is seen in al-
most the entire domain except over the poles. In the low- and mid-latitudes, the difference
hardly exceeds the errors associated with the T&Sith et al, 2001], while on the poles,
it is around 10-15 K. Note that the maximum of temperatures in the low latitudes occurs
not on the ground but about 10 km higher. Similar features are seen at some temperature
profiles retrieved by radio occultation from the MGSifison et al, 1999].

Due to the eccentricity of the Martian orbit, the meridional gradients of ther@da-
tive heating/cooling are stronger during the southern winter solstice. Dust storms occur
at and around., = 270°, therefore radiative effects of the aerosol are significant, and
must be taken into account. The result in Figure 4.1 of= 270> was obtained employ-
ing the dust scenario described Hdrtogh et al, 2005]. An overall agreement between
the simulated and observed zonal mean temperature is seen in the figure. The major dif-
ference is in the location of the area of strong meridional temperature gradients. In the
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4.3 Longitudinal Disturbances in Mid- and High Latitudes

(@) TES 60N Ls=270

v
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Figure 4.2: Temperature longitudinal variation for the stationary wa\#@s,, + To,m)/2
for 60°Sin L, = 270° (a, @’) and for 60N in L, = 90° (b, b’). Model results in (a, b) and
TES measurements in (a’, b’). The contour interval is 10 K.

simulations, it is somewhat shifted towards the equator compared to the TES data. In our
simulations with higher dust opacities, we find that the atmospheric temperatures below
40 km become colder.

4.3 Longitudinal Disturbances in Mid- and High Lati-
tudes

If the circulation was pure zonal, then the distributions(6f,,, + 75,,,)/2 would be
independent of the longitude. HowevBanfield et al.[2003] found noticeable longitu-

dinal disturbances in the TES data with= 2 at 60°N around thel, = 270° season, and

with s = 1 at 60°'S aroundL, = 90°. These disturbances can associated with stationary
planetary waves. We processed the TES data in a similar fashBardield et al [2003]

(but without further expanding into the longitudinal harmonics), and plotted the result in
Figure 4.2. Our simulations also produced stationary harmonicsswitl? at L, = 270°

ands = 1 at L, = 9C° in Figure 4.2a,b, however with the peaks shifted longitudinally by
about 30 eastward for thd., = 90° simulation. This may be partially explained by differ-
ences between the simulated and real (not measured by TES) mean zonal wind. The wave
refraction is very sensitive to this wind, and therefore, the phases of the waves can vary in
simulations depending on the zonal mean stratification. At other latitudes-ato0° in

Figure 4.4 and 4.5, the agreement between the simulated and measured planetary waves is
more favorable. The temperaturelat= 270° was taken from the simulation without the

dust. This can explain generally higher simulated temperatures. However, the longitudi-
nal structure is clearly seen in Figure 4.2a despite a different coloring scheme compared
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(a") TES 80S Ls=270
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Figure 4.3: Same as in Figure 4.2 but for the summer polar regi®o?bitfor L, = 270°
(a,a’) and aB0°S for L, = 90° (b,b’).

to Figure 4.2a’

Figure 4.3 presents the analysis of the simulations and MGS-TES for high latitude
summer hemispheres Af = 90° and L, = 270°. Again, (Taem + T2ym)/2 are plotted in
the figure. The agreement is generally good, except for the magnitudes near the surface.
For example, the simulated low level atmospheric temperature ranges frotw 120
60°E, i.e. the area not covered by the polar ice cap, is about 10 K colder (240 K) than
the TES data show (250 K). This longitudinal disturbance with 1 below~10 km was
studied byFukuhara and Imamurg2005]. The other difference is seen between 20 and
40 km for the both summer polar regions. A strong wave 2 appears in the simulations,
and is absent in the TES data.

Figures 4.4 and 4.5 show the longitudinal cross-section$Tgy, + 7,,.,)/2 for the
other latitude bands during the dustless season. The model successfully reproduces tem-
perature inversions over the mountainous regions. As was discussed in Chapter 3, these
inversions have been detected in Radio Science (RS) experinttingoh et al, 2004].
These inversions are clearly seen in the simulations (Figure 4.4b and c) over big moun-
tains. However, it is difficult to find inversions in zonal mean temperature in the TES
measurements. Mostly this is due to the fact that the vertical resolution of TES is too low
near the surfacez ~ 10) km, i.e. close to the atmospheric scale heidtingon et al,
2004].
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Figure 4.4: Same conditions as in Figure 4.2, but for the latitude,6080°N, and 20N
during theL, = 90° season.

4.4 The Relation of the Surface Temperature with the
Thermal Inertia and Albedo

To explain how near surface temperature inversions are related to the surface thermal
characteristics, we analyze the surface temperature global distributions at 2 pm and 2 am
obtained from the MGS-TES data.

Temperature inversions tend to appear in areas of a strong cooling during nighttimes.
We denote a zonally averaged temperatur@ asThen, the surface temperature distur-
bancel” defined as

T = (Topm — T ) + (Toam —T") (4.1)

would be equal to zero if the cooling at night (2 am) was balanced by the daytime heating
(at 2 pm). Therefore, negative disturband@ésndicate regions of a strong net surface
cooling where temperature inversions tend to occur. As was described in Section 3.9,
these inversions depend on the ratio of the surface aldeated thermal inertid, i.e. on

1/A. For example, the surface is colder whietd! is small, and vice versa.
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Figure 4.5: Same conditions as in Figure 4.2, but for the other latitudds, for90°.

In this section, we used TES measurements to quantify the relation befesml
I/A. First, we introduce a characteristic value of the thermal inertia, to make the ratio
I/A dimensionless by dividing it by,. We usel, = 300 J nr2K~'s~'/2, the globally
averaged value of the thermal inerfiaSecond, we denote

r=n ( Afl) . “.2)

Then we assume that the temperature devidfioand the newly introduced dimension-
less variable- are related as

T =br +a, (4.3)

wherea andb are the coefficients of the regression to be found from global mapsAf
andT” by the least mean square method.

Figure 4.6 presents the results of calculations using the TES daf4 fand the distri-
butions of/ from [Mellon et al, 2000] andA from [Christensen et al2001]. Four panels
in Figure 4.6 are for different latitude bands and for different seasons (we present only
two solstices.; = 90° and L, = 270°). Two bottom subpanels (c,d) display longitudinal
distributions ofr and7”, correspondingly, and the upper subpanels (a) show the regres-
sionsT” versusr Equation (4.3). As an illustration, the surface topography was plotted in
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Figure 4.6: Relationship of the surface albedo, thermal inertia, surface temperature ob-
served by MGS-TES at low- to mid-latitudes°230°N (B) for L, = 90°, 10°-15°S

(D) for L, = 270°, and high latitudes 3540°S (A) for L, = 90°, 45-50N (C) for

Ly = 270°. Each panel (A-D) includes four subpanels (a—d). (d) igersusr following
Equation (4.3). (b) is the deviation of topography-{ z*). (c) isT from Equation (4.2).

(d) is the surface temperature deviations following Equation (4.1).

subpanels (b). It is qualitatively seen from the two bottom subpanels (c,d)"tfatows

7 to a large degree, and is almost independent of the topography shown in subpanels (b).
In the upper subpanels (a), the stars densely gather near the lines of the regression (4.3)
whose tilt (i.e. the coefficierit) depends on the latitude and the season. It is interesting
that in low- to mid-latitudes, the ratie-a/b approximately remains constant. In other
words, the surface temperature disturbance is equal to zero at approximately the same
value ofr. However, in mid- to high latitudes, this simple relation fails.

To extend this analysis little further, we notice thét I, and thereforey do not
depend on seasons, biit does. Figure 4.7a shows the longitudinal standard deviation
(rms values) for the surface albedioand thermal inertid from 60°S to 60N. In order
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4 Comparison of the Simulations with Measurements

12 a) Albedo and Thermal Inertia
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Figure 4.7: (a): The standard deviation of surface alhédo100~* (solid) and thermal
inertial x10 (dotted). (b): The constanta/b in Equation (4.3). (c): Root mean square
H, from Equation (4.7) in_; = 90° (solid), L, = 270° (dotted).

to estimate how closely (in statistical sensedndT” are related, we introduce

~ T —Tm

P (4.4)

- T -T,

To- e (4.5)
(4.6)

where the subscriptz means longitudinally averaged quantities, andandor are the
rms deviations of the corresponding quantities. Then, the longitudinal standard deviation
of the ratio

=
T
would measure the closeness of surface temperature anoralieshe surface char-
acteristicsr. Rms(#H,)=1 would mean a good agreement. The latter quantity is plotted

in Figure 4.7c. It shows that rm&() is close to unity in low- to mid latitudes in both
solstices. Therefore, in these latitudes, the surface temperature variations are determined
to a large degree by the thermal characteristics of the ground, but very little depend on
topography. Of course, the proportionality coefficient depends on a position of the Sun,
i.e. on a season.

H, 4.7)
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5 Conclusions

The main task of this work was to study the influence of the surface on the circulation
of the Martian atmosphere using a newly developed comprehensive general circulation
model (GCM). The main mechanism which provides the vertical coupling between atmo-
spheric layers are planetary waves (PW) and solar tides. These longitudinal disturbances
(eddies) are generated near the surface and in the lower atmosphere and propagate up-
ward. Since the air density decreases with height, the amplitudes of the eddies grow
accordingly. In the middle and upper atmosphere, PW and tides either break due to the
nonlinearity and/or dissipate due to the increasing molecular diffusion. The momentum,
energy, and heat carried away by the eddies is then released to the mean flow significantly
affecting the general (global) circulation.

Planetary waves are generated in the lower atmosphere due to the flow over the topog-
raphy or over the surface with varying thermal characteristics. They also are generated
due to the instabilities of the mean zonal flow. Solar tides are excited by the diurnal
variations in the solar radiation absorption by the carbon dioxide atmosphere, or by the
surface with consequent transfer of the energy to the lowest atmospheric layers. Since the
Martian surface has a rugged topography with high mountains and deep valleys, plane-
tary wave generation is generally strong in the atmosphere of the Red Planet. Shallower
than on Earth the planetary boundary layer provides less dissipation for the generated
disturbances. Therefore, eddies are strong in the atmosphere of Mars. Given the low
atmospheric density, their influence on the circulation is great.

The main tool used in this work is the general circulation model of the Martian atmo-
sphere. It was developed by joint efforts of several German universities and Max-Planck-
Institute for Solar System Research within the framework of the Mars Atmosphere Ob-
servations And Modeling (MAOAM) project. The author took part in the development,
implementation, and validation of several physical parameterizations: a surface energy
budget scheme, a near-IR solar radiation absorption scheme, an LTE longwave radiation
parameterization, vertical diffusion and convective adjustment schemes.

A series of numerical simulations was performed to study the sensitivity of the wave
generation to the variations of the surface parameters. The response of the global circu-
lation to the changes in wave forcing was investigated. The major conclusion from these
numerical experiments is that both solar tides and planetary waves significantly affect the
meridional circulation, they even shape it in the middle atmosphere. The effects of solar
tides are strong abowve70 km. At these heights, the torque provided to the mean zonal
flow by dissipating tides reaches several hundreds hsel~!, much stronger than on
Earth. Diurnal and semidiurnal components are mostly generated in the lowest 20 km,
and selectively propagate upward. Non-dissipating (between 20 and 70 km) tides do not
affect the general circulation, as their net effect on the mean flow is zero. In the areas
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5 Conclusions

of a strong dissipation in the mesosphere, the poleward transport gets enhanced. The
downward branch of the transport cell over the winter pole is associated with the strong
adiabatic heating. This heating is the primary reason for the winter polar warming ob-
served on Mars. The numerical experiments show that large scale longitudinal variations
of the surface thermal inertia and albedo increase the semidiurnal component of the tide.
They are also the source of quasi-stationary planetary waves. The latters propagate and
dissipate/break in a wide range of heights, thus affecting the circulation in both summer
and winter hemispheres. The flow over the topography is a more effective generator of
planetary waves. Effects of “mechanically” forced planetary waves are strong k&low

km. The topography also contributes to the generation of the semidiurnal tide. A realis-
tic general circulation can be obtained only when the diurnal variations are included in a
combination of the real topography and the observed surface thermal inertia and albedo.

The topography also affects the generation of free modes of atmospheric waves, the
traveling planetary waves with periods of several sols. Unlike for stationary PW where
the longitudinal variations of the topography are important, the overall South-North slope
of the Martian surface determines the strength of traveling PW generation. With the re-
alistic topography, the model reproduces low frequency waves i the 270° season,
and no waves for thé, = 90° solstice, in accordance with the Viking Lander observa-
tions. With the topography reversed symmetrically with respect to the equator, traveling
PW generation is inhibited during both seasons. A more close analysis shows that this
can be explained by the changes in the atmospheric wave generation and propagation: the
realistic topography increases the baroclinic instability of the mean flow and creates more
favorable conditions for planetary wave propagation. A series of numerical experiments
was performed to study the sensitivity of the mean meridional circulation to the overall
pole-to-pole slope in the Martian topography. These experiments showed how a latitudi-
nal position of a steep surface slope affects the formation of Hadley cells depending on
a season. Effects of several prominent features on the Martian surface on the local and
global circulation were studied in this work. They include the effects of the mountainous
region of Mts. Alba, Olympus and Tharsis, nighttime temperature inversions, and the role
of both polar ice caps on the wave excitation.

The results of the simulations were compared with the data obtained from Thermal
Emission Spectrometer onboard Mars Global Surveyor (TES-MGS). These data cover
only heights below 40 km, however provide a global coverage with satisfactory resolution.
The simulated zonal mean temperature for different seasons show a good agreement with
the observations, especially during dustless seasons. The comparison of the longitudinal
disturbances attributed to stationary planetary waves show a qualitative agreement. In
part, the differences can be explained by an insufficient vertical resolution of TES near
the surface, and by the need for taking a more detailed account of the dust radiation. The
TES data were used to establish a simple but statistically significant relation between the
surface temperature, thermal inertia and albedo.
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A List of Principal Symbols

Radius of Mars

Absorptance

Specific heat at constant pressure

Thermal capacity

Mean line spacing

Coriolis parameter

Acceleration of gravity

Karman constant (section 2.2)

Thermal conductivity (section 2.4)

Mixing length

Asymptotic mixing length

Pressure

Zonal wind speed

Dimensionless path length (section 2.4)
Eddy deviation from mean zonal wind speed
Meridional wind speed

Eddy deviation from mean meridional wind speed
Vertical wind speed

Optical path (section 2.4)

Eddy deviation from mean vertical wind speed
Line strength (Chapter 2)

Longitude wavenumber

Mars-Sun distance

Mean Mars-Sun distance

Radius of Sun

Time

Altitude

Surface Albedo

Band absorptance (section 2.4.1)
Effective band width

Planck function

Atmospheric thickness

Turbulent kinetic energy
Frictional force (Section 2.1,2.2)
Flux
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A List of Principal Symbols

H Scale height
1 Thermal inertia
Ke; Baroclinic growth rate
K. Coefficient of eddy viscosity
K, Heat transfer coefficient
L, Solar longitude
N Brunt-Vaisala frequency
Q Radiative heating rate
R Gas constant
R; Richardson number
S Band strength
T Temperature
T Blackbody temperature of Sun
I} Mean line width parameter (section 2.4)
5] Latitudinal gradient of the Coriolis parameter
YL Mean line width
€ Emissivity
0 Potential temperature
0’ Eddy deviation from mean potential temperature
: R/c,
K Thermal diffusivity (section 2.4.3)
A Longitude
w Cosine of solar zenith angle
v Wavenumber
v Kinematical viscosity (section 2.4.3)
P Density
o Stefan-Boltzmann constant (section 2.4)
o Frequency for atmospheric waves
T Stress tensor (section 2.2)
T, Transmittance
Latitude
Pe Static stability function
Vs Static stability parameter
w Diurnal frequency
r Lapse rate
(S} Phase
A Wind shear
0] Geopotential
Q Angular rotation rate of the Mars
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Ryu Saito: Influence of the Surface on the Atmospheric Circulation of Mars:
Study with a General Circulation Model

Unlike on Earth where 3/4 of the surface is covered by oceans, the Martian surface
has rougher topography with greater magnitudes of mountains and valleys. The Mar-
tian atmosphere is less dense compared to the terrestrial one. The planetary boundary
layer is significantly shallower on Mars than on Earth. These differences indicate that
the Martian atmosphere should be very sensitive to the forcing from below. The major
mechanism which provides vertical coupling are atmospheric waves generated in the
lower atmosphere near the surface. These waves transport the momentum, energy,
and heat away from places of their generation in the lower atmosphere. Propagating
upward the wave disturbances grow in amplitude, and ultimately break or dissipate.
They release the wave energy and momentum to the zonal mean circulation, and thus
affect the global transport in the atmosphere of Mars. The main task of this work is to
study various physical phenomena which take place in the atmosphere near the sur-
face with an emphasis on the mechanisms of wave generation. Effects of the large
scale longitudinal disturbances on the general circulation, especially in the upper and
middle atmosphere, are explored. Results of numerical experiments with the Gen-
eral Circulation Model of the Martian Atmosphere (MAOAM) show the sensitivity of the
zonal mean circulation to the surface properties. Planetary waves of different scales
are generated by a flow over the topography as well as by the inhomogeneous reaction
of the surface and the lower atmospheric layers to the solar heating. Solar tides are ex-
cited by the diurnal variations in the solar energy absorption by the air, and especially,
by the surface. These large scale disturbances propagate upward and horizontally ac-
cording to the selective transmission properties of the atmosphere, and redistribute the
wave momentum and energy. Breaking waves provide a torque to the mean zonal wind
and maintain the global meridional transport. The results of the numerical simulations
showing the sensitivity of the polar night jet to the topography, the inhomogeneous
thermal inertia and the surface albedo, are presented here. In order to validate the
simulations, the numerical results are compared with observations from the Thermal
Emission Spectrometer (TES) onboard the Mars Global Surveyor (MGS). This work
was a part of the ongoing Martian Atmosphere Observations And Modeling (MAOAM)
project to develop and validate a comprehensive state-of-the-art general circulation
model of the Martian atmosphere.
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